Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c
new file mode 100644
index 0000000..c268bcd
--- /dev/null
+++ b/drivers/mtd/chips/cfi_cmdset_0001.c
@@ -0,0 +1,2160 @@
+/*
+ * Common Flash Interface support:
+ *   Intel Extended Vendor Command Set (ID 0x0001)
+ *
+ * (C) 2000 Red Hat. GPL'd
+ *
+ * $Id: cfi_cmdset_0001.c,v 1.164 2004/11/16 18:29:00 dwmw2 Exp $
+ *
+ * 
+ * 10/10/2000	Nicolas Pitre <nico@cam.org>
+ * 	- completely revamped method functions so they are aware and
+ * 	  independent of the flash geometry (buswidth, interleave, etc.)
+ * 	- scalability vs code size is completely set at compile-time
+ * 	  (see include/linux/mtd/cfi.h for selection)
+ *	- optimized write buffer method
+ * 02/05/2002	Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
+ *	- reworked lock/unlock/erase support for var size flash
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/init.h>
+#include <asm/io.h>
+#include <asm/byteorder.h>
+
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/mtd/xip.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/mtd/cfi.h>
+
+/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
+/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
+
+// debugging, turns off buffer write mode if set to 1
+#define FORCE_WORD_WRITE 0
+
+#define MANUFACTURER_INTEL	0x0089
+#define I82802AB	0x00ad
+#define I82802AC	0x00ac
+#define MANUFACTURER_ST         0x0020
+#define M50LPW080       0x002F
+
+static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+//static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+//static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
+static void cfi_intelext_sync (struct mtd_info *);
+static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
+static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
+static int cfi_intelext_suspend (struct mtd_info *);
+static void cfi_intelext_resume (struct mtd_info *);
+
+static void cfi_intelext_destroy(struct mtd_info *);
+
+struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
+
+static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
+static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
+
+static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
+		     size_t *retlen, u_char **mtdbuf);
+static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
+			size_t len);
+
+static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
+static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
+#include "fwh_lock.h"
+
+
+
+/*
+ *  *********** SETUP AND PROBE BITS  ***********
+ */
+
+static struct mtd_chip_driver cfi_intelext_chipdrv = {
+	.probe		= NULL, /* Not usable directly */
+	.destroy	= cfi_intelext_destroy,
+	.name		= "cfi_cmdset_0001",
+	.module		= THIS_MODULE
+};
+
+/* #define DEBUG_LOCK_BITS */
+/* #define DEBUG_CFI_FEATURES */
+
+#ifdef DEBUG_CFI_FEATURES
+static void cfi_tell_features(struct cfi_pri_intelext *extp)
+{
+	int i;
+	printk("  Feature/Command Support:      %4.4X\n", extp->FeatureSupport);
+	printk("     - Chip Erase:              %s\n", extp->FeatureSupport&1?"supported":"unsupported");
+	printk("     - Suspend Erase:           %s\n", extp->FeatureSupport&2?"supported":"unsupported");
+	printk("     - Suspend Program:         %s\n", extp->FeatureSupport&4?"supported":"unsupported");
+	printk("     - Legacy Lock/Unlock:      %s\n", extp->FeatureSupport&8?"supported":"unsupported");
+	printk("     - Queued Erase:            %s\n", extp->FeatureSupport&16?"supported":"unsupported");
+	printk("     - Instant block lock:      %s\n", extp->FeatureSupport&32?"supported":"unsupported");
+	printk("     - Protection Bits:         %s\n", extp->FeatureSupport&64?"supported":"unsupported");
+	printk("     - Page-mode read:          %s\n", extp->FeatureSupport&128?"supported":"unsupported");
+	printk("     - Synchronous read:        %s\n", extp->FeatureSupport&256?"supported":"unsupported");
+	printk("     - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
+	for (i=10; i<32; i++) {
+		if (extp->FeatureSupport & (1<<i)) 
+			printk("     - Unknown Bit %X:      supported\n", i);
+	}
+	
+	printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
+	printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
+	for (i=1; i<8; i++) {
+		if (extp->SuspendCmdSupport & (1<<i))
+			printk("     - Unknown Bit %X:               supported\n", i);
+	}
+	
+	printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
+	printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
+	printk("     - Valid Bit Active:     %s\n", extp->BlkStatusRegMask&2?"yes":"no");
+	for (i=2; i<16; i++) {
+		if (extp->BlkStatusRegMask & (1<<i))
+			printk("     - Unknown Bit %X Active: yes\n",i);
+	}
+	
+	printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", 
+	       extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
+	if (extp->VppOptimal)
+		printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", 
+		       extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
+}
+#endif
+
+#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
+/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ 
+static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
+
+	printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
+	                    "erase on write disabled.\n");
+	extp->SuspendCmdSupport &= ~1;
+}
+#endif
+
+#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
+static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
+
+	if (cfip && (cfip->FeatureSupport&4)) {
+		cfip->FeatureSupport &= ~4;
+		printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
+	}
+}
+#endif
+
+static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	
+	cfi->cfiq->BufWriteTimeoutTyp = 0;	/* Not supported */
+	cfi->cfiq->BufWriteTimeoutMax = 0;	/* Not supported */
+}
+
+static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	
+	/* Note this is done after the region info is endian swapped */
+	cfi->cfiq->EraseRegionInfo[1] =
+		(cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
+};
+
+static void fixup_use_point(struct mtd_info *mtd, void *param)
+{
+	struct map_info *map = mtd->priv;
+	if (!mtd->point && map_is_linear(map)) {
+		mtd->point   = cfi_intelext_point;
+		mtd->unpoint = cfi_intelext_unpoint;
+	}
+}
+
+static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	if (cfi->cfiq->BufWriteTimeoutTyp) {
+		printk(KERN_INFO "Using buffer write method\n" );
+		mtd->write = cfi_intelext_write_buffers;
+	}
+}
+
+static struct cfi_fixup cfi_fixup_table[] = {
+#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
+	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL }, 
+#endif
+#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
+	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
+#endif
+#if !FORCE_WORD_WRITE
+	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
+#endif
+	{ CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
+	{ CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
+	{ 0, 0, NULL, NULL }
+};
+
+static struct cfi_fixup jedec_fixup_table[] = {
+	{ MANUFACTURER_INTEL, I82802AB,   fixup_use_fwh_lock, NULL, },
+	{ MANUFACTURER_INTEL, I82802AC,   fixup_use_fwh_lock, NULL, },
+	{ MANUFACTURER_ST,    M50LPW080,  fixup_use_fwh_lock, NULL, },
+	{ 0, 0, NULL, NULL }
+};
+static struct cfi_fixup fixup_table[] = {
+	/* The CFI vendor ids and the JEDEC vendor IDs appear
+	 * to be common.  It is like the devices id's are as
+	 * well.  This table is to pick all cases where
+	 * we know that is the case.
