| /* |
| * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/ioport.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/spi/spi.h> |
| #include <linux/workqueue.h> |
| #include <linux/delay.h> |
| #include <linux/clk.h> |
| #include <linux/gpio.h> |
| |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/delay.h> |
| |
| #include <mach/dma.h> |
| #include <mach/regs-ssp.h> |
| #include <mach/ssp.h> |
| #include <mach/pxa2xx_spi.h> |
| |
| MODULE_AUTHOR("Stephen Street"); |
| MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:pxa2xx-spi"); |
| |
| #define MAX_BUSES 3 |
| |
| #define RX_THRESH_DFLT 8 |
| #define TX_THRESH_DFLT 8 |
| #define TIMOUT_DFLT 1000 |
| |
| #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR) |
| #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK) |
| #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0) |
| #define MAX_DMA_LEN 8191 |
| #define DMA_ALIGNMENT 8 |
| |
| /* |
| * for testing SSCR1 changes that require SSP restart, basically |
| * everything except the service and interrupt enables, the pxa270 developer |
| * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this |
| * list, but the PXA255 dev man says all bits without really meaning the |
| * service and interrupt enables |
| */ |
| #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ |
| | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ |
| | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ |
| | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ |
| | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ |
| | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) |
| |
| #define DEFINE_SSP_REG(reg, off) \ |
| static inline u32 read_##reg(void const __iomem *p) \ |
| { return __raw_readl(p + (off)); } \ |
| \ |
| static inline void write_##reg(u32 v, void __iomem *p) \ |
| { __raw_writel(v, p + (off)); } |
| |
| DEFINE_SSP_REG(SSCR0, 0x00) |
| DEFINE_SSP_REG(SSCR1, 0x04) |
| DEFINE_SSP_REG(SSSR, 0x08) |
| DEFINE_SSP_REG(SSITR, 0x0c) |
| DEFINE_SSP_REG(SSDR, 0x10) |
| DEFINE_SSP_REG(SSTO, 0x28) |
| DEFINE_SSP_REG(SSPSP, 0x2c) |
| |
| #define START_STATE ((void*)0) |
| #define RUNNING_STATE ((void*)1) |
| #define DONE_STATE ((void*)2) |
| #define ERROR_STATE ((void*)-1) |
| |
| #define QUEUE_RUNNING 0 |
| #define QUEUE_STOPPED 1 |
| |
| struct driver_data { |
| /* Driver model hookup */ |
| struct platform_device *pdev; |
| |
| /* SSP Info */ |
| struct ssp_device *ssp; |
| |
| /* SPI framework hookup */ |
| enum pxa_ssp_type ssp_type; |
| struct spi_master *master; |
| |
| /* PXA hookup */ |
| struct pxa2xx_spi_master *master_info; |
| |
| /* DMA setup stuff */ |
| int rx_channel; |
| int tx_channel; |
| u32 *null_dma_buf; |
| |
| /* SSP register addresses */ |
| void __iomem *ioaddr; |
| u32 ssdr_physical; |
| |
| /* SSP masks*/ |
| u32 dma_cr1; |
| u32 int_cr1; |
| u32 clear_sr; |
| u32 mask_sr; |
| |
| /* Driver message queue */ |
| struct workqueue_struct *workqueue; |
| struct work_struct pump_messages; |
| spinlock_t lock; |
| struct list_head queue; |
| int busy; |
| int run; |
| |
| /* Message Transfer pump */ |
| struct tasklet_struct pump_transfers; |
| |
| /* Current message transfer state info */ |
| struct spi_message* cur_msg; |
| struct spi_transfer* cur_transfer; |
| struct chip_data *cur_chip; |
| size_t len; |
| void *tx; |
| void *tx_end; |
| void *rx; |
| void *rx_end; |
| int dma_mapped; |
| dma_addr_t rx_dma; |
| dma_addr_t tx_dma; |
| size_t rx_map_len; |
| size_t tx_map_len; |
| u8 n_bytes; |
| u32 dma_width; |
| int (*write)(struct driver_data *drv_data); |
| int (*read)(struct driver_data *drv_data); |
| irqreturn_t (*transfer_handler)(struct driver_data *drv_data); |
| void (*cs_control)(u32 command); |
| }; |
| |
| struct chip_data { |
| u32 cr0; |
| u32 cr1; |
| u32 psp; |
| u32 timeout; |
| u8 n_bytes; |
| u32 dma_width; |
| u32 dma_burst_size; |
| u32 threshold; |
| u32 dma_threshold; |
| u8 enable_dma; |
| u8 bits_per_word; |
| u32 speed_hz; |
| int gpio_cs; |
| int gpio_cs_inverted; |
| int (*write)(struct driver_data *drv_data); |
| int (*read)(struct driver_data *drv_data); |
| void (*cs_control)(u32 command); |
| }; |
| |
| static void pump_messages(struct work_struct *work); |
| |
| static void cs_assert(struct driver_data *drv_data) |
| { |
| struct chip_data *chip = drv_data->cur_chip; |
| |
| if (chip->cs_control) { |
| chip->cs_control(PXA2XX_CS_ASSERT); |
| return; |
| } |
| |
| if (gpio_is_valid(chip->gpio_cs)) |
| gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted); |
| } |
| |
| static void cs_deassert(struct driver_data *drv_data) |
| { |
| struct chip_data *chip = drv_data->cur_chip; |
| |
| if (chip->cs_control) { |
| chip->cs_control(PXA2XX_CS_ASSERT); |
| return; |
| } |
| |
| if (gpio_is_valid(chip->gpio_cs)) |
| gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted); |
| } |
| |
| static int flush(struct driver_data *drv_data) |
| { |
| unsigned long limit = loops_per_jiffy << 1; |
| |
| void __iomem *reg = drv_data->ioaddr; |
| |
| do { |
| while (read_SSSR(reg) & SSSR_RNE) { |
| read_SSDR(reg); |
| } |
| } while ((read_SSSR(reg) & SSSR_BSY) && limit--); |
| write_SSSR(SSSR_ROR, reg); |
| |
| return limit; |
| } |
| |
| static int null_writer(struct driver_data *drv_data) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| u8 n_bytes = drv_data->n_bytes; |
| |
| if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00) |
| || (drv_data->tx == drv_data->tx_end)) |
| return 0; |
| |
| write_SSDR(0, reg); |
| drv_data->tx += n_bytes; |
| |
| return 1; |
| } |
| |
| static int null_reader(struct driver_data *drv_data) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| u8 n_bytes = drv_data->n_bytes; |
| |
| while ((read_SSSR(reg) & SSSR_RNE) |
| && (drv_data->rx < drv_data->rx_end)) { |
| read_SSDR(reg); |
| drv_data->rx += n_bytes; |
| } |
| |
| return drv_data->rx == drv_data->rx_end; |
| } |
| |
| static int u8_writer(struct driver_data *drv_data) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| |
| if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00) |
| || (drv_data->tx == drv_data->tx_end)) |
| return 0; |
| |
| write_SSDR(*(u8 *)(drv_data->tx), reg); |
| ++drv_data->tx; |
| |
| return 1; |
| } |
| |
| static int u8_reader(struct driver_data *drv_data) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| |
