Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/drivers/net/s2io.c b/drivers/net/s2io.c
new file mode 100644
index 0000000..9c224eb
--- /dev/null
+++ b/drivers/net/s2io.c
@@ -0,0 +1,4950 @@
+/************************************************************************
+ * s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC
+ * Copyright(c) 2002-2005 Neterion Inc.
+
+ * This software may be used and distributed according to the terms of
+ * the GNU General Public License (GPL), incorporated herein by reference.
+ * Drivers based on or derived from this code fall under the GPL and must
+ * retain the authorship, copyright and license notice.  This file is not
+ * a complete program and may only be used when the entire operating
+ * system is licensed under the GPL.
+ * See the file COPYING in this distribution for more information.
+ *
+ * Credits:
+ * Jeff Garzik		: For pointing out the improper error condition 
+ *			  check in the s2io_xmit routine and also some 
+ * 			  issues in the Tx watch dog function. Also for
+ *			  patiently answering all those innumerable 
+ *			  questions regaring the 2.6 porting issues.
+ * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
+ *			  macros available only in 2.6 Kernel.
+ * Francois Romieu	: For pointing out all code part that were 
+ *			  deprecated and also styling related comments.
+ * Grant Grundler	: For helping me get rid of some Architecture 
+ *			  dependent code.
+ * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
+ *			  	
+ * The module loadable parameters that are supported by the driver and a brief
+ * explaination of all the variables.
+ * rx_ring_num : This can be used to program the number of receive rings used 
+ * in the driver.  					
+ * rx_ring_len: This defines the number of descriptors each ring can have. This 
+ * is also an array of size 8.
+ * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
+ * tx_fifo_len: This too is an array of 8. Each element defines the number of 
+ * Tx descriptors that can be associated with each corresponding FIFO.
+ * in PCI Configuration space.
+ ************************************************************************/
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/pci.h>
+#include <linux/kernel.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/stddef.h>
+#include <linux/ioctl.h>
+#include <linux/timex.h>
+#include <linux/sched.h>
+#include <linux/ethtool.h>
+#include <linux/version.h>
+#include <linux/workqueue.h>
+
+#include <asm/io.h>
+#include <asm/system.h>
+#include <asm/uaccess.h>
+
+/* local include */
+#include "s2io.h"
+#include "s2io-regs.h"
+
+/* S2io Driver name & version. */
+static char s2io_driver_name[] = "s2io";
+static char s2io_driver_version[] = "Version 1.7.7.1";
+
+/* 
+ * Cards with following subsystem_id have a link state indication
+ * problem, 600B, 600C, 600D, 640B, 640C and 640D.
+ * macro below identifies these cards given the subsystem_id.
+ */
+#define CARDS_WITH_FAULTY_LINK_INDICATORS(subid) \
+		(((subid >= 0x600B) && (subid <= 0x600D)) || \
+		 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0
+
+#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
+				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
+#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
+#define PANIC	1
+#define LOW	2
+static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
+{
+	int level = 0;
+	if ((sp->pkt_cnt[ring] - rxb_size) > 16) {
+		level = LOW;
+		if ((sp->pkt_cnt[ring] - rxb_size) < MAX_RXDS_PER_BLOCK) {
+			level = PANIC;
+		}
+	}
+
+	return level;
+}
+
+/* Ethtool related variables and Macros. */
+static char s2io_gstrings[][ETH_GSTRING_LEN] = {
+	"Register test\t(offline)",
+	"Eeprom test\t(offline)",
+	"Link test\t(online)",
+	"RLDRAM test\t(offline)",
+	"BIST Test\t(offline)"
+};
+
+static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
+	{"tmac_frms"},
+	{"tmac_data_octets"},
+	{"tmac_drop_frms"},
+	{"tmac_mcst_frms"},
+	{"tmac_bcst_frms"},
+	{"tmac_pause_ctrl_frms"},
+	{"tmac_any_err_frms"},
+	{"tmac_vld_ip_octets"},
+	{"tmac_vld_ip"},
+	{"tmac_drop_ip"},
+	{"tmac_icmp"},
+	{"tmac_rst_tcp"},
+	{"tmac_tcp"},
+	{"tmac_udp"},
+	{"rmac_vld_frms"},
+	{"rmac_data_octets"},
+	{"rmac_fcs_err_frms"},
+	{"rmac_drop_frms"},
+	{"rmac_vld_mcst_frms"},
+	{"rmac_vld_bcst_frms"},
+	{"rmac_in_rng_len_err_frms"},
+	{"rmac_long_frms"},
+	{"rmac_pause_ctrl_frms"},
+	{"rmac_discarded_frms"},
+	{"rmac_usized_frms"},
+	{"rmac_osized_frms"},
+	{"rmac_frag_frms"},
+	{"rmac_jabber_frms"},
+	{"rmac_ip"},
+	{"rmac_ip_octets"},
+	{"rmac_hdr_err_ip"},
+	{"rmac_drop_ip"},
+	{"rmac_icmp"},
+	{"rmac_tcp"},
+	{"rmac_udp"},
+	{"rmac_err_drp_udp"},
+	{"rmac_pause_cnt"},
+	{"rmac_accepted_ip"},
+	{"rmac_err_tcp"},
+};
+
+#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
+#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
+
+#define S2IO_TEST_LEN	sizeof(s2io_gstrings) / ETH_GSTRING_LEN
+#define S2IO_STRINGS_LEN	S2IO_TEST_LEN * ETH_GSTRING_LEN
+
+
+/* 
+ * Constants to be programmed into the Xena's registers, to configure
+ * the XAUI.
+ */
+
+#define SWITCH_SIGN	0xA5A5A5A5A5A5A5A5ULL
+#define	END_SIGN	0x0
+
+static u64 default_mdio_cfg[] = {
+	/* Reset PMA PLL */
+	0xC001010000000000ULL, 0xC0010100000000E0ULL,
+	0xC0010100008000E4ULL,
+	/* Remove Reset from PMA PLL */
+	0xC001010000000000ULL, 0xC0010100000000E0ULL,
+	0xC0010100000000E4ULL,
+	END_SIGN
+};
+
+static u64 default_dtx_cfg[] = {
+	0x8000051500000000ULL, 0x80000515000000E0ULL,
+	0x80000515D93500E4ULL, 0x8001051500000000ULL,
+	0x80010515000000E0ULL, 0x80010515001E00E4ULL,
+	0x8002051500000000ULL, 0x80020515000000E0ULL,
+	0x80020515F21000E4ULL,
+	/* Set PADLOOPBACKN */
+	0x8002051500000000ULL, 0x80020515000000E0ULL,
+	0x80020515B20000E4ULL, 0x8003051500000000ULL,
+	0x80030515000000E0ULL, 0x80030515B20000E4ULL,
+	0x8004051500000000ULL, 0x80040515000000E0ULL,
+	0x80040515B20000E4ULL, 0x8005051500000000ULL,
+	0x80050515000000E0ULL, 0x80050515B20000E4ULL,
+	SWITCH_SIGN,
+	/* Remove PADLOOPBACKN */
+	0x8002051500000000ULL, 0x80020515000000E0ULL,
+	0x80020515F20000E4ULL, 0x8003051500000000ULL,
+	0x80030515000000E0ULL, 0x80030515F20000E4ULL,
+	0x8004051500000000ULL, 0x80040515000000E0ULL,
+	0x80040515F20000E4ULL, 0x8005051500000000ULL,
+	0x80050515000000E0ULL, 0x80050515F20000E4ULL,
+	END_SIGN
+};
+
+
+/* 
+ * Constants for Fixing the MacAddress problem seen mostly on
+ * Alpha machines.
+ */
+static u64 fix_mac[] = {
+	0x0060000000000000ULL, 0x0060600000000000ULL,
+	0x0040600000000000ULL, 0x0000600000000000ULL,
+	0x0020600000000000ULL, 0x0060600000000000ULL,
+	0x0020600000000000ULL, 0x0060600000000000ULL,
+	0x0020600000000000ULL, 0x0060600000000000ULL,
+	0x0020600000000000ULL, 0x0060600000000000ULL,
+	0x0020600000000000ULL, 0x0060600000000000ULL,
+	0x0020600000000000ULL, 0x0060600000000000ULL,
+	0x0020600000000000ULL, 0x0060600000000000ULL,
+	0x0020600000000000ULL, 0x0060600000000000ULL,
+	0x0020600000000000ULL, 0x0060600000000000ULL,
+	0x0020600000000000ULL, 0x0060600000000000ULL,
+	0x0020600000000000ULL, 0x0000600000000000ULL,
+	0x0040600000000000ULL, 0x0060600000000000ULL,
+	END_SIGN
+};
+
+/* Module Loadable parameters. */
+static unsigned int tx_fifo_num = 1;
+static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
+    {[0 ...(MAX_TX_FIFOS - 1)] = 0 };
+static unsigned int rx_ring_num = 1;
+static unsigned int rx_ring_sz[MAX_RX_RINGS] =
+    {[0 ...(MAX_RX_RINGS - 1)] = 0 };
+static unsigned int Stats_refresh_time = 4;
+static unsigned int rmac_pause_time = 65535;
+static unsigned int mc_pause_threshold_q0q3 = 187;
+static unsigned int mc_pause_threshold_q4q7 = 187;
+static unsigned int shared_splits;
+static unsigned int tmac_util_period = 5;
+static unsigned int rmac_util_period = 5;
+#ifndef CONFIG_S2IO_NAPI
+static unsigned int indicate_max_pkts;
+#endif
+
+/* 
+ * S2IO device table.
+ * This table lists all the devices that this driver supports. 
+ */
+static struct pci_device_id s2io_tbl[] __devinitdata = {
+	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
+	 PCI_ANY_ID, PCI_ANY_ID},
+	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
+	 PCI_ANY_ID, PCI_ANY_ID},
+	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
+	 PCI_ANY_ID, PCI_ANY_ID},
+	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
+	 PCI_ANY_ID, PCI_ANY_ID},
+	{0,}
+};
+
+MODULE_DEVICE_TABLE(pci, s2io_tbl);
+
+static struct pci_driver s2io_driver = {
+      .name = "S2IO",
+      .id_table = s2io_tbl,
+      .probe = s2io_init_nic,
+      .remove = __devexit_p(s2io_rem_nic),
+};
+
+/* A simplifier macro used both by init and free shared_mem Fns(). */
+#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
+
+/**
+ * init_shared_mem - Allocation and Initialization of Memory
+ * @nic: Device private variable.
+ * Description: The function allocates all the memory areas shared 
+ * between the NIC and the driver. This includes Tx descriptors, 
+ * Rx descriptors and the statistics block.
+ */
+
+static int init_shared_mem(struct s2io_nic *nic)
+{
+	u32 size;
+	void *tmp_v_addr, *tmp_v_addr_next;
+	dma_addr_t tmp_p_addr, tmp_p_addr_next;
+	RxD_block_t *pre_rxd_blk = NULL;
+	int i, j, blk_cnt;
+	int lst_size, lst_per_page;
+	struct net_device *dev = nic->dev;
+#ifdef CONFIG_2BUFF_MODE
+	unsigned long tmp;
+	buffAdd_t *ba;
+#endif
+
+	mac_info_t *mac_control;
+	struct config_param *config;
+
+	mac_control = &nic->mac_control;
+	config = &nic->config;
+
+
+	/* Allocation and initialization of TXDLs in FIOFs */
+	size = 0;
+	for (i = 0; i < config->tx_fifo_num; i++) {
+		size += config->tx_cfg[i].fifo_len;
+	}
+	if (size > MAX_AVAILABLE_TXDS) {
+		DBG_PRINT(ERR_DBG, "%s: Total number of Tx FIFOs ",
+			  dev->name);
+		DBG_PRINT(ERR_DBG, "exceeds the maximum value ");
+		DBG_PRINT(ERR_DBG, "that can be used\n");
+		return FAILURE;
+	}
+
+	lst_size = (sizeof(TxD_t) * config->max_txds);
+	lst_per_page = PAGE_SIZE / lst_size;
+
+	for (i = 0; i < config->tx_fifo_num; i++) {
+		int fifo_len = config->tx_cfg[i].fifo_len;
+		int list_holder_size = fifo_len * sizeof(list_info_hold_t);
+		nic->list_info[i] = kmalloc(list_holder_size, GFP_KERNEL);
+		if (!nic->list_info[i]) {
+			DBG_PRINT(ERR_DBG,
+				  "Malloc failed for list_info\n");
+			return -ENOMEM;
+		}
+		memset(nic->list_info[i], 0, list_holder_size);
+	}
+	for (i = 0; i < config->tx_fifo_num; i++) {
+		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
+						lst_per_page);
+		mac_control->tx_curr_put_info[i].offset = 0;
+		mac_control->tx_curr_put_info[i].fifo_len =
+		    config->tx_cfg[i].fifo_len - 1;
+		mac_control->tx_curr_get_info[i].offset = 0;
+		mac_control->tx_curr_get_info[i].fifo_len =
+		    config->tx_cfg[i].fifo_len - 1;
+		for (j = 0; j < page_num; j++) {
+			int k = 0;
+			dma_addr_t tmp_p;
+			void *tmp_v;
+			tmp_v = pci_alloc_consistent(nic->pdev,
+						     PAGE_SIZE, &tmp_p);
+			if (!tmp_v) {
+				DBG_PRINT(ERR_DBG,
+					  "pci_alloc_consistent ");
+				DBG_PRINT(ERR_DBG, "failed for TxDL\n");
+				return -ENOMEM;
+			}
+			while (k < lst_per_page) {
+				int l = (j * lst_per_page) + k;
+				if (l == config->tx_cfg[i].fifo_len)
+					goto end_txd_alloc;
+				nic->list_info[i][l].list_virt_addr =
+				    tmp_v + (k * lst_size);
+				nic->list_info[i][l].list_phy_addr =
+				    tmp_p + (k * lst_size);
+				k++;
+			}
+		}
+	}
+      end_txd_alloc:
+
+	/* Allocation and initialization of RXDs in Rings */
+	size = 0;
+	for (i = 0; i < config->rx_ring_num; i++) {
+		if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) {
+			DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
+			DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
+				  i);
+			DBG_PRINT(ERR_DBG, "RxDs per Block");
+			return FAILURE;
+		}
+		size += config->rx_cfg[i].num_rxd;
+		nic->block_count[i] =
+		    config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
+		nic->pkt_cnt[i] =
+		    config->rx_cfg[i].num_rxd - nic->block_count[i];
+	}
+
+	for (i = 0; i < config->rx_ring_num; i++) {
+		mac_control->rx_curr_get_info[i].block_index = 0;
+		mac_control->rx_curr_get_info[i].offset = 0;
+		mac_control->rx_curr_get_info[i].ring_len =
+		    config->rx_cfg[i].num_rxd - 1;
+		mac_control->rx_curr_put_info[i].block_index = 0;
+		mac_control->rx_curr_put_info[i].offset = 0;
+		mac_control->rx_curr_put_info[i].ring_len =
+		    config->rx_cfg[i].num_rxd - 1;
+		blk_cnt =
+		    config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
+		/*  Allocating all the Rx blocks */
+		for (j = 0; j < blk_cnt; j++) {
+#ifndef CONFIG_2BUFF_MODE
+			size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
+#else
+			size = SIZE_OF_BLOCK;
+#endif
+			tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
+							  &tmp_p_addr);
+			if (tmp_v_addr == NULL) {
+				/*
+				 * In case of failure, free_shared_mem() 
+				 * is called, which should free any 
+				 * memory that was alloced till the 
+				 * failure happened.
+				 */
+				nic->rx_blocks[i][j].block_virt_addr =
+				    tmp_v_addr;
+				return -ENOMEM;
+			}
+			memset(tmp_v_addr, 0, size);
+			nic->rx_blocks[i][j].block_virt_addr = tmp_v_addr;
+			nic->rx_blocks[i][j].block_dma_addr = tmp_p_addr;
+		}
+		/* Interlinking all Rx Blocks */
+		for (j = 0; j < blk_cnt; j++) {
+			tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr;
+			tmp_v_addr_next =
+			    nic->rx_blocks[i][(j + 1) %
+					      blk_cnt].block_virt_addr;
+			tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr;
+			tmp_p_addr_next =
+			    nic->rx_blocks[i][(j + 1) %
+					      blk_cnt].block_dma_addr;
+
+			pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
+			pre_rxd_blk->reserved_1 = END_OF_BLOCK;	/* last RxD 
+								 * marker.
+								 */
+#ifndef	CONFIG_2BUFF_MODE
+			pre_rxd_blk->reserved_2_pNext_RxD_block =
+			    (unsigned long) tmp_v_addr_next;
+#endif
+			pre_rxd_blk->pNext_RxD_Blk_physical =
+			    (u64) tmp_p_addr_next;
+		}
+	}
+
+#ifdef CONFIG_2BUFF_MODE
+	/* 
+	 * Allocation of Storages for buffer addresses in 2BUFF mode
+	 * and the buffers as well.
+	 */
+	for (i = 0; i < config->rx_ring_num; i++) {
+		blk_cnt =
+		    config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
+		nic->ba[i] = kmalloc((sizeof(buffAdd_t *) * blk_cnt),
+				     GFP_KERNEL);
+		if (!nic->ba[i])
+			return -ENOMEM;
+		for (j = 0; j < blk_cnt; j++) {
+			int k = 0;
+			nic->ba[i][j] = kmalloc((sizeof(buffAdd_t) *
+						 (MAX_RXDS_PER_BLOCK + 1)),
+						GFP_KERNEL);
+			if (!nic->ba[i][j])
+				return -ENOMEM;
+			while (k != MAX_RXDS_PER_BLOCK) {
+				ba = &nic->ba[i][j][k];
+
+				ba->ba_0_org = kmalloc
+				    (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
+				if (!ba->ba_0_org)
+					return -ENOMEM;
+				tmp = (unsigned long) ba->ba_0_org;
+				tmp += ALIGN_SIZE;
+				tmp &= ~((unsigned long) ALIGN_SIZE);
+				ba->ba_0 = (void *) tmp;
+
+				ba->ba_1_org = kmalloc
+				    (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
+				if (!ba->ba_1_org)
+					return -ENOMEM;
+				tmp = (unsigned long) ba->ba_1_org;
+				tmp += ALIGN_SIZE;
+				tmp &= ~((unsigned long) ALIGN_SIZE);
+				ba->ba_1 = (void *) tmp;
+				k++;
+			}
+		}
+	}
+#endif
+
+	/* Allocation and initialization of Statistics block */
+	size = sizeof(StatInfo_t);
+	mac_control->stats_mem = pci_alloc_consistent
+	    (nic->pdev, size, &mac_control->stats_mem_phy);
+
+	if (!mac_control->stats_mem) {
+		/* 
+		 * In case of failure, free_shared_mem() is called, which 
+		 * should free any memory that was alloced till the 
+		 * failure happened.