+	 */
+	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
+	{ 0, 0, NULL, NULL }
+};
+
+static inline struct cfi_pri_intelext *
+read_pri_intelext(struct map_info *map, __u16 adr)
+{
+	struct cfi_pri_intelext *extp;
+	unsigned int extp_size = sizeof(*extp);
+
+ again:
+	extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
+	if (!extp)
+		return NULL;
+
+	/* Do some byteswapping if necessary */
+	extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
+	extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
+	extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
+
+	if (extp->MajorVersion == '1' && extp->MinorVersion == '3') {
+		unsigned int extra_size = 0;
+		int nb_parts, i;
+
+		/* Protection Register info */
+		extra_size += (extp->NumProtectionFields - 1) * (4 + 6);
+
+		/* Burst Read info */
+		extra_size += 6;
+
+		/* Number of hardware-partitions */
+		extra_size += 1;
+		if (extp_size < sizeof(*extp) + extra_size)
+			goto need_more;
+		nb_parts = extp->extra[extra_size - 1];
+
+		for (i = 0; i < nb_parts; i++) {
+			struct cfi_intelext_regioninfo *rinfo;
+			rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
+			extra_size += sizeof(*rinfo);
+			if (extp_size < sizeof(*extp) + extra_size)
+				goto need_more;
+			rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
+			extra_size += (rinfo->NumBlockTypes - 1)
+				      * sizeof(struct cfi_intelext_blockinfo);
+		}
+
+		if (extp_size < sizeof(*extp) + extra_size) {
+			need_more:
+			extp_size = sizeof(*extp) + extra_size;
+			kfree(extp);
+			if (extp_size > 4096) {
+				printk(KERN_ERR
+					"%s: cfi_pri_intelext is too fat\n",
+					__FUNCTION__);
+				return NULL;
+			}
+			goto again;
+		}
+	}
+		
+	return extp;
+}
+
+/* This routine is made available to other mtd code via
+ * inter_module_register.  It must only be accessed through
+ * inter_module_get which will bump the use count of this module.  The
+ * addresses passed back in cfi are valid as long as the use count of
+ * this module is non-zero, i.e. between inter_module_get and
+ * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
+ */
+struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct mtd_info *mtd;
+	int i;
+
+	mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
+	if (!mtd) {
+		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
+		return NULL;
+	}
+	memset(mtd, 0, sizeof(*mtd));
+	mtd->priv = map;
+	mtd->type = MTD_NORFLASH;
+
+	/* Fill in the default mtd operations */
+	mtd->erase   = cfi_intelext_erase_varsize;
+	mtd->read    = cfi_intelext_read;
+	mtd->write   = cfi_intelext_write_words;
+	mtd->sync    = cfi_intelext_sync;
+	mtd->lock    = cfi_intelext_lock;
+	mtd->unlock  = cfi_intelext_unlock;
+	mtd->suspend = cfi_intelext_suspend;
+	mtd->resume  = cfi_intelext_resume;
+	mtd->flags   = MTD_CAP_NORFLASH;
+	mtd->name    = map->name;
+	
+	if (cfi->cfi_mode == CFI_MODE_CFI) {
+		/* 
+		 * It's a real CFI chip, not one for which the probe
+		 * routine faked a CFI structure. So we read the feature
+		 * table from it.
+		 */
+		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
+		struct cfi_pri_intelext *extp;
+
+		extp = read_pri_intelext(map, adr);
+		if (!extp) {
+			kfree(mtd);
+			return NULL;
+		}
+
+		/* Install our own private info structure */
+		cfi->cmdset_priv = extp;	
+
+		cfi_fixup(mtd, cfi_fixup_table);
+
+#ifdef DEBUG_CFI_FEATURES
+		/* Tell the user about it in lots of lovely detail */
+		cfi_tell_features(extp);
+#endif	
+
+		if(extp->SuspendCmdSupport & 1) {
+			printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
+		}
+	}
+	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
+		/* Apply jedec specific fixups */
+		cfi_fixup(mtd, jedec_fixup_table);
+	}
+	/* Apply generic fixups */
+	cfi_fixup(mtd, fixup_table);
+
+	for (i=0; i< cfi->numchips; i++) {
+		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
+		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
+		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
+		cfi->chips[i].ref_point_counter = 0;
+	}		
+
+	map->fldrv = &cfi_intelext_chipdrv;
+	
+	return cfi_intelext_setup(mtd);
+}
+
+static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long offset = 0;
+	int i,j;
+	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
+
+	//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
+
+	mtd->size = devsize * cfi->numchips;
+
+	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
+	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) 
+			* mtd->numeraseregions, GFP_KERNEL);
+	if (!mtd->eraseregions) { 
+		printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
+		goto setup_err;
+	}
+	
+	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
+		unsigned long ernum, ersize;
+		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
+		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
+
+		if (mtd->erasesize < ersize) {
+			mtd->erasesize = ersize;
+		}
+		for (j=0; j<cfi->numchips; j++) {
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
+			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
+		}
+		offset += (ersize * ernum);
+	}
+
+	if (offset != devsize) {
+		/* Argh */
+		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
+		goto setup_err;
+	}
+
+	for (i=0; i<mtd->numeraseregions;i++){
+		printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n",
+		       i,mtd->eraseregions[i].offset,
+		       mtd->eraseregions[i].erasesize,
+		       mtd->eraseregions[i].numblocks);
+	}
+
+#if 0
+	mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
+	mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
+#endif
+
+	/* This function has the potential to distort the reality
+	   a bit and therefore should be called last. */
+	if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
+		goto setup_err;
+
+	__module_get(THIS_MODULE);
+	return mtd;
+
+ setup_err:
+	if(mtd) {
+		if(mtd->eraseregions)
+			kfree(mtd->eraseregions);
+		kfree(mtd);
+	}
+	kfree(cfi->cmdset_priv);
+	return NULL;
+}
+
+static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
+					struct cfi_private **pcfi)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = *pcfi;
+	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
+
+	/*
+	 * Probing of multi-partition flash ships.
+	 *
+	 * To support multiple partitions when available, we simply arrange
+	 * for each of them to have their own flchip structure even if they
+	 * are on the same physical chip.  This means completely recreating
+	 * a new cfi_private structure right here which is a blatent code
+	 * layering violation, but this is still the least intrusive
+	 * arrangement at this point. This can be rearranged in the future
+	 * if someone feels motivated enough.  --nico
+	 */
+	if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3'
+	    && extp->FeatureSupport & (1 << 9)) {
+		struct cfi_private *newcfi;
+		struct flchip *chip;
+		struct flchip_shared *shared;
+		int offs, numregions, numparts, partshift, numvirtchips, i, j;
+
+		/* Protection Register info */
+		offs = (extp->NumProtectionFields - 1) * (4 + 6);
+
+		/* Burst Read info */
+		offs += 6;
+
+		/* Number of partition regions */
+		numregions = extp->extra[offs];
+		offs += 1;
+
+		/* Number of hardware partitions */
+		numparts = 0;
+		for (i = 0; i < numregions; i++) {
+			struct cfi_intelext_regioninfo *rinfo;
+			rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
+			numparts += rinfo->NumIdentPartitions;
+			offs += sizeof(*rinfo)
+				+ (rinfo->NumBlockTypes - 1) *
+				  sizeof(struct cfi_intelext_blockinfo);
+		}
+
+		/*
+		 * All functions below currently rely on all chips having
+		 * the same geometry so we'll just assume that all hardware
+		 * partitions are of the same size too.
+		 */
+		partshift = cfi->chipshift - __ffs(numparts);
+
+		if ((1 << partshift) < mtd->erasesize) {
+			printk( KERN_ERR
+				"%s: bad number of hw partitions (%d)\n",
+				__FUNCTION__, numparts);
+			return -EINVAL;
+		}
+
+		numvirtchips = cfi->numchips * numparts;
+		newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
+		if (!newcfi)
+			return -ENOMEM;
+		shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
+		if (!shared) {
+			kfree(newcfi);
+			return -ENOMEM;
+		}
+		memcpy(newcfi, cfi, sizeof(struct cfi_private));
+		newcfi->numchips = numvirtchips;
+		newcfi->chipshift = partshift;
+
+		chip = &newcfi->chips[0];
+		for (i = 0; i < cfi->numchips; i++) {
+			shared[i].writing = shared[i].erasing = NULL;
+			spin_lock_init(&shared[i].lock);
+			for (j = 0; j < numparts; j++) {
+				*chip = cfi->chips[i];
+				chip->start += j << partshift;
+				chip->priv = &shared[i];
+				/* those should be reset too since
+				   they create memory references. */
+				init_waitqueue_head(&chip->wq);
+				spin_lock_init(&chip->_spinlock);
+				chip->mutex = &chip->_spinlock;
+				chip++;
+			}
+		}
+
+		printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
+				  "--> %d partitions of %d KiB\n",
+				  map->name, cfi->numchips, cfi->interleave,
+				  newcfi->numchips, 1<<(newcfi->chipshift-10));
+
+		map->fldrv_priv = newcfi;
+		*pcfi = newcfi;
+		kfree(cfi);
+	}
+
+	return 0;
+}
+
+/*
+ *  *********** CHIP ACCESS FUNCTIONS ***********
+ */
+
+static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
+{
+	DECLARE_WAITQUEUE(wait, current);
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
+	unsigned long timeo;
+	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
+
+ resettime:
+	timeo = jiffies + HZ;
+ retry:
+	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)) {
+		/*
+		 * OK. We have possibility for contension on the write/erase
+		 * operations which are global to the real chip and not per
+		 * partition.  So let's fight it over in the partition which
+		 * currently has authority on the operation.