| while ((read_SSSR(reg) & SSSR_RNE) |
| && (drv_data->rx < drv_data->rx_end)) { |
| *(u8 *)(drv_data->rx) = read_SSDR(reg); |
| ++drv_data->rx; |
| } |
| |
| return drv_data->rx == drv_data->rx_end; |
| } |
| |
| static int u16_writer(struct driver_data *drv_data) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| |
| if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00) |
| || (drv_data->tx == drv_data->tx_end)) |
| return 0; |
| |
| write_SSDR(*(u16 *)(drv_data->tx), reg); |
| drv_data->tx += 2; |
| |
| return 1; |
| } |
| |
| static int u16_reader(struct driver_data *drv_data) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| |
| while ((read_SSSR(reg) & SSSR_RNE) |
| && (drv_data->rx < drv_data->rx_end)) { |
| *(u16 *)(drv_data->rx) = read_SSDR(reg); |
| drv_data->rx += 2; |
| } |
| |
| return drv_data->rx == drv_data->rx_end; |
| } |
| |
| static int u32_writer(struct driver_data *drv_data) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| |
| if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00) |
| || (drv_data->tx == drv_data->tx_end)) |
| return 0; |
| |
| write_SSDR(*(u32 *)(drv_data->tx), reg); |
| drv_data->tx += 4; |
| |
| return 1; |
| } |
| |
| static int u32_reader(struct driver_data *drv_data) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| |
| while ((read_SSSR(reg) & SSSR_RNE) |
| && (drv_data->rx < drv_data->rx_end)) { |
| *(u32 *)(drv_data->rx) = read_SSDR(reg); |
| drv_data->rx += 4; |
| } |
| |
| return drv_data->rx == drv_data->rx_end; |
| } |
| |
| static void *next_transfer(struct driver_data *drv_data) |
| { |
| struct spi_message *msg = drv_data->cur_msg; |
| struct spi_transfer *trans = drv_data->cur_transfer; |
| |
| /* Move to next transfer */ |
| if (trans->transfer_list.next != &msg->transfers) { |
| drv_data->cur_transfer = |
| list_entry(trans->transfer_list.next, |
| struct spi_transfer, |
| transfer_list); |
| return RUNNING_STATE; |
| } else |
| return DONE_STATE; |
| } |
| |
| static int map_dma_buffers(struct driver_data *drv_data) |
| { |
| struct spi_message *msg = drv_data->cur_msg; |
| struct device *dev = &msg->spi->dev; |
| |
| if (!drv_data->cur_chip->enable_dma) |
| return 0; |
| |
| if (msg->is_dma_mapped) |
| return drv_data->rx_dma && drv_data->tx_dma; |
| |
| if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx)) |
| return 0; |
| |
| /* Modify setup if rx buffer is null */ |
| if (drv_data->rx == NULL) { |
| *drv_data->null_dma_buf = 0; |
| drv_data->rx = drv_data->null_dma_buf; |
| drv_data->rx_map_len = 4; |
| } else |
| drv_data->rx_map_len = drv_data->len; |
| |
| |
| /* Modify setup if tx buffer is null */ |
| if (drv_data->tx == NULL) { |
| *drv_data->null_dma_buf = 0; |
| drv_data->tx = drv_data->null_dma_buf; |
| drv_data->tx_map_len = 4; |
| } else |
| drv_data->tx_map_len = drv_data->len; |
| |
| /* Stream map the tx buffer. Always do DMA_TO_DEVICE first |
| * so we flush the cache *before* invalidating it, in case |
| * the tx and rx buffers overlap. |
| */ |
| drv_data->tx_dma = dma_map_single(dev, drv_data->tx, |
| drv_data->tx_map_len, DMA_TO_DEVICE); |
| if (dma_mapping_error(dev, drv_data->tx_dma)) |
| return 0; |
| |
| /* Stream map the rx buffer */ |
| drv_data->rx_dma = dma_map_single(dev, drv_data->rx, |
| drv_data->rx_map_len, DMA_FROM_DEVICE); |
| if (dma_mapping_error(dev, drv_data->rx_dma)) { |
| dma_unmap_single(dev, drv_data->tx_dma, |
| drv_data->tx_map_len, DMA_TO_DEVICE); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void unmap_dma_buffers(struct driver_data *drv_data) |
| { |
| struct device *dev; |
| |
| if (!drv_data->dma_mapped) |
| return; |
| |
| if (!drv_data->cur_msg->is_dma_mapped) { |
| dev = &drv_data->cur_msg->spi->dev; |
| dma_unmap_single(dev, drv_data->rx_dma, |
| drv_data->rx_map_len, DMA_FROM_DEVICE); |
| dma_unmap_single(dev, drv_data->tx_dma, |
| drv_data->tx_map_len, DMA_TO_DEVICE); |
| } |
| |
| drv_data->dma_mapped = 0; |
| } |
| |
| /* caller already set message->status; dma and pio irqs are blocked */ |
| static void giveback(struct driver_data *drv_data) |
| { |
| struct spi_transfer* last_transfer; |
| unsigned long flags; |
| struct spi_message *msg; |
| |
| spin_lock_irqsave(&drv_data->lock, flags); |
| msg = drv_data->cur_msg; |
| drv_data->cur_msg = NULL; |
| drv_data->cur_transfer = NULL; |
| queue_work(drv_data->workqueue, &drv_data->pump_messages); |
| spin_unlock_irqrestore(&drv_data->lock, flags); |
| |
| last_transfer = list_entry(msg->transfers.prev, |
| struct spi_transfer, |
| transfer_list); |
| |
| /* Delay if requested before any change in chip select */ |
| if (last_transfer->delay_usecs) |
| udelay(last_transfer->delay_usecs); |
| |
| /* Drop chip select UNLESS cs_change is true or we are returning |
| * a message with an error, or next message is for another chip |
| */ |
| if (!last_transfer->cs_change) |
| cs_deassert(drv_data); |
| else { |
| struct spi_message *next_msg; |
| |
| /* Holding of cs was hinted, but we need to make sure |
| * the next message is for the same chip. Don't waste |
| * time with the following tests unless this was hinted. |
| * |
| * We cannot postpone this until pump_messages, because |
| * after calling msg->complete (below) the driver that |
| * sent the current message could be unloaded, which |
| * could invalidate the cs_control() callback... |
| */ |
| |
| /* get a pointer to the next message, if any */ |
| spin_lock_irqsave(&drv_data->lock, flags); |
| if (list_empty(&drv_data->queue)) |
| next_msg = NULL; |
| else |
| next_msg = list_entry(drv_data->queue.next, |
| struct spi_message, queue); |
| spin_unlock_irqrestore(&drv_data->lock, flags); |
| |
| /* see if the next and current messages point |
| * to the same chip |
| */ |
| if (next_msg && next_msg->spi != msg->spi) |
| next_msg = NULL; |
| if (!next_msg || msg->state == ERROR_STATE) |
| cs_deassert(drv_data); |
| } |
| |
| msg->state = NULL; |
| if (msg->complete) |
| msg->complete(msg->context); |
| |
| drv_data->cur_chip = NULL; |
| } |
| |
| static int wait_ssp_rx_stall(void const __iomem *ioaddr) |
| { |
| unsigned long limit = loops_per_jiffy << 1; |
| |
| while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--) |
| cpu_relax(); |
| |
| return limit; |
| } |
| |
