Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/arch/ia64/lib/do_csum.S b/arch/ia64/lib/do_csum.S
new file mode 100644
index 0000000..6bec2fc
--- /dev/null
+++ b/arch/ia64/lib/do_csum.S
@@ -0,0 +1,323 @@
+/*
+ *
+ * Optmized version of the standard do_csum() function
+ *
+ * Return: a 64bit quantity containing the 16bit Internet checksum
+ *
+ * Inputs:
+ *	in0: address of buffer to checksum (char *)
+ *	in1: length of the buffer (int)
+ *
+ * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
+ *	Stephane Eranian <eranian@hpl.hp.com>
+ *
+ * 02/04/22	Ken Chen <kenneth.w.chen@intel.com>
+ *		Data locality study on the checksum buffer.
+ *		More optimization cleanup - remove excessive stop bits.
+ * 02/04/08	David Mosberger <davidm@hpl.hp.com>
+ *		More cleanup and tuning.
+ * 01/04/18	Jun Nakajima <jun.nakajima@intel.com>
+ *		Clean up and optimize and the software pipeline, loading two
+ *		back-to-back 8-byte words per loop. Clean up the initialization
+ *		for the loop. Support the cases where load latency = 1 or 2.
+ *		Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
+ */
+
+#include <asm/asmmacro.h>
+
+//
+// Theory of operations:
+//	The goal is to go as quickly as possible to the point where
+//	we can checksum 16 bytes/loop. Before reaching that point we must
+//	take care of incorrect alignment of first byte.
+//
+//	The code hereafter also takes care of the "tail" part of the buffer
+//	before entering the core loop, if any. The checksum is a sum so it
+//	allows us to commute operations. So we do the "head" and "tail"
+//	first to finish at full speed in the body. Once we get the head and
+//	tail values, we feed them into the pipeline, very handy initialization.
+//
+//	Of course we deal with the special case where the whole buffer fits
+//	into one 8 byte word. In this case we have only one entry in the pipeline.
+//
+//	We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
+//	possible load latency and also to accommodate for head and tail.
+//
+//	The end of the function deals with folding the checksum from 64bits
+//	down to 16bits taking care of the carry.
+//
+//	This version avoids synchronization in the core loop by also using a
+//	pipeline for the accumulation of the checksum in resultx[] (x=1,2).
+//
+//	 wordx[] (x=1,2)
+//	|---|
+//      |   | 0			: new value loaded in pipeline
+//	|---|
+//      |   | -			: in transit data
+//	|---|
+//      |   | LOAD_LATENCY	: current value to add to checksum
+//	|---|
+//      |   | LOAD_LATENCY+1	: previous value added to checksum
+//      |---|			(previous iteration)
+//
+//	resultx[] (x=1,2)
+//	|---|
+//      |   | 0			: initial value
+//	|---|
+//      |   | LOAD_LATENCY-1	: new checksum
+//	|---|
+//      |   | LOAD_LATENCY	: previous value of checksum
+//	|---|
+//      |   | LOAD_LATENCY+1	: final checksum when out of the loop
+//      |---|
+//
+//
+//	See RFC1071 "Computing the Internet Checksum" for various techniques for
+//	calculating the Internet checksum.
+//
+// NOT YET DONE:
+//	- Maybe another algorithm which would take care of the folding at the
+//	  end in a different manner
+//	- Work with people more knowledgeable than me on the network stack
+//	  to figure out if we could not split the function depending on the
+//	  type of packet or alignment we get. Like the ip_fast_csum() routine
+//	  where we know we have at least 20bytes worth of data to checksum.
+//	- Do a better job of handling small packets.
+//	- Note on prefetching: it was found that under various load, i.e. ftp read/write,
+//	  nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
+//	  on the data that buffer points to (partly because the checksum is often preceded by
+//	  a copy_from_user()).  This finding indiate that lfetch will not be beneficial since
+//	  the data is already in the cache.