+		 */
+		return -ENOMEM;
+	}
+	mac_control->stats_mem_sz = size;
+
+	tmp_v_addr = mac_control->stats_mem;
+	mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
+	memset(tmp_v_addr, 0, size);
+
+	DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
+		  (unsigned long long) tmp_p_addr);
+
+	return SUCCESS;
+}
+
+/**  
+ * free_shared_mem - Free the allocated Memory 
+ * @nic:  Device private variable.
+ * Description: This function is to free all memory locations allocated by
+ * the init_shared_mem() function and return it to the kernel.
+ */
+
+static void free_shared_mem(struct s2io_nic *nic)
+{
+	int i, j, blk_cnt, size;
+	void *tmp_v_addr;
+	dma_addr_t tmp_p_addr;
+	mac_info_t *mac_control;
+	struct config_param *config;
+	int lst_size, lst_per_page;
+
+
+	if (!nic)
+		return;
+
+	mac_control = &nic->mac_control;
+	config = &nic->config;
+
+	lst_size = (sizeof(TxD_t) * config->max_txds);
+	lst_per_page = PAGE_SIZE / lst_size;
+
+	for (i = 0; i < config->tx_fifo_num; i++) {
+		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
+						lst_per_page);
+		for (j = 0; j < page_num; j++) {
+			int mem_blks = (j * lst_per_page);
+			if (!nic->list_info[i][mem_blks].list_virt_addr)
+				break;
+			pci_free_consistent(nic->pdev, PAGE_SIZE,
+					    nic->list_info[i][mem_blks].
+					    list_virt_addr,
+					    nic->list_info[i][mem_blks].
+					    list_phy_addr);
+		}
+		kfree(nic->list_info[i]);
+	}
+
+#ifndef CONFIG_2BUFF_MODE
+	size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
+#else
+	size = SIZE_OF_BLOCK;
+#endif
+	for (i = 0; i < config->rx_ring_num; i++) {
+		blk_cnt = nic->block_count[i];
+		for (j = 0; j < blk_cnt; j++) {
+			tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr;
+			tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr;
+			if (tmp_v_addr == NULL)
+				break;
+			pci_free_consistent(nic->pdev, size,
+					    tmp_v_addr, tmp_p_addr);
+		}
+	}
+
+#ifdef CONFIG_2BUFF_MODE
+	/* Freeing buffer storage addresses in 2BUFF mode. */
+	for (i = 0; i < config->rx_ring_num; i++) {
+		blk_cnt =
+		    config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
+		if (!nic->ba[i])
+			goto end_free;
+		for (j = 0; j < blk_cnt; j++) {
+			int k = 0;
+			if (!nic->ba[i][j]) {
+				kfree(nic->ba[i]);
+				goto end_free;
+			}
+			while (k != MAX_RXDS_PER_BLOCK) {
+				buffAdd_t *ba = &nic->ba[i][j][k];
+				if (!ba || !ba->ba_0_org || !ba->ba_1_org)
+				{
+					kfree(nic->ba[i]);
+					kfree(nic->ba[i][j]);
+					if(ba->ba_0_org)
+						kfree(ba->ba_0_org);
+					if(ba->ba_1_org)
+						kfree(ba->ba_1_org);
+					goto end_free;
+				}
+				kfree(ba->ba_0_org);
+				kfree(ba->ba_1_org);
+				k++;
+			}
+			kfree(nic->ba[i][j]);
+		}
+		kfree(nic->ba[i]);
+	}
+end_free:
+#endif
+
+	if (mac_control->stats_mem) {
+		pci_free_consistent(nic->pdev,
+				    mac_control->stats_mem_sz,
+				    mac_control->stats_mem,
+				    mac_control->stats_mem_phy);
+	}
+}
+
+/**  
+ *  init_nic - Initialization of hardware 
+ *  @nic: device peivate variable
+ *  Description: The function sequentially configures every block 
+ *  of the H/W from their reset values. 
+ *  Return Value:  SUCCESS on success and 
+ *  '-1' on failure (endian settings incorrect).
+ */
+
+static int init_nic(struct s2io_nic *nic)
+{
+	XENA_dev_config_t __iomem *bar0 = nic->bar0;
+	struct net_device *dev = nic->dev;
+	register u64 val64 = 0;
+	void __iomem *add;
+	u32 time;
+	int i, j;
+	mac_info_t *mac_control;
+	struct config_param *config;
+	int mdio_cnt = 0, dtx_cnt = 0;
+	unsigned long long mem_share;
+
+	mac_control = &nic->mac_control;
+	config = &nic->config;
+
+	/* Initialize swapper control register */
+	if (s2io_set_swapper(nic)) {
+		DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
+		return -1;
+	}
+
+	/* Remove XGXS from reset state */
+	val64 = 0;
+	writeq(val64, &bar0->sw_reset);
+	val64 = readq(&bar0->sw_reset);
+	msleep(500);
+
+	/*  Enable Receiving broadcasts */
+	add = &bar0->mac_cfg;
+	val64 = readq(&bar0->mac_cfg);
+	val64 |= MAC_RMAC_BCAST_ENABLE;
+	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+	writel((u32) val64, add);
+	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+	writel((u32) (val64 >> 32), (add + 4));
+
+	/* Read registers in all blocks */
+	val64 = readq(&bar0->mac_int_mask);
+	val64 = readq(&bar0->mc_int_mask);
+	val64 = readq(&bar0->xgxs_int_mask);
+
+	/*  Set MTU */
+	val64 = dev->mtu;
+	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
+
+	/* 
+	 * Configuring the XAUI Interface of Xena. 
+	 * ***************************************
+	 * To Configure the Xena's XAUI, one has to write a series 
+	 * of 64 bit values into two registers in a particular 
+	 * sequence. Hence a macro 'SWITCH_SIGN' has been defined 
+	 * which will be defined in the array of configuration values 
+	 * (default_dtx_cfg & default_mdio_cfg) at appropriate places 
+	 * to switch writing from one regsiter to another. We continue 
+	 * writing these values until we encounter the 'END_SIGN' macro.
+	 * For example, After making a series of 21 writes into 
+	 * dtx_control register the 'SWITCH_SIGN' appears and hence we 
+	 * start writing into mdio_control until we encounter END_SIGN.
+	 */
+	while (1) {
+	      dtx_cfg:
+		while (default_dtx_cfg[dtx_cnt] != END_SIGN) {
+			if (default_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
+				dtx_cnt++;
+				goto mdio_cfg;
+			}
+			SPECIAL_REG_WRITE(default_dtx_cfg[dtx_cnt],
+					  &bar0->dtx_control, UF);
+			val64 = readq(&bar0->dtx_control);
+			dtx_cnt++;
+		}
+	      mdio_cfg:
+		while (default_mdio_cfg[mdio_cnt] != END_SIGN) {
+			if (default_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
+				mdio_cnt++;
+				goto dtx_cfg;
+			}
+			SPECIAL_REG_WRITE(default_mdio_cfg[mdio_cnt],
+					  &bar0->mdio_control, UF);
+			val64 = readq(&bar0->mdio_control);
+			mdio_cnt++;
+		}
+		if ((default_dtx_cfg[dtx_cnt] == END_SIGN) &&
+		    (default_mdio_cfg[mdio_cnt] == END_SIGN)) {
+			break;
+		} else {
+			goto dtx_cfg;
+		}
+	}
+
+	/*  Tx DMA Initialization */
+	val64 = 0;
+	writeq(val64, &bar0->tx_fifo_partition_0);
+	writeq(val64, &bar0->tx_fifo_partition_1);
+	writeq(val64, &bar0->tx_fifo_partition_2);
+	writeq(val64, &bar0->tx_fifo_partition_3);
+
+
+	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
+		val64 |=
+		    vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
+			 13) | vBIT(config->tx_cfg[i].fifo_priority,
+				    ((i * 32) + 5), 3);
+
+		if (i == (config->tx_fifo_num - 1)) {
+			if (i % 2 == 0)
+				i++;
+		}
+
+		switch (i) {
+		case 1:
+			writeq(val64, &bar0->tx_fifo_partition_0);
+			val64 = 0;
+			break;
+		case 3:
+			writeq(val64, &bar0->tx_fifo_partition_1);
+			val64 = 0;
+			break;
+		case 5:
+			writeq(val64, &bar0->tx_fifo_partition_2);
+			val64 = 0;
+			break;
+		case 7:
+			writeq(val64, &bar0->tx_fifo_partition_3);
+			break;
+		}
+	}
+
+	/* Enable Tx FIFO partition 0. */
+	val64 = readq(&bar0->tx_fifo_partition_0);
+	val64 |= BIT(0);	/* To enable the FIFO partition. */
+	writeq(val64, &bar0->tx_fifo_partition_0);
+
+	val64 = readq(&bar0->tx_fifo_partition_0);
+	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
+		  &bar0->tx_fifo_partition_0, (unsigned long long) val64);
+
+	/* 
+	 * Initialization of Tx_PA_CONFIG register to ignore packet 
+	 * integrity checking.
+	 */
+	val64 = readq(&bar0->tx_pa_cfg);
+	val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
+	    TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
+	writeq(val64, &bar0->tx_pa_cfg);
+
+	/* Rx DMA intialization. */
+	val64 = 0;
+	for (i = 0; i < config->rx_ring_num; i++) {
+		val64 |=
+		    vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
+			 3);
+	}
+	writeq(val64, &bar0->rx_queue_priority);
+
+	/* 
+	 * Allocating equal share of memory to all the 
+	 * configured Rings.
+	 */
+	val64 = 0;
+	for (i = 0; i < config->rx_ring_num; i++) {
+		switch (i) {
+		case 0:
+			mem_share = (64 / config->rx_ring_num +
+				     64 % config->rx_ring_num);
+			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
+			continue;
+		case 1:
+			mem_share = (64 / config->rx_ring_num);
+			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
+			continue;
+		case 2:
+			mem_share = (64 / config->rx_ring_num);
+			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
+			continue;
+		case 3:
+			mem_share = (64 / config->rx_ring_num);
+			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
+			continue;
+		case 4:
+			mem_share = (64 / config->rx_ring_num);
+			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
+			continue;
+		case 5:
+			mem_share = (64 / config->rx_ring_num);
+			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
+			continue;
+		case 6:
+			mem_share = (64 / config->rx_ring_num);
+			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
+			continue;
+		case 7:
+			mem_share = (64 / config->rx_ring_num);
+			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
+			continue;
+		}
+	}
+	writeq(val64, &bar0->rx_queue_cfg);
+
+	/* 
+	 * Initializing the Tx round robin registers to 0.
+	 * Filling Tx and Rx round robin registers as per the 
+	 * number of FIFOs and Rings is still TODO.
+	 */
+	writeq(0, &bar0->tx_w_round_robin_0);
+	writeq(0, &bar0->tx_w_round_robin_1);
+	writeq(0, &bar0->tx_w_round_robin_2);
+	writeq(0, &bar0->tx_w_round_robin_3);
+	writeq(0, &bar0->tx_w_round_robin_4);
+
+	/* 
+	 * TODO
+	 * Disable Rx steering. Hard coding all packets be steered to
+	 * Queue 0 for now. 
+	 */
+	val64 = 0x8080808080808080ULL;
+	writeq(val64, &bar0->rts_qos_steering);
+
+	/* UDP Fix */
+	val64 = 0;
+	for (i = 1; i < 8; i++)
+		writeq(val64, &bar0->rts_frm_len_n[i]);
+
+	/* Set rts_frm_len register for fifo 0 */
+	writeq(MAC_RTS_FRM_LEN_SET(dev->mtu + 22),
+	       &bar0->rts_frm_len_n[0]);
+
+	/* Enable statistics */
+	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
+	val64 = SET_UPDT_PERIOD(Stats_refresh_time) |
+	    STAT_CFG_STAT_RO | STAT_CFG_STAT_EN;
+	writeq(val64, &bar0->stat_cfg);
+
+	/* 
+	 * Initializing the sampling rate for the device to calculate the
+	 * bandwidth utilization.
+	 */
+	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
+	    MAC_RX_LINK_UTIL_VAL(rmac_util_period);
+	writeq(val64, &bar0->mac_link_util);
+
+
+	/* 
+	 * Initializing the Transmit and Receive Traffic Interrupt 
+	 * Scheme.
+	 */
+	/* TTI Initialization. Default Tx timer gets us about
+	 * 250 interrupts per sec. Continuous interrupts are enabled
+	 * by default.
+	 */
+	val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078) |
+	    TTI_DATA1_MEM_TX_URNG_A(0xA) |
+	    TTI_DATA1_MEM_TX_URNG_B(0x10) |
+	    TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN |
+		TTI_DATA1_MEM_TX_TIMER_CI_EN;
+	writeq(val64, &bar0->tti_data1_mem);
+
+	val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
+	    TTI_DATA2_MEM_TX_UFC_B(0x20) |
+	    TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
+	writeq(val64, &bar0->tti_data2_mem);
+
+	val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
+	writeq(val64, &bar0->tti_command_mem);
+
+	/* 
+	 * Once the operation completes, the Strobe bit of the command
+	 * register will be reset. We poll for this particular condition
+	 * We wait for a maximum of 500ms for the operation to complete,
+	 * if it's not complete by then we return error.
+	 */
+	time = 0;
+	while (TRUE) {
+		val64 = readq(&bar0->tti_command_mem);
+		if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
+			break;
+		}
+		if (time > 10) {
+			DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
+				  dev->name);
+			return -1;
+		}
+		msleep(50);
+		time++;
+	}
+
+	/* RTI Initialization */
+	val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF) |
+	    RTI_DATA1_MEM_RX_URNG_A(0xA) |
+	    RTI_DATA1_MEM_RX_URNG_B(0x10) |
+	    RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
+
+	writeq(val64, &bar0->rti_data1_mem);
+
+	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
+	    RTI_DATA2_MEM_RX_UFC_B(0x2) |
+	    RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80);
+	writeq(val64, &bar0->rti_data2_mem);
+
+	val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD;
+	writeq(val64, &bar0->rti_command_mem);
+
+	/* 
+	 * Once the operation completes, the Strobe bit of the command
+	 * register will be reset. We poll for this particular condition
+	 * We wait for a maximum of 500ms for the operation to complete,
+	 * if it's not complete by then we return error.
+	 */
+	time = 0;
+	while (TRUE) {
+		val64 = readq(&bar0->rti_command_mem);
+		if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
+			break;
+		}
+		if (time > 10) {
+			DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
+				  dev->name);
+			return -1;
+		}
+		time++;
+		msleep(50);
+	}
+
+	/* 
+	 * Initializing proper values as Pause threshold into all 
+	 * the 8 Queues on Rx side.
+	 */
+	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
+	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
+
+	/* Disable RMAC PAD STRIPPING */
+	add = &bar0->mac_cfg;
+	val64 = readq(&bar0->mac_cfg);
+	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
+	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+	writel((u32) (val64), add);
+	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+	writel((u32) (val64 >> 32), (add + 4));
+	val64 = readq(&bar0->mac_cfg);
+
+	/* 
+	 * Set the time value to be inserted in the pause frame 
+	 * generated by xena.
+	 */
+	val64 = readq(&bar0->rmac_pause_cfg);
+	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
+	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
+	writeq(val64, &bar0->rmac_pause_cfg);
+
+	/* 
+	 * Set the Threshold Limit for Generating the pause frame
+	 * If the amount of data in any Queue exceeds ratio of
+	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
+	 * pause frame is generated
+	 */
+	val64 = 0;
+	for (i = 0; i < 4; i++) {
+		val64 |=
+		    (((u64) 0xFF00 | nic->mac_control.
+		      mc_pause_threshold_q0q3)
+		     << (i * 2 * 8));
+	}
+	writeq(val64, &bar0->mc_pause_thresh_q0q3);
+
+	val64 = 0;
+	for (i = 0; i < 4; i++) {
+		val64 |=
+		    (((u64) 0xFF00 | nic->mac_control.
+		      mc_pause_threshold_q4q7)
+		     << (i * 2 * 8));
+	}
+	writeq(val64, &bar0->mc_pause_thresh_q4q7);
+
+	/* 
+	 * TxDMA will stop Read request if the number of read split has 
+	 * exceeded the limit pointed by shared_splits
+	 */
+	val64 = readq(&bar0->pic_control);
+	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
+	writeq(val64, &bar0->pic_control);
+
+	return SUCCESS;
+}
+
+/**  
+ *  en_dis_able_nic_intrs - Enable or Disable the interrupts 
+ *  @nic: device private variable,
+ *  @mask: A mask indicating which Intr block must be modified and,
+ *  @flag: A flag indicating whether to enable or disable the Intrs.
+ *  Description: This function will either disable or enable the interrupts
+ *  depending on the flag argument. The mask argument can be used to 
+ *  enable/disable any Intr block. 
+ *  Return Value: NONE.
+ */
+
+static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
+{
+	XENA_dev_config_t __iomem *bar0 = nic->bar0;
+	register u64 val64 = 0, temp64 = 0;
+
+	/*  Top level interrupt classification */
+	/*  PIC Interrupts */
+	if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
+		/*  Enable PIC Intrs in the general intr mask register */
+		val64 = TXPIC_INT_M | PIC_RX_INT_M;
+		if (flag == ENABLE_INTRS) {
+			temp64 = readq(&bar0->general_int_mask);
+			temp64 &= ~((u64) val64);
+			writeq(temp64, &bar0->general_int_mask);
+			/*  
+			 * Disabled all PCIX, Flash, MDIO, IIC and GPIO
+			 * interrupts for now. 
+			 * TODO 
+			 */
+			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
+			/* 
+			 * No MSI Support is available presently, so TTI and
+			 * RTI interrupts are also disabled.