+		 *
+		 * The rules are as follows:
+		 *
+		 * - any write operation must own shared->writing.
+		 *
+		 * - any erase operation must own _both_ shared->writing and
+		 *   shared->erasing.
+		 *
+		 * - contension arbitration is handled in the owner's context.
+		 *
+		 * The 'shared' struct can be read when its lock is taken.
+		 * However any writes to it can only be made when the current
+		 * owner's lock is also held.
+		 */
+		struct flchip_shared *shared = chip->priv;
+		struct flchip *contender;
+		spin_lock(&shared->lock);
+		contender = shared->writing;
+		if (contender && contender != chip) {
+			/*
+			 * The engine to perform desired operation on this
+			 * partition is already in use by someone else.
+			 * Let's fight over it in the context of the chip
+			 * currently using it.  If it is possible to suspend,
+			 * that other partition will do just that, otherwise
+			 * it'll happily send us to sleep.  In any case, when
+			 * get_chip returns success we're clear to go ahead.
+			 */
+			int ret = spin_trylock(contender->mutex);
+			spin_unlock(&shared->lock);
+			if (!ret)
+				goto retry;
+			spin_unlock(chip->mutex);
+			ret = get_chip(map, contender, contender->start, mode);
+			spin_lock(chip->mutex);
+			if (ret) {
+				spin_unlock(contender->mutex);
+				return ret;
+			}
+			timeo = jiffies + HZ;
+			spin_lock(&shared->lock);
+		}
+
+		/* We now own it */
+		shared->writing = chip;
+		if (mode == FL_ERASING)
+			shared->erasing = chip;
+		if (contender && contender != chip)
+			spin_unlock(contender->mutex);
+		spin_unlock(&shared->lock);
+	}
+
+	switch (chip->state) {
+
+	case FL_STATUS:
+		for (;;) {
+			status = map_read(map, adr);
+			if (map_word_andequal(map, status, status_OK, status_OK))
+				break;
+
+			/* At this point we're fine with write operations
+			   in other partitions as they don't conflict. */
+			if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
+				break;
+
+			if (time_after(jiffies, timeo)) {
+				printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n", 
+				       status.x[0]);
+				return -EIO;
+			}
+			spin_unlock(chip->mutex);
+			cfi_udelay(1);
+			spin_lock(chip->mutex);
+			/* Someone else might have been playing with it. */
+			goto retry;
+		}
+				
+	case FL_READY:
+	case FL_CFI_QUERY:
+	case FL_JEDEC_QUERY:
+		return 0;
+
+	case FL_ERASING:
+		if (!cfip ||
+		    !(cfip->FeatureSupport & 2) ||
+		    !(mode == FL_READY || mode == FL_POINT ||
+		     (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
+			goto sleep;
+
+
+		/* Erase suspend */
+		map_write(map, CMD(0xB0), adr);
+
+		/* If the flash has finished erasing, then 'erase suspend'
+		 * appears to make some (28F320) flash devices switch to
+		 * 'read' mode.  Make sure that we switch to 'read status'
+		 * mode so we get the right data. --rmk
+		 */
+		map_write(map, CMD(0x70), adr);
+		chip->oldstate = FL_ERASING;
+		chip->state = FL_ERASE_SUSPENDING;
+		chip->erase_suspended = 1;
+		for (;;) {
+			status = map_read(map, adr);
+			if (map_word_andequal(map, status, status_OK, status_OK))
+			        break;
+
+			if (time_after(jiffies, timeo)) {
+				/* Urgh. Resume and pretend we weren't here.  */
+				map_write(map, CMD(0xd0), adr);
+				/* Make sure we're in 'read status' mode if it had finished */
+				map_write(map, CMD(0x70), adr);
+				chip->state = FL_ERASING;
+				chip->oldstate = FL_READY;
+				printk(KERN_ERR "Chip not ready after erase "
+				       "suspended: status = 0x%lx\n", status.x[0]);
+				return -EIO;
+			}
+
+			spin_unlock(chip->mutex);
+			cfi_udelay(1);
+			spin_lock(chip->mutex);
+			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
+			   So we can just loop here. */
+		}
+		chip->state = FL_STATUS;
+		return 0;
+
+	case FL_XIP_WHILE_ERASING:
+		if (mode != FL_READY && mode != FL_POINT &&
+		    (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
+			goto sleep;
+		chip->oldstate = chip->state;
+		chip->state = FL_READY;
+		return 0;
+
+	case FL_POINT:
+		/* Only if there's no operation suspended... */
+		if (mode == FL_READY && chip->oldstate == FL_READY)
+			return 0;
+
+	default:
+	sleep:
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		add_wait_queue(&chip->wq, &wait);
+		spin_unlock(chip->mutex);
+		schedule();
+		remove_wait_queue(&chip->wq, &wait);
+		spin_lock(chip->mutex);
+		goto resettime;
+	}
+}
+
+static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+
+	if (chip->priv) {
+		struct flchip_shared *shared = chip->priv;
+		spin_lock(&shared->lock);
+		if (shared->writing == chip && chip->oldstate == FL_READY) {
+			/* We own the ability to write, but we're done */
+			shared->writing = shared->erasing;
+			if (shared->writing && shared->writing != chip) {
+				/* give back ownership to who we loaned it from */
+				struct flchip *loaner = shared->writing;
+				spin_lock(loaner->mutex);
+				spin_unlock(&shared->lock);
+				spin_unlock(chip->mutex);
+				put_chip(map, loaner, loaner->start);
+				spin_lock(chip->mutex);
+				spin_unlock(loaner->mutex);
+				wake_up(&chip->wq);
+				return;
+			}
+			shared->erasing = NULL;
+			shared->writing = NULL;
+		} else if (shared->erasing == chip && shared->writing != chip) {
+			/*
+			 * We own the ability to erase without the ability
+			 * to write, which means the erase was suspended
+			 * and some other partition is currently writing.
+			 * Don't let the switch below mess things up since
+			 * we don't have ownership to resume anything.
+			 */
+			spin_unlock(&shared->lock);
+			wake_up(&chip->wq);
+			return;
+		}
+		spin_unlock(&shared->lock);
+	}
+
+	switch(chip->oldstate) {
+	case FL_ERASING:
+		chip->state = chip->oldstate;
+		/* What if one interleaved chip has finished and the 
+		   other hasn't? The old code would leave the finished
+		   one in READY mode. That's bad, and caused -EROFS 
+		   errors to be returned from do_erase_oneblock because
+		   that's the only bit it checked for at the time.