| static int wait_dma_channel_stop(int channel) |
| { |
| unsigned long limit = loops_per_jiffy << 1; |
| |
| while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--) |
| cpu_relax(); |
| |
| return limit; |
| } |
| |
| static void dma_error_stop(struct driver_data *drv_data, const char *msg) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| |
| /* Stop and reset */ |
| DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; |
| DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; |
| write_SSSR(drv_data->clear_sr, reg); |
| write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); |
| if (drv_data->ssp_type != PXA25x_SSP) |
| write_SSTO(0, reg); |
| flush(drv_data); |
| write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); |
| |
| unmap_dma_buffers(drv_data); |
| |
| dev_err(&drv_data->pdev->dev, "%s\n", msg); |
| |
| drv_data->cur_msg->state = ERROR_STATE; |
| tasklet_schedule(&drv_data->pump_transfers); |
| } |
| |
| static void dma_transfer_complete(struct driver_data *drv_data) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| struct spi_message *msg = drv_data->cur_msg; |
| |
| /* Clear and disable interrupts on SSP and DMA channels*/ |
| write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); |
| write_SSSR(drv_data->clear_sr, reg); |
| DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; |
| DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; |
| |
| if (wait_dma_channel_stop(drv_data->rx_channel) == 0) |
| dev_err(&drv_data->pdev->dev, |
| "dma_handler: dma rx channel stop failed\n"); |
| |
| if (wait_ssp_rx_stall(drv_data->ioaddr) == 0) |
| dev_err(&drv_data->pdev->dev, |
| "dma_transfer: ssp rx stall failed\n"); |
| |
| unmap_dma_buffers(drv_data); |
| |
| /* update the buffer pointer for the amount completed in dma */ |
| drv_data->rx += drv_data->len - |
| (DCMD(drv_data->rx_channel) & DCMD_LENGTH); |
| |
| /* read trailing data from fifo, it does not matter how many |
| * bytes are in the fifo just read until buffer is full |
| * or fifo is empty, which ever occurs first */ |
| drv_data->read(drv_data); |
| |
| /* return count of what was actually read */ |
| msg->actual_length += drv_data->len - |
| (drv_data->rx_end - drv_data->rx); |
| |
| /* Transfer delays and chip select release are |
| * handled in pump_transfers or giveback |
| */ |
| |
| /* Move to next transfer */ |
| msg->state = next_transfer(drv_data); |
| |
| /* Schedule transfer tasklet */ |
| tasklet_schedule(&drv_data->pump_transfers); |
| } |
| |
| static void dma_handler(int channel, void *data) |
| { |
| struct driver_data *drv_data = data; |
| u32 irq_status = DCSR(channel) & DMA_INT_MASK; |
| |
| if (irq_status & DCSR_BUSERR) { |
| |
| if (channel == drv_data->tx_channel) |
| dma_error_stop(drv_data, |
| "dma_handler: " |
| "bad bus address on tx channel"); |
| else |
| dma_error_stop(drv_data, |
| "dma_handler: " |
| "bad bus address on rx channel"); |
| return; |
| } |
| |
| /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */ |
| if ((channel == drv_data->tx_channel) |
| && (irq_status & DCSR_ENDINTR) |
| && (drv_data->ssp_type == PXA25x_SSP)) { |
| |
| /* Wait for rx to stall */ |
| if (wait_ssp_rx_stall(drv_data->ioaddr) == 0) |
| dev_err(&drv_data->pdev->dev, |
| "dma_handler: ssp rx stall failed\n"); |
| |
| /* finish this transfer, start the next */ |
| dma_transfer_complete(drv_data); |
| } |
| } |
| |
| static irqreturn_t dma_transfer(struct driver_data *drv_data) |
| { |
| u32 irq_status; |
| void __iomem *reg = drv_data->ioaddr; |
| |
| irq_status = read_SSSR(reg) & drv_data->mask_sr; |
| if (irq_status & SSSR_ROR) { |
| dma_error_stop(drv_data, "dma_transfer: fifo overrun"); |
| return IRQ_HANDLED; |
| } |
| |
| /* Check for false positive timeout */ |
| if ((irq_status & SSSR_TINT) |
| && (DCSR(drv_data->tx_channel) & DCSR_RUN)) { |
| write_SSSR(SSSR_TINT, reg); |
| return IRQ_HANDLED; |
| } |
| |
| if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) { |
| |
| /* Clear and disable timeout interrupt, do the rest in |
| * dma_transfer_complete */ |
| if (drv_data->ssp_type != PXA25x_SSP) |
| write_SSTO(0, reg); |
| |
| /* finish this transfer, start the next */ |
| dma_transfer_complete(drv_data); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Opps problem detected */ |
| return IRQ_NONE; |
| } |
| |
| static void int_error_stop(struct driver_data *drv_data, const char* msg) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| |
| /* Stop and reset SSP */ |
| write_SSSR(drv_data->clear_sr, reg); |
| write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg); |
| if (drv_data->ssp_type != PXA25x_SSP) |
| write_SSTO(0, reg); |
| flush(drv_data); |
| write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); |
| |
| dev_err(&drv_data->pdev->dev, "%s\n", msg); |
| |
| drv_data->cur_msg->state = ERROR_STATE; |
| tasklet_schedule(&drv_data->pump_transfers); |
| } |
| |
| static void int_transfer_complete(struct driver_data *drv_data) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| |
| /* Stop SSP */ |
| write_SSSR(drv_data->clear_sr, reg); |
| write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg); |
| if (drv_data->ssp_type != PXA25x_SSP) |
| write_SSTO(0, reg); |
| |
| /* Update total byte transfered return count actual bytes read */ |
| drv_data->cur_msg->actual_length += drv_data->len - |
| (drv_data->rx_end - drv_data->rx); |
| |
| /* Transfer delays and chip select release are |
| * handled in pump_transfers or giveback |
| */ |
| |
| /* Move to next transfer */ |
| drv_data->cur_msg->state = next_transfer(drv_data); |
| |
| /* Schedule transfer tasklet */ |
| tasklet_schedule(&drv_data->pump_transfers); |
| } |
| |
| static irqreturn_t interrupt_transfer(struct driver_data *drv_data) |
| { |
| void __iomem *reg = drv_data->ioaddr; |
| |
| u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ? |
| drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; |
| |
| u32 irq_status = read_SSSR(reg) & irq_mask; |
| |
| if (irq_status & SSSR_ROR) { |
| int_error_stop(drv_data, "interrupt_transfer: fifo overrun"); |
| return IRQ_HANDLED; |
| } |
| |
| if (irq_status & SSSR_TINT) { |
| write_SSSR(SSSR_TINT, reg); |
| if (drv_data->read(drv_data)) { |
| int_transfer_complete(drv_data); |
| return IRQ_HANDLED; |
| } |
| } |
| |