+			 */
+		} else if (flag == DISABLE_INTRS) {
+			/*  
+			 * Disable PIC Intrs in the general 
+			 * intr mask register 
+			 */
+			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
+			temp64 = readq(&bar0->general_int_mask);
+			val64 |= temp64;
+			writeq(val64, &bar0->general_int_mask);
+		}
+	}
+
+	/*  DMA Interrupts */
+	/*  Enabling/Disabling Tx DMA interrupts */
+	if (mask & TX_DMA_INTR) {
+		/* Enable TxDMA Intrs in the general intr mask register */
+		val64 = TXDMA_INT_M;
+		if (flag == ENABLE_INTRS) {
+			temp64 = readq(&bar0->general_int_mask);
+			temp64 &= ~((u64) val64);
+			writeq(temp64, &bar0->general_int_mask);
+			/* 
+			 * Keep all interrupts other than PFC interrupt 
+			 * and PCC interrupt disabled in DMA level.
+			 */
+			val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
+						      TXDMA_PCC_INT_M);
+			writeq(val64, &bar0->txdma_int_mask);
+			/* 
+			 * Enable only the MISC error 1 interrupt in PFC block 
+			 */
+			val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
+			writeq(val64, &bar0->pfc_err_mask);
+			/* 
+			 * Enable only the FB_ECC error interrupt in PCC block 
+			 */
+			val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
+			writeq(val64, &bar0->pcc_err_mask);
+		} else if (flag == DISABLE_INTRS) {
+			/* 
+			 * Disable TxDMA Intrs in the general intr mask 
+			 * register 
+			 */
+			writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
+			writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
+			temp64 = readq(&bar0->general_int_mask);
+			val64 |= temp64;
+			writeq(val64, &bar0->general_int_mask);
+		}
+	}
+
+	/*  Enabling/Disabling Rx DMA interrupts */
+	if (mask & RX_DMA_INTR) {
+		/*  Enable RxDMA Intrs in the general intr mask register */
+		val64 = RXDMA_INT_M;
+		if (flag == ENABLE_INTRS) {
+			temp64 = readq(&bar0->general_int_mask);
+			temp64 &= ~((u64) val64);
+			writeq(temp64, &bar0->general_int_mask);
+			/* 
+			 * All RxDMA block interrupts are disabled for now 
+			 * TODO 
+			 */
+			writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
+		} else if (flag == DISABLE_INTRS) {
+			/*  
+			 * Disable RxDMA Intrs in the general intr mask 
+			 * register 
+			 */
+			writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
+			temp64 = readq(&bar0->general_int_mask);
+			val64 |= temp64;
+			writeq(val64, &bar0->general_int_mask);
+		}
+	}
+
+	/*  MAC Interrupts */
+	/*  Enabling/Disabling MAC interrupts */
+	if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
+		val64 = TXMAC_INT_M | RXMAC_INT_M;
+		if (flag == ENABLE_INTRS) {
+			temp64 = readq(&bar0->general_int_mask);
+			temp64 &= ~((u64) val64);
+			writeq(temp64, &bar0->general_int_mask);
+			/* 
+			 * All MAC block error interrupts are disabled for now 
+			 * except the link status change interrupt.
+			 * TODO
+			 */
+			val64 = MAC_INT_STATUS_RMAC_INT;
+			temp64 = readq(&bar0->mac_int_mask);
+			temp64 &= ~((u64) val64);
+			writeq(temp64, &bar0->mac_int_mask);
+
+			val64 = readq(&bar0->mac_rmac_err_mask);
+			val64 &= ~((u64) RMAC_LINK_STATE_CHANGE_INT);
+			writeq(val64, &bar0->mac_rmac_err_mask);
+		} else if (flag == DISABLE_INTRS) {
+			/*  
+			 * Disable MAC Intrs in the general intr mask register 
+			 */
+			writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
+			writeq(DISABLE_ALL_INTRS,
+			       &bar0->mac_rmac_err_mask);
+
+			temp64 = readq(&bar0->general_int_mask);
+			val64 |= temp64;
+			writeq(val64, &bar0->general_int_mask);
+		}
+	}
+
+	/*  XGXS Interrupts */
+	if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
+		val64 = TXXGXS_INT_M | RXXGXS_INT_M;
+		if (flag == ENABLE_INTRS) {
+			temp64 = readq(&bar0->general_int_mask);
+			temp64 &= ~((u64) val64);
+			writeq(temp64, &bar0->general_int_mask);
+			/* 
+			 * All XGXS block error interrupts are disabled for now
+			 * TODO 
+			 */
+			writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
+		} else if (flag == DISABLE_INTRS) {
+			/*  
+			 * Disable MC Intrs in the general intr mask register 
+			 */
+			writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
+			temp64 = readq(&bar0->general_int_mask);
+			val64 |= temp64;
+			writeq(val64, &bar0->general_int_mask);
+		}
+	}
+
+	/*  Memory Controller(MC) interrupts */
+	if (mask & MC_INTR) {
+		val64 = MC_INT_M;
+		if (flag == ENABLE_INTRS) {
+			temp64 = readq(&bar0->general_int_mask);
+			temp64 &= ~((u64) val64);
+			writeq(temp64, &bar0->general_int_mask);
+			/* 
+			 * All MC block error interrupts are disabled for now
+			 * TODO 
+			 */
+			writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
+		} else if (flag == DISABLE_INTRS) {
+			/*
+			 * Disable MC Intrs in the general intr mask register
+			 */
+			writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
+			temp64 = readq(&bar0->general_int_mask);
+			val64 |= temp64;
+			writeq(val64, &bar0->general_int_mask);
+		}
+	}
+
+
+	/*  Tx traffic interrupts */
+	if (mask & TX_TRAFFIC_INTR) {
+		val64 = TXTRAFFIC_INT_M;
+		if (flag == ENABLE_INTRS) {
+			temp64 = readq(&bar0->general_int_mask);
+			temp64 &= ~((u64) val64);
+			writeq(temp64, &bar0->general_int_mask);
+			/* 
+			 * Enable all the Tx side interrupts
+			 * writing 0 Enables all 64 TX interrupt levels 
+			 */
+			writeq(0x0, &bar0->tx_traffic_mask);
+		} else if (flag == DISABLE_INTRS) {
+			/* 
+			 * Disable Tx Traffic Intrs in the general intr mask 
+			 * register.
+			 */
+			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
+			temp64 = readq(&bar0->general_int_mask);
+			val64 |= temp64;
+			writeq(val64, &bar0->general_int_mask);
+		}
+	}
+
+	/*  Rx traffic interrupts */
+	if (mask & RX_TRAFFIC_INTR) {
+		val64 = RXTRAFFIC_INT_M;
+		if (flag == ENABLE_INTRS) {
+			temp64 = readq(&bar0->general_int_mask);
+			temp64 &= ~((u64) val64);
+			writeq(temp64, &bar0->general_int_mask);
+			/* writing 0 Enables all 8 RX interrupt levels */
+			writeq(0x0, &bar0->rx_traffic_mask);
+		} else if (flag == DISABLE_INTRS) {
+			/*  
+			 * Disable Rx Traffic Intrs in the general intr mask 
+			 * register.
+			 */
+			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
+			temp64 = readq(&bar0->general_int_mask);
+			val64 |= temp64;
+			writeq(val64, &bar0->general_int_mask);
+		}
+	}
+}
+
+/**  
+ *  verify_xena_quiescence - Checks whether the H/W is ready 
+ *  @val64 :  Value read from adapter status register.
+ *  @flag : indicates if the adapter enable bit was ever written once
+ *  before.
+ *  Description: Returns whether the H/W is ready to go or not. Depending
+ *  on whether adapter enable bit was written or not the comparison 
+ *  differs and the calling function passes the input argument flag to
+ *  indicate this.
+ *  Return: 1 If xena is quiescence 
+ *          0 If Xena is not quiescence
+ */
+
+static int verify_xena_quiescence(u64 val64, int flag)
+{
+	int ret = 0;
+	u64 tmp64 = ~((u64) val64);
+
+	if (!
+	    (tmp64 &
+	     (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
+	      ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
+	      ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
+	      ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
+	      ADAPTER_STATUS_P_PLL_LOCK))) {
+		if (flag == FALSE) {
+			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
+			    ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
+			     ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
+
+				ret = 1;
+
+			}
+		} else {
+			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
+			     ADAPTER_STATUS_RMAC_PCC_IDLE) &&
+			    (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
+			     ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
+			      ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
+
+				ret = 1;
+
+			}
+		}
+	}
+
+	return ret;
+}
+
+/**
+ * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
+ * @sp: Pointer to device specifc structure
+ * Description : 
+ * New procedure to clear mac address reading  problems on Alpha platforms
+ *
+ */
+
+static void fix_mac_address(nic_t * sp)
+{
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	u64 val64;
+	int i = 0;
+
+	while (fix_mac[i] != END_SIGN) {
+		writeq(fix_mac[i++], &bar0->gpio_control);
+		val64 = readq(&bar0->gpio_control);
+	}
+}
+
+/**
+ *  start_nic - Turns the device on   
+ *  @nic : device private variable.
+ *  Description: 
+ *  This function actually turns the device on. Before this  function is 
+ *  called,all Registers are configured from their reset states 
+ *  and shared memory is allocated but the NIC is still quiescent. On 
+ *  calling this function, the device interrupts are cleared and the NIC is
+ *  literally switched on by writing into the adapter control register.
+ *  Return Value: 
+ *  SUCCESS on success and -1 on failure.
+ */
+
+static int start_nic(struct s2io_nic *nic)
+{
+	XENA_dev_config_t __iomem *bar0 = nic->bar0;
+	struct net_device *dev = nic->dev;
+	register u64 val64 = 0;
+	u16 interruptible, i;
+	u16 subid;
+	mac_info_t *mac_control;
+	struct config_param *config;
+
+	mac_control = &nic->mac_control;
+	config = &nic->config;
+
+	/*  PRC Initialization and configuration */
+	for (i = 0; i < config->rx_ring_num; i++) {
+		writeq((u64) nic->rx_blocks[i][0].block_dma_addr,
+		       &bar0->prc_rxd0_n[i]);
+
+		val64 = readq(&bar0->prc_ctrl_n[i]);
+#ifndef CONFIG_2BUFF_MODE
+		val64 |= PRC_CTRL_RC_ENABLED;
+#else
+		val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
+#endif
+		writeq(val64, &bar0->prc_ctrl_n[i]);
+	}
+
+#ifdef CONFIG_2BUFF_MODE
+	/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
+	val64 = readq(&bar0->rx_pa_cfg);
+	val64 |= RX_PA_CFG_IGNORE_L2_ERR;
+	writeq(val64, &bar0->rx_pa_cfg);
+#endif
+
+	/* 
+	 * Enabling MC-RLDRAM. After enabling the device, we timeout
+	 * for around 100ms, which is approximately the time required
+	 * for the device to be ready for operation.
+	 */
+	val64 = readq(&bar0->mc_rldram_mrs);
+	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
+	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
+	val64 = readq(&bar0->mc_rldram_mrs);
+
+	msleep(100);			/* Delay by around 100 ms. */
+
+	/* Enabling ECC Protection. */
+	val64 = readq(&bar0->adapter_control);
+	val64 &= ~ADAPTER_ECC_EN;
+	writeq(val64, &bar0->adapter_control);
+
+	/* 
+	 * Clearing any possible Link state change interrupts that 
+	 * could have popped up just before Enabling the card.
+	 */
+	val64 = readq(&bar0->mac_rmac_err_reg);
+	if (val64)
+		writeq(val64, &bar0->mac_rmac_err_reg);
+
+	/* 
+	 * Verify if the device is ready to be enabled, if so enable 
+	 * it.
+	 */
+	val64 = readq(&bar0->adapter_status);
+	if (!verify_xena_quiescence(val64, nic->device_enabled_once)) {
+		DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
+		DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
+			  (unsigned long long) val64);
+		return FAILURE;
+	}
+
+	/*  Enable select interrupts */
+	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR |
+	    RX_MAC_INTR;
+	en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
+
+	/* 
+	 * With some switches, link might be already up at this point.
+	 * Because of this weird behavior, when we enable laser, 
+	 * we may not get link. We need to handle this. We cannot 
+	 * figure out which switch is misbehaving. So we are forced to 
+	 * make a global change. 
+	 */
+
+	/* Enabling Laser. */
+	val64 = readq(&bar0->adapter_control);
+	val64 |= ADAPTER_EOI_TX_ON;
+	writeq(val64, &bar0->adapter_control);
+
+	/* SXE-002: Initialize link and activity LED */
+	subid = nic->pdev->subsystem_device;
+	if ((subid & 0xFF) >= 0x07) {
+		val64 = readq(&bar0->gpio_control);
+		val64 |= 0x0000800000000000ULL;
+		writeq(val64, &bar0->gpio_control);
+		val64 = 0x0411040400000000ULL;
+		writeq(val64, (void __iomem *) bar0 + 0x2700);
+	}
+
+	/* 
+	 * Don't see link state interrupts on certain switches, so 
+	 * directly scheduling a link state task from here.
+	 */
+	schedule_work(&nic->set_link_task);
+
+	/* 
+	 * Here we are performing soft reset on XGXS to 
+	 * force link down. Since link is already up, we will get
+	 * link state change interrupt after this reset
+	 */
+	SPECIAL_REG_WRITE(0x80010515001E0000ULL, &bar0->dtx_control, UF);
+	val64 = readq(&bar0->dtx_control);
+	udelay(50);
+	SPECIAL_REG_WRITE(0x80010515001E00E0ULL, &bar0->dtx_control, UF);
+	val64 = readq(&bar0->dtx_control);
+	udelay(50);
+	SPECIAL_REG_WRITE(0x80070515001F00E4ULL, &bar0->dtx_control, UF);
+	val64 = readq(&bar0->dtx_control);
+	udelay(50);
+
+	return SUCCESS;
+}
+
+/** 
+ *  free_tx_buffers - Free all queued Tx buffers 
+ *  @nic : device private variable.
+ *  Description: 
+ *  Free all queued Tx buffers.
+ *  Return Value: void 
+*/
+
+static void free_tx_buffers(struct s2io_nic *nic)
+{
+	struct net_device *dev = nic->dev;
+	struct sk_buff *skb;
+	TxD_t *txdp;
+	int i, j;
+	mac_info_t *mac_control;
+	struct config_param *config;
+	int cnt = 0;
+
+	mac_control = &nic->mac_control;
+	config = &nic->config;
+
+	for (i = 0; i < config->tx_fifo_num; i++) {
+		for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
+			txdp = (TxD_t *) nic->list_info[i][j].
+			    list_virt_addr;
+			skb =
+			    (struct sk_buff *) ((unsigned long) txdp->
+						Host_Control);
+			if (skb == NULL) {
+				memset(txdp, 0, sizeof(TxD_t));
+				continue;
+			}
+			dev_kfree_skb(skb);
+			memset(txdp, 0, sizeof(TxD_t));
+			cnt++;
+		}
+		DBG_PRINT(INTR_DBG,
+			  "%s:forcibly freeing %d skbs on FIFO%d\n",
+			  dev->name, cnt, i);
+		mac_control->tx_curr_get_info[i].offset = 0;
+		mac_control->tx_curr_put_info[i].offset = 0;
+	}
+}
+
+/**  
+ *   stop_nic -  To stop the nic  
+ *   @nic ; device private variable.
+ *   Description: 
+ *   This function does exactly the opposite of what the start_nic() 
+ *   function does. This function is called to stop the device.
+ *   Return Value:
+ *   void.
+ */
+
+static void stop_nic(struct s2io_nic *nic)
+{
+	XENA_dev_config_t __iomem *bar0 = nic->bar0;
+	register u64 val64 = 0;
+	u16 interruptible, i;
+	mac_info_t *mac_control;
+	struct config_param *config;
+
+	mac_control = &nic->mac_control;
+	config = &nic->config;
+
+	/*  Disable all interrupts */
+	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR |
+	    RX_MAC_INTR;
+	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
+
+	/*  Disable PRCs */
+	for (i = 0; i < config->rx_ring_num; i++) {
+		val64 = readq(&bar0->prc_ctrl_n[i]);
+		val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
+		writeq(val64, &bar0->prc_ctrl_n[i]);
+	}
+}
+
+/**  
+ *  fill_rx_buffers - Allocates the Rx side skbs 
+ *  @nic:  device private variable
+ *  @ring_no: ring number 
+ *  Description: 
+ *  The function allocates Rx side skbs and puts the physical
+ *  address of these buffers into the RxD buffer pointers, so that the NIC
+ *  can DMA the received frame into these locations.
+ *  The NIC supports 3 receive modes, viz
+ *  1. single buffer,
+ *  2. three buffer and
+ *  3. Five buffer modes.
+ *  Each mode defines how many fragments the received frame will be split 
+ *  up into by the NIC. The frame is split into L3 header, L4 Header, 
+ *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
+ *  is split into 3 fragments. As of now only single buffer mode is
+ *  supported.
+ *   Return Value:
+ *  SUCCESS on success or an appropriate -ve value on failure.
+ */
+
+static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
+{
+	struct net_device *dev = nic->dev;
+	struct sk_buff *skb;
+	RxD_t *rxdp;
+	int off, off1, size, block_no, block_no1;
+	int offset, offset1;
+	u32 alloc_tab = 0;
+	u32 alloc_cnt = nic->pkt_cnt[ring_no] -
+	    atomic_read(&nic->rx_bufs_left[ring_no]);
+	mac_info_t *mac_control;
+	struct config_param *config;
+#ifdef CONFIG_2BUFF_MODE
+	RxD_t *rxdpnext;
+	int nextblk;
+	unsigned long tmp;
+	buffAdd_t *ba;
+	dma_addr_t rxdpphys;
+#endif
+#ifndef CONFIG_S2IO_NAPI
+	unsigned long flags;
+#endif
+
+	mac_control = &nic->mac_control;
+	config = &nic->config;
+
+	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
+	    HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
+
+	while (alloc_tab < alloc_cnt) {
+		block_no = mac_control->rx_curr_put_info[ring_no].
+		    block_index;
+		block_no1 = mac_control->rx_curr_get_info[ring_no].
+		    block_index;
+		off = mac_control->rx_curr_put_info[ring_no].offset;
+		off1 = mac_control->rx_curr_get_info[ring_no].offset;
+#ifndef CONFIG_2BUFF_MODE
+		offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off;
+		offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1;
+#else
+		offset = block_no * (MAX_RXDS_PER_BLOCK) + off;
+		offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1;
+#endif
+
+		rxdp = nic->rx_blocks[ring_no][block_no].