+		   As the state machine appears to explicitly allow 
+		   sending the 0x70 (Read Status) command to an erasing
+		   chip and expecting it to be ignored, that's what we 
+		   do. */
+		map_write(map, CMD(0xd0), adr);
+		map_write(map, CMD(0x70), adr);
+		chip->oldstate = FL_READY;
+		chip->state = FL_ERASING;
+		break;
+
+	case FL_XIP_WHILE_ERASING:
+		chip->state = chip->oldstate;
+		chip->oldstate = FL_READY;
+		break;
+
+	case FL_READY:
+	case FL_STATUS:
+	case FL_JEDEC_QUERY:
+		/* We should really make set_vpp() count, rather than doing this */
+		DISABLE_VPP(map);
+		break;
+	default:
+		printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate);
+	}
+	wake_up(&chip->wq);
+}
+
+#ifdef CONFIG_MTD_XIP
+
+/*
+ * No interrupt what so ever can be serviced while the flash isn't in array
+ * mode.  This is ensured by the xip_disable() and xip_enable() functions
+ * enclosing any code path where the flash is known not to be in array mode.
+ * And within a XIP disabled code path, only functions marked with __xipram
+ * may be called and nothing else (it's a good thing to inspect generated
+ * assembly to make sure inline functions were actually inlined and that gcc
+ * didn't emit calls to its own support functions). Also configuring MTD CFI
+ * support to a single buswidth and a single interleave is also recommended.
+ * Note that not only IRQs are disabled but the preemption count is also
+ * increased to prevent other locking primitives (namely spin_unlock) from
+ * decrementing the preempt count to zero and scheduling the CPU away while
+ * not in array mode.
+ */
+
+static void xip_disable(struct map_info *map, struct flchip *chip,
+			unsigned long adr)
+{
+	/* TODO: chips with no XIP use should ignore and return */
+	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
+	preempt_disable();
+	local_irq_disable();
+}
+
+static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
+				unsigned long adr)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	if (chip->state != FL_POINT && chip->state != FL_READY) {
+		map_write(map, CMD(0xff), adr);
+		chip->state = FL_READY;
+	}
+	(void) map_read(map, adr);
+	asm volatile (".rep 8; nop; .endr"); /* fill instruction prefetch */
+	local_irq_enable();
+	preempt_enable();
+}
+
+/*
+ * When a delay is required for the flash operation to complete, the
+ * xip_udelay() function is polling for both the given timeout and pending
+ * (but still masked) hardware interrupts.  Whenever there is an interrupt
+ * pending then the flash erase or write operation is suspended, array mode
+ * restored and interrupts unmasked.  Task scheduling might also happen at that
+ * point.  The CPU eventually returns from the interrupt or the call to
+ * schedule() and the suspended flash operation is resumed for the remaining
+ * of the delay period.
+ *
+ * Warning: this function _will_ fool interrupt latency tracing tools.
+ */
+
+static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
+				unsigned long adr, int usec)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
+	map_word status, OK = CMD(0x80);
+	unsigned long suspended, start = xip_currtime();
+	flstate_t oldstate, newstate;
+
+	do {
+		cpu_relax();
+		if (xip_irqpending() && cfip &&
+		    ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
+		     (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
+		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
+			/*
+			 * Let's suspend the erase or write operation when
+			 * supported.  Note that we currently don't try to
+			 * suspend interleaved chips if there is already
+			 * another operation suspended (imagine what happens
+			 * when one chip was already done with the current
+			 * operation while another chip suspended it, then
+			 * we resume the whole thing at once).  Yes, it
+			 * can happen!
+			 */
+			map_write(map, CMD(0xb0), adr);
+			map_write(map, CMD(0x70), adr);
+			usec -= xip_elapsed_since(start);
+			suspended = xip_currtime();
+			do {
+				if (xip_elapsed_since(suspended) > 100000) {
+					/*
+					 * The chip doesn't want to suspend
+					 * after waiting for 100 msecs.
+					 * This is a critical error but there
+					 * is not much we can do here.
+					 */
+					return;
+				}
+				status = map_read(map, adr);
+			} while (!map_word_andequal(map, status, OK, OK));
+
+			/* Suspend succeeded */
+			oldstate = chip->state;
+			if (oldstate == FL_ERASING) {
+				if (!map_word_bitsset(map, status, CMD(0x40)))
+					break;
+				newstate = FL_XIP_WHILE_ERASING;
+				chip->erase_suspended = 1;
+			} else {
+				if (!map_word_bitsset(map, status, CMD(0x04)))
+					break;
+				newstate = FL_XIP_WHILE_WRITING;
+				chip->write_suspended = 1;
+			}
+			chip->state = newstate;
+			map_write(map, CMD(0xff), adr);
+			(void) map_read(map, adr);
+			asm volatile (".rep 8; nop; .endr");
+			local_irq_enable();
+			preempt_enable();
+			asm volatile (".rep 8; nop; .endr");
+			cond_resched();
+
+			/*
+			 * We're back.  However someone else might have
+			 * decided to go write to the chip if we are in
+			 * a suspended erase state.  If so let's wait
+			 * until it's done.
+			 */
+			preempt_disable();
+			while (chip->state != newstate) {
+				DECLARE_WAITQUEUE(wait, current);
+				set_current_state(TASK_UNINTERRUPTIBLE);
+				add_wait_queue(&chip->wq, &wait);
+				preempt_enable();
+				schedule();
+				remove_wait_queue(&chip->wq, &wait);
+				preempt_disable();
+			}
+			/* Disallow XIP again */
+			local_irq_disable();
+
+			/* Resume the write or erase operation */
+			map_write(map, CMD(0xd0), adr);
+			map_write(map, CMD(0x70), adr);
+			chip->state = oldstate;
+			start = xip_currtime();
+		} else if (usec >= 1000000/HZ) {
+			/*
+			 * Try to save on CPU power when waiting delay
+			 * is at least a system timer tick period.
+			 * No need to be extremely accurate here.
+			 */
+			xip_cpu_idle();
+		}
+		status = map_read(map, adr);
+	} while (!map_word_andequal(map, status, OK, OK)
+		 && xip_elapsed_since(start) < usec);
+}
+
+#define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
+
+/*
+ * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
+ * the flash is actively programming or erasing since we have to poll for
+ * the operation to complete anyway.  We can't do that in a generic way with
+ * a XIP setup so do it before the actual flash operation in this case.
+ */
+#undef INVALIDATE_CACHED_RANGE
+#define INVALIDATE_CACHED_RANGE(x...)
+#define XIP_INVAL_CACHED_RANGE(map, from, size) \
+	do { if(map->inval_cache) map->inval_cache(map, from, size); } while(0)
+
+/*
+ * Extra notes:
+ *
+ * Activating this XIP support changes the way the code works a bit.  For
+ * example the code to suspend the current process when concurrent access
+ * happens is never executed because xip_udelay() will always return with the
+ * same chip state as it was entered with.  This is why there is no care for
+ * the presence of add_wait_queue() or schedule() calls from within a couple
+ * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
+ * The queueing and scheduling are always happening within xip_udelay().
+ *
+ * Similarly, get_chip() and put_chip() just happen to always be executed
+ * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
+ * is in array mode, therefore never executing many cases therein and not
+ * causing any problem with XIP.
+ */
+
+#else
+
+#define xip_disable(map, chip, adr)
+#define xip_enable(map, chip, adr)
+
+#define UDELAY(map, chip, adr, usec)  cfi_udelay(usec)
+
+#define XIP_INVAL_CACHED_RANGE(x...)