| /* Drain rx fifo, Fill tx fifo and prevent overruns */ |
| do { |
| if (drv_data->read(drv_data)) { |
| int_transfer_complete(drv_data); |
| return IRQ_HANDLED; |
| } |
| } while (drv_data->write(drv_data)); |
| |
| if (drv_data->read(drv_data)) { |
| int_transfer_complete(drv_data); |
| return IRQ_HANDLED; |
| } |
| |
| if (drv_data->tx == drv_data->tx_end) { |
| write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg); |
| /* PXA25x_SSP has no timeout, read trailing bytes */ |
| if (drv_data->ssp_type == PXA25x_SSP) { |
| if (!wait_ssp_rx_stall(reg)) |
| { |
| int_error_stop(drv_data, "interrupt_transfer: " |
| "rx stall failed"); |
| return IRQ_HANDLED; |
| } |
| if (!drv_data->read(drv_data)) |
| { |
| int_error_stop(drv_data, |
| "interrupt_transfer: " |
| "trailing byte read failed"); |
| return IRQ_HANDLED; |
| } |
| int_transfer_complete(drv_data); |
| } |
| } |
| |
| /* We did something */ |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t ssp_int(int irq, void *dev_id) |
| { |
| struct driver_data *drv_data = dev_id; |
| void __iomem *reg = drv_data->ioaddr; |
| |
| if (!drv_data->cur_msg) { |
| |
| write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); |
| write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg); |
| if (drv_data->ssp_type != PXA25x_SSP) |
| write_SSTO(0, reg); |
| write_SSSR(drv_data->clear_sr, reg); |
| |
| dev_err(&drv_data->pdev->dev, "bad message state " |
| "in interrupt handler\n"); |
| |
| /* Never fail */ |
| return IRQ_HANDLED; |
| } |
| |
| return drv_data->transfer_handler(drv_data); |
| } |
| |
| static int set_dma_burst_and_threshold(struct chip_data *chip, |
| struct spi_device *spi, |
| u8 bits_per_word, u32 *burst_code, |
| u32 *threshold) |
| { |
| struct pxa2xx_spi_chip *chip_info = |
| (struct pxa2xx_spi_chip *)spi->controller_data; |
| int bytes_per_word; |
| int burst_bytes; |
| int thresh_words; |
| int req_burst_size; |
| int retval = 0; |
| |
| /* Set the threshold (in registers) to equal the same amount of data |
| * as represented by burst size (in bytes). The computation below |
| * is (burst_size rounded up to nearest 8 byte, word or long word) |
| * divided by (bytes/register); the tx threshold is the inverse of |
| * the rx, so that there will always be enough data in the rx fifo |
| * to satisfy a burst, and there will always be enough space in the |
| * tx fifo to accept a burst (a tx burst will overwrite the fifo if |
| * there is not enough space), there must always remain enough empty |
| * space in the rx fifo for any data loaded to the tx fifo. |
| * Whenever burst_size (in bytes) equals bits/word, the fifo threshold |
| * will be 8, or half the fifo; |
| * The threshold can only be set to 2, 4 or 8, but not 16, because |
| * to burst 16 to the tx fifo, the fifo would have to be empty; |
| * however, the minimum fifo trigger level is 1, and the tx will |
| * request service when the fifo is at this level, with only 15 spaces. |
| */ |
| |
| /* find bytes/word */ |
| if (bits_per_word <= 8) |
| bytes_per_word = 1; |
| else if (bits_per_word <= 16) |
| bytes_per_word = 2; |
| else |
| bytes_per_word = 4; |
| |
| /* use struct pxa2xx_spi_chip->dma_burst_size if available */ |
| if (chip_info) |
| req_burst_size = chip_info->dma_burst_size; |
| else { |
| switch (chip->dma_burst_size) { |
| default: |
| /* if the default burst size is not set, |
| * do it now */ |
| chip->dma_burst_size = DCMD_BURST8; |
| case DCMD_BURST8: |
| req_burst_size = 8; |
| break; |
| case DCMD_BURST16: |
| req_burst_size = 16; |
| break; |
| case DCMD_BURST32: |
| req_burst_size = 32; |
| break; |
| } |
| } |
| if (req_burst_size <= 8) { |
| *burst_code = DCMD_BURST8; |
| burst_bytes = 8; |
| } else if (req_burst_size <= 16) { |
| if (bytes_per_word == 1) { |
| /* don't burst more than 1/2 the fifo */ |
| *burst_code = DCMD_BURST8; |
| burst_bytes = 8; |
| retval = 1; |
| } else { |
| *burst_code = DCMD_BURST16; |
| burst_bytes = 16; |
| } |
| } else { |
| if (bytes_per_word == 1) { |
| /* don't burst more than 1/2 the fifo */ |
| *burst_code = DCMD_BURST8; |
| burst_bytes = 8; |
| retval = 1; |
| } else if (bytes_per_word == 2) { |
| /* don't burst more than 1/2 the fifo */ |
| *burst_code = DCMD_BURST16; |
| burst_bytes = 16; |
| retval = 1; |
| } else { |
| *burst_code = DCMD_BURST32; |
| burst_bytes = 32; |
| } |
| } |
| |
| thresh_words = burst_bytes / bytes_per_word; |
| |
| /* thresh_words will be between 2 and 8 */ |
| *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT) |
| | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT); |
| |
| return retval; |
| } |
| |
| static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate) |
| { |
| unsigned long ssp_clk = clk_get_rate(ssp->clk); |
| |
| if (ssp->type == PXA25x_SSP) |
| return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8; |
| else |
| return ((ssp_clk / rate - 1) & 0xfff) << 8; |
| } |
| |
| static void pump_transfers(unsigned long data) |
| { |
| struct driver_data *drv_data = (struct driver_data *)data; |
| struct spi_message *message = NULL; |
| struct spi_transfer *transfer = NULL; |
| struct spi_transfer *previous = NULL; |
| struct chip_data *chip = NULL; |
| struct ssp_device *ssp = drv_data->ssp; |
| void __iomem *reg = drv_data->ioaddr; |
| u32 clk_div = 0; |
| u8 bits = 0; |
| u32 speed = 0; |
| u32 cr0; |
| u32 cr1; |
| u32 dma_thresh = drv_data->cur_chip->dma_threshold; |
| u32 dma_burst = drv_data->cur_chip->dma_burst_size; |
| |
| /* Get current state information */ |
| message = drv_data->cur_msg; |
| transfer = drv_data->cur_transfer; |
| chip = drv_data->cur_chip; |
| |
| /* Handle for abort */ |
| if (message->state == ERROR_STATE) { |
| message->status = -EIO; |
| giveback(drv_data); |
| return; |
| } |
| |
| /* Handle end of message */ |
| if (message->state == DONE_STATE) { |
| message->status = 0; |
| giveback(drv_data); |
| return; |
| } |
| |
| /* Delay if requested at end of transfer before CS change */ |
| if (message->state == RUNNING_STATE) { |
| previous = list_entry(transfer->transfer_list.prev, |
| struct spi_transfer, |
| transfer_list); |
| if (previous->delay_usecs) |
| udelay(previous->delay_usecs); |
| |
| /* Drop chip select only if cs_change is requested */ |
| if (previous->cs_change) |
| cs_deassert(drv_data); |