+		    block_virt_addr + off;
+		if ((offset == offset1) && (rxdp->Host_Control)) {
+			DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name);
+			DBG_PRINT(INTR_DBG, " info equated\n");
+			goto end;
+		}
+#ifndef	CONFIG_2BUFF_MODE
+		if (rxdp->Control_1 == END_OF_BLOCK) {
+			mac_control->rx_curr_put_info[ring_no].
+			    block_index++;
+			mac_control->rx_curr_put_info[ring_no].
+			    block_index %= nic->block_count[ring_no];
+			block_no = mac_control->rx_curr_put_info
+			    [ring_no].block_index;
+			off++;
+			off %= (MAX_RXDS_PER_BLOCK + 1);
+			mac_control->rx_curr_put_info[ring_no].offset =
+			    off;
+			rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2);
+			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
+				  dev->name, rxdp);
+		}
+#ifndef CONFIG_S2IO_NAPI
+		spin_lock_irqsave(&nic->put_lock, flags);
+		nic->put_pos[ring_no] =
+		    (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off;
+		spin_unlock_irqrestore(&nic->put_lock, flags);
+#endif
+#else
+		if (rxdp->Host_Control == END_OF_BLOCK) {
+			mac_control->rx_curr_put_info[ring_no].
+			    block_index++;
+			mac_control->rx_curr_put_info[ring_no].
+			    block_index %= nic->block_count[ring_no];
+			block_no = mac_control->rx_curr_put_info
+			    [ring_no].block_index;
+			off = 0;
+			DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n",
+				  dev->name, block_no,
+				  (unsigned long long) rxdp->Control_1);
+			mac_control->rx_curr_put_info[ring_no].offset =
+			    off;
+			rxdp = nic->rx_blocks[ring_no][block_no].
+			    block_virt_addr;
+		}
+#ifndef CONFIG_S2IO_NAPI
+		spin_lock_irqsave(&nic->put_lock, flags);
+		nic->put_pos[ring_no] = (block_no *
+					 (MAX_RXDS_PER_BLOCK + 1)) + off;
+		spin_unlock_irqrestore(&nic->put_lock, flags);
+#endif
+#endif
+
+#ifndef	CONFIG_2BUFF_MODE
+		if (rxdp->Control_1 & RXD_OWN_XENA)
+#else
+		if (rxdp->Control_2 & BIT(0))
+#endif
+		{
+			mac_control->rx_curr_put_info[ring_no].
+			    offset = off;
+			goto end;
+		}
+#ifdef	CONFIG_2BUFF_MODE
+		/* 
+		 * RxDs Spanning cache lines will be replenished only 
+		 * if the succeeding RxD is also owned by Host. It 
+		 * will always be the ((8*i)+3) and ((8*i)+6) 
+		 * descriptors for the 48 byte descriptor. The offending 
+		 * decsriptor is of-course the 3rd descriptor.
+		 */
+		rxdpphys = nic->rx_blocks[ring_no][block_no].
+		    block_dma_addr + (off * sizeof(RxD_t));
+		if (((u64) (rxdpphys)) % 128 > 80) {
+			rxdpnext = nic->rx_blocks[ring_no][block_no].
+			    block_virt_addr + (off + 1);
+			if (rxdpnext->Host_Control == END_OF_BLOCK) {
+				nextblk = (block_no + 1) %
+				    (nic->block_count[ring_no]);
+				rxdpnext = nic->rx_blocks[ring_no]
+				    [nextblk].block_virt_addr;
+			}
+			if (rxdpnext->Control_2 & BIT(0))
+				goto end;
+		}
+#endif
+
+#ifndef	CONFIG_2BUFF_MODE
+		skb = dev_alloc_skb(size + NET_IP_ALIGN);
+#else
+		skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4);
+#endif
+		if (!skb) {
+			DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
+			DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
+			return -ENOMEM;
+		}
+#ifndef	CONFIG_2BUFF_MODE
+		skb_reserve(skb, NET_IP_ALIGN);
+		memset(rxdp, 0, sizeof(RxD_t));
+		rxdp->Buffer0_ptr = pci_map_single
+		    (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
+		rxdp->Control_2 &= (~MASK_BUFFER0_SIZE);
+		rxdp->Control_2 |= SET_BUFFER0_SIZE(size);
+		rxdp->Host_Control = (unsigned long) (skb);
+		rxdp->Control_1 |= RXD_OWN_XENA;
+		off++;
+		off %= (MAX_RXDS_PER_BLOCK + 1);
+		mac_control->rx_curr_put_info[ring_no].offset = off;
+#else
+		ba = &nic->ba[ring_no][block_no][off];
+		skb_reserve(skb, BUF0_LEN);
+		tmp = (unsigned long) skb->data;
+		tmp += ALIGN_SIZE;
+		tmp &= ~ALIGN_SIZE;
+		skb->data = (void *) tmp;
+		skb->tail = (void *) tmp;
+
+		memset(rxdp, 0, sizeof(RxD_t));
+		rxdp->Buffer2_ptr = pci_map_single
+		    (nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4,
+		     PCI_DMA_FROMDEVICE);
+		rxdp->Buffer0_ptr =
+		    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
+				   PCI_DMA_FROMDEVICE);
+		rxdp->Buffer1_ptr =
+		    pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
+				   PCI_DMA_FROMDEVICE);
+
+		rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4);
+		rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN);
+		rxdp->Control_2 |= SET_BUFFER1_SIZE(1);	/* dummy. */
+		rxdp->Control_2 |= BIT(0);	/* Set Buffer_Empty bit. */
+		rxdp->Host_Control = (u64) ((unsigned long) (skb));
+		rxdp->Control_1 |= RXD_OWN_XENA;
+		off++;
+		mac_control->rx_curr_put_info[ring_no].offset = off;
+#endif
+		atomic_inc(&nic->rx_bufs_left[ring_no]);
+		alloc_tab++;
+	}
+
+      end:
+	return SUCCESS;
+}
+
+/**
+ *  free_rx_buffers - Frees all Rx buffers   
+ *  @sp: device private variable.
+ *  Description: 
+ *  This function will free all Rx buffers allocated by host.
+ *  Return Value:
+ *  NONE.
+ */
+
+static void free_rx_buffers(struct s2io_nic *sp)
+{
+	struct net_device *dev = sp->dev;
+	int i, j, blk = 0, off, buf_cnt = 0;
+	RxD_t *rxdp;
+	struct sk_buff *skb;
+	mac_info_t *mac_control;
+	struct config_param *config;
+#ifdef CONFIG_2BUFF_MODE
+	buffAdd_t *ba;
+#endif
+
+	mac_control = &sp->mac_control;
+	config = &sp->config;
+
+	for (i = 0; i < config->rx_ring_num; i++) {
+		for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) {
+			off = j % (MAX_RXDS_PER_BLOCK + 1);
+			rxdp = sp->rx_blocks[i][blk].block_virt_addr + off;
+
+#ifndef CONFIG_2BUFF_MODE
+			if (rxdp->Control_1 == END_OF_BLOCK) {
+				rxdp =
+				    (RxD_t *) ((unsigned long) rxdp->
+					       Control_2);
+				j++;
+				blk++;
+			}
+#else
+			if (rxdp->Host_Control == END_OF_BLOCK) {
+				blk++;
+				continue;
+			}
+#endif
+
+			if (!(rxdp->Control_1 & RXD_OWN_XENA)) {
+				memset(rxdp, 0, sizeof(RxD_t));
+				continue;
+			}
+
+			skb =
+			    (struct sk_buff *) ((unsigned long) rxdp->
+						Host_Control);
+			if (skb) {
+#ifndef CONFIG_2BUFF_MODE
+				pci_unmap_single(sp->pdev, (dma_addr_t)
+						 rxdp->Buffer0_ptr,
+						 dev->mtu +
+						 HEADER_ETHERNET_II_802_3_SIZE
+						 + HEADER_802_2_SIZE +
+						 HEADER_SNAP_SIZE,
+						 PCI_DMA_FROMDEVICE);
+#else
+				ba = &sp->ba[i][blk][off];
+				pci_unmap_single(sp->pdev, (dma_addr_t)
+						 rxdp->Buffer0_ptr,
+						 BUF0_LEN,
+						 PCI_DMA_FROMDEVICE);
+				pci_unmap_single(sp->pdev, (dma_addr_t)
+						 rxdp->Buffer1_ptr,
+						 BUF1_LEN,
+						 PCI_DMA_FROMDEVICE);
+				pci_unmap_single(sp->pdev, (dma_addr_t)
+						 rxdp->Buffer2_ptr,
+						 dev->mtu + BUF0_LEN + 4,
+						 PCI_DMA_FROMDEVICE);
+#endif
+				dev_kfree_skb(skb);
+				atomic_dec(&sp->rx_bufs_left[i]);
+				buf_cnt++;
+			}
+			memset(rxdp, 0, sizeof(RxD_t));
+		}
+		mac_control->rx_curr_put_info[i].block_index = 0;
+		mac_control->rx_curr_get_info[i].block_index = 0;
+		mac_control->rx_curr_put_info[i].offset = 0;
+		mac_control->rx_curr_get_info[i].offset = 0;
+		atomic_set(&sp->rx_bufs_left[i], 0);
+		DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
+			  dev->name, buf_cnt, i);
+	}
+}
+
+/**
+ * s2io_poll - Rx interrupt handler for NAPI support
+ * @dev : pointer to the device structure.
+ * @budget : The number of packets that were budgeted to be processed 
+ * during  one pass through the 'Poll" function.
+ * Description:
+ * Comes into picture only if NAPI support has been incorporated. It does
+ * the same thing that rx_intr_handler does, but not in a interrupt context
+ * also It will process only a given number of packets.
+ * Return value:
+ * 0 on success and 1 if there are No Rx packets to be processed.
+ */
+
+#ifdef CONFIG_S2IO_NAPI
+static int s2io_poll(struct net_device *dev, int *budget)
+{
+	nic_t *nic = dev->priv;
+	XENA_dev_config_t __iomem *bar0 = nic->bar0;
+	int pkts_to_process = *budget, pkt_cnt = 0;
+	register u64 val64 = 0;
+	rx_curr_get_info_t get_info, put_info;
+	int i, get_block, put_block, get_offset, put_offset, ring_bufs;
+#ifndef CONFIG_2BUFF_MODE
+	u16 val16, cksum;
+#endif
+	struct sk_buff *skb;
+	RxD_t *rxdp;
+	mac_info_t *mac_control;
+	struct config_param *config;
+#ifdef CONFIG_2BUFF_MODE
+	buffAdd_t *ba;
+#endif
+
+	mac_control = &nic->mac_control;
+	config = &nic->config;
+
+	if (pkts_to_process > dev->quota)
+		pkts_to_process = dev->quota;
+
+	val64 = readq(&bar0->rx_traffic_int);
+	writeq(val64, &bar0->rx_traffic_int);
+
+	for (i = 0; i < config->rx_ring_num; i++) {
+		get_info = mac_control->rx_curr_get_info[i];
+		get_block = get_info.block_index;
+		put_info = mac_control->rx_curr_put_info[i];
+		put_block = put_info.block_index;
+		ring_bufs = config->rx_cfg[i].num_rxd;
+		rxdp = nic->rx_blocks[i][get_block].block_virt_addr +
+		    get_info.offset;
+#ifndef	CONFIG_2BUFF_MODE
+		get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+		    get_info.offset;
+		put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) +
+		    put_info.offset;
+		while ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
+		       (((get_offset + 1) % ring_bufs) != put_offset)) {
+			if (--pkts_to_process < 0) {
+				goto no_rx;
+			}
+			if (rxdp->Control_1 == END_OF_BLOCK) {
+				rxdp =
+				    (RxD_t *) ((unsigned long) rxdp->
+					       Control_2);
+				get_info.offset++;
+				get_info.offset %=
+				    (MAX_RXDS_PER_BLOCK + 1);
+				get_block++;
+				get_block %= nic->block_count[i];
+				mac_control->rx_curr_get_info[i].
+				    offset = get_info.offset;
+				mac_control->rx_curr_get_info[i].
+				    block_index = get_block;
+				continue;
+			}
+			get_offset =
+			    (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+			    get_info.offset;
+			skb =
+			    (struct sk_buff *) ((unsigned long) rxdp->
+						Host_Control);
+			if (skb == NULL) {
+				DBG_PRINT(ERR_DBG, "%s: The skb is ",
+					  dev->name);
+				DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
+				goto no_rx;
+			}
+			val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
+			val16 = (u16) (val64 >> 48);
+			cksum = RXD_GET_L4_CKSUM(rxdp->Control_1);
+			pci_unmap_single(nic->pdev, (dma_addr_t)
+					 rxdp->Buffer0_ptr,
+					 dev->mtu +
+					 HEADER_ETHERNET_II_802_3_SIZE +
+					 HEADER_802_2_SIZE +
+					 HEADER_SNAP_SIZE,
+					 PCI_DMA_FROMDEVICE);
+			rx_osm_handler(nic, val16, rxdp, i);
+			pkt_cnt++;
+			get_info.offset++;
+			get_info.offset %= (MAX_RXDS_PER_BLOCK + 1);
+			rxdp =
+			    nic->rx_blocks[i][get_block].block_virt_addr +
+			    get_info.offset;
+			mac_control->rx_curr_get_info[i].offset =
+			    get_info.offset;
+		}
+#else
+		get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+		    get_info.offset;
+		put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) +
+		    put_info.offset;
+		while (((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
+			!(rxdp->Control_2 & BIT(0))) &&
+		       (((get_offset + 1) % ring_bufs) != put_offset)) {
+			if (--pkts_to_process < 0) {
+				goto no_rx;
+			}
+			skb = (struct sk_buff *) ((unsigned long)
+						  rxdp->Host_Control);
+			if (skb == NULL) {
+				DBG_PRINT(ERR_DBG, "%s: The skb is ",
+					  dev->name);
+				DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
+				goto no_rx;
+			}
+
+			pci_unmap_single(nic->pdev, (dma_addr_t)
+					 rxdp->Buffer0_ptr,
+					 BUF0_LEN, PCI_DMA_FROMDEVICE);
+			pci_unmap_single(nic->pdev, (dma_addr_t)
+					 rxdp->Buffer1_ptr,
+					 BUF1_LEN, PCI_DMA_FROMDEVICE);
+			pci_unmap_single(nic->pdev, (dma_addr_t)
+					 rxdp->Buffer2_ptr,
+					 dev->mtu + BUF0_LEN + 4,
+					 PCI_DMA_FROMDEVICE);
+			ba = &nic->ba[i][get_block][get_info.offset];
+
+			rx_osm_handler(nic, rxdp, i, ba);
+
+			get_info.offset++;
+			mac_control->rx_curr_get_info[i].offset =
+			    get_info.offset;
+			rxdp =
+			    nic->rx_blocks[i][get_block].block_virt_addr +
+			    get_info.offset;
+
+			if (get_info.offset &&
+			    (!(get_info.offset % MAX_RXDS_PER_BLOCK))) {
+				get_info.offset = 0;
+				mac_control->rx_curr_get_info[i].
+				    offset = get_info.offset;
+				get_block++;
+				get_block %= nic->block_count[i];
+				mac_control->rx_curr_get_info[i].
+				    block_index = get_block;
+				rxdp =
+				    nic->rx_blocks[i][get_block].
+				    block_virt_addr;
+			}
+			get_offset =
+			    (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+			    get_info.offset;
+			pkt_cnt++;
+		}
+#endif
+	}
+	if (!pkt_cnt)
+		pkt_cnt = 1;
+
+	dev->quota -= pkt_cnt;
+	*budget -= pkt_cnt;
+	netif_rx_complete(dev);
+
+	for (i = 0; i < config->rx_ring_num; i++) {
+		if (fill_rx_buffers(nic, i) == -ENOMEM) {
+			DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
+			DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
+			break;
+		}
+	}
+	/* Re enable the Rx interrupts. */
+	en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
+	return 0;
+
+      no_rx:
+	dev->quota -= pkt_cnt;
+	*budget -= pkt_cnt;
+
+	for (i = 0; i < config->rx_ring_num; i++) {
+		if (fill_rx_buffers(nic, i) == -ENOMEM) {
+			DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
+			DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
+			break;
+		}
+	}
+	return 1;
+}
+#else
+/**  
+ *  rx_intr_handler - Rx interrupt handler
+ *  @nic: device private variable.
+ *  Description: 
+ *  If the interrupt is because of a received frame or if the 
+ *  receive ring contains fresh as yet un-processed frames,this function is
+ *  called. It picks out the RxD at which place the last Rx processing had 
+ *  stopped and sends the skb to the OSM's Rx handler and then increments 
+ *  the offset.
+ *  Return Value:
+ *  NONE.
+ */
+
+static void rx_intr_handler(struct s2io_nic *nic)
+{
+	struct net_device *dev = (struct net_device *) nic->dev;
+	XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
+	rx_curr_get_info_t get_info, put_info;
+	RxD_t *rxdp;
+	struct sk_buff *skb;
+#ifndef CONFIG_2BUFF_MODE
+	u16 val16, cksum;
+#endif
+	register u64 val64 = 0;
+	int get_block, get_offset, put_block, put_offset, ring_bufs;
+	int i, pkt_cnt = 0;
+	mac_info_t *mac_control;
+	struct config_param *config;
+#ifdef CONFIG_2BUFF_MODE
+	buffAdd_t *ba;
+#endif
+
+	mac_control = &nic->mac_control;
+	config = &nic->config;
+
+	/* 
+	 * rx_traffic_int reg is an R1 register, hence we read and write back 
+	 * the samevalue in the register to clear it.