+//
+
+#define saved_pfs	r11
+#define hmask		r16
+#define tmask		r17
+#define first1		r18
+#define firstval	r19
+#define firstoff	r20
+#define last		r21
+#define lastval		r22
+#define lastoff		r23
+#define saved_lc	r24
+#define saved_pr	r25
+#define tmp1		r26
+#define tmp2		r27
+#define tmp3		r28
+#define carry1		r29
+#define carry2		r30
+#define first2		r31
+
+#define buf		in0
+#define len		in1
+
+#define LOAD_LATENCY	2	// XXX fix me
+
+#if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
+# error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
+#endif
+
+#define PIPE_DEPTH			(LOAD_LATENCY+2)
+#define ELD	p[LOAD_LATENCY]		// end of load
+#define ELD_1	p[LOAD_LATENCY+1]	// and next stage
+
+// unsigned long do_csum(unsigned char *buf,long len)
+
+GLOBAL_ENTRY(do_csum)
+	.prologue
+	.save ar.pfs, saved_pfs
+	alloc saved_pfs=ar.pfs,2,16,0,16
+	.rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
+	.rotp p[PIPE_DEPTH], pC1[2], pC2[2]
+	mov ret0=r0		// in case we have zero length
+	cmp.lt p0,p6=r0,len	// check for zero length or negative (32bit len)
+	;;
+	add tmp1=buf,len	// last byte's address
+	.save pr, saved_pr
+	mov saved_pr=pr		// preserve predicates (rotation)
+(p6)	br.ret.spnt.many rp	// return if zero or negative length
+
+	mov hmask=-1		// initialize head mask
+	tbit.nz p15,p0=buf,0	// is buf an odd address?
+	and first1=-8,buf	// 8-byte align down address of first1 element
+
+	and firstoff=7,buf	// how many bytes off for first1 element
+	mov tmask=-1		// initialize tail mask
+
+	;;
+	adds tmp2=-1,tmp1	// last-1
+	and lastoff=7,tmp1	// how many bytes off for last element
+	;;
+	sub tmp1=8,lastoff	// complement to lastoff
+	and last=-8,tmp2	// address of word containing last byte
+	;;
+	sub tmp3=last,first1	// tmp3=distance from first1 to last
+	.save ar.lc, saved_lc
+	mov saved_lc=ar.lc	// save lc
+	cmp.eq p8,p9=last,first1	// everything fits in one word ?
+
+	ld8 firstval=[first1],8	// load, ahead of time, "first1" word
+	and tmp1=7, tmp1	// make sure that if tmp1==8 -> tmp1=0
+	shl tmp2=firstoff,3	// number of bits
+	;;
+(p9)	ld8 lastval=[last]	// load, ahead of time, "last" word, if needed
+	shl tmp1=tmp1,3		// number of bits
+(p9)	adds tmp3=-8,tmp3	// effectively loaded
+	;;
+(p8)	mov lastval=r0		// we don't need lastval if first1==last
+	shl hmask=hmask,tmp2	// build head mask, mask off [0,first1off[
+	shr.u tmask=tmask,tmp1	// build tail mask, mask off ]8,lastoff]
+	;;
+	.body
+#define count tmp3
+
+(p8)	and hmask=hmask,tmask	// apply tail mask to head mask if 1 word only
+(p9)	and word2[0]=lastval,tmask	// mask last it as appropriate
+	shr.u count=count,3	// how many 8-byte?
+	;;
+	// If count is odd, finish this 8-byte word so that we can
+	// load two back-to-back 8-byte words per loop thereafter.
+	and word1[0]=firstval,hmask	// and mask it as appropriate
+	tbit.nz p10,p11=count,0		// if (count is odd)
+	;;
+(p8)	mov result1[0]=word1[0]
+(p9)	add result1[0]=word1[0],word2[0]
+	;;
+	cmp.ltu p6,p0=result1[0],word1[0]	// check the carry
+	cmp.eq.or.andcm p8,p0=0,count		// exit if zero 8-byte
+	;;
+(p6)	adds result1[0]=1,result1[0]
+(p8)	br.cond.dptk .do_csum_exit	// if (within an 8-byte word)
+(p11)	br.cond.dptk .do_csum16		// if (count is even)
+
+	// Here count is odd.