+
+#endif
+
+static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
+{
+	unsigned long cmd_addr;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int ret = 0;
+
+	adr += chip->start;
+
+	/* Ensure cmd read/writes are aligned. */ 
+	cmd_addr = adr & ~(map_bankwidth(map)-1); 
+
+	spin_lock(chip->mutex);
+
+	ret = get_chip(map, chip, cmd_addr, FL_POINT);
+
+	if (!ret) {
+		if (chip->state != FL_POINT && chip->state != FL_READY)
+			map_write(map, CMD(0xff), cmd_addr);
+
+		chip->state = FL_POINT;
+		chip->ref_point_counter++;
+	}
+	spin_unlock(chip->mutex);
+
+	return ret;
+}
+
+static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long ofs;
+	int chipnum;
+	int ret = 0;
+
+	if (!map->virt || (from + len > mtd->size))
+		return -EINVAL;
+	
+	*mtdbuf = (void *)map->virt + from;
+	*retlen = 0;
+
+	/* Now lock the chip(s) to POINT state */
+
+	/* ofs: offset within the first chip that the first read should start */
+	chipnum = (from >> cfi->chipshift);
+	ofs = from - (chipnum << cfi->chipshift);
+
+	while (len) {
+		unsigned long thislen;
+
+		if (chipnum >= cfi->numchips)
+			break;
+
+		if ((len + ofs -1) >> cfi->chipshift)
+			thislen = (1<<cfi->chipshift) - ofs;
+		else
+			thislen = len;
+
+		ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
+		if (ret)
+			break;
+
+		*retlen += thislen;
+		len -= thislen;
+		
+		ofs = 0;
+		chipnum++;
+	}
+	return 0;
+}
+
+static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long ofs;
+	int chipnum;
+
+	/* Now unlock the chip(s) POINT state */
+
+	/* ofs: offset within the first chip that the first read should start */
+	chipnum = (from >> cfi->chipshift);
+	ofs = from - (chipnum <<  cfi->chipshift);
+
+	while (len) {
+		unsigned long thislen;
+		struct flchip *chip;
+
+		chip = &cfi->chips[chipnum];
+		if (chipnum >= cfi->numchips)
+			break;
+
+		if ((len + ofs -1) >> cfi->chipshift)
+			thislen = (1<<cfi->chipshift) - ofs;
+		else
+			thislen = len;
+
+		spin_lock(chip->mutex);
+		if (chip->state == FL_POINT) {
+			chip->ref_point_counter--;
+			if(chip->ref_point_counter == 0)
+				chip->state = FL_READY;
+		} else
+			printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */
+
+		put_chip(map, chip, chip->start);
+		spin_unlock(chip->mutex);
+
+		len -= thislen;
+		ofs = 0;
+		chipnum++;
+	}
+}
+
+static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
+{
+	unsigned long cmd_addr;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int ret;
+
+	adr += chip->start;
+
+	/* Ensure cmd read/writes are aligned. */ 
+	cmd_addr = adr & ~(map_bankwidth(map)-1); 
+
+	spin_lock(chip->mutex);
+	ret = get_chip(map, chip, cmd_addr, FL_READY);
+	if (ret) {
+		spin_unlock(chip->mutex);
+		return ret;
+	}
+
+	if (chip->state != FL_POINT && chip->state != FL_READY) {
+		map_write(map, CMD(0xff), cmd_addr);
+
+		chip->state = FL_READY;
+	}
+
+	map_copy_from(map, buf, adr, len);
+
+	put_chip(map, chip, cmd_addr);
+
+	spin_unlock(chip->mutex);
+	return 0;
+}
+
+static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	unsigned long ofs;
+	int chipnum;
+	int ret = 0;
+
+	/* ofs: offset within the first chip that the first read should start */
+	chipnum = (from >> cfi->chipshift);
+	ofs = from - (chipnum <<  cfi->chipshift);
+
+	*retlen = 0;
+
+	while (len) {
+		unsigned long thislen;
+
+		if (chipnum >= cfi->numchips)
+			break;
+
+		if ((len + ofs -1) >> cfi->chipshift)
+			thislen = (1<<cfi->chipshift) - ofs;
+		else
+			thislen = len;
+
+		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
+		if (ret)
+			break;
+
+		*retlen += thislen;
+		len -= thislen;
+		buf += thislen;
+		
+		ofs = 0;
+		chipnum++;
+	}
+	return ret;
+}
+
+#if 0
+static int __xipram cfi_intelext_read_prot_reg (struct mtd_info *mtd,
+						loff_t from, size_t len,
+						size_t *retlen,
+						u_char *buf,
+						int base_offst, int reg_sz)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
+	struct flchip *chip;
+	int ofs_factor = cfi->interleave * cfi->device_type;
+	int count = len;
+	int chip_num, offst;
+	int ret;
+
+	chip_num = ((unsigned int)from/reg_sz);
+	offst = from - (reg_sz*chip_num)+base_offst;
+
+	while (count) {
+	/* Calculate which chip & protection register offset we need */
+
+		if (chip_num >= cfi->numchips)
+			goto out;
+
+		chip = &cfi->chips[chip_num];
+		
+		spin_lock(chip->mutex);
+		ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
+		if (ret) {
+			spin_unlock(chip->mutex);
+			return (len-count)?:ret;
+		}
+
+		xip_disable(map, chip, chip->start);
+
+		if (chip->state != FL_JEDEC_QUERY) {
+			map_write(map, CMD(0x90), chip->start);
+			chip->state = FL_JEDEC_QUERY;
+		}
+
+		while (count && ((offst-base_offst) < reg_sz)) {
+			*buf = map_read8(map,(chip->start+((extp->ProtRegAddr+1)*ofs_factor)+offst));
+			buf++;
+			offst++;
+			count--;
+		}
+
+		xip_enable(map, chip, chip->start);
+		put_chip(map, chip, chip->start);
+		spin_unlock(chip->mutex);
+
+		/* Move on to the next chip */
+		chip_num++;
+		offst = base_offst;
+	}
+	
+ out:	
+	return len-count;
+}
+	
+static int cfi_intelext_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *extp=cfi->cmdset_priv;
+	int base_offst,reg_sz;
+	
+	/* Check that we actually have some protection registers */
+	if(!extp || !(extp->FeatureSupport&64)){
+		printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name);
+		return 0;
+	}
+
+	base_offst=(1<<extp->FactProtRegSize);
+	reg_sz=(1<<extp->UserProtRegSize);
+
+	return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz);
+}
+
+static int cfi_intelext_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	struct cfi_pri_intelext *extp=cfi->cmdset_priv;
+	int base_offst,reg_sz;
+	
+	/* Check that we actually have some protection registers */
+	if(!extp || !(extp->FeatureSupport&64)){
+		printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name);
+		return 0;
+	}
+
+	base_offst=0;
+	reg_sz=(1<<extp->FactProtRegSize);
+
+	return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz);
+}
+#endif
+
+static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
+				     unsigned long adr, map_word datum)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, status_OK;
+	unsigned long timeo;
+	int z, ret=0;
+
+	adr += chip->start;
+
+	/* Let's determine this according to the interleave only once */
+	status_OK = CMD(0x80);
+
+	spin_lock(chip->mutex);
+	ret = get_chip(map, chip, adr, FL_WRITING);
+	if (ret) {
+		spin_unlock(chip->mutex);
+		return ret;
+	}
+
+	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
+	ENABLE_VPP(map);
+	xip_disable(map, chip, adr);
+	map_write(map, CMD(0x40), adr);
+	map_write(map, datum, adr);
+	chip->state = FL_WRITING;
+
+	spin_unlock(chip->mutex);
+	INVALIDATE_CACHED_RANGE(map, adr, map_bankwidth(map));
+	UDELAY(map, chip, adr, chip->word_write_time);