+	 */
+	val64 = readq(&bar0->rx_traffic_int);
+	writeq(val64, &bar0->rx_traffic_int);
+
+	for (i = 0; i < config->rx_ring_num; i++) {
+		get_info = mac_control->rx_curr_get_info[i];
+		get_block = get_info.block_index;
+		put_info = mac_control->rx_curr_put_info[i];
+		put_block = put_info.block_index;
+		ring_bufs = config->rx_cfg[i].num_rxd;
+		rxdp = nic->rx_blocks[i][get_block].block_virt_addr +
+		    get_info.offset;
+#ifndef	CONFIG_2BUFF_MODE
+		get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+		    get_info.offset;
+		spin_lock(&nic->put_lock);
+		put_offset = nic->put_pos[i];
+		spin_unlock(&nic->put_lock);
+		while ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
+		       (((get_offset + 1) % ring_bufs) != put_offset)) {
+			if (rxdp->Control_1 == END_OF_BLOCK) {
+				rxdp = (RxD_t *) ((unsigned long)
+						  rxdp->Control_2);
+				get_info.offset++;
+				get_info.offset %=
+				    (MAX_RXDS_PER_BLOCK + 1);
+				get_block++;
+				get_block %= nic->block_count[i];
+				mac_control->rx_curr_get_info[i].
+				    offset = get_info.offset;
+				mac_control->rx_curr_get_info[i].
+				    block_index = get_block;
+				continue;
+			}
+			get_offset =
+			    (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+			    get_info.offset;
+			skb = (struct sk_buff *) ((unsigned long)
+						  rxdp->Host_Control);
+			if (skb == NULL) {
+				DBG_PRINT(ERR_DBG, "%s: The skb is ",
+					  dev->name);
+				DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
+				return;
+			}
+			val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
+			val16 = (u16) (val64 >> 48);
+			cksum = RXD_GET_L4_CKSUM(rxdp->Control_1);
+			pci_unmap_single(nic->pdev, (dma_addr_t)
+					 rxdp->Buffer0_ptr,
+					 dev->mtu +
+					 HEADER_ETHERNET_II_802_3_SIZE +
+					 HEADER_802_2_SIZE +
+					 HEADER_SNAP_SIZE,
+					 PCI_DMA_FROMDEVICE);
+			rx_osm_handler(nic, val16, rxdp, i);
+			get_info.offset++;
+			get_info.offset %= (MAX_RXDS_PER_BLOCK + 1);
+			rxdp =
+			    nic->rx_blocks[i][get_block].block_virt_addr +
+			    get_info.offset;
+			mac_control->rx_curr_get_info[i].offset =
+			    get_info.offset;
+			pkt_cnt++;
+			if ((indicate_max_pkts)
+			    && (pkt_cnt > indicate_max_pkts))
+				break;
+		}
+#else
+		get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+		    get_info.offset;
+		spin_lock(&nic->put_lock);
+		put_offset = nic->put_pos[i];
+		spin_unlock(&nic->put_lock);
+		while (((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
+			!(rxdp->Control_2 & BIT(0))) &&
+		       (((get_offset + 1) % ring_bufs) != put_offset)) {
+			skb = (struct sk_buff *) ((unsigned long)
+						  rxdp->Host_Control);
+			if (skb == NULL) {
+				DBG_PRINT(ERR_DBG, "%s: The skb is ",
+					  dev->name);
+				DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
+				return;
+			}
+
+			pci_unmap_single(nic->pdev, (dma_addr_t)
+					 rxdp->Buffer0_ptr,
+					 BUF0_LEN, PCI_DMA_FROMDEVICE);
+			pci_unmap_single(nic->pdev, (dma_addr_t)
+					 rxdp->Buffer1_ptr,
+					 BUF1_LEN, PCI_DMA_FROMDEVICE);
+			pci_unmap_single(nic->pdev, (dma_addr_t)
+					 rxdp->Buffer2_ptr,
+					 dev->mtu + BUF0_LEN + 4,
+					 PCI_DMA_FROMDEVICE);
+			ba = &nic->ba[i][get_block][get_info.offset];
+
+			rx_osm_handler(nic, rxdp, i, ba);
+
+			get_info.offset++;
+			mac_control->rx_curr_get_info[i].offset =
+			    get_info.offset;
+			rxdp =
+			    nic->rx_blocks[i][get_block].block_virt_addr +
+			    get_info.offset;
+
+			if (get_info.offset &&
+			    (!(get_info.offset % MAX_RXDS_PER_BLOCK))) {
+				get_info.offset = 0;
+				mac_control->rx_curr_get_info[i].
+				    offset = get_info.offset;
+				get_block++;
+				get_block %= nic->block_count[i];
+				mac_control->rx_curr_get_info[i].
+				    block_index = get_block;
+				rxdp =
+				    nic->rx_blocks[i][get_block].
+				    block_virt_addr;
+			}
+			get_offset =
+			    (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+			    get_info.offset;
+			pkt_cnt++;
+			if ((indicate_max_pkts)
+			    && (pkt_cnt > indicate_max_pkts))
+				break;
+		}
+#endif
+		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
+			break;
+	}
+}
+#endif
+/**  
+ *  tx_intr_handler - Transmit interrupt handler
+ *  @nic : device private variable
+ *  Description: 
+ *  If an interrupt was raised to indicate DMA complete of the 
+ *  Tx packet, this function is called. It identifies the last TxD 
+ *  whose buffer was freed and frees all skbs whose data have already 
+ *  DMA'ed into the NICs internal memory.
+ *  Return Value:
+ *  NONE
+ */
+
+static void tx_intr_handler(struct s2io_nic *nic)
+{
+	XENA_dev_config_t __iomem *bar0 = nic->bar0;
+	struct net_device *dev = (struct net_device *) nic->dev;
+	tx_curr_get_info_t get_info, put_info;
+	struct sk_buff *skb;
+	TxD_t *txdlp;
+	register u64 val64 = 0;
+	int i;
+	u16 j, frg_cnt;
+	mac_info_t *mac_control;
+	struct config_param *config;
+
+	mac_control = &nic->mac_control;
+	config = &nic->config;
+
+	/* 
+	 * tx_traffic_int reg is an R1 register, hence we read and write 
+	 * back the samevalue in the register to clear it.
+	 */
+	val64 = readq(&bar0->tx_traffic_int);
+	writeq(val64, &bar0->tx_traffic_int);
+
+	for (i = 0; i < config->tx_fifo_num; i++) {
+		get_info = mac_control->tx_curr_get_info[i];
+		put_info = mac_control->tx_curr_put_info[i];
+		txdlp = (TxD_t *) nic->list_info[i][get_info.offset].
+		    list_virt_addr;
+		while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
+		       (get_info.offset != put_info.offset) &&
+		       (txdlp->Host_Control)) {
+			/* Check for TxD errors */
+			if (txdlp->Control_1 & TXD_T_CODE) {
+				unsigned long long err;
+				err = txdlp->Control_1 & TXD_T_CODE;
+				DBG_PRINT(ERR_DBG, "***TxD error %llx\n",
+					  err);
+			}
+
+			skb = (struct sk_buff *) ((unsigned long)
+						  txdlp->Host_Control);
+			if (skb == NULL) {
+				DBG_PRINT(ERR_DBG, "%s: Null skb ",
+					  dev->name);
+				DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
+				return;
+			}
+			nic->tx_pkt_count++;
+
+			frg_cnt = skb_shinfo(skb)->nr_frags;
+
+			/*  For unfragmented skb */
+			pci_unmap_single(nic->pdev, (dma_addr_t)
+					 txdlp->Buffer_Pointer,
+					 skb->len - skb->data_len,
+					 PCI_DMA_TODEVICE);
+			if (frg_cnt) {
+				TxD_t *temp = txdlp;
+				txdlp++;
+				for (j = 0; j < frg_cnt; j++, txdlp++) {
+					skb_frag_t *frag =
+					    &skb_shinfo(skb)->frags[j];
+					pci_unmap_page(nic->pdev,
+						       (dma_addr_t)
+						       txdlp->
+						       Buffer_Pointer,
+						       frag->size,
+						       PCI_DMA_TODEVICE);
+				}
+				txdlp = temp;
+			}
+			memset(txdlp, 0,
+			       (sizeof(TxD_t) * config->max_txds));
+
+			/* Updating the statistics block */
+			nic->stats.tx_packets++;
+			nic->stats.tx_bytes += skb->len;
+			dev_kfree_skb_irq(skb);
+
+			get_info.offset++;
+			get_info.offset %= get_info.fifo_len + 1;
+			txdlp = (TxD_t *) nic->list_info[i]
+			    [get_info.offset].list_virt_addr;
+			mac_control->tx_curr_get_info[i].offset =
+			    get_info.offset;
+		}
+	}
+
+	spin_lock(&nic->tx_lock);
+	if (netif_queue_stopped(dev))
+		netif_wake_queue(dev);
+	spin_unlock(&nic->tx_lock);
+}
+
+/**  
+ *  alarm_intr_handler - Alarm Interrrupt handler
+ *  @nic: device private variable
+ *  Description: If the interrupt was neither because of Rx packet or Tx 
+ *  complete, this function is called. If the interrupt was to indicate
+ *  a loss of link, the OSM link status handler is invoked for any other 
+ *  alarm interrupt the block that raised the interrupt is displayed 
+ *  and a H/W reset is issued.
+ *  Return Value:
+ *  NONE
+*/
+
+static void alarm_intr_handler(struct s2io_nic *nic)
+{
+	struct net_device *dev = (struct net_device *) nic->dev;
+	XENA_dev_config_t __iomem *bar0 = nic->bar0;
+	register u64 val64 = 0, err_reg = 0;
+
+	/* Handling link status change error Intr */
+	err_reg = readq(&bar0->mac_rmac_err_reg);
+	writeq(err_reg, &bar0->mac_rmac_err_reg);
+	if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
+		schedule_work(&nic->set_link_task);
+	}
+
+	/* In case of a serious error, the device will be Reset. */
+	val64 = readq(&bar0->serr_source);
+	if (val64 & SERR_SOURCE_ANY) {
+		DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
+		DBG_PRINT(ERR_DBG, "serious error!!\n");
+		netif_stop_queue(dev);
+		schedule_work(&nic->rst_timer_task);
+	}
+
+	/*
+	 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
+	 * Error occurs, the adapter will be recycled by disabling the
+	 * adapter enable bit and enabling it again after the device 
+	 * becomes Quiescent.
+	 */
+	val64 = readq(&bar0->pcc_err_reg);
+	writeq(val64, &bar0->pcc_err_reg);
+	if (val64 & PCC_FB_ECC_DB_ERR) {
+		u64 ac = readq(&bar0->adapter_control);
+		ac &= ~(ADAPTER_CNTL_EN);
+		writeq(ac, &bar0->adapter_control);
+		ac = readq(&bar0->adapter_control);
+		schedule_work(&nic->set_link_task);
+	}
+
+	/* Other type of interrupts are not being handled now,  TODO */
+}
+
+/** 
+ *  wait_for_cmd_complete - waits for a command to complete.
+ *  @sp : private member of the device structure, which is a pointer to the 
+ *  s2io_nic structure.
+ *  Description: Function that waits for a command to Write into RMAC 
+ *  ADDR DATA registers to be completed and returns either success or 
+ *  error depending on whether the command was complete or not. 
+ *  Return value:
+ *   SUCCESS on success and FAILURE on failure.
+ */
+
+static int wait_for_cmd_complete(nic_t * sp)
+{
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	int ret = FAILURE, cnt = 0;
+	u64 val64;
+
+	while (TRUE) {
+		val64 = readq(&bar0->rmac_addr_cmd_mem);
+		if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
+			ret = SUCCESS;
+			break;
+		}
+		msleep(50);
+		if (cnt++ > 10)
+			break;
+	}
+
+	return ret;
+}
+
+/** 
+ *  s2io_reset - Resets the card. 
+ *  @sp : private member of the device structure.
+ *  Description: Function to Reset the card. This function then also
+ *  restores the previously saved PCI configuration space registers as 
+ *  the card reset also resets the configuration space.
+ *  Return value:
+ *  void.
+ */
+
+static void s2io_reset(nic_t * sp)
+{
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	u64 val64;
+	u16 subid;
+
+	val64 = SW_RESET_ALL;
+	writeq(val64, &bar0->sw_reset);
+
+	/* 
+	 * At this stage, if the PCI write is indeed completed, the 
+	 * card is reset and so is the PCI Config space of the device. 
+	 * So a read cannot be issued at this stage on any of the 
+	 * registers to ensure the write into "sw_reset" register
+	 * has gone through.
+	 * Question: Is there any system call that will explicitly force
+	 * all the write commands still pending on the bus to be pushed
+	 * through?
+	 * As of now I'am just giving a 250ms delay and hoping that the
+	 * PCI write to sw_reset register is done by this time.
+	 */
+	msleep(250);
+
+	/* Restore the PCI state saved during initializarion. */
+	pci_restore_state(sp->pdev);
+	s2io_init_pci(sp);
+
+	msleep(250);
+
+	/* SXE-002: Configure link and activity LED to turn it off */
+	subid = sp->pdev->subsystem_device;
+	if ((subid & 0xFF) >= 0x07) {
+		val64 = readq(&bar0->gpio_control);
+		val64 |= 0x0000800000000000ULL;
+		writeq(val64, &bar0->gpio_control);
+		val64 = 0x0411040400000000ULL;
+		writeq(val64, (void __iomem *) bar0 + 0x2700);
+	}
+
+	sp->device_enabled_once = FALSE;
+}
+
+/**
+ *  s2io_set_swapper - to set the swapper controle on the card 
+ *  @sp : private member of the device structure, 
+ *  pointer to the s2io_nic structure.
+ *  Description: Function to set the swapper control on the card 
+ *  correctly depending on the 'endianness' of the system.
+ *  Return value:
+ *  SUCCESS on success and FAILURE on failure.
+ */
+
+static int s2io_set_swapper(nic_t * sp)
+{
+	struct net_device *dev = sp->dev;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	u64 val64, valt, valr;
+
+	/* 
+	 * Set proper endian settings and verify the same by reading
+	 * the PIF Feed-back register.
+	 */
+
+	val64 = readq(&bar0->pif_rd_swapper_fb);
+	if (val64 != 0x0123456789ABCDEFULL) {
+		int i = 0;
+		u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
+				0x8100008181000081ULL,  /* FE=1, SE=0 */
+				0x4200004242000042ULL,  /* FE=0, SE=1 */
+				0};                     /* FE=0, SE=0 */
+
+		while(i<4) {
+			writeq(value[i], &bar0->swapper_ctrl);
+			val64 = readq(&bar0->pif_rd_swapper_fb);
+			if (val64 == 0x0123456789ABCDEFULL)
+				break;
+			i++;
+		}
+		if (i == 4) {
+			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
+				dev->name);
+			DBG_PRINT(ERR_DBG, "feedback read %llx\n",
+				(unsigned long long) val64);
+			return FAILURE;
+		}
+		valr = value[i];
+	} else {
+		valr = readq(&bar0->swapper_ctrl);
+	}
+
+	valt = 0x0123456789ABCDEFULL;
+	writeq(valt, &bar0->xmsi_address);
+	val64 = readq(&bar0->xmsi_address);
+
+	if(val64 != valt) {
+		int i = 0;
+		u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
+				0x0081810000818100ULL,  /* FE=1, SE=0 */
+				0x0042420000424200ULL,  /* FE=0, SE=1 */
+				0};                     /* FE=0, SE=0 */
+
+		while(i<4) {
+			writeq((value[i] | valr), &bar0->swapper_ctrl);
+			writeq(valt, &bar0->xmsi_address);
+			val64 = readq(&bar0->xmsi_address);
+			if(val64 == valt)
+				break;
+			i++;
+		}
+		if(i == 4) {
+			DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
+			DBG_PRINT(ERR_DBG, "reads:0x%llx\n",val64);
+			return FAILURE;
+		}
+	}
+	val64 = readq(&bar0->swapper_ctrl);
+	val64 &= 0xFFFF000000000000ULL;
+
+#ifdef  __BIG_ENDIAN
+	/* 
+	 * The device by default set to a big endian format, so a 
+	 * big endian driver need not set anything.
+	 */
+	val64 |= (SWAPPER_CTRL_TXP_FE |
+		 SWAPPER_CTRL_TXP_SE |
+		 SWAPPER_CTRL_TXD_R_FE |
+		 SWAPPER_CTRL_TXD_W_FE |
+		 SWAPPER_CTRL_TXF_R_FE |
+		 SWAPPER_CTRL_RXD_R_FE |
+		 SWAPPER_CTRL_RXD_W_FE |
+		 SWAPPER_CTRL_RXF_W_FE |
+		 SWAPPER_CTRL_XMSI_FE |
+		 SWAPPER_CTRL_XMSI_SE |
+		 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
+	writeq(val64, &bar0->swapper_ctrl);
+#else
+	/* 
+	 * Initially we enable all bits to make it accessible by the
+	 * driver, then we selectively enable only those bits that 
+	 * we want to set.
+	 */
+	val64 |= (SWAPPER_CTRL_TXP_FE |
+		 SWAPPER_CTRL_TXP_SE |
+		 SWAPPER_CTRL_TXD_R_FE |
+		 SWAPPER_CTRL_TXD_R_SE |
+		 SWAPPER_CTRL_TXD_W_FE |
+		 SWAPPER_CTRL_TXD_W_SE |
+		 SWAPPER_CTRL_TXF_R_FE |
+		 SWAPPER_CTRL_RXD_R_FE |
+		 SWAPPER_CTRL_RXD_R_SE |
+		 SWAPPER_CTRL_RXD_W_FE |
+		 SWAPPER_CTRL_RXD_W_SE |
+		 SWAPPER_CTRL_RXF_W_FE |
+		 SWAPPER_CTRL_XMSI_FE |
+		 SWAPPER_CTRL_XMSI_SE |
+		 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
+	writeq(val64, &bar0->swapper_ctrl);
+#endif
+	val64 = readq(&bar0->swapper_ctrl);
+
+	/* 
+	 * Verifying if endian settings are accurate by reading a 
+	 * feedback register.
+	 */
+	val64 = readq(&bar0->pif_rd_swapper_fb);
+	if (val64 != 0x0123456789ABCDEFULL) {
+		/* Endian settings are incorrect, calls for another dekko. */
+		DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
+			  dev->name);
+		DBG_PRINT(ERR_DBG, "feedback read %llx\n",
+			  (unsigned long long) val64);
+		return FAILURE;
+	}
+
+	return SUCCESS;
+}
+
+/* ********************************************************* *
+ * Functions defined below concern the OS part of the driver *
+ * ********************************************************* */
+
+/**  
+ *  s2io_open - open entry point of the driver
+ *  @dev : pointer to the device structure.