| } |
| |
| /* Check for transfers that need multiple DMA segments */ |
| if (transfer->len > MAX_DMA_LEN && chip->enable_dma) { |
| |
| /* reject already-mapped transfers; PIO won't always work */ |
| if (message->is_dma_mapped |
| || transfer->rx_dma || transfer->tx_dma) { |
| dev_err(&drv_data->pdev->dev, |
| "pump_transfers: mapped transfer length " |
| "of %u is greater than %d\n", |
| transfer->len, MAX_DMA_LEN); |
| message->status = -EINVAL; |
| giveback(drv_data); |
| return; |
| } |
| |
| /* warn ... we force this to PIO mode */ |
| if (printk_ratelimit()) |
| dev_warn(&message->spi->dev, "pump_transfers: " |
| "DMA disabled for transfer length %ld " |
| "greater than %d\n", |
| (long)drv_data->len, MAX_DMA_LEN); |
| } |
| |
| /* Setup the transfer state based on the type of transfer */ |
| if (flush(drv_data) == 0) { |
| dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n"); |
| message->status = -EIO; |
| giveback(drv_data); |
| return; |
| } |
| drv_data->n_bytes = chip->n_bytes; |
| drv_data->dma_width = chip->dma_width; |
| drv_data->tx = (void *)transfer->tx_buf; |
| drv_data->tx_end = drv_data->tx + transfer->len; |
| drv_data->rx = transfer->rx_buf; |
| drv_data->rx_end = drv_data->rx + transfer->len; |
| drv_data->rx_dma = transfer->rx_dma; |
| drv_data->tx_dma = transfer->tx_dma; |
| drv_data->len = transfer->len & DCMD_LENGTH; |
| drv_data->write = drv_data->tx ? chip->write : null_writer; |
| drv_data->read = drv_data->rx ? chip->read : null_reader; |
| |
| /* Change speed and bit per word on a per transfer */ |
| cr0 = chip->cr0; |
| if (transfer->speed_hz || transfer->bits_per_word) { |
| |
| bits = chip->bits_per_word; |
| speed = chip->speed_hz; |
| |
| if (transfer->speed_hz) |
| speed = transfer->speed_hz; |
| |
| if (transfer->bits_per_word) |
| bits = transfer->bits_per_word; |
| |
| clk_div = ssp_get_clk_div(ssp, speed); |
| |
| if (bits <= 8) { |
| drv_data->n_bytes = 1; |
| drv_data->dma_width = DCMD_WIDTH1; |
| drv_data->read = drv_data->read != null_reader ? |
| u8_reader : null_reader; |
| drv_data->write = drv_data->write != null_writer ? |
| u8_writer : null_writer; |
| } else if (bits <= 16) { |
| drv_data->n_bytes = 2; |
| drv_data->dma_width = DCMD_WIDTH2; |
| drv_data->read = drv_data->read != null_reader ? |
| u16_reader : null_reader; |
| drv_data->write = drv_data->write != null_writer ? |
| u16_writer : null_writer; |
| } else if (bits <= 32) { |
| drv_data->n_bytes = 4; |
| drv_data->dma_width = DCMD_WIDTH4; |
| drv_data->read = drv_data->read != null_reader ? |
| u32_reader : null_reader; |
| drv_data->write = drv_data->write != null_writer ? |
| u32_writer : null_writer; |
| } |
| /* if bits/word is changed in dma mode, then must check the |
| * thresholds and burst also */ |
| if (chip->enable_dma) { |
| if (set_dma_burst_and_threshold(chip, message->spi, |
| bits, &dma_burst, |
| &dma_thresh)) |
| if (printk_ratelimit()) |
| dev_warn(&message->spi->dev, |
| "pump_transfers: " |
| "DMA burst size reduced to " |
| "match bits_per_word\n"); |
| } |
| |
| cr0 = clk_div |
| | SSCR0_Motorola |
| | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) |
| | SSCR0_SSE |
| | (bits > 16 ? SSCR0_EDSS : 0); |
| } |
| |
| message->state = RUNNING_STATE; |
| |
| /* Try to map dma buffer and do a dma transfer if successful, but |
| * only if the length is non-zero and less than MAX_DMA_LEN. |
| * |
| * Zero-length non-descriptor DMA is illegal on PXA2xx; force use |
| * of PIO instead. Care is needed above because the transfer may |
| * have have been passed with buffers that are already dma mapped. |
| * A zero-length transfer in PIO mode will not try to write/read |
| * to/from the buffers |
| * |
| * REVISIT large transfers are exactly where we most want to be |
| * using DMA. If this happens much, split those transfers into |
| * multiple DMA segments rather than forcing PIO. |
| */ |
| drv_data->dma_mapped = 0; |
| if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN) |
| drv_data->dma_mapped = map_dma_buffers(drv_data); |
| if (drv_data->dma_mapped) { |
| |
| /* Ensure we have the correct interrupt handler */ |
| drv_data->transfer_handler = dma_transfer; |
| |
| /* Setup rx DMA Channel */ |
| DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; |
| DSADR(drv_data->rx_channel) = drv_data->ssdr_physical; |
| DTADR(drv_data->rx_channel) = drv_data->rx_dma; |
| if (drv_data->rx == drv_data->null_dma_buf) |
| /* No target address increment */ |
| DCMD(drv_data->rx_channel) = DCMD_FLOWSRC |
| | drv_data->dma_width |
| | dma_burst |
| | drv_data->len; |
| else |
| DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR |
| | DCMD_FLOWSRC |
| | drv_data->dma_width |
| | dma_burst |
| | drv_data->len; |
| |
| /* Setup tx DMA Channel */ |
| DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; |
| DSADR(drv_data->tx_channel) = drv_data->tx_dma; |
| DTADR(drv_data->tx_channel) = drv_data->ssdr_physical; |
| if (drv_data->tx == drv_data->null_dma_buf) |
| /* No source address increment */ |
| DCMD(drv_data->tx_channel) = DCMD_FLOWTRG |
| | drv_data->dma_width |
| | dma_burst |
| | drv_data->len; |
| else |
| DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR |
| | DCMD_FLOWTRG |
| | drv_data->dma_width |
| | dma_burst |
| | drv_data->len; |
| |
| /* Enable dma end irqs on SSP to detect end of transfer */ |
| if (drv_data->ssp_type == PXA25x_SSP) |
| DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN; |
| |
| /* Clear status and start DMA engine */ |
| cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; |
| write_SSSR(drv_data->clear_sr, reg); |
| DCSR(drv_data->rx_channel) |= DCSR_RUN; |
| DCSR(drv_data->tx_channel) |= DCSR_RUN; |
| } else { |
| /* Ensure we have the correct interrupt handler */ |
| drv_data->transfer_handler = interrupt_transfer; |
| |
| /* Clear status */ |
| cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; |
| write_SSSR(drv_data->clear_sr, reg); |
| } |
| |
| /* see if we need to reload the config registers */ |
| if ((read_SSCR0(reg) != cr0) |
| || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) != |
| (cr1 & SSCR1_CHANGE_MASK)) { |
| |
| /* stop the SSP, and update the other bits */ |
| write_SSCR0(cr0 & ~SSCR0_SSE, reg); |
| if (drv_data->ssp_type != PXA25x_SSP) |
