mm: make compound_head() robust

Hugh has pointed that compound_head() call can be unsafe in some
context. There's one example:

	CPU0					CPU1

isolate_migratepages_block()
  page_count()
    compound_head()
      !!PageTail() == true
					put_page()
					  tail->first_page = NULL
      head = tail->first_page
					alloc_pages(__GFP_COMP)
					   prep_compound_page()
					     tail->first_page = head
					     __SetPageTail(p);
      !!PageTail() == true
    <head == NULL dereferencing>

The race is pure theoretical. I don't it's possible to trigger it in
practice. But who knows.

We can fix the race by changing how encode PageTail() and compound_head()
within struct page to be able to update them in one shot.

The patch introduces page->compound_head into third double word block in
front of compound_dtor and compound_order. Bit 0 encodes PageTail() and
the rest bits are pointer to head page if bit zero is set.

The patch moves page->pmd_huge_pte out of word, just in case if an
architecture defines pgtable_t into something what can have the bit 0
set.

hugetlb_cgroup uses page->lru.next in the second tail page to store
pointer struct hugetlb_cgroup. The patch switch it to use page->private
in the second tail page instead. The space is free since ->first_page is
removed from the union.

The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER
limitation, since there's now space in first tail page to store struct
hugetlb_cgroup pointer. But that's out of scope of the patch.

That means page->compound_head shares storage space with:

 - page->lru.next;
 - page->next;
 - page->rcu_head.next;

That's too long list to be absolutely sure, but looks like nobody uses
bit 0 of the word.

page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use
call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future
call_rcu_lazy() is not allowed as it makes use of the bit and we can
get false positive PageTail().

[1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff --git a/Documentation/vm/split_page_table_lock b/Documentation/vm/split_page_table_lock
index 6dea4fd..62842a8 100644
--- a/Documentation/vm/split_page_table_lock
+++ b/Documentation/vm/split_page_table_lock
@@ -54,8 +54,8 @@
 which must be called on PTE table allocation / freeing.
 
 Make sure the architecture doesn't use slab allocator for page table
-allocation: slab uses page->slab_cache and page->first_page for its pages.
-These fields share storage with page->ptl.
+allocation: slab uses page->slab_cache for its pages.
+This field shares storage with page->ptl.
 
 PMD split lock only makes sense if you have more than two page table
 levels.