| /* |
| * linux/arch/alpha/mm/numa.c |
| * |
| * DISCONTIGMEM NUMA alpha support. |
| * |
| * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/bootmem.h> |
| #include <linux/swap.h> |
| #include <linux/initrd.h> |
| #include <linux/pfn.h> |
| |
| #include <asm/hwrpb.h> |
| #include <asm/pgalloc.h> |
| |
| pg_data_t node_data[MAX_NUMNODES]; |
| bootmem_data_t node_bdata[MAX_NUMNODES]; |
| |
| #undef DEBUG_DISCONTIG |
| #ifdef DEBUG_DISCONTIG |
| #define DBGDCONT(args...) printk(args) |
| #else |
| #define DBGDCONT(args...) |
| #endif |
| |
| #define for_each_mem_cluster(memdesc, cluster, i) \ |
| for ((cluster) = (memdesc)->cluster, (i) = 0; \ |
| (i) < (memdesc)->numclusters; (i)++, (cluster)++) |
| |
| static void __init show_mem_layout(void) |
| { |
| struct memclust_struct * cluster; |
| struct memdesc_struct * memdesc; |
| int i; |
| |
| /* Find free clusters, and init and free the bootmem accordingly. */ |
| memdesc = (struct memdesc_struct *) |
| (hwrpb->mddt_offset + (unsigned long) hwrpb); |
| |
| printk("Raw memory layout:\n"); |
| for_each_mem_cluster(memdesc, cluster, i) { |
| printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n", |
| i, cluster->usage, cluster->start_pfn, |
| cluster->start_pfn + cluster->numpages); |
| } |
| } |
| |
| static void __init |
| setup_memory_node(int nid, void *kernel_end) |
| { |
| extern unsigned long mem_size_limit; |
| struct memclust_struct * cluster; |
| struct memdesc_struct * memdesc; |
| unsigned long start_kernel_pfn, end_kernel_pfn; |
| unsigned long bootmap_size, bootmap_pages, bootmap_start; |
| unsigned long start, end; |
| unsigned long node_pfn_start, node_pfn_end; |
| unsigned long node_min_pfn, node_max_pfn; |
| int i; |
| unsigned long node_datasz = PFN_UP(sizeof(pg_data_t)); |
| int show_init = 0; |
| |
| /* Find the bounds of current node */ |
| node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT; |
| node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT); |
| |
| /* Find free clusters, and init and free the bootmem accordingly. */ |
| memdesc = (struct memdesc_struct *) |
| (hwrpb->mddt_offset + (unsigned long) hwrpb); |
| |
| /* find the bounds of this node (node_min_pfn/node_max_pfn) */ |
| node_min_pfn = ~0UL; |
| node_max_pfn = 0UL; |
| for_each_mem_cluster(memdesc, cluster, i) { |
| /* Bit 0 is console/PALcode reserved. Bit 1 is |
| non-volatile memory -- we might want to mark |
| this for later. */ |
| if (cluster->usage & 3) |
| continue; |
| |
| start = cluster->start_pfn; |
| end = start + cluster->numpages; |
| |
| if (start >= node_pfn_end || end <= node_pfn_start) |
| continue; |
| |
| if (!show_init) { |
| show_init = 1; |
| printk("Initializing bootmem allocator on Node ID %d\n", nid); |
| } |
| printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n", |
| i, cluster->usage, cluster->start_pfn, |
| cluster->start_pfn + cluster->numpages); |
| |
| if (start < node_pfn_start) |
| start = node_pfn_start; |
| if (end > node_pfn_end) |
| end = node_pfn_end; |
| |
| if (start < node_min_pfn) |
| node_min_pfn = start; |
| if (end > node_max_pfn) |
| node_max_pfn = end; |
| } |
| |
| if (mem_size_limit && node_max_pfn > mem_size_limit) { |
| static int msg_shown = 0; |
| if (!msg_shown) { |
| msg_shown = 1; |
| printk("setup: forcing memory size to %ldK (from %ldK).\n", |
| mem_size_limit << (PAGE_SHIFT - 10), |
| node_max_pfn << (PAGE_SHIFT - 10)); |
| } |
| node_max_pfn = mem_size_limit; |
| } |
| |
| if (node_min_pfn >= node_max_pfn) |
| return; |
| |
| /* Update global {min,max}_low_pfn from node information. */ |
| if (node_min_pfn < min_low_pfn) |
| min_low_pfn = node_min_pfn; |
| if (node_max_pfn > max_low_pfn) |
| max_pfn = max_low_pfn = node_max_pfn; |
| |
| num_physpages += node_max_pfn - node_min_pfn; |
| |
| #if 0 /* we'll try this one again in a little while */ |
| /* Cute trick to make sure our local node data is on local memory */ |
| node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT)); |
