| /* |
| * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com |
| * Written by Alex Tomas <alex@clusterfs.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public Licens |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- |
| */ |
| |
| #ifndef _EXT4_EXTENTS |
| #define _EXT4_EXTENTS |
| |
| #include "ext4.h" |
| |
| /* |
| * With AGGRESSIVE_TEST defined, the capacity of index/leaf blocks |
| * becomes very small, so index split, in-depth growing and |
| * other hard changes happen much more often. |
| * This is for debug purposes only. |
| */ |
| #define AGGRESSIVE_TEST_ |
| |
| /* |
| * With EXTENTS_STATS defined, the number of blocks and extents |
| * are collected in the truncate path. They'll be shown at |
| * umount time. |
| */ |
| #define EXTENTS_STATS__ |
| |
| /* |
| * If CHECK_BINSEARCH is defined, then the results of the binary search |
| * will also be checked by linear search. |
| */ |
| #define CHECK_BINSEARCH__ |
| |
| /* |
| * Turn on EXT_DEBUG to get lots of info about extents operations. |
| */ |
| #define EXT_DEBUG__ |
| #ifdef EXT_DEBUG |
| #define ext_debug(a...) printk(a) |
| #else |
| #define ext_debug(a...) |
| #endif |
| |
| /* |
| * If EXT_STATS is defined then stats numbers are collected. |
| * These number will be displayed at umount time. |
| */ |
| #define EXT_STATS_ |
| |
| |
| /* |
| * ext4_inode has i_block array (60 bytes total). |
| * The first 12 bytes store ext4_extent_header; |
| * the remainder stores an array of ext4_extent. |
| */ |
| |
| /* |
| * This is the extent on-disk structure. |
| * It's used at the bottom of the tree. |
| */ |
| struct ext4_extent { |
| __le32 ee_block; /* first logical block extent covers */ |
| __le16 ee_len; /* number of blocks covered by extent */ |
| __le16 ee_start_hi; /* high 16 bits of physical block */ |
| __le32 ee_start_lo; /* low 32 bits of physical block */ |
| }; |
| |
| /* |
| * This is index on-disk structure. |
| * It's used at all the levels except the bottom. |
| */ |
| struct ext4_extent_idx { |
| __le32 ei_block; /* index covers logical blocks from 'block' */ |
| __le32 ei_leaf_lo; /* pointer to the physical block of the next * |
| * level. leaf or next index could be there */ |
| __le16 ei_leaf_hi; /* high 16 bits of physical block */ |
| __u16 ei_unused; |
| }; |
| |
| /* |
| * Each block (leaves and indexes), even inode-stored has header. |
| */ |
| struct ext4_extent_header { |
| __le16 eh_magic; /* probably will support different formats */ |
| __le16 eh_entries; /* number of valid entries */ |
| __le16 eh_max; /* capacity of store in entries */ |
| __le16 eh_depth; /* has tree real underlying blocks? */ |
| __le32 eh_generation; /* generation of the tree */ |
| }; |
| |
| #define EXT4_EXT_MAGIC cpu_to_le16(0xf30a) |
| |
| /* |
| * Array of ext4_ext_path contains path to some extent. |
| * Creation/lookup routines use it for traversal/splitting/etc. |
| * Truncate uses it to simulate recursive walking. |
| */ |
| struct ext4_ext_path { |
| ext4_fsblk_t p_block; |
| __u16 p_depth; |
| struct ext4_extent *p_ext; |
| struct ext4_extent_idx *p_idx; |
| struct ext4_extent_header *p_hdr; |
| struct buffer_head *p_bh; |
| }; |
| |
| /* |
| * structure for external API |
| */ |
| |
| #define EXT4_EXT_CACHE_NO 0 |
| #define EXT4_EXT_CACHE_GAP 1 |
| #define EXT4_EXT_CACHE_EXTENT 2 |
| |
| /* |
| * to be called by ext4_ext_walk_space() |
| * negative retcode - error |
| * positive retcode - signal for ext4_ext_walk_space(), see below |
| * callback must return valid extent (passed or newly created) |
| */ |
| typedef int (*ext_prepare_callback)(struct inode *, struct ext4_ext_path *, |
| struct ext4_ext_cache *, |
| struct ext4_extent *, void *); |
| |
| #define EXT_CONTINUE 0 |
| #define EXT_BREAK 1 |
| #define EXT_REPEAT 2 |
| |
| /* Maximum logical block in a file; ext4_extent's ee_block is __le32 */ |
| #define EXT_MAX_BLOCK 0xffffffff |
| |
| /* |
| * EXT_INIT_MAX_LEN is the maximum number of blocks we can have in an |
| * initialized extent. This is 2^15 and not (2^16 - 1), since we use the |
| * MSB of ee_len field in the extent datastructure to signify if this |
| * particular extent is an initialized extent or an uninitialized (i.e. |
| * preallocated). |
| * EXT_UNINIT_MAX_LEN is the maximum number of blocks we can have in an |
| * uninitialized extent. |