| write_SSTO(chip->timeout, reg); |
| /* first set CR1 without interrupt and service enables */ |
| write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg); |
| /* restart the SSP */ |
| write_SSCR0(cr0, reg); |
| |
| } else { |
| if (drv_data->ssp_type != PXA25x_SSP) |
| write_SSTO(chip->timeout, reg); |
| } |
| |
| cs_assert(drv_data); |
| |
| /* after chip select, release the data by enabling service |
| * requests and interrupts, without changing any mode bits */ |
| write_SSCR1(cr1, reg); |
| } |
| |
| static void pump_messages(struct work_struct *work) |
| { |
| struct driver_data *drv_data = |
| container_of(work, struct driver_data, pump_messages); |
| unsigned long flags; |
| |
| /* Lock queue and check for queue work */ |
| spin_lock_irqsave(&drv_data->lock, flags); |
| if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) { |
| drv_data->busy = 0; |
| spin_unlock_irqrestore(&drv_data->lock, flags); |
| return; |
| } |
| |
| /* Make sure we are not already running a message */ |
| if (drv_data->cur_msg) { |
| spin_unlock_irqrestore(&drv_data->lock, flags); |
| return; |
| } |
| |
| /* Extract head of queue */ |
| drv_data->cur_msg = list_entry(drv_data->queue.next, |
| struct spi_message, queue); |
| list_del_init(&drv_data->cur_msg->queue); |
| |
| /* Initial message state*/ |
| drv_data->cur_msg->state = START_STATE; |
| drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next, |
| struct spi_transfer, |
| transfer_list); |
| |
| /* prepare to setup the SSP, in pump_transfers, using the per |
| * chip configuration */ |
| drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi); |
| |
| /* Mark as busy and launch transfers */ |
| tasklet_schedule(&drv_data->pump_transfers); |
| |
| drv_data->busy = 1; |
| spin_unlock_irqrestore(&drv_data->lock, flags); |
| } |
| |
| static int transfer(struct spi_device *spi, struct spi_message *msg) |
| { |
| struct driver_data *drv_data = spi_master_get_devdata(spi->master); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&drv_data->lock, flags); |
| |
| if (drv_data->run == QUEUE_STOPPED) { |
| spin_unlock_irqrestore(&drv_data->lock, flags); |
| return -ESHUTDOWN; |
| } |
| |
| msg->actual_length = 0; |
| msg->status = -EINPROGRESS; |
| msg->state = START_STATE; |
| |
| list_add_tail(&msg->queue, &drv_data->queue); |
| |
| if (drv_data->run == QUEUE_RUNNING && !drv_data->busy) |
| queue_work(drv_data->workqueue, &drv_data->pump_messages); |
| |
| spin_unlock_irqrestore(&drv_data->lock, flags); |
| |
| return 0; |
| } |
| |
| /* the spi->mode bits understood by this driver: */ |
| #define MODEBITS (SPI_CPOL | SPI_CPHA) |
| |
| static int setup_cs(struct spi_device *spi, struct chip_data *chip, |
| struct pxa2xx_spi_chip *chip_info) |
| { |
| int err = 0; |
| |
| if (chip == NULL || chip_info == NULL) |
| return 0; |
| |
| /* NOTE: setup() can be called multiple times, possibly with |
| * different chip_info, release previously requested GPIO |
| */ |
| if (gpio_is_valid(chip->gpio_cs)) |
| gpio_free(chip->gpio_cs); |
| |
| /* If (*cs_control) is provided, ignore GPIO chip select */ |
| if (chip_info->cs_control) { |
| chip->cs_control = chip_info->cs_control; |
| return 0; |
| } |
| |
| if (gpio_is_valid(chip_info->gpio_cs)) { |
| err = gpio_request(chip_info->gpio_cs, "SPI_CS"); |
| if (err) { |
| dev_err(&spi->dev, "failed to request chip select " |
| "GPIO%d\n", chip_info->gpio_cs); |
| return err; |
| } |
| |
| chip->gpio_cs = chip_info->gpio_cs; |
| chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; |
| |
| err = gpio_direction_output(chip->gpio_cs, |
| !chip->gpio_cs_inverted); |
| } |
| |
| return err; |
| } |
| |
| static int setup(struct spi_device *spi) |
| { |
| struct pxa2xx_spi_chip *chip_info = NULL; |
| struct chip_data *chip; |
| struct driver_data *drv_data = spi_master_get_devdata(spi->master); |
| struct ssp_device *ssp = drv_data->ssp; |
| unsigned int clk_div; |
| uint tx_thres = TX_THRESH_DFLT; |
| uint rx_thres = RX_THRESH_DFLT; |
| |
| if (!spi->bits_per_word) |
| spi->bits_per_word = 8; |
| |
| if (drv_data->ssp_type != PXA25x_SSP |
| && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) { |
| dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d " |
| "b/w not 4-32 for type non-PXA25x_SSP\n", |
| drv_data->ssp_type, spi->bits_per_word); |
| return -EINVAL; |
| } |
| else if (drv_data->ssp_type == PXA25x_SSP |
| && (spi->bits_per_word < 4 |
| || spi->bits_per_word > 16)) { |
| dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d " |
| "b/w not 4-16 for type PXA25x_SSP\n", |
| drv_data->ssp_type, spi->bits_per_word); |
| return -EINVAL; |
| } |
| |
| if (spi->mode & ~MODEBITS) { |
| dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n", |
| spi->mode & ~MODEBITS); |
| return -EINVAL; |
| } |
| |
| /* Only alloc on first setup */ |
| chip = spi_get_ctldata(spi); |
| if (!chip) { |
| chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); |
| if (!chip) { |
| dev_err(&spi->dev, |
| "failed setup: can't allocate chip data\n"); |
| return -ENOMEM; |
| } |
| |
| chip->gpio_cs = -1; |
| chip->enable_dma = 0; |
| chip->timeout = TIMOUT_DFLT; |
| chip->dma_burst_size = drv_data->master_info->enable_dma ? |
| DCMD_BURST8 : 0; |
| } |
| |
| /* protocol drivers may change the chip settings, so... |
| * if chip_info exists, use it */ |
| chip_info = spi->controller_data; |
| |
| /* chip_info isn't always needed */ |
| chip->cr1 = 0; |
| if (chip_info) { |
| if (chip_info->timeout) |
| chip->timeout = chip_info->timeout; |
| if (chip_info->tx_threshold) |
| tx_thres = chip_info->tx_threshold; |
| if (chip_info->rx_threshold) |
| rx_thres = chip_info->rx_threshold; |
| chip->enable_dma = drv_data->master_info->enable_dma; |
| chip->dma_threshold = 0; |
| if (chip_info->enable_loopback) |
| chip->cr1 = SSCR1_LBM; |
| } |
| |
| chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | |
| (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); |
| |
| /* set dma burst and threshold outside of chip_info path so that if |
| * chip_info goes away after setting chip->enable_dma, the |
| * burst and threshold can still respond to changes in bits_per_word */ |
| if (chip->enable_dma) { |
| /* set up legal burst and threshold for dma */ |
| if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word, |