+	ld8 word1[1]=[first1],8		// load an 8-byte word
+	cmp.eq p9,p10=1,count		// if (count == 1)
+	adds count=-1,count		// loaded an 8-byte word
+	;;
+	add result1[0]=result1[0],word1[1]
+	;;
+	cmp.ltu p6,p0=result1[0],word1[1]
+	;;
+(p6)	adds result1[0]=1,result1[0]
+(p9)	br.cond.sptk .do_csum_exit	// if (count == 1) exit
+	// Fall through to caluculate the checksum, feeding result1[0] as
+	// the initial value in result1[0].
+	//
+	// Calculate the checksum loading two 8-byte words per loop.
+	//
+.do_csum16:
+	add first2=8,first1
+	shr.u count=count,1	// we do 16 bytes per loop
+	;;
+	adds count=-1,count
+	mov carry1=r0
+	mov carry2=r0
+	brp.loop.imp 1f,2f
+	;;
+	mov ar.ec=PIPE_DEPTH
+	mov ar.lc=count	// set lc
+	mov pr.rot=1<<16
+	// result1[0] must be initialized in advance.
+	mov result2[0]=r0
+	;;
+	.align 32
+1:
+(ELD_1)	cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
+(pC1[1])adds carry1=1,carry1
+(ELD_1)	cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
+(pC2[1])adds carry2=1,carry2
+(ELD)	add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
+(ELD)	add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
+2:
+(p[0])	ld8 word1[0]=[first1],16
+(p[0])	ld8 word2[0]=[first2],16
+	br.ctop.sptk 1b
+	;;
+	// Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
+(pC1[1])adds carry1=1,carry1	// since we miss the last one
+(pC2[1])adds carry2=1,carry2
+	;;
+	add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
+	add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
+	;;
+	cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
+	cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
+	;;
+(p6)	adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
+(p7)	adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
+	;;
+	add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
+	;;
+	cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
+	;;
+(p6)	adds result1[0]=1,result1[0]
+	;;
+.do_csum_exit:
+	//
+	// now fold 64 into 16 bits taking care of carry
+	// that's not very good because it has lots of sequentiality
+	//
+	mov tmp3=0xffff
+	zxt4 tmp1=result1[0]
+	shr.u tmp2=result1[0],32
+	;;
+	add result1[0]=tmp1,tmp2
+	;;
+	and tmp1=result1[0],tmp3
+	shr.u tmp2=result1[0],16
+	;;
+	add result1[0]=tmp1,tmp2
+	;;
+	and tmp1=result1[0],tmp3
+	shr.u tmp2=result1[0],16
+	;;
+	add result1[0]=tmp1,tmp2
+	;;
+	and tmp1=result1[0],tmp3
+	shr.u tmp2=result1[0],16
+	;;
+	add ret0=tmp1,tmp2
+	mov pr=saved_pr,0xffffffffffff0000
+	;;
+	// if buf was odd then swap bytes
+	mov ar.pfs=saved_pfs		// restore ar.ec
+(p15)	mux1 ret0=ret0,@rev		// reverse word
+	;;
+	mov ar.lc=saved_lc
+(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
+	br.ret.sptk.many rp
+
+//	I (Jun Nakajima) wrote an equivalent code (see below), but it was
+//	not much better than the original. So keep the original there so that
+//	someone else can challenge.
+//
+//	shr.u word1[0]=result1[0],32
+//	zxt4 result1[0]=result1[0]
+//	;;
+//	add result1[0]=result1[0],word1[0]
+//	;;
+//	zxt2 result2[0]=result1[0]
+//	extr.u word1[0]=result1[0],16,16
+//	shr.u carry1=result1[0],32
+//	;;
+//	add result2[0]=result2[0],word1[0]
+//	;;
+//	add result2[0]=result2[0],carry1
+//	;;
+//	extr.u ret0=result2[0],16,16
+//	;;
+//	add ret0=ret0,result2[0]
+//	;;
+//	zxt2 ret0=ret0
+//	mov ar.pfs=saved_pfs		 // restore ar.ec
+//	mov pr=saved_pr,0xffffffffffff0000
+//	;;
+//	// if buf was odd then swap bytes
+//	mov ar.lc=saved_lc
+//(p15)	mux1 ret0=ret0,@rev		// reverse word
+//	;;
+//(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
+//	br.ret.sptk.many rp
+
+END(do_csum)