+	spin_lock(chip->mutex);
+
+	timeo = jiffies + (HZ/2);
+	z = 0;
+	for (;;) {
+		if (chip->state != FL_WRITING) {
+			/* Someone's suspended the write. Sleep */
+			DECLARE_WAITQUEUE(wait, current);
+
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+			spin_unlock(chip->mutex);
+			schedule();
+			remove_wait_queue(&chip->wq, &wait);
+			timeo = jiffies + (HZ / 2); /* FIXME */
+			spin_lock(chip->mutex);
+			continue;
+		}
+
+		status = map_read(map, adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+		
+		/* OK Still waiting */
+		if (time_after(jiffies, timeo)) {
+			chip->state = FL_STATUS;
+			xip_enable(map, chip, adr);
+			printk(KERN_ERR "waiting for chip to be ready timed out in word write\n");
+			ret = -EIO;
+			goto out;
+		}
+
+		/* Latency issues. Drop the lock, wait a while and retry */
+		spin_unlock(chip->mutex);
+		z++;
+		UDELAY(map, chip, adr, 1);
+		spin_lock(chip->mutex);
+	}
+	if (!z) {
+		chip->word_write_time--;
+		if (!chip->word_write_time)
+			chip->word_write_time++;
+	}
+	if (z > 1) 
+		chip->word_write_time++;
+
+	/* Done and happy. */
+	chip->state = FL_STATUS;
+
+	/* check for lock bit */
+	if (map_word_bitsset(map, status, CMD(0x02))) {
+		/* clear status */
+		map_write(map, CMD(0x50), adr);
+		/* put back into read status register mode */
+		map_write(map, CMD(0x70), adr);
+		ret = -EROFS;
+	}
+
+	xip_enable(map, chip, adr);
+ out:	put_chip(map, chip, adr);
+	spin_unlock(chip->mutex);
+
+	return ret;
+}
+
+
+static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int ret = 0;
+	int chipnum;
+	unsigned long ofs;
+
+	*retlen = 0;
+	if (!len)
+		return 0;
+
+	chipnum = to >> cfi->chipshift;
+	ofs = to  - (chipnum << cfi->chipshift);
+
+	/* If it's not bus-aligned, do the first byte write */
+	if (ofs & (map_bankwidth(map)-1)) {
+		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
+		int gap = ofs - bus_ofs;
+		int n;
+		map_word datum;
+
+		n = min_t(int, len, map_bankwidth(map)-gap);
+		datum = map_word_ff(map);
+		datum = map_word_load_partial(map, datum, buf, gap, n);
+
+		ret = do_write_oneword(map, &cfi->chips[chipnum],
+					       bus_ofs, datum);
+		if (ret) 
+			return ret;
+
+		len -= n;
+		ofs += n;
+		buf += n;
+		(*retlen) += n;
+
+		if (ofs >> cfi->chipshift) {
+			chipnum ++; 
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+		}
+	}
+	
+	while(len >= map_bankwidth(map)) {
+		map_word datum = map_word_load(map, buf);
+
+		ret = do_write_oneword(map, &cfi->chips[chipnum],
+				ofs, datum);
+		if (ret)
+			return ret;
+
+		ofs += map_bankwidth(map);
+		buf += map_bankwidth(map);
+		(*retlen) += map_bankwidth(map);
+		len -= map_bankwidth(map);
+
+		if (ofs >> cfi->chipshift) {
+			chipnum ++; 
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+		}
+	}
+
+	if (len & (map_bankwidth(map)-1)) {
+		map_word datum;
+
+		datum = map_word_ff(map);
+		datum = map_word_load_partial(map, datum, buf, 0, len);
+
+		ret = do_write_oneword(map, &cfi->chips[chipnum],
+					       ofs, datum);
+		if (ret) 
+			return ret;
+		
+		(*retlen) += len;
+	}
+
+	return 0;
+}
+
+
+static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, 
+				    unsigned long adr, const u_char *buf, int len)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, status_OK;
+	unsigned long cmd_adr, timeo;
+	int wbufsize, z, ret=0, bytes, words;
+
+	wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+	adr += chip->start;
+	cmd_adr = adr & ~(wbufsize-1);
+	
+	/* Let's determine this according to the interleave only once */
+	status_OK = CMD(0x80);
+
+	spin_lock(chip->mutex);
+	ret = get_chip(map, chip, cmd_adr, FL_WRITING);
+	if (ret) {
+		spin_unlock(chip->mutex);
+		return ret;
+	}
+
+	XIP_INVAL_CACHED_RANGE(map, adr, len);
+	ENABLE_VPP(map);
+	xip_disable(map, chip, cmd_adr);
+
+	/* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
+	   [...], the device will not accept any more Write to Buffer commands". 
+	   So we must check here and reset those bits if they're set. Otherwise
+	   we're just pissing in the wind */
+	if (chip->state != FL_STATUS)
+		map_write(map, CMD(0x70), cmd_adr);
+	status = map_read(map, cmd_adr);
+	if (map_word_bitsset(map, status, CMD(0x30))) {
+		xip_enable(map, chip, cmd_adr);
+		printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
+		xip_disable(map, chip, cmd_adr);
+		map_write(map, CMD(0x50), cmd_adr);
+		map_write(map, CMD(0x70), cmd_adr);
+	}
+
+	chip->state = FL_WRITING_TO_BUFFER;
+
+	z = 0;
+	for (;;) {
+		map_write(map, CMD(0xe8), cmd_adr);
+
+		status = map_read(map, cmd_adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+
+		spin_unlock(chip->mutex);
+		UDELAY(map, chip, cmd_adr, 1);
+		spin_lock(chip->mutex);
+
+		if (++z > 20) {
+			/* Argh. Not ready for write to buffer */
+			map_word Xstatus;
+			map_write(map, CMD(0x70), cmd_adr);
+			chip->state = FL_STATUS;
+			Xstatus = map_read(map, cmd_adr);
+			/* Odd. Clear status bits */
+			map_write(map, CMD(0x50), cmd_adr);
+			map_write(map, CMD(0x70), cmd_adr);
+			xip_enable(map, chip, cmd_adr);
+			printk(KERN_ERR "Chip not ready for buffer write. status = %lx, Xstatus = %lx\n",
+			       status.x[0], Xstatus.x[0]);
+			ret = -EIO;
+			goto out;
+		}
+	}
+
+	/* Write length of data to come */
+	bytes = len & (map_bankwidth(map)-1);
+	words = len / map_bankwidth(map);
+	map_write(map, CMD(words - !bytes), cmd_adr );
+
+	/* Write data */
+	z = 0;
+	while(z < words * map_bankwidth(map)) {
+		map_word datum = map_word_load(map, buf);
+		map_write(map, datum, adr+z);
+
+		z += map_bankwidth(map);
+		buf += map_bankwidth(map);
+	}
+
+	if (bytes) {
+		map_word datum;
+
+		datum = map_word_ff(map);
+		datum = map_word_load_partial(map, datum, buf, 0, bytes);
+		map_write(map, datum, adr+z);
+	}
+
+	/* GO GO GO */
+	map_write(map, CMD(0xd0), cmd_adr);
+	chip->state = FL_WRITING;
+
+	spin_unlock(chip->mutex);
+	INVALIDATE_CACHED_RANGE(map, adr, len);
+	UDELAY(map, chip, cmd_adr, chip->buffer_write_time);
+	spin_lock(chip->mutex);
+
+	timeo = jiffies + (HZ/2);
+	z = 0;
+	for (;;) {
+		if (chip->state != FL_WRITING) {
+			/* Someone's suspended the write. Sleep */
+			DECLARE_WAITQUEUE(wait, current);
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+			spin_unlock(chip->mutex);
+			schedule();
+			remove_wait_queue(&chip->wq, &wait);
+			timeo = jiffies + (HZ / 2); /* FIXME */
+			spin_lock(chip->mutex);
+			continue;
+		}
+
+		status = map_read(map, cmd_adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+
+		/* OK Still waiting */
+		if (time_after(jiffies, timeo)) {
+			chip->state = FL_STATUS;
+			xip_enable(map, chip, cmd_adr);
+			printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
+			ret = -EIO;
+			goto out;
+		}
+		
+		/* Latency issues. Drop the lock, wait a while and retry */