+ *  Description:
+ *  This function is the open entry point of the driver. It mainly calls a
+ *  function to allocate Rx buffers and inserts them into the buffer
+ *  descriptors and then enables the Rx part of the NIC. 
+ *  Return value:
+ *  0 on success and an appropriate (-)ve integer as defined in errno.h
+ *   file on failure.
+ */
+
+static int s2io_open(struct net_device *dev)
+{
+	nic_t *sp = dev->priv;
+	int err = 0;
+
+	/* 
+	 * Make sure you have link off by default every time 
+	 * Nic is initialized
+	 */
+	netif_carrier_off(dev);
+	sp->last_link_state = LINK_DOWN;
+
+	/* Initialize H/W and enable interrupts */
+	if (s2io_card_up(sp)) {
+		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
+			  dev->name);
+		return -ENODEV;
+	}
+
+	/* After proper initialization of H/W, register ISR */
+	err = request_irq((int) sp->irq, s2io_isr, SA_SHIRQ,
+			  sp->name, dev);
+	if (err) {
+		s2io_reset(sp);
+		DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
+			  dev->name);
+		return err;
+	}
+
+	if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
+		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
+		s2io_reset(sp);
+		return -ENODEV;
+	}
+
+	netif_start_queue(dev);
+	return 0;
+}
+
+/**
+ *  s2io_close -close entry point of the driver
+ *  @dev : device pointer.
+ *  Description:
+ *  This is the stop entry point of the driver. It needs to undo exactly
+ *  whatever was done by the open entry point,thus it's usually referred to
+ *  as the close function.Among other things this function mainly stops the
+ *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
+ *  Return value:
+ *  0 on success and an appropriate (-)ve integer as defined in errno.h
+ *  file on failure.
+ */
+
+static int s2io_close(struct net_device *dev)
+{
+	nic_t *sp = dev->priv;
+
+	flush_scheduled_work();
+	netif_stop_queue(dev);
+	/* Reset card, kill tasklet and free Tx and Rx buffers. */
+	s2io_card_down(sp);
+
+	free_irq(dev->irq, dev);
+	sp->device_close_flag = TRUE;	/* Device is shut down. */
+	return 0;
+}
+
+/**
+ *  s2io_xmit - Tx entry point of te driver
+ *  @skb : the socket buffer containing the Tx data.
+ *  @dev : device pointer.
+ *  Description :
+ *  This function is the Tx entry point of the driver. S2IO NIC supports
+ *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
+ *  NOTE: when device cant queue the pkt,just the trans_start variable will
+ *  not be upadted.
+ *  Return value:
+ *  0 on success & 1 on failure.
+ */
+
+static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+	nic_t *sp = dev->priv;
+	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
+	register u64 val64;
+	TxD_t *txdp;
+	TxFIFO_element_t __iomem *tx_fifo;
+	unsigned long flags;
+#ifdef NETIF_F_TSO
+	int mss;
+#endif
+	mac_info_t *mac_control;
+	struct config_param *config;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+
+	mac_control = &sp->mac_control;
+	config = &sp->config;
+
+	DBG_PRINT(TX_DBG, "%s: In S2IO Tx routine\n", dev->name);
+	spin_lock_irqsave(&sp->tx_lock, flags);
+
+	if (atomic_read(&sp->card_state) == CARD_DOWN) {
+		DBG_PRINT(ERR_DBG, "%s: Card going down for reset\n",
+			  dev->name);
+		spin_unlock_irqrestore(&sp->tx_lock, flags);
+		return 1;
+	}
+
+	queue = 0;
+	put_off = (u16) mac_control->tx_curr_put_info[queue].offset;
+	get_off = (u16) mac_control->tx_curr_get_info[queue].offset;
+	txdp = (TxD_t *) sp->list_info[queue][put_off].list_virt_addr;
+
+	queue_len = mac_control->tx_curr_put_info[queue].fifo_len + 1;
+	/* Avoid "put" pointer going beyond "get" pointer */
+	if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
+		DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n");
+		netif_stop_queue(dev);
+		dev_kfree_skb(skb);
+		spin_unlock_irqrestore(&sp->tx_lock, flags);
+		return 0;
+	}
+#ifdef NETIF_F_TSO
+	mss = skb_shinfo(skb)->tso_size;
+	if (mss) {
+		txdp->Control_1 |= TXD_TCP_LSO_EN;
+		txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
+	}
+#endif
+
+	frg_cnt = skb_shinfo(skb)->nr_frags;
+	frg_len = skb->len - skb->data_len;
+
+	txdp->Host_Control = (unsigned long) skb;
+	txdp->Buffer_Pointer = pci_map_single
+	    (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
+	if (skb->ip_summed == CHECKSUM_HW) {
+		txdp->Control_2 |=
+		    (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
+		     TXD_TX_CKO_UDP_EN);
+	}
+
+	txdp->Control_2 |= config->tx_intr_type;
+
+	txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
+			    TXD_GATHER_CODE_FIRST);
+	txdp->Control_1 |= TXD_LIST_OWN_XENA;
+
+	/* For fragmented SKB. */
+	for (i = 0; i < frg_cnt; i++) {
+		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
+		txdp++;
+		txdp->Buffer_Pointer = (u64) pci_map_page
+		    (sp->pdev, frag->page, frag->page_offset,
+		     frag->size, PCI_DMA_TODEVICE);
+		txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
+	}
+	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
+
+	tx_fifo = mac_control->tx_FIFO_start[queue];
+	val64 = sp->list_info[queue][put_off].list_phy_addr;
+	writeq(val64, &tx_fifo->TxDL_Pointer);
+
+	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
+		 TX_FIFO_LAST_LIST);
+#ifdef NETIF_F_TSO
+	if (mss)
+		val64 |= TX_FIFO_SPECIAL_FUNC;
+#endif
+	writeq(val64, &tx_fifo->List_Control);
+
+	/* Perform a PCI read to flush previous writes */
+	val64 = readq(&bar0->general_int_status);
+
+	put_off++;
+	put_off %= mac_control->tx_curr_put_info[queue].fifo_len + 1;
+	mac_control->tx_curr_put_info[queue].offset = put_off;
+
+	/* Avoid "put" pointer going beyond "get" pointer */
+	if (((put_off + 1) % queue_len) == get_off) {
+		DBG_PRINT(TX_DBG,
+			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
+			  put_off, get_off);
+		netif_stop_queue(dev);
+	}
+
+	dev->trans_start = jiffies;
+	spin_unlock_irqrestore(&sp->tx_lock, flags);
+
+	return 0;
+}
+
+/**
+ *  s2io_isr - ISR handler of the device .
+ *  @irq: the irq of the device.
+ *  @dev_id: a void pointer to the dev structure of the NIC.
+ *  @pt_regs: pointer to the registers pushed on the stack.
+ *  Description:  This function is the ISR handler of the device. It 
+ *  identifies the reason for the interrupt and calls the relevant 
+ *  service routines. As a contongency measure, this ISR allocates the 
+ *  recv buffers, if their numbers are below the panic value which is
+ *  presently set to 25% of the original number of rcv buffers allocated.
+ *  Return value:
+ *   IRQ_HANDLED: will be returned if IRQ was handled by this routine 
+ *   IRQ_NONE: will be returned if interrupt is not from our device
+ */
+static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
+{
+	struct net_device *dev = (struct net_device *) dev_id;
+	nic_t *sp = dev->priv;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+#ifndef CONFIG_S2IO_NAPI
+	int i, ret;
+#endif
+	u64 reason = 0;
+	mac_info_t *mac_control;
+	struct config_param *config;
+
+	mac_control = &sp->mac_control;
+	config = &sp->config;
+
+	/* 
+	 * Identify the cause for interrupt and call the appropriate
+	 * interrupt handler. Causes for the interrupt could be;
+	 * 1. Rx of packet.
+	 * 2. Tx complete.
+	 * 3. Link down.
+	 * 4. Error in any functional blocks of the NIC. 
+	 */
+	reason = readq(&bar0->general_int_status);
+
+	if (!reason) {
+		/* The interrupt was not raised by Xena. */
+		return IRQ_NONE;
+	}
+
+	/* If Intr is because of Tx Traffic */
+	if (reason & GEN_INTR_TXTRAFFIC) {
+		tx_intr_handler(sp);
+	}
+
+	/* If Intr is because of an error */
+	if (reason & (GEN_ERROR_INTR))
+		alarm_intr_handler(sp);
+
+#ifdef CONFIG_S2IO_NAPI
+	if (reason & GEN_INTR_RXTRAFFIC) {
+		if (netif_rx_schedule_prep(dev)) {
+			en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
+					      DISABLE_INTRS);
+			__netif_rx_schedule(dev);
+		}
+	}
+#else
+	/* If Intr is because of Rx Traffic */
+	if (reason & GEN_INTR_RXTRAFFIC) {
+		rx_intr_handler(sp);
+	}
+#endif
+
+	/* 
+	 * If the Rx buffer count is below the panic threshold then 
+	 * reallocate the buffers from the interrupt handler itself, 
+	 * else schedule a tasklet to reallocate the buffers.
+	 */
+#ifndef CONFIG_S2IO_NAPI
+	for (i = 0; i < config->rx_ring_num; i++) {
+		int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
+		int level = rx_buffer_level(sp, rxb_size, i);
+
+		if ((level == PANIC) && (!TASKLET_IN_USE)) {
+			DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
+			DBG_PRINT(INTR_DBG, "PANIC levels\n");
+			if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
+				DBG_PRINT(ERR_DBG, "%s:Out of memory",
+					  dev->name);
+				DBG_PRINT(ERR_DBG, " in ISR!!\n");
+				clear_bit(0, (&sp->tasklet_status));
+				return IRQ_HANDLED;
+			}
+			clear_bit(0, (&sp->tasklet_status));
+		} else if (level == LOW) {
+			tasklet_schedule(&sp->task);
+		}
+	}
+#endif
+
+	return IRQ_HANDLED;
+}
+
+/**
+ *  s2io_get_stats - Updates the device statistics structure. 
+ *  @dev : pointer to the device structure.
+ *  Description:
+ *  This function updates the device statistics structure in the s2io_nic 
+ *  structure and returns a pointer to the same.
+ *  Return value:
+ *  pointer to the updated net_device_stats structure.
+ */
+
+static struct net_device_stats *s2io_get_stats(struct net_device *dev)
+{
+	nic_t *sp = dev->priv;
+	mac_info_t *mac_control;
+	struct config_param *config;
+
+	mac_control = &sp->mac_control;
+	config = &sp->config;
+
+	sp->stats.tx_errors = mac_control->stats_info->tmac_any_err_frms;
+	sp->stats.rx_errors = mac_control->stats_info->rmac_drop_frms;
+	sp->stats.multicast = mac_control->stats_info->rmac_vld_mcst_frms;
+	sp->stats.rx_length_errors =
+	    mac_control->stats_info->rmac_long_frms;
+
+	return (&sp->stats);
+}
+
+/**
+ *  s2io_set_multicast - entry point for multicast address enable/disable.
+ *  @dev : pointer to the device structure
+ *  Description:
+ *  This function is a driver entry point which gets called by the kernel 
+ *  whenever multicast addresses must be enabled/disabled. This also gets 
+ *  called to set/reset promiscuous mode. Depending on the deivce flag, we
+ *  determine, if multicast address must be enabled or if promiscuous mode
+ *  is to be disabled etc.
+ *  Return value:
+ *  void.
+ */
+
+static void s2io_set_multicast(struct net_device *dev)
+{
+	int i, j, prev_cnt;
+	struct dev_mc_list *mclist;
+	nic_t *sp = dev->priv;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
+	    0xfeffffffffffULL;
+	u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
+	void __iomem *add;
+
+	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
+		/*  Enable all Multicast addresses */
+		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
+		       &bar0->rmac_addr_data0_mem);
+		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
+		       &bar0->rmac_addr_data1_mem);
+		val64 = RMAC_ADDR_CMD_MEM_WE |
+		    RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+		    RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
+		writeq(val64, &bar0->rmac_addr_cmd_mem);
+		/* Wait till command completes */
+		wait_for_cmd_complete(sp);
+
+		sp->m_cast_flg = 1;
+		sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
+	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
+		/*  Disable all Multicast addresses */
+		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
+		       &bar0->rmac_addr_data0_mem);
+		val64 = RMAC_ADDR_CMD_MEM_WE |
+		    RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+		    RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
+		writeq(val64, &bar0->rmac_addr_cmd_mem);
+		/* Wait till command completes */
+		wait_for_cmd_complete(sp);
+
+		sp->m_cast_flg = 0;
+		sp->all_multi_pos = 0;
+	}
+
+	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
+		/*  Put the NIC into promiscuous mode */
+		add = &bar0->mac_cfg;
+		val64 = readq(&bar0->mac_cfg);
+		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
+
+		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+		writel((u32) val64, add);
+		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+		writel((u32) (val64 >> 32), (add + 4));
+
+		val64 = readq(&bar0->mac_cfg);
+		sp->promisc_flg = 1;
+		DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n",
+			  dev->name);
+	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
+		/*  Remove the NIC from promiscuous mode */
+		add = &bar0->mac_cfg;
+		val64 = readq(&bar0->mac_cfg);
+		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
+
+		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+		writel((u32) val64, add);
+		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+		writel((u32) (val64 >> 32), (add + 4));
+
+		val64 = readq(&bar0->mac_cfg);
+		sp->promisc_flg = 0;
+		DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n",
+			  dev->name);
+	}
+
+	/*  Update individual M_CAST address list */
+	if ((!sp->m_cast_flg) && dev->mc_count) {
+		if (dev->mc_count >
+		    (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
+			DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
+				  dev->name);
+			DBG_PRINT(ERR_DBG, "can be added, please enable ");
+			DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
+			return;
+		}
+
+		prev_cnt = sp->mc_addr_count;
+		sp->mc_addr_count = dev->mc_count;
+
+		/* Clear out the previous list of Mc in the H/W. */
+		for (i = 0; i < prev_cnt; i++) {
+			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
+			       &bar0->rmac_addr_data0_mem);
+			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
+		       		&bar0->rmac_addr_data1_mem);
+			val64 = RMAC_ADDR_CMD_MEM_WE |
+			    RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+			    RMAC_ADDR_CMD_MEM_OFFSET
+			    (MAC_MC_ADDR_START_OFFSET + i);
+			writeq(val64, &bar0->rmac_addr_cmd_mem);
+
+			/* Wait for command completes */
+			if (wait_for_cmd_complete(sp)) {
+				DBG_PRINT(ERR_DBG, "%s: Adding ",
+					  dev->name);
+				DBG_PRINT(ERR_DBG, "Multicasts failed\n");
+				return;
+			}
+		}
+
+		/* Create the new Rx filter list and update the same in H/W. */
+		for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
+		     i++, mclist = mclist->next) {
+			memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
+			       ETH_ALEN);
+			for (j = 0; j < ETH_ALEN; j++) {
+				mac_addr |= mclist->dmi_addr[j];
+				mac_addr <<= 8;
+			}
+			mac_addr >>= 8;
+			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
+			       &bar0->rmac_addr_data0_mem);
+			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
+		       		&bar0->rmac_addr_data1_mem);
+
+			val64 = RMAC_ADDR_CMD_MEM_WE |
+			    RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+			    RMAC_ADDR_CMD_MEM_OFFSET
+			    (i + MAC_MC_ADDR_START_OFFSET);
+			writeq(val64, &bar0->rmac_addr_cmd_mem);
+
+			/* Wait for command completes */
+			if (wait_for_cmd_complete(sp)) {
+				DBG_PRINT(ERR_DBG, "%s: Adding ",
+					  dev->name);
+				DBG_PRINT(ERR_DBG, "Multicasts failed\n");
+				return;
+			}
+		}
+	}
+}
+
+/**
+ *  s2io_set_mac_addr - Programs the Xframe mac address 
+ *  @dev : pointer to the device structure.
+ *  @addr: a uchar pointer to the new mac address which is to be set.
+ *  Description : This procedure will program the Xframe to receive 
+ *  frames with new Mac Address
+ *  Return value: SUCCESS on success and an appropriate (-)ve integer 
+ *  as defined in errno.h file on failure.
+ */
+
+int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
+{
+	nic_t *sp = dev->priv;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	register u64 val64, mac_addr = 0;
+	int i;
+
+	/* 
+	 * Set the new MAC address as the new unicast filter and reflect this
+	 * change on the device address registered with the OS. It will be
+	 * at offset 0. 
+	 */
+	for (i = 0; i < ETH_ALEN; i++) {
+		mac_addr <<= 8;
+		mac_addr |= addr[i];
+	}
+
+	writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
+	       &bar0->rmac_addr_data0_mem);
+
+	val64 =
+	    RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+	    RMAC_ADDR_CMD_MEM_OFFSET(0);
+	writeq(val64, &bar0->rmac_addr_cmd_mem);
+	/* Wait till command completes */
+	if (wait_for_cmd_complete(sp)) {
+		DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
+		return FAILURE;
+	}
+
+	return SUCCESS;
+}
+
+/**
+ * s2io_ethtool_sset - Sets different link parameters. 
+ * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
+ * @info: pointer to the structure with parameters given by ethtool to set
+ * link information.
+ * Description:
+ * The function sets different link parameters provided by the user onto 
+ * the NIC.
+ * Return value:
+ * 0 on success.
+*/
+
+static int s2io_ethtool_sset(struct net_device *dev,
+			     struct ethtool_cmd *info)
+{
+	nic_t *sp = dev->priv;
+	if ((info->autoneg == AUTONEG_ENABLE) ||
+	    (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
+		return -EINVAL;
+	else {
+		s2io_close(sp->dev);
+		s2io_open(sp->dev);
+	}
+
+	return 0;
+}
+
+/**
+ * s2io_ethtol_gset - Return link specific information. 
+ * @sp : private member of the device structure, pointer to the
+ *      s2io_nic structure.
+ * @info : pointer to the structure with parameters given by ethtool
+ * to return link information.
+ * Description:
+ * Returns link specific information like speed, duplex etc.. to ethtool.
+ * Return value :
+ * return 0 on success.