| #endif |
| /* Quasi-mark the pg_data_t as in-use */ |
| node_min_pfn += node_datasz; |
| if (node_min_pfn >= node_max_pfn) { |
| printk(" not enough mem to reserve NODE_DATA"); |
| return; |
| } |
| NODE_DATA(nid)->bdata = &node_bdata[nid]; |
| |
| printk(" Detected node memory: start %8lu, end %8lu\n", |
| node_min_pfn, node_max_pfn); |
| |
| DBGDCONT(" DISCONTIG: node_data[%d] is at 0x%p\n", nid, NODE_DATA(nid)); |
| DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata); |
| |
| /* Find the bounds of kernel memory. */ |
| start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS); |
| end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end)); |
| bootmap_start = -1; |
| |
| if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn)) |
| panic("kernel loaded out of ram"); |
| |
| /* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned. |
| Note that we round this down, not up - node memory |
| has much larger alignment than 8Mb, so it's safe. */ |
| node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1); |
| |
| /* We need to know how many physically contiguous pages |
| we'll need for the bootmap. */ |
| bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn); |
| |
| /* Now find a good region where to allocate the bootmap. */ |
| for_each_mem_cluster(memdesc, cluster, i) { |
| if (cluster->usage & 3) |
| continue; |
| |
| start = cluster->start_pfn; |
| end = start + cluster->numpages; |
| |
| if (start >= node_max_pfn || end <= node_min_pfn) |
| continue; |
| |
| if (end > node_max_pfn) |
| end = node_max_pfn; |
| if (start < node_min_pfn) |
| start = node_min_pfn; |
| |
| if (start < start_kernel_pfn) { |
| if (end > end_kernel_pfn |
| && end - end_kernel_pfn >= bootmap_pages) { |
| bootmap_start = end_kernel_pfn; |
| break; |
| } else if (end > start_kernel_pfn) |
| end = start_kernel_pfn; |
| } else if (start < end_kernel_pfn) |
| start = end_kernel_pfn; |
| if (end - start >= bootmap_pages) { |
| bootmap_start = start; |
| break; |
| } |
| } |
| |
| if (bootmap_start == -1) |
| panic("couldn't find a contigous place for the bootmap"); |
| |
| /* Allocate the bootmap and mark the whole MM as reserved. */ |
| bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start, |
| node_min_pfn, node_max_pfn); |
| DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n", |
| bootmap_start, bootmap_size, bootmap_pages); |
| |
| /* Mark the free regions. */ |
| for_each_mem_cluster(memdesc, cluster, i) { |
| if (cluster->usage & 3) |
| continue; |
| |
| start = cluster->start_pfn; |
| end = cluster->start_pfn + cluster->numpages; |
| |
| if (start >= node_max_pfn || end <= node_min_pfn) |
| continue; |
| |
| if (end > node_max_pfn) |
| end = node_max_pfn; |
| if (start < node_min_pfn) |
| start = node_min_pfn; |
| |
| if (start < start_kernel_pfn) { |
| if (end > end_kernel_pfn) { |
| free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), |
| (PFN_PHYS(start_kernel_pfn) |
| - PFN_PHYS(start))); |
| printk(" freeing pages %ld:%ld\n", |
| start, start_kernel_pfn); |
| start = end_kernel_pfn; |
| } else if (end > start_kernel_pfn) |
| end = start_kernel_pfn; |
| } else if (start < end_kernel_pfn) |
| start = end_kernel_pfn; |
| if (start >= end) |
| continue; |
| |
| free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start)); |
| printk(" freeing pages %ld:%ld\n", start, end); |
| } |
| |
| /* Reserve the bootmap memory. */ |
| reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start), bootmap_size); |
| printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size)); |
| |
| node_set_online(nid); |
| } |
| |
| void __init |
| setup_memory(void *kernel_end) |
| { |
| int nid; |
| |
| show_mem_layout(); |
| |
| nodes_clear(node_online_map); |
| |
| min_low_pfn = ~0UL; |
| max_low_pfn = 0UL; |
| for (nid = 0; nid < MAX_NUMNODES; nid++) |
| setup_memory_node(nid, kernel_end); |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| initrd_start = INITRD_START; |