+		spin_unlock(chip->mutex);
+		UDELAY(map, chip, cmd_adr, 1);
+		z++;
+		spin_lock(chip->mutex);
+	}
+	if (!z) {
+		chip->buffer_write_time--;
+		if (!chip->buffer_write_time)
+			chip->buffer_write_time++;
+	}
+	if (z > 1) 
+		chip->buffer_write_time++;
+
+	/* Done and happy. */
+ 	chip->state = FL_STATUS;
+
+	/* check for lock bit */
+	if (map_word_bitsset(map, status, CMD(0x02))) {
+		/* clear status */
+		map_write(map, CMD(0x50), cmd_adr);
+		/* put back into read status register mode */
+		map_write(map, CMD(0x70), adr);
+		ret = -EROFS;
+	}
+
+	xip_enable(map, chip, cmd_adr);
+ out:	put_chip(map, chip, cmd_adr);
+	spin_unlock(chip->mutex);
+	return ret;
+}
+
+static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, 
+				       size_t len, size_t *retlen, const u_char *buf)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+	int ret = 0;
+	int chipnum;
+	unsigned long ofs;
+
+	*retlen = 0;
+	if (!len)
+		return 0;
+
+	chipnum = to >> cfi->chipshift;
+	ofs = to  - (chipnum << cfi->chipshift);
+
+	/* If it's not bus-aligned, do the first word write */
+	if (ofs & (map_bankwidth(map)-1)) {
+		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
+		if (local_len > len)
+			local_len = len;
+		ret = cfi_intelext_write_words(mtd, to, local_len,
+					       retlen, buf);
+		if (ret)
+			return ret;
+		ofs += local_len;
+		buf += local_len;
+		len -= local_len;
+
+		if (ofs >> cfi->chipshift) {
+			chipnum ++;
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+		}
+	}
+
+	while(len) {
+		/* We must not cross write block boundaries */
+		int size = wbufsize - (ofs & (wbufsize-1));
+
+		if (size > len)
+			size = len;
+		ret = do_write_buffer(map, &cfi->chips[chipnum], 
+				      ofs, buf, size);
+		if (ret)
+			return ret;
+
+		ofs += size;
+		buf += size;
+		(*retlen) += size;
+		len -= size;
+
+		if (ofs >> cfi->chipshift) {
+			chipnum ++; 
+			ofs = 0;
+			if (chipnum == cfi->numchips)
+				return 0;
+		}
+	}
+	return 0;
+}
+
+static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
+				      unsigned long adr, int len, void *thunk)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, status_OK;
+	unsigned long timeo;
+	int retries = 3;
+	DECLARE_WAITQUEUE(wait, current);
+	int ret = 0;
+
+	adr += chip->start;
+
+	/* Let's determine this according to the interleave only once */
+	status_OK = CMD(0x80);
+
+ retry:
+	spin_lock(chip->mutex);
+	ret = get_chip(map, chip, adr, FL_ERASING);
+	if (ret) {
+		spin_unlock(chip->mutex);
+		return ret;
+	}
+
+	XIP_INVAL_CACHED_RANGE(map, adr, len);
+	ENABLE_VPP(map);
+	xip_disable(map, chip, adr);
+
+	/* Clear the status register first */
+	map_write(map, CMD(0x50), adr);
+
+	/* Now erase */
+	map_write(map, CMD(0x20), adr);
+	map_write(map, CMD(0xD0), adr);
+	chip->state = FL_ERASING;
+	chip->erase_suspended = 0;
+
+	spin_unlock(chip->mutex);
+	INVALIDATE_CACHED_RANGE(map, adr, len);
+	UDELAY(map, chip, adr, chip->erase_time*1000/2);
+	spin_lock(chip->mutex);
+
+	/* FIXME. Use a timer to check this, and return immediately. */
+	/* Once the state machine's known to be working I'll do that */
+
+	timeo = jiffies + (HZ*20);
+	for (;;) {
+		if (chip->state != FL_ERASING) {
+			/* Someone's suspended the erase. Sleep */
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			add_wait_queue(&chip->wq, &wait);
+			spin_unlock(chip->mutex);
+			schedule();
+			remove_wait_queue(&chip->wq, &wait);
+			spin_lock(chip->mutex);
+			continue;
+		}
+		if (chip->erase_suspended) {
+			/* This erase was suspended and resumed.
+			   Adjust the timeout */
+			timeo = jiffies + (HZ*20); /* FIXME */
+			chip->erase_suspended = 0;
+		}
+
+		status = map_read(map, adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+		
+		/* OK Still waiting */
+		if (time_after(jiffies, timeo)) {
+			map_word Xstatus;
+			map_write(map, CMD(0x70), adr);
+			chip->state = FL_STATUS;
+			Xstatus = map_read(map, adr);
+			/* Clear status bits */
+			map_write(map, CMD(0x50), adr);
+			map_write(map, CMD(0x70), adr);
+			xip_enable(map, chip, adr);
+			printk(KERN_ERR "waiting for erase at %08lx to complete timed out. status = %lx, Xstatus = %lx.\n",
+			       adr, status.x[0], Xstatus.x[0]);
+			ret = -EIO;
+			goto out;
+		}
+		
+		/* Latency issues. Drop the lock, wait a while and retry */
+		spin_unlock(chip->mutex);
+		UDELAY(map, chip, adr, 1000000/HZ);
+		spin_lock(chip->mutex);
+	}
+
+	/* We've broken this before. It doesn't hurt to be safe */
+	map_write(map, CMD(0x70), adr);
+	chip->state = FL_STATUS;
+	status = map_read(map, adr);
+
+	/* check for lock bit */
+	if (map_word_bitsset(map, status, CMD(0x3a))) {
+		unsigned char chipstatus;
+
+		/* Reset the error bits */
+		map_write(map, CMD(0x50), adr);
+		map_write(map, CMD(0x70), adr);
+		xip_enable(map, chip, adr);
+
+		chipstatus = status.x[0];
+		if (!map_word_equal(map, status, CMD(chipstatus))) {
+			int i, w;
+			for (w=0; w<map_words(map); w++) {
+				for (i = 0; i<cfi_interleave(cfi); i++) {
+					chipstatus |= status.x[w] >> (cfi->device_type * 8);
+				}
+			}
+			printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
+			       status.x[0], chipstatus);
+		}
+
+		if ((chipstatus & 0x30) == 0x30) {
+			printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
+			ret = -EIO;
+		} else if (chipstatus & 0x02) {
+			/* Protection bit set */
+			ret = -EROFS;
+		} else if (chipstatus & 0x8) {
+			/* Voltage */
+			printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
+			ret = -EIO;
+		} else if (chipstatus & 0x20) {
+			if (retries--) {
+				printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
+				timeo = jiffies + HZ;
+				put_chip(map, chip, adr);
+				spin_unlock(chip->mutex);
+				goto retry;
+			}
+			printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
+			ret = -EIO;
+		}
+	} else {
+		xip_enable(map, chip, adr);
+		ret = 0;
+	}
+
+ out:	put_chip(map, chip, adr);
+	spin_unlock(chip->mutex);
+	return ret;
+}
+
+int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
+{
+	unsigned long ofs, len;
+	int ret;
+
+	ofs = instr->addr;
+	len = instr->len;
+
+	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
+	if (ret)
+		return ret;
+
+	instr->state = MTD_ERASE_DONE;
+	mtd_erase_callback(instr);
+	
+	return 0;
+}
+
+static void cfi_intelext_sync (struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i;
+	struct flchip *chip;
+	int ret = 0;
+
+	for (i=0; !ret && i<cfi->numchips; i++) {
+		chip = &cfi->chips[i];
+
+		spin_lock(chip->mutex);
+		ret = get_chip(map, chip, chip->start, FL_SYNCING);
+
+		if (!ret) {
+			chip->oldstate = chip->state;
+			chip->state = FL_SYNCING;
+			/* No need to wake_up() on this state change - 
+			 * as the whole point is that nobody can do anything
+			 * with the chip now anyway.