+ */
+
+static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
+{
+	nic_t *sp = dev->priv;
+	info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
+	info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
+	info->port = PORT_FIBRE;
+	/* info->transceiver?? TODO */
+
+	if (netif_carrier_ok(sp->dev)) {
+		info->speed = 10000;
+		info->duplex = DUPLEX_FULL;
+	} else {
+		info->speed = -1;
+		info->duplex = -1;
+	}
+
+	info->autoneg = AUTONEG_DISABLE;
+	return 0;
+}
+
+/**
+ * s2io_ethtool_gdrvinfo - Returns driver specific information. 
+ * @sp : private member of the device structure, which is a pointer to the 
+ * s2io_nic structure.
+ * @info : pointer to the structure with parameters given by ethtool to
+ * return driver information.
+ * Description:
+ * Returns driver specefic information like name, version etc.. to ethtool.
+ * Return value:
+ *  void
+ */
+
+static void s2io_ethtool_gdrvinfo(struct net_device *dev,
+				  struct ethtool_drvinfo *info)
+{
+	nic_t *sp = dev->priv;
+
+	strncpy(info->driver, s2io_driver_name, sizeof(s2io_driver_name));
+	strncpy(info->version, s2io_driver_version,
+		sizeof(s2io_driver_version));
+	strncpy(info->fw_version, "", 32);
+	strncpy(info->bus_info, pci_name(sp->pdev), 32);
+	info->regdump_len = XENA_REG_SPACE;
+	info->eedump_len = XENA_EEPROM_SPACE;
+	info->testinfo_len = S2IO_TEST_LEN;
+	info->n_stats = S2IO_STAT_LEN;
+}
+
+/**
+ *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
+ *  @sp: private member of the device structure, which is a pointer to the 
+ *  s2io_nic structure.
+ *  @regs : pointer to the structure with parameters given by ethtool for 
+ *  dumping the registers.
+ *  @reg_space: The input argumnet into which all the registers are dumped.
+ *  Description:
+ *  Dumps the entire register space of xFrame NIC into the user given
+ *  buffer area.
+ * Return value :
+ * void .
+*/
+
+static void s2io_ethtool_gregs(struct net_device *dev,
+			       struct ethtool_regs *regs, void *space)
+{
+	int i;
+	u64 reg;
+	u8 *reg_space = (u8 *) space;
+	nic_t *sp = dev->priv;
+
+	regs->len = XENA_REG_SPACE;
+	regs->version = sp->pdev->subsystem_device;
+
+	for (i = 0; i < regs->len; i += 8) {
+		reg = readq(sp->bar0 + i);
+		memcpy((reg_space + i), &reg, 8);
+	}
+}
+
+/**
+ *  s2io_phy_id  - timer function that alternates adapter LED.
+ *  @data : address of the private member of the device structure, which 
+ *  is a pointer to the s2io_nic structure, provided as an u32.
+ * Description: This is actually the timer function that alternates the 
+ * adapter LED bit of the adapter control bit to set/reset every time on 
+ * invocation. The timer is set for 1/2 a second, hence tha NIC blinks 
+ *  once every second.
+*/
+static void s2io_phy_id(unsigned long data)
+{
+	nic_t *sp = (nic_t *) data;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	u64 val64 = 0;
+	u16 subid;
+
+	subid = sp->pdev->subsystem_device;
+	if ((subid & 0xFF) >= 0x07) {
+		val64 = readq(&bar0->gpio_control);
+		val64 ^= GPIO_CTRL_GPIO_0;
+		writeq(val64, &bar0->gpio_control);
+	} else {
+		val64 = readq(&bar0->adapter_control);
+		val64 ^= ADAPTER_LED_ON;
+		writeq(val64, &bar0->adapter_control);
+	}
+
+	mod_timer(&sp->id_timer, jiffies + HZ / 2);
+}
+
+/**
+ * s2io_ethtool_idnic - To physically identify the nic on the system.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @id : pointer to the structure with identification parameters given by 
+ * ethtool.
+ * Description: Used to physically identify the NIC on the system.
+ * The Link LED will blink for a time specified by the user for 
+ * identification.
+ * NOTE: The Link has to be Up to be able to blink the LED. Hence 
+ * identification is possible only if it's link is up.
+ * Return value:
+ * int , returns 0 on success
+ */
+
+static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
+{
+	u64 val64 = 0, last_gpio_ctrl_val;
+	nic_t *sp = dev->priv;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	u16 subid;
+
+	subid = sp->pdev->subsystem_device;
+	last_gpio_ctrl_val = readq(&bar0->gpio_control);
+	if ((subid & 0xFF) < 0x07) {
+		val64 = readq(&bar0->adapter_control);
+		if (!(val64 & ADAPTER_CNTL_EN)) {
+			printk(KERN_ERR
+			       "Adapter Link down, cannot blink LED\n");
+			return -EFAULT;
+		}
+	}
+	if (sp->id_timer.function == NULL) {
+		init_timer(&sp->id_timer);
+		sp->id_timer.function = s2io_phy_id;
+		sp->id_timer.data = (unsigned long) sp;
+	}
+	mod_timer(&sp->id_timer, jiffies);
+	if (data)
+		msleep(data * 1000);
+	else
+		msleep(0xFFFFFFFF);
+	del_timer_sync(&sp->id_timer);
+
+	if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) {
+		writeq(last_gpio_ctrl_val, &bar0->gpio_control);
+		last_gpio_ctrl_val = readq(&bar0->gpio_control);
+	}
+
+	return 0;
+}
+
+/**
+ * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
+ * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
+ * @ep : pointer to the structure with pause parameters given by ethtool.
+ * Description:
+ * Returns the Pause frame generation and reception capability of the NIC.
+ * Return value:
+ *  void
+ */
+static void s2io_ethtool_getpause_data(struct net_device *dev,
+				       struct ethtool_pauseparam *ep)
+{
+	u64 val64;
+	nic_t *sp = dev->priv;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+
+	val64 = readq(&bar0->rmac_pause_cfg);
+	if (val64 & RMAC_PAUSE_GEN_ENABLE)
+		ep->tx_pause = TRUE;
+	if (val64 & RMAC_PAUSE_RX_ENABLE)
+		ep->rx_pause = TRUE;
+	ep->autoneg = FALSE;
+}
+
+/**
+ * s2io_ethtool_setpause_data -  set/reset pause frame generation.
+ * @sp : private member of the device structure, which is a pointer to the 
+ *      s2io_nic structure.
+ * @ep : pointer to the structure with pause parameters given by ethtool.
+ * Description:
+ * It can be used to set or reset Pause frame generation or reception
+ * support of the NIC.
+ * Return value:
+ * int, returns 0 on Success
+ */
+
+static int s2io_ethtool_setpause_data(struct net_device *dev,
+				      struct ethtool_pauseparam *ep)
+{
+	u64 val64;
+	nic_t *sp = dev->priv;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+
+	val64 = readq(&bar0->rmac_pause_cfg);
+	if (ep->tx_pause)
+		val64 |= RMAC_PAUSE_GEN_ENABLE;
+	else
+		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
+	if (ep->rx_pause)
+		val64 |= RMAC_PAUSE_RX_ENABLE;
+	else
+		val64 &= ~RMAC_PAUSE_RX_ENABLE;
+	writeq(val64, &bar0->rmac_pause_cfg);
+	return 0;
+}
+
+/**
+ * read_eeprom - reads 4 bytes of data from user given offset.
+ * @sp : private member of the device structure, which is a pointer to the 
+ *      s2io_nic structure.
+ * @off : offset at which the data must be written
+ * @data : Its an output parameter where the data read at the given
+ * 	offset is stored.
+ * Description:
+ * Will read 4 bytes of data from the user given offset and return the 
+ * read data.
+ * NOTE: Will allow to read only part of the EEPROM visible through the
+ *   I2C bus.
+ * Return value:
+ *  -1 on failure and 0 on success.
+ */
+
+#define S2IO_DEV_ID		5
+static int read_eeprom(nic_t * sp, int off, u32 * data)
+{
+	int ret = -1;
+	u32 exit_cnt = 0;
+	u64 val64;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+
+	val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
+	    I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
+	    I2C_CONTROL_CNTL_START;
+	SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
+
+	while (exit_cnt < 5) {
+		val64 = readq(&bar0->i2c_control);
+		if (I2C_CONTROL_CNTL_END(val64)) {
+			*data = I2C_CONTROL_GET_DATA(val64);
+			ret = 0;
+			break;
+		}
+		msleep(50);
+		exit_cnt++;
+	}
+
+	return ret;
+}
+
+/**
+ *  write_eeprom - actually writes the relevant part of the data value.
+ *  @sp : private member of the device structure, which is a pointer to the
+ *       s2io_nic structure.
+ *  @off : offset at which the data must be written
+ *  @data : The data that is to be written
+ *  @cnt : Number of bytes of the data that are actually to be written into 
+ *  the Eeprom. (max of 3)
+ * Description:
+ *  Actually writes the relevant part of the data value into the Eeprom
+ *  through the I2C bus.
+ * Return value:
+ *  0 on success, -1 on failure.
+ */
+
+static int write_eeprom(nic_t * sp, int off, u32 data, int cnt)
+{
+	int exit_cnt = 0, ret = -1;
+	u64 val64;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+
+	val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
+	    I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA(data) |
+	    I2C_CONTROL_CNTL_START;
+	SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
+
+	while (exit_cnt < 5) {
+		val64 = readq(&bar0->i2c_control);
+		if (I2C_CONTROL_CNTL_END(val64)) {
+			if (!(val64 & I2C_CONTROL_NACK))
+				ret = 0;
+			break;
+		}
+		msleep(50);
+		exit_cnt++;
+	}
+
+	return ret;
+}
+
+/**
+ *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
+ *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
+ *  @eeprom : pointer to the user level structure provided by ethtool, 
+ *  containing all relevant information.
+ *  @data_buf : user defined value to be written into Eeprom.
+ *  Description: Reads the values stored in the Eeprom at given offset
+ *  for a given length. Stores these values int the input argument data
+ *  buffer 'data_buf' and returns these to the caller (ethtool.)
+ *  Return value:
+ *  int  0 on success
+ */
+
+static int s2io_ethtool_geeprom(struct net_device *dev,
+				struct ethtool_eeprom *eeprom, u8 * data_buf)
+{
+	u32 data, i, valid;
+	nic_t *sp = dev->priv;
+
+	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
+
+	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
+		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
+
+	for (i = 0; i < eeprom->len; i += 4) {
+		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
+			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
+			return -EFAULT;
+		}
+		valid = INV(data);
+		memcpy((data_buf + i), &valid, 4);
+	}
+	return 0;
+}
+
+/**
+ *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
+ *  @sp : private member of the device structure, which is a pointer to the
+ *  s2io_nic structure.
+ *  @eeprom : pointer to the user level structure provided by ethtool, 
+ *  containing all relevant information.
+ *  @data_buf ; user defined value to be written into Eeprom.
+ *  Description:
+ *  Tries to write the user provided value in the Eeprom, at the offset
+ *  given by the user.
+ *  Return value:
+ *  0 on success, -EFAULT on failure.
+ */
+
+static int s2io_ethtool_seeprom(struct net_device *dev,
+				struct ethtool_eeprom *eeprom,
+				u8 * data_buf)
+{
+	int len = eeprom->len, cnt = 0;
+	u32 valid = 0, data;
+	nic_t *sp = dev->priv;
+
+	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
+		DBG_PRINT(ERR_DBG,
+			  "ETHTOOL_WRITE_EEPROM Err: Magic value ");
+		DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
+			  eeprom->magic);
+		return -EFAULT;
+	}
+
+	while (len) {
+		data = (u32) data_buf[cnt] & 0x000000FF;
+		if (data) {
+			valid = (u32) (data << 24);
+		} else
+			valid = data;
+
+		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
+			DBG_PRINT(ERR_DBG,
+				  "ETHTOOL_WRITE_EEPROM Err: Cannot ");
+			DBG_PRINT(ERR_DBG,
+				  "write into the specified offset\n");
+			return -EFAULT;
+		}
+		cnt++;
+		len--;
+	}
+
+	return 0;
+}
+
+/**
+ * s2io_register_test - reads and writes into all clock domains. 
+ * @sp : private member of the device structure, which is a pointer to the 
+ * s2io_nic structure.
+ * @data : variable that returns the result of each of the test conducted b
+ * by the driver.
+ * Description:
+ * Read and write into all clock domains. The NIC has 3 clock domains,
+ * see that registers in all the three regions are accessible.
+ * Return value:
+ * 0 on success.
+ */
+
+static int s2io_register_test(nic_t * sp, uint64_t * data)
+{
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	u64 val64 = 0;
+	int fail = 0;
+
+	val64 = readq(&bar0->pcc_enable);
+	if (val64 != 0xff00000000000000ULL) {
+		fail = 1;
+		DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
+	}
+
+	val64 = readq(&bar0->rmac_pause_cfg);
+	if (val64 != 0xc000ffff00000000ULL) {
+		fail = 1;
+		DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
+	}
+
+	val64 = readq(&bar0->rx_queue_cfg);
+	if (val64 != 0x0808080808080808ULL) {
+		fail = 1;
+		DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
+	}
+
+	val64 = readq(&bar0->xgxs_efifo_cfg);
+	if (val64 != 0x000000001923141EULL) {
+		fail = 1;
+		DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
+	}
+
+	val64 = 0x5A5A5A5A5A5A5A5AULL;
+	writeq(val64, &bar0->xmsi_data);
+	val64 = readq(&bar0->xmsi_data);
+	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
+		fail = 1;
+		DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
+	}
+
+	val64 = 0xA5A5A5A5A5A5A5A5ULL;
+	writeq(val64, &bar0->xmsi_data);
+	val64 = readq(&bar0->xmsi_data);
+	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
+		fail = 1;
+		DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
+	}
+
+	*data = fail;
+	return 0;
+}
+
+/**
+ * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. 
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @data:variable that returns the result of each of the test conducted by
+ * the driver.
+ * Description:
+ * Verify that EEPROM in the xena can be programmed using I2C_CONTROL 
+ * register.
+ * Return value:
+ * 0 on success.
+ */
+
+static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
+{
+	int fail = 0;
+	u32 ret_data;
+
+	/* Test Write Error at offset 0 */
+	if (!write_eeprom(sp, 0, 0, 3))
+		fail = 1;
+
+	/* Test Write at offset 4f0 */
+	if (write_eeprom(sp, 0x4F0, 0x01234567, 3))
+		fail = 1;
+	if (read_eeprom(sp, 0x4F0, &ret_data))
+		fail = 1;
+
+	if (ret_data != 0x01234567)
+		fail = 1;
+
+	/* Reset the EEPROM data go FFFF */
+	write_eeprom(sp, 0x4F0, 0xFFFFFFFF, 3);
+
+	/* Test Write Request Error at offset 0x7c */
+	if (!write_eeprom(sp, 0x07C, 0, 3))
+		fail = 1;
+
+	/* Test Write Request at offset 0x7fc */
+	if (write_eeprom(sp, 0x7FC, 0x01234567, 3))
+		fail = 1;
+	if (read_eeprom(sp, 0x7FC, &ret_data))
+		fail = 1;
+
+	if (ret_data != 0x01234567)
+		fail = 1;
+
+	/* Reset the EEPROM data go FFFF */
+	write_eeprom(sp, 0x7FC, 0xFFFFFFFF, 3);
+
+	/* Test Write Error at offset 0x80 */
+	if (!write_eeprom(sp, 0x080, 0, 3))
+		fail = 1;
+
+	/* Test Write Error at offset 0xfc */
+	if (!write_eeprom(sp, 0x0FC, 0, 3))
+		fail = 1;
+
+	/* Test Write Error at offset 0x100 */
+	if (!write_eeprom(sp, 0x100, 0, 3))
+		fail = 1;
+
+	/* Test Write Error at offset 4ec */
+	if (!write_eeprom(sp, 0x4EC, 0, 3))
+		fail = 1;
+
+	*data = fail;
+	return 0;
+}
+
+/**
+ * s2io_bist_test - invokes the MemBist test of the card .
+ * @sp : private member of the device structure, which is a pointer to the 
+ * s2io_nic structure.
+ * @data:variable that returns the result of each of the test conducted by 
+ * the driver.
+ * Description:
+ * This invokes the MemBist test of the card. We give around
+ * 2 secs time for the Test to complete. If it's still not complete
+ * within this peiod, we consider that the test failed. 
+ * Return value:
+ * 0 on success and -1 on failure.
+ */
+
+static int s2io_bist_test(nic_t * sp, uint64_t * data)
+{
+	u8 bist = 0;
+	int cnt = 0, ret = -1;
+
+	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
+	bist |= PCI_BIST_START;
+	pci_write_config_word(sp->pdev, PCI_BIST, bist);
+
+	while (cnt < 20) {
+		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
+		if (!(bist & PCI_BIST_START)) {
+			*data = (bist & PCI_BIST_CODE_MASK);
+			ret = 0;
+			break;
+		}
+		msleep(100);
+		cnt++;
+	}
+
+	return ret;
+}
+
+/**
+ * s2io-link_test - verifies the link state of the nic  
+ * @sp ; private member of the device structure, which is a pointer to the 
+ * s2io_nic structure.
+ * @data: variable that returns the result of each of the test conducted by
+ * the driver.
+ * Description:
+ * The function verifies the link state of the NIC and updates the input 
+ * argument 'data' appropriately.
+ * Return value:
+ * 0 on success.
+ */
+
+static int s2io_link_test(nic_t * sp, uint64_t * data)
+{
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	u64 val64;
+
+	val64 = readq(&bar0->adapter_status);
+	if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
+		*data = 1;
+
+	return 0;
+}
+
+/**
+ * s2io_rldram_test - offline test for access to the RldRam chip on the NIC 
+ * @sp - private member of the device structure, which is a pointer to the  
+ * s2io_nic structure.
+ * @data - variable that returns the result of each of the test 
+ * conducted by the driver.
+ * Description:
+ *  This is one of the offline test that tests the read and write 
+ *  access to the RldRam chip on the NIC.
+ * Return value:
+ *  0 on success.