| if (initrd_start) { |
| extern void *move_initrd(unsigned long); |
| |
| initrd_end = initrd_start+INITRD_SIZE; |
| printk("Initial ramdisk at: 0x%p (%lu bytes)\n", |
| (void *) initrd_start, INITRD_SIZE); |
| |
| if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) { |
| if (!move_initrd(PFN_PHYS(max_low_pfn))) |
| printk("initrd extends beyond end of memory " |
| "(0x%08lx > 0x%p)\ndisabling initrd\n", |
| initrd_end, |
| phys_to_virt(PFN_PHYS(max_low_pfn))); |
| } else { |
| nid = kvaddr_to_nid(initrd_start); |
| reserve_bootmem_node(NODE_DATA(nid), |
| virt_to_phys((void *)initrd_start), |
| INITRD_SIZE); |
| } |
| } |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| } |
| |
| void __init paging_init(void) |
| { |
| unsigned int nid; |
| unsigned long zones_size[MAX_NR_ZONES] = {0, }; |
| unsigned long dma_local_pfn; |
| |
| /* |
| * The old global MAX_DMA_ADDRESS per-arch API doesn't fit |
| * in the NUMA model, for now we convert it to a pfn and |
| * we interpret this pfn as a local per-node information. |
| * This issue isn't very important since none of these machines |
| * have legacy ISA slots anyways. |
| */ |
| dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; |
| |
| for_each_online_node(nid) { |
| unsigned long start_pfn = node_bdata[nid].node_boot_start >> PAGE_SHIFT; |
| unsigned long end_pfn = node_bdata[nid].node_low_pfn; |
| |
| if (dma_local_pfn >= end_pfn - start_pfn) |
| zones_size[ZONE_DMA] = end_pfn - start_pfn; |
| else { |
| zones_size[ZONE_DMA] = dma_local_pfn; |
| zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn; |
| } |
| free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn, NULL); |
| } |
| |
| /* Initialize the kernel's ZERO_PGE. */ |
| memset((void *)ZERO_PGE, 0, PAGE_SIZE); |
| } |
| |
| void __init mem_init(void) |
| { |
| unsigned long codesize, reservedpages, datasize, initsize, pfn; |
| extern int page_is_ram(unsigned long) __init; |
| extern char _text, _etext, _data, _edata; |
| extern char __init_begin, __init_end; |
| unsigned long nid, i; |
| high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT); |
| |
| reservedpages = 0; |
| for_each_online_node(nid) { |
| /* |
| * This will free up the bootmem, ie, slot 0 memory |
| */ |
| totalram_pages += free_all_bootmem_node(NODE_DATA(nid)); |
| |
| pfn = NODE_DATA(nid)->node_start_pfn; |
| for (i = 0; i < node_spanned_pages(nid); i++, pfn++) |
| if (page_is_ram(pfn) && |
| PageReserved(nid_page_nr(nid, i))) |
| reservedpages++; |
| } |
| |
| codesize = (unsigned long) &_etext - (unsigned long) &_text; |
| datasize = (unsigned long) &_edata - (unsigned long) &_data; |
| initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; |
| |
| printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, " |
| "%luk data, %luk init)\n", |
| (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), |
| num_physpages << (PAGE_SHIFT-10), |
| codesize >> 10, |
| reservedpages << (PAGE_SHIFT-10), |
| datasize >> 10, |
| initsize >> 10); |
| #if 0 |
| mem_stress(); |
| #endif |
| } |
| |
| void |
| show_mem(void) |
| { |
| long i,free = 0,total = 0,reserved = 0; |
| long shared = 0, cached = 0; |
| int nid; |
| |
| printk("\nMem-info:\n"); |
| show_free_areas(); |
| printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| for_each_online_node(nid) { |
| unsigned long flags; |
| pgdat_resize_lock(NODE_DATA(nid), &flags); |
| i = node_spanned_pages(nid); |
| while (i-- > 0) { |
| struct page *page = nid_page_nr(nid, i); |
| total++; |
| if (PageReserved(page)) |
| reserved++; |
| else if (PageSwapCache(page)) |
| cached++; |
| else if (!page_count(page)) |
| free++; |
| else |
| shared += page_count(page) - 1; |
| } |
| pgdat_resize_unlock(NODE_DATA(nid), &flags); |
| } |
| printk("%ld pages of RAM\n",total); |
| printk("%ld free pages\n",free); |
| printk("%ld reserved pages\n",reserved); |
| printk("%ld pages shared\n",shared); |
| printk("%ld pages swap cached\n",cached); |
| } |