+			 */
+		}
+		spin_unlock(chip->mutex);
+	}
+
+	/* Unlock the chips again */
+
+	for (i--; i >=0; i--) {
+		chip = &cfi->chips[i];
+
+		spin_lock(chip->mutex);
+		
+		if (chip->state == FL_SYNCING) {
+			chip->state = chip->oldstate;
+			wake_up(&chip->wq);
+		}
+		spin_unlock(chip->mutex);
+	}
+}
+
+#ifdef DEBUG_LOCK_BITS
+static int __xipram do_printlockstatus_oneblock(struct map_info *map,
+						struct flchip *chip,
+						unsigned long adr,
+						int len, void *thunk)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	int status, ofs_factor = cfi->interleave * cfi->device_type;
+
+	xip_disable(map, chip, adr+(2*ofs_factor));
+	cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+	chip->state = FL_JEDEC_QUERY;
+	status = cfi_read_query(map, adr+(2*ofs_factor));
+	xip_enable(map, chip, 0);
+	printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
+	       adr, status);
+	return 0;
+}
+#endif
+
+#define DO_XXLOCK_ONEBLOCK_LOCK		((void *) 1)
+#define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *) 2)
+
+static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
+				       unsigned long adr, int len, void *thunk)
+{
+	struct cfi_private *cfi = map->fldrv_priv;
+	map_word status, status_OK;
+	unsigned long timeo = jiffies + HZ;
+	int ret;
+
+	adr += chip->start;
+
+	/* Let's determine this according to the interleave only once */
+	status_OK = CMD(0x80);
+
+	spin_lock(chip->mutex);
+	ret = get_chip(map, chip, adr, FL_LOCKING);
+	if (ret) {
+		spin_unlock(chip->mutex);
+		return ret;
+	}
+
+	ENABLE_VPP(map);
+	xip_disable(map, chip, adr);
+	
+	map_write(map, CMD(0x60), adr);
+	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
+		map_write(map, CMD(0x01), adr);
+		chip->state = FL_LOCKING;
+	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
+		map_write(map, CMD(0xD0), adr);
+		chip->state = FL_UNLOCKING;
+	} else
+		BUG();
+
+	spin_unlock(chip->mutex);
+	UDELAY(map, chip, adr, 1000000/HZ);
+	spin_lock(chip->mutex);
+
+	/* FIXME. Use a timer to check this, and return immediately. */
+	/* Once the state machine's known to be working I'll do that */
+
+	timeo = jiffies + (HZ*20);
+	for (;;) {
+
+		status = map_read(map, adr);
+		if (map_word_andequal(map, status, status_OK, status_OK))
+			break;
+		
+		/* OK Still waiting */
+		if (time_after(jiffies, timeo)) {
+			map_word Xstatus;
+			map_write(map, CMD(0x70), adr);
+			chip->state = FL_STATUS;
+			Xstatus = map_read(map, adr);
+			xip_enable(map, chip, adr);
+			printk(KERN_ERR "waiting for unlock to complete timed out. status = %lx, Xstatus = %lx.\n",
+			       status.x[0], Xstatus.x[0]);
+			put_chip(map, chip, adr);
+			spin_unlock(chip->mutex);
+			return -EIO;
+		}
+		
+		/* Latency issues. Drop the lock, wait a while and retry */
+		spin_unlock(chip->mutex);
+		UDELAY(map, chip, adr, 1);
+		spin_lock(chip->mutex);
+	}
+	
+	/* Done and happy. */
+	chip->state = FL_STATUS;
+	xip_enable(map, chip, adr);
+	put_chip(map, chip, adr);
+	spin_unlock(chip->mutex);
+	return 0;
+}
+
+static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
+{
+	int ret;
+
+#ifdef DEBUG_LOCK_BITS
+	printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
+	       __FUNCTION__, ofs, len);
+	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
+		ofs, len, 0);
+#endif
+
+	ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, 
+		ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
+	
+#ifdef DEBUG_LOCK_BITS
+	printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
+	       __FUNCTION__, ret);
+	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
+		ofs, len, 0);
+#endif
+
+	return ret;
+}
+
+static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
+{
+	int ret;
+
+#ifdef DEBUG_LOCK_BITS
+	printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
+	       __FUNCTION__, ofs, len);
+	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
+		ofs, len, 0);
+#endif
+
+	ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
+					ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
+	
+#ifdef DEBUG_LOCK_BITS
+	printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
+	       __FUNCTION__, ret);
+	cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 
+		ofs, len, 0);
+#endif
+	
+	return ret;
+}
+
+static int cfi_intelext_suspend(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i;
+	struct flchip *chip;
+	int ret = 0;
+
+	for (i=0; !ret && i<cfi->numchips; i++) {
+		chip = &cfi->chips[i];
+
+		spin_lock(chip->mutex);
+
+		switch (chip->state) {
+		case FL_READY:
+		case FL_STATUS:
+		case FL_CFI_QUERY:
+		case FL_JEDEC_QUERY:
+			if (chip->oldstate == FL_READY) {
+				chip->oldstate = chip->state;
+				chip->state = FL_PM_SUSPENDED;
+				/* No need to wake_up() on this state change - 
+				 * as the whole point is that nobody can do anything
+				 * with the chip now anyway.
+				 */
+			} else {
+				/* There seems to be an operation pending. We must wait for it. */
+				printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
+				ret = -EAGAIN;
+			}
+			break;
+		default:
+			/* Should we actually wait? Once upon a time these routines weren't
+			   allowed to. Or should we return -EAGAIN, because the upper layers
+			   ought to have already shut down anything which was using the device
+			   anyway? The latter for now. */
+			printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
+			ret = -EAGAIN;
+		case FL_PM_SUSPENDED:
+			break;
+		}
+		spin_unlock(chip->mutex);
+	}
+
+	/* Unlock the chips again */
+
+	if (ret) {
+		for (i--; i >=0; i--) {
+			chip = &cfi->chips[i];
+			
+			spin_lock(chip->mutex);
+			
+			if (chip->state == FL_PM_SUSPENDED) {
+				/* No need to force it into a known state here,
+				   because we're returning failure, and it didn't
+				   get power cycled */
+				chip->state = chip->oldstate;
+				chip->oldstate = FL_READY;
+				wake_up(&chip->wq);
+			}
+			spin_unlock(chip->mutex);
+		}
+	} 
+	
+	return ret;
+}
+
+static void cfi_intelext_resume(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	int i;
+	struct flchip *chip;
+
+	for (i=0; i<cfi->numchips; i++) {
+	
+		chip = &cfi->chips[i];
+
+		spin_lock(chip->mutex);
+		
+		/* Go to known state. Chip may have been power cycled */
+		if (chip->state == FL_PM_SUSPENDED) {
+			map_write(map, CMD(0xFF), cfi->chips[i].start);
+			chip->oldstate = chip->state = FL_READY;
+			wake_up(&chip->wq);
+		}
+
+		spin_unlock(chip->mutex);
+	}
+}
+
+static void cfi_intelext_destroy(struct mtd_info *mtd)
+{
+	struct map_info *map = mtd->priv;
+	struct cfi_private *cfi = map->fldrv_priv;
+	kfree(cfi->cmdset_priv);
+	kfree(cfi->cfiq);
+	kfree(cfi->chips[0].priv);
+	kfree(cfi);
+	kfree(mtd->eraseregions);
+}
+
+static char im_name_1[]="cfi_cmdset_0001";
+static char im_name_3[]="cfi_cmdset_0003";
+
+static int __init cfi_intelext_init(void)
+{
+	inter_module_register(im_name_1, THIS_MODULE, &cfi_cmdset_0001);
+	inter_module_register(im_name_3, THIS_MODULE, &cfi_cmdset_0001);
+	return 0;
+}
+
+static void __exit cfi_intelext_exit(void)
+{
+	inter_module_unregister(im_name_1);
+	inter_module_unregister(im_name_3);
+}
+
+module_init(cfi_intelext_init);
+module_exit(cfi_intelext_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
+MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");