| * If ee_len is <= 0x8000, it is an initialized extent. Otherwise, it is an |
| * uninitialized one. In other words, if MSB of ee_len is set, it is an |
| * uninitialized extent with only one special scenario when ee_len = 0x8000. |
| * In this case we can not have an uninitialized extent of zero length and |
| * thus we make it as a special case of initialized extent with 0x8000 length. |
| * This way we get better extent-to-group alignment for initialized extents. |
| * Hence, the maximum number of blocks we can have in an *initialized* |
| * extent is 2^15 (32768) and in an *uninitialized* extent is 2^15-1 (32767). |
| */ |
| #define EXT_INIT_MAX_LEN (1UL << 15) |
| #define EXT_UNINIT_MAX_LEN (EXT_INIT_MAX_LEN - 1) |
| |
| |
| #define EXT_FIRST_EXTENT(__hdr__) \ |
| ((struct ext4_extent *) (((char *) (__hdr__)) + \ |
| sizeof(struct ext4_extent_header))) |
| #define EXT_FIRST_INDEX(__hdr__) \ |
| ((struct ext4_extent_idx *) (((char *) (__hdr__)) + \ |
| sizeof(struct ext4_extent_header))) |
| #define EXT_HAS_FREE_INDEX(__path__) \ |
| (le16_to_cpu((__path__)->p_hdr->eh_entries) \ |
| < le16_to_cpu((__path__)->p_hdr->eh_max)) |
| #define EXT_LAST_EXTENT(__hdr__) \ |
| (EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) |
| #define EXT_LAST_INDEX(__hdr__) \ |
| (EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) |
| #define EXT_MAX_EXTENT(__hdr__) \ |
| (EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1) |
| #define EXT_MAX_INDEX(__hdr__) \ |
| (EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1) |
| |
| static inline struct ext4_extent_header *ext_inode_hdr(struct inode *inode) |
| { |
| return (struct ext4_extent_header *) EXT4_I(inode)->i_data; |
| } |
| |
| static inline struct ext4_extent_header *ext_block_hdr(struct buffer_head *bh) |
| { |
| return (struct ext4_extent_header *) bh->b_data; |
| } |
| |
| static inline unsigned short ext_depth(struct inode *inode) |
| { |
| return le16_to_cpu(ext_inode_hdr(inode)->eh_depth); |
| } |
| |
| static inline void |
| ext4_ext_invalidate_cache(struct inode *inode) |
| { |
| EXT4_I(inode)->i_cached_extent.ec_type = EXT4_EXT_CACHE_NO; |
| } |
| |
| static inline void ext4_ext_mark_uninitialized(struct ext4_extent *ext) |
| { |
| /* We can not have an uninitialized extent of zero length! */ |
| BUG_ON((le16_to_cpu(ext->ee_len) & ~EXT_INIT_MAX_LEN) == 0); |
| ext->ee_len |= cpu_to_le16(EXT_INIT_MAX_LEN); |
| } |
| |
| static inline int ext4_ext_is_uninitialized(struct ext4_extent *ext) |
| { |
| /* Extent with ee_len of 0x8000 is treated as an initialized extent */ |
| return (le16_to_cpu(ext->ee_len) > EXT_INIT_MAX_LEN); |
| } |
| |
| static inline int ext4_ext_get_actual_len(struct ext4_extent *ext) |
| { |
| return (le16_to_cpu(ext->ee_len) <= EXT_INIT_MAX_LEN ? |
| le16_to_cpu(ext->ee_len) : |
| (le16_to_cpu(ext->ee_len) - EXT_INIT_MAX_LEN)); |
| } |
| |
| extern int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks); |
| extern ext4_fsblk_t ext_pblock(struct ext4_extent *ex); |
| extern ext4_fsblk_t idx_pblock(struct ext4_extent_idx *); |
| extern void ext4_ext_store_pblock(struct ext4_extent *, ext4_fsblk_t); |
| extern int ext4_extent_tree_init(handle_t *, struct inode *); |
| extern int ext4_ext_calc_credits_for_single_extent(struct inode *inode, |
| int num, |
| struct ext4_ext_path *path); |
| extern int ext4_can_extents_be_merged(struct inode *inode, |
| struct ext4_extent *ex1, |
| struct ext4_extent *ex2); |
| extern int ext4_ext_try_to_merge(struct inode *inode, |
| struct ext4_ext_path *path, |
| struct ext4_extent *); |
| extern unsigned int ext4_ext_check_overlap(struct inode *, struct ext4_extent *, struct ext4_ext_path *); |
| extern int ext4_ext_insert_extent(handle_t *, struct inode *, struct ext4_ext_path *, struct ext4_extent *); |
| extern int ext4_ext_walk_space(struct inode *, ext4_lblk_t, ext4_lblk_t, |
| ext_prepare_callback, void *); |
| extern struct ext4_ext_path *ext4_ext_find_extent(struct inode *, ext4_lblk_t, |
| struct ext4_ext_path *); |
| extern int ext4_ext_search_left(struct inode *, struct ext4_ext_path *, |
| ext4_lblk_t *, ext4_fsblk_t *); |
| extern int ext4_ext_search_right(struct inode *, struct ext4_ext_path *, |
| ext4_lblk_t *, ext4_fsblk_t *); |
| extern void ext4_ext_drop_refs(struct ext4_ext_path *); |
| extern int ext4_ext_check_inode(struct inode *inode); |
| #endif /* _EXT4_EXTENTS */ |
| |