| &chip->dma_burst_size, |
| &chip->dma_threshold)) { |
| dev_warn(&spi->dev, "in setup: DMA burst size reduced " |
| "to match bits_per_word\n"); |
| } |
| } |
| |
| clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz); |
| chip->speed_hz = spi->max_speed_hz; |
| |
| chip->cr0 = clk_div |
| | SSCR0_Motorola |
| | SSCR0_DataSize(spi->bits_per_word > 16 ? |
| spi->bits_per_word - 16 : spi->bits_per_word) |
| | SSCR0_SSE |
| | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0); |
| chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); |
| chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0) |
| | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0); |
| |
| /* NOTE: PXA25x_SSP _could_ use external clocking ... */ |
| if (drv_data->ssp_type != PXA25x_SSP) |
| dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n", |
| spi->bits_per_word, |
| clk_get_rate(ssp->clk) |
| / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)), |
| spi->mode & 0x3, |
| chip->enable_dma ? "DMA" : "PIO"); |
| else |
| dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n", |
| spi->bits_per_word, |
| clk_get_rate(ssp->clk) / 2 |
| / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)), |
| spi->mode & 0x3, |
| chip->enable_dma ? "DMA" : "PIO"); |
| |
| if (spi->bits_per_word <= 8) { |
| chip->n_bytes = 1; |
| chip->dma_width = DCMD_WIDTH1; |
| chip->read = u8_reader; |
| chip->write = u8_writer; |
| } else if (spi->bits_per_word <= 16) { |
| chip->n_bytes = 2; |
| chip->dma_width = DCMD_WIDTH2; |
| chip->read = u16_reader; |
| chip->write = u16_writer; |
| } else if (spi->bits_per_word <= 32) { |
| chip->cr0 |= SSCR0_EDSS; |
| chip->n_bytes = 4; |
| chip->dma_width = DCMD_WIDTH4; |
| chip->read = u32_reader; |
| chip->write = u32_writer; |
| } else { |
| dev_err(&spi->dev, "invalid wordsize\n"); |
| return -ENODEV; |
| } |
| chip->bits_per_word = spi->bits_per_word; |
| |
| spi_set_ctldata(spi, chip); |
| |
| return setup_cs(spi, chip, chip_info); |
| } |
| |
| static void cleanup(struct spi_device *spi) |
| { |
| struct chip_data *chip = spi_get_ctldata(spi); |
| |
| if (gpio_is_valid(chip->gpio_cs)) |
| gpio_free(chip->gpio_cs); |
| |
| kfree(chip); |
| } |
| |
| static int __init init_queue(struct driver_data *drv_data) |
| { |
| INIT_LIST_HEAD(&drv_data->queue); |
| spin_lock_init(&drv_data->lock); |
| |
| drv_data->run = QUEUE_STOPPED; |
| drv_data->busy = 0; |
| |
| tasklet_init(&drv_data->pump_transfers, |
| pump_transfers, (unsigned long)drv_data); |
| |
| INIT_WORK(&drv_data->pump_messages, pump_messages); |
| drv_data->workqueue = create_singlethread_workqueue( |
| dev_name(drv_data->master->dev.parent)); |
| if (drv_data->workqueue == NULL) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| static int start_queue(struct driver_data *drv_data) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&drv_data->lock, flags); |
| |
| if (drv_data->run == QUEUE_RUNNING || drv_data->busy) { |
| spin_unlock_irqrestore(&drv_data->lock, flags); |
| return -EBUSY; |
| } |
| |
| drv_data->run = QUEUE_RUNNING; |
| drv_data->cur_msg = NULL; |
| drv_data->cur_transfer = NULL; |
| drv_data->cur_chip = NULL; |
| spin_unlock_irqrestore(&drv_data->lock, flags); |
| |
| queue_work(drv_data->workqueue, &drv_data->pump_messages); |
| |
| return 0; |
| } |
| |
| static int stop_queue(struct driver_data *drv_data) |
| { |
| unsigned long flags; |
| unsigned limit = 500; |
| int status = 0; |
| |
| spin_lock_irqsave(&drv_data->lock, flags); |
| |
| /* This is a bit lame, but is optimized for the common execution path. |
| * A wait_queue on the drv_data->busy could be used, but then the common |
| * execution path (pump_messages) would be required to call wake_up or |
| * friends on every SPI message. Do this instead */ |
| drv_data->run = QUEUE_STOPPED; |
| while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) { |
| spin_unlock_irqrestore(&drv_data->lock, flags); |
| msleep(10); |
| spin_lock_irqsave(&drv_data->lock, flags); |
| } |
| |
| if (!list_empty(&drv_data->queue) || drv_data->busy) |
| status = -EBUSY; |
| |
| spin_unlock_irqrestore(&drv_data->lock, flags); |
| |
| return status; |
| } |
| |
| static int destroy_queue(struct driver_data *drv_data) |
| { |
| int status; |
| |
| status = stop_queue(drv_data); |
| /* we are unloading the module or failing to load (only two calls |
| * to this routine), and neither call can handle a return value. |
| * However, destroy_workqueue calls flush_workqueue, and that will |
| * block until all work is done. If the reason that stop_queue |
| * timed out is that the work will never finish, then it does no |
| * good to call destroy_workqueue, so return anyway. */ |
| if (status != 0) |
| return status; |
| |
| destroy_workqueue(drv_data->workqueue); |
| |
| return 0; |
| } |
| |
| static int __init pxa2xx_spi_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct pxa2xx_spi_master *platform_info; |
| struct spi_master *master; |
| struct driver_data *drv_data; |
| struct ssp_device *ssp; |
| int status; |
| |
| platform_info = dev->platform_data; |
| |
| ssp = ssp_request(pdev->id, pdev->name); |
| if (ssp == NULL) { |
| dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id); |
| return -ENODEV; |
| } |
| |
| /* Allocate master with space for drv_data and null dma buffer */ |
| master = spi_alloc_master(dev, sizeof(struct driver_data) + 16); |
| if (!master) { |
| dev_err(&pdev->dev, "cannot alloc spi_master\n"); |
| ssp_free(ssp); |
| return -ENOMEM; |
| } |
| drv_data = spi_master_get_devdata(master); |
| drv_data->master = master; |
| drv_data->master_info = platform_info; |
| drv_data->pdev = pdev; |
| drv_data->ssp = ssp; |
| |
| master->bus_num = pdev->id; |
| master->num_chipselect = platform_info->num_chipselect; |
| master->dma_alignment = DMA_ALIGNMENT; |
| master->cleanup = cleanup; |
| master->setup = setup; |
| master->transfer = transfer; |
| |
| drv_data->ssp_type = ssp->type; |
| drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data + |
| sizeof(struct driver_data)), 8); |
| |
| drv_data->ioaddr = ssp->mmio_base; |
| drv_data->ssdr_physical = ssp->phys_base + SSDR; |
| if (ssp->type == PXA25x_SSP) { |
| drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; |
| drv_data->dma_cr1 = 0; |
| drv_data->clear_sr = SSSR_ROR; |
| drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; |
| } else { |
| drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; |
| drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE; |
| drv_data->clear_sr = SSSR_ROR | SSSR_TINT; |
| drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR; |
| } |
| |
| status = request_irq(ssp->irq, ssp_int, 0, dev_name(dev), drv_data); |
| if (status < 0) { |
| dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); |
| goto out_error_master_alloc; |
| } |
| |
| /* Setup DMA if requested */ |
| drv_data->tx_channel = -1; |
| drv_data->rx_channel = -1; |
| if (platform_info->enable_dma) { |
| |
| /* Get two DMA channels (rx and tx) */ |
| drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx", |
| DMA_PRIO_HIGH, |
| dma_handler, |
| drv_data); |
| if (drv_data->rx_channel < 0) { |
| dev_err(dev, "problem (%d) requesting rx channel\n", |
| drv_data->rx_channel); |
| status = -ENODEV; |
| goto out_error_irq_alloc; |
| } |
| drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx", |
| DMA_PRIO_MEDIUM, |
| dma_handler, |
| drv_data); |
| if (drv_data->tx_channel < 0) { |
| dev_err(dev, "problem (%d) requesting tx channel\n", |
| drv_data->tx_channel); |
| status = -ENODEV; |
| goto out_error_dma_alloc; |
| } |
| |
| DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel; |
| DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel; |
| } |
| |
| /* Enable SOC clock */ |
| clk_enable(ssp->clk); |
| |
| /* Load default SSP configuration */ |
| write_SSCR0(0, drv_data->ioaddr); |
| write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) | |
| SSCR1_TxTresh(TX_THRESH_DFLT), |
| drv_data->ioaddr); |
| write_SSCR0(SSCR0_SerClkDiv(2) |
| | SSCR0_Motorola |
| | SSCR0_DataSize(8), |
| drv_data->ioaddr); |
| if (drv_data->ssp_type != PXA25x_SSP) |
| write_SSTO(0, drv_data->ioaddr); |
| write_SSPSP(0, drv_data->ioaddr); |
| |
| /* Initial and start queue */ |
| status = init_queue(drv_data); |
| if (status != 0) { |
| dev_err(&pdev->dev, "problem initializing queue\n"); |
| goto out_error_clock_enabled; |
| } |
| status = start_queue(drv_data); |
| if (status != 0) { |
| dev_err(&pdev->dev, "problem starting queue\n"); |
| goto out_error_clock_enabled; |
| } |
| |
| /* Register with the SPI framework */ |
| platform_set_drvdata(pdev, drv_data); |
| status = spi_register_master(master); |
| if (status != 0) { |
| dev_err(&pdev->dev, "problem registering spi master\n"); |
| goto out_error_queue_alloc; |
| } |
| |
| return status; |
| |
| out_error_queue_alloc: |
| destroy_queue(drv_data); |
| |
| out_error_clock_enabled: |
| clk_disable(ssp->clk); |
| |
| out_error_dma_alloc: |
| if (drv_data->tx_channel != -1) |
| pxa_free_dma(drv_data->tx_channel); |
| if (drv_data->rx_channel != -1) |
| pxa_free_dma(drv_data->rx_channel); |
| |
| out_error_irq_alloc: |
| free_irq(ssp->irq, drv_data); |
| |
| out_error_master_alloc: |
| spi_master_put(master); |
| ssp_free(ssp); |
| return status; |
| } |
| |
| static int pxa2xx_spi_remove(struct platform_device *pdev) |
| { |
| struct driver_data *drv_data = platform_get_drvdata(pdev); |
| struct ssp_device *ssp; |
| int status = 0; |
| |
| if (!drv_data) |
| return 0; |
| ssp = drv_data->ssp; |
| |
| /* Remove the queue */ |
| status = destroy_queue(drv_data); |
| if (status != 0) |
| /* the kernel does not check the return status of this |
| * this routine (mod->exit, within the kernel). Therefore |
| * nothing is gained by returning from here, the module is |
| * going away regardless, and we should not leave any more |
| * resources allocated than necessary. We cannot free the |
| * message memory in drv_data->queue, but we can release the |
| * resources below. I think the kernel should honor -EBUSY |
| * returns but... */ |
| dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not " |
| "complete, message memory not freed\n"); |
| |
| /* Disable the SSP at the peripheral and SOC level */ |
| write_SSCR0(0, drv_data->ioaddr); |
| clk_disable(ssp->clk); |
| |
| /* Release DMA */ |
| if (drv_data->master_info->enable_dma) { |
| DRCMR(ssp->drcmr_rx) = 0; |
| DRCMR(ssp->drcmr_tx) = 0; |
| pxa_free_dma(drv_data->tx_channel); |
| pxa_free_dma(drv_data->rx_channel); |
| } |
| |
| /* Release IRQ */ |
| free_irq(ssp->irq, drv_data); |
| |
| /* Release SSP */ |
| ssp_free(ssp); |
| |
| /* Disconnect from the SPI framework */ |
| spi_unregister_master(drv_data->master); |
| |
| /* Prevent double remove */ |
| platform_set_drvdata(pdev, NULL); |
| |
| return 0; |
| } |
| |
| static void pxa2xx_spi_shutdown(struct platform_device *pdev) |
| { |
| int status = 0; |
| |
| if ((status = pxa2xx_spi_remove(pdev)) != 0) |
| dev_err(&pdev->dev, "shutdown failed with %d\n", status); |
| } |
| |
| #ifdef CONFIG_PM |
| |
| static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state) |
| { |
| struct driver_data *drv_data = platform_get_drvdata(pdev); |
| struct ssp_device *ssp = drv_data->ssp; |
| int status = 0; |
| |
| status = stop_queue(drv_data); |
| if (status != 0) |
| return status; |
| write_SSCR0(0, drv_data->ioaddr); |
| clk_disable(ssp->clk); |
| |
| return 0; |
| } |
| |
| static int pxa2xx_spi_resume(struct platform_device *pdev) |
| { |
| struct driver_data *drv_data = platform_get_drvdata(pdev); |
| struct ssp_device *ssp = drv_data->ssp; |
| int status = 0; |
| |
| /* Enable the SSP clock */ |
| clk_enable(ssp->clk); |
| |
| /* Start the queue running */ |
| status = start_queue(drv_data); |
| if (status != 0) { |
| dev_err(&pdev->dev, "problem starting queue (%d)\n", status); |
| return status; |
| } |
| |
| return 0; |
| } |
| #else |
| #define pxa2xx_spi_suspend NULL |
| #define pxa2xx_spi_resume NULL |
| #endif /* CONFIG_PM */ |
| |
| static struct platform_driver driver = { |
| .driver = { |
| .name = "pxa2xx-spi", |
| .owner = THIS_MODULE, |
| }, |
| .remove = pxa2xx_spi_remove, |
| .shutdown = pxa2xx_spi_shutdown, |
| .suspend = pxa2xx_spi_suspend, |
| .resume = pxa2xx_spi_resume, |
| }; |
| |
| static int __init pxa2xx_spi_init(void) |
| { |
| return platform_driver_probe(&driver, pxa2xx_spi_probe); |
| } |
| module_init(pxa2xx_spi_init); |
| |
| static void __exit pxa2xx_spi_exit(void) |
| { |
| platform_driver_unregister(&driver); |
| } |
| module_exit(pxa2xx_spi_exit); |