+ */
+
+static int s2io_rldram_test(nic_t * sp, uint64_t * data)
+{
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	u64 val64;
+	int cnt, iteration = 0, test_pass = 0;
+
+	val64 = readq(&bar0->adapter_control);
+	val64 &= ~ADAPTER_ECC_EN;
+	writeq(val64, &bar0->adapter_control);
+
+	val64 = readq(&bar0->mc_rldram_test_ctrl);
+	val64 |= MC_RLDRAM_TEST_MODE;
+	writeq(val64, &bar0->mc_rldram_test_ctrl);
+
+	val64 = readq(&bar0->mc_rldram_mrs);
+	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
+	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
+
+	val64 |= MC_RLDRAM_MRS_ENABLE;
+	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
+
+	while (iteration < 2) {
+		val64 = 0x55555555aaaa0000ULL;
+		if (iteration == 1) {
+			val64 ^= 0xFFFFFFFFFFFF0000ULL;
+		}
+		writeq(val64, &bar0->mc_rldram_test_d0);
+
+		val64 = 0xaaaa5a5555550000ULL;
+		if (iteration == 1) {
+			val64 ^= 0xFFFFFFFFFFFF0000ULL;
+		}
+		writeq(val64, &bar0->mc_rldram_test_d1);
+
+		val64 = 0x55aaaaaaaa5a0000ULL;
+		if (iteration == 1) {
+			val64 ^= 0xFFFFFFFFFFFF0000ULL;
+		}
+		writeq(val64, &bar0->mc_rldram_test_d2);
+
+		val64 = (u64) (0x0000003fffff0000ULL);
+		writeq(val64, &bar0->mc_rldram_test_add);
+
+
+		val64 = MC_RLDRAM_TEST_MODE;
+		writeq(val64, &bar0->mc_rldram_test_ctrl);
+
+		val64 |=
+		    MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
+		    MC_RLDRAM_TEST_GO;
+		writeq(val64, &bar0->mc_rldram_test_ctrl);
+
+		for (cnt = 0; cnt < 5; cnt++) {
+			val64 = readq(&bar0->mc_rldram_test_ctrl);
+			if (val64 & MC_RLDRAM_TEST_DONE)
+				break;
+			msleep(200);
+		}
+
+		if (cnt == 5)
+			break;
+
+		val64 = MC_RLDRAM_TEST_MODE;
+		writeq(val64, &bar0->mc_rldram_test_ctrl);
+
+		val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
+		writeq(val64, &bar0->mc_rldram_test_ctrl);
+
+		for (cnt = 0; cnt < 5; cnt++) {
+			val64 = readq(&bar0->mc_rldram_test_ctrl);
+			if (val64 & MC_RLDRAM_TEST_DONE)
+				break;
+			msleep(500);
+		}
+
+		if (cnt == 5)
+			break;
+
+		val64 = readq(&bar0->mc_rldram_test_ctrl);
+		if (val64 & MC_RLDRAM_TEST_PASS)
+			test_pass = 1;
+
+		iteration++;
+	}
+
+	if (!test_pass)
+		*data = 1;
+	else
+		*data = 0;
+
+	return 0;
+}
+
+/**
+ *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
+ *  @sp : private member of the device structure, which is a pointer to the
+ *  s2io_nic structure.
+ *  @ethtest : pointer to a ethtool command specific structure that will be
+ *  returned to the user.
+ *  @data : variable that returns the result of each of the test 
+ * conducted by the driver.
+ * Description:
+ *  This function conducts 6 tests ( 4 offline and 2 online) to determine
+ *  the health of the card.
+ * Return value:
+ *  void
+ */
+
+static void s2io_ethtool_test(struct net_device *dev,
+			      struct ethtool_test *ethtest,
+			      uint64_t * data)
+{
+	nic_t *sp = dev->priv;
+	int orig_state = netif_running(sp->dev);
+
+	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
+		/* Offline Tests. */
+		if (orig_state) {
+			s2io_close(sp->dev);
+			s2io_set_swapper(sp);
+		} else
+			s2io_set_swapper(sp);
+
+		if (s2io_register_test(sp, &data[0]))
+			ethtest->flags |= ETH_TEST_FL_FAILED;
+
+		s2io_reset(sp);
+		s2io_set_swapper(sp);
+
+		if (s2io_rldram_test(sp, &data[3]))
+			ethtest->flags |= ETH_TEST_FL_FAILED;
+
+		s2io_reset(sp);
+		s2io_set_swapper(sp);
+
+		if (s2io_eeprom_test(sp, &data[1]))
+			ethtest->flags |= ETH_TEST_FL_FAILED;
+
+		if (s2io_bist_test(sp, &data[4]))
+			ethtest->flags |= ETH_TEST_FL_FAILED;
+
+		if (orig_state)
+			s2io_open(sp->dev);
+
+		data[2] = 0;
+	} else {
+		/* Online Tests. */
+		if (!orig_state) {
+			DBG_PRINT(ERR_DBG,
+				  "%s: is not up, cannot run test\n",
+				  dev->name);
+			data[0] = -1;
+			data[1] = -1;
+			data[2] = -1;
+			data[3] = -1;
+			data[4] = -1;
+		}
+
+		if (s2io_link_test(sp, &data[2]))
+			ethtest->flags |= ETH_TEST_FL_FAILED;
+
+		data[0] = 0;
+		data[1] = 0;
+		data[3] = 0;
+		data[4] = 0;
+	}
+}
+
+static void s2io_get_ethtool_stats(struct net_device *dev,
+				   struct ethtool_stats *estats,
+				   u64 * tmp_stats)
+{
+	int i = 0;
+	nic_t *sp = dev->priv;
+	StatInfo_t *stat_info = sp->mac_control.stats_info;
+
+	tmp_stats[i++] = le32_to_cpu(stat_info->tmac_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->tmac_data_octets);
+	tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->tmac_mcst_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->tmac_bcst_frms);
+	tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->tmac_any_err_frms);
+	tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
+	tmp_stats[i++] = le32_to_cpu(stat_info->tmac_vld_ip);
+	tmp_stats[i++] = le32_to_cpu(stat_info->tmac_drop_ip);
+	tmp_stats[i++] = le32_to_cpu(stat_info->tmac_icmp);
+	tmp_stats[i++] = le32_to_cpu(stat_info->tmac_rst_tcp);
+	tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
+	tmp_stats[i++] = le32_to_cpu(stat_info->tmac_udp);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_data_octets);
+	tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
+	tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_mcst_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_bcst_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
+	tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
+	tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_discarded_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_usized_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_osized_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_frag_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_jabber_frms);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ip);
+	tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_drop_ip);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_icmp);
+	tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_udp);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_drp_udp);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pause_cnt);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_accepted_ip);
+	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
+}
+
+static int s2io_ethtool_get_regs_len(struct net_device *dev)
+{
+	return (XENA_REG_SPACE);
+}
+
+
+static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
+{
+	nic_t *sp = dev->priv;
+
+	return (sp->rx_csum);
+}
+
+static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
+{
+	nic_t *sp = dev->priv;
+
+	if (data)
+		sp->rx_csum = 1;
+	else
+		sp->rx_csum = 0;
+
+	return 0;
+}
+
+static int s2io_get_eeprom_len(struct net_device *dev)
+{
+	return (XENA_EEPROM_SPACE);
+}
+
+static int s2io_ethtool_self_test_count(struct net_device *dev)
+{
+	return (S2IO_TEST_LEN);
+}
+
+static void s2io_ethtool_get_strings(struct net_device *dev,
+				     u32 stringset, u8 * data)
+{
+	switch (stringset) {
+	case ETH_SS_TEST:
+		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
+		break;
+	case ETH_SS_STATS:
+		memcpy(data, &ethtool_stats_keys,
+		       sizeof(ethtool_stats_keys));
+	}
+}
+
+static int s2io_ethtool_get_stats_count(struct net_device *dev)
+{
+	return (S2IO_STAT_LEN);
+}
+
+static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
+{
+	if (data)
+		dev->features |= NETIF_F_IP_CSUM;
+	else
+		dev->features &= ~NETIF_F_IP_CSUM;
+
+	return 0;
+}
+
+
+static struct ethtool_ops netdev_ethtool_ops = {
+	.get_settings = s2io_ethtool_gset,
+	.set_settings = s2io_ethtool_sset,
+	.get_drvinfo = s2io_ethtool_gdrvinfo,
+	.get_regs_len = s2io_ethtool_get_regs_len,
+	.get_regs = s2io_ethtool_gregs,
+	.get_link = ethtool_op_get_link,
+	.get_eeprom_len = s2io_get_eeprom_len,
+	.get_eeprom = s2io_ethtool_geeprom,
+	.set_eeprom = s2io_ethtool_seeprom,
+	.get_pauseparam = s2io_ethtool_getpause_data,
+	.set_pauseparam = s2io_ethtool_setpause_data,
+	.get_rx_csum = s2io_ethtool_get_rx_csum,
+	.set_rx_csum = s2io_ethtool_set_rx_csum,
+	.get_tx_csum = ethtool_op_get_tx_csum,
+	.set_tx_csum = s2io_ethtool_op_set_tx_csum,
+	.get_sg = ethtool_op_get_sg,
+	.set_sg = ethtool_op_set_sg,
+#ifdef NETIF_F_TSO
+	.get_tso = ethtool_op_get_tso,
+	.set_tso = ethtool_op_set_tso,
+#endif
+	.self_test_count = s2io_ethtool_self_test_count,
+	.self_test = s2io_ethtool_test,
+	.get_strings = s2io_ethtool_get_strings,
+	.phys_id = s2io_ethtool_idnic,
+	.get_stats_count = s2io_ethtool_get_stats_count,
+	.get_ethtool_stats = s2io_get_ethtool_stats
+};
+
+/**
+ *  s2io_ioctl - Entry point for the Ioctl 
+ *  @dev :  Device pointer.
+ *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
+ *  a proprietary structure used to pass information to the driver.
+ *  @cmd :  This is used to distinguish between the different commands that
+ *  can be passed to the IOCTL functions.
+ *  Description:
+ *  This function has support for ethtool, adding multiple MAC addresses on 
+ *  the NIC and some DBG commands for the util tool.
+ *  Return value:
+ *  Currently the IOCTL supports no operations, hence by default this
+ *  function returns OP NOT SUPPORTED value.
+ */
+
+static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
+{
+	return -EOPNOTSUPP;
+}
+
+/**
+ *  s2io_change_mtu - entry point to change MTU size for the device.
+ *   @dev : device pointer.
+ *   @new_mtu : the new MTU size for the device.
+ *   Description: A driver entry point to change MTU size for the device.
+ *   Before changing the MTU the device must be stopped.
+ *  Return value:
+ *   0 on success and an appropriate (-)ve integer as defined in errno.h
+ *   file on failure.
+ */
+
+static int s2io_change_mtu(struct net_device *dev, int new_mtu)
+{
+	nic_t *sp = dev->priv;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	register u64 val64;
+
+	if (netif_running(dev)) {
+		DBG_PRINT(ERR_DBG, "%s: Must be stopped to ", dev->name);
+		DBG_PRINT(ERR_DBG, "change its MTU \n");
+		return -EBUSY;
+	}
+
+	if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
+		DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
+			  dev->name);
+		return -EPERM;
+	}
+
+	/* Set the new MTU into the PYLD register of the NIC */
+	val64 = new_mtu;
+	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
+
+	dev->mtu = new_mtu;
+
+	return 0;
+}
+
+/**
+ *  s2io_tasklet - Bottom half of the ISR.
+ *  @dev_adr : address of the device structure in dma_addr_t format.
+ *  Description:
+ *  This is the tasklet or the bottom half of the ISR. This is
+ *  an extension of the ISR which is scheduled by the scheduler to be run 
+ *  when the load on the CPU is low. All low priority tasks of the ISR can
+ *  be pushed into the tasklet. For now the tasklet is used only to 
+ *  replenish the Rx buffers in the Rx buffer descriptors.
+ *  Return value:
+ *  void.
+ */
+
+static void s2io_tasklet(unsigned long dev_addr)
+{
+	struct net_device *dev = (struct net_device *) dev_addr;
+	nic_t *sp = dev->priv;
+	int i, ret;
+	mac_info_t *mac_control;
+	struct config_param *config;
+
+	mac_control = &sp->mac_control;
+	config = &sp->config;
+
+	if (!TASKLET_IN_USE) {
+		for (i = 0; i < config->rx_ring_num; i++) {
+			ret = fill_rx_buffers(sp, i);
+			if (ret == -ENOMEM) {
+				DBG_PRINT(ERR_DBG, "%s: Out of ",
+					  dev->name);
+				DBG_PRINT(ERR_DBG, "memory in tasklet\n");
+				break;
+			} else if (ret == -EFILL) {
+				DBG_PRINT(ERR_DBG,
+					  "%s: Rx Ring %d is full\n",
+					  dev->name, i);
+				break;
+			}
+		}
+		clear_bit(0, (&sp->tasklet_status));
+	}
+}
+
+/**
+ * s2io_set_link - Set the LInk status
+ * @data: long pointer to device private structue
+ * Description: Sets the link status for the adapter
+ */
+
+static void s2io_set_link(unsigned long data)
+{
+	nic_t *nic = (nic_t *) data;
+	struct net_device *dev = nic->dev;
+	XENA_dev_config_t __iomem *bar0 = nic->bar0;
+	register u64 val64;
+	u16 subid;
+
+	if (test_and_set_bit(0, &(nic->link_state))) {
+		/* The card is being reset, no point doing anything */
+		return;
+	}
+
+	subid = nic->pdev->subsystem_device;
+	/* 
+	 * Allow a small delay for the NICs self initiated 
+	 * cleanup to complete.
+	 */
+	msleep(100);
+
+	val64 = readq(&bar0->adapter_status);
+	if (verify_xena_quiescence(val64, nic->device_enabled_once)) {
+		if (LINK_IS_UP(val64)) {
+			val64 = readq(&bar0->adapter_control);
+			val64 |= ADAPTER_CNTL_EN;
+			writeq(val64, &bar0->adapter_control);
+			if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) {
+				val64 = readq(&bar0->gpio_control);
+				val64 |= GPIO_CTRL_GPIO_0;
+				writeq(val64, &bar0->gpio_control);
+				val64 = readq(&bar0->gpio_control);
+			} else {
+				val64 |= ADAPTER_LED_ON;
+				writeq(val64, &bar0->adapter_control);
+			}
+			val64 = readq(&bar0->adapter_status);
+			if (!LINK_IS_UP(val64)) {
+				DBG_PRINT(ERR_DBG, "%s:", dev->name);
+				DBG_PRINT(ERR_DBG, " Link down");
+				DBG_PRINT(ERR_DBG, "after ");
+				DBG_PRINT(ERR_DBG, "enabling ");
+				DBG_PRINT(ERR_DBG, "device \n");
+			}
+			if (nic->device_enabled_once == FALSE) {
+				nic->device_enabled_once = TRUE;
+			}
+			s2io_link(nic, LINK_UP);
+		} else {
+			if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) {
+				val64 = readq(&bar0->gpio_control);
+				val64 &= ~GPIO_CTRL_GPIO_0;
+				writeq(val64, &bar0->gpio_control);
+				val64 = readq(&bar0->gpio_control);
+			}
+			s2io_link(nic, LINK_DOWN);
+		}
+	} else {		/* NIC is not Quiescent. */
+		DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
+		DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
+		netif_stop_queue(dev);
+	}
+	clear_bit(0, &(nic->link_state));
+}
+
+static void s2io_card_down(nic_t * sp)
+{
+	int cnt = 0;
+	XENA_dev_config_t __iomem *bar0 = sp->bar0;
+	unsigned long flags;
+	register u64 val64 = 0;
+
+	/* If s2io_set_link task is executing, wait till it completes. */
+	while (test_and_set_bit(0, &(sp->link_state)))
+		msleep(50);
+	atomic_set(&sp->card_state, CARD_DOWN);
+
+	/* disable Tx and Rx traffic on the NIC */
+	stop_nic(sp);
+
+	/* Kill tasklet. */
+	tasklet_kill(&sp->task);
+
+	/* Check if the device is Quiescent and then Reset the NIC */
+	do {
+		val64 = readq(&bar0->adapter_status);
+		if (verify_xena_quiescence(val64, sp->device_enabled_once)) {
+			break;
+		}
+
+		msleep(50);
+		cnt++;
+		if (cnt == 10) {
+			DBG_PRINT(ERR_DBG,
+				  "s2io_close:Device not Quiescent ");
+			DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
+				  (unsigned long long) val64);
+			break;
+		}
+	} while (1);
+	spin_lock_irqsave(&sp->tx_lock, flags);
+	s2io_reset(sp);
+
+	/* Free all unused Tx and Rx buffers */
+	free_tx_buffers(sp);
+	free_rx_buffers(sp);
+
+	spin_unlock_irqrestore(&sp->tx_lock, flags);
+	clear_bit(0, &(sp->link_state));
+}
+
+static int s2io_card_up(nic_t * sp)
+{
+	int i, ret;
+	mac_info_t *mac_control;
+	struct config_param *config;
+	struct net_device *dev = (struct net_device *) sp->dev;
+
+	/* Initialize the H/W I/O registers */
+	if (init_nic(sp) != 0) {
+		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
+			  dev->name);
+		return -ENODEV;
+	}
+
+	/* 
+	 * Initializing the Rx buffers. For now we are considering only 1 
+	 * Rx ring and initializing buffers into 30 Rx blocks
+	 */
+	mac_control = &sp->mac_control;
+	config = &sp->config;
+
+	for (i = 0; i < config->rx_ring_num; i++) {
+		if ((ret = fill_rx_buffers(sp, i))) {
+			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
+				  dev->name);
+			s2io_reset(sp);
+			free_rx_buffers(sp);
+			return -ENOMEM;
+		}
+		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
+			  atomic_read(&sp->rx_bufs_left[i]));
+	}
+
+	/* Setting its receive mode */
+	s2io_set_multicast(dev);
+
+	/* Enable tasklet for the device */
+	tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
+
+	/* Enable Rx Traffic and interrupts on the NIC */
+	if (start_nic(sp)) {
+		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
+		tasklet_kill(&sp->task);
+		s2io_reset(sp);
+		free_irq(dev->irq, dev);
+		free_rx_buffers(sp);
+		return -ENODEV;
+	}
+
+	atomic_set(&sp->card_state, CARD_UP);
+	return 0;
+}
+
+/** 
+ * s2io_restart_nic - Resets the NIC.
+ * @data : long pointer to the device private structure
+ * Description:
+ * This function is scheduled to be run by the s2io_tx_watchdog
+ * function after 0.5 secs to reset the NIC. The idea is to reduce 
+ * the run time of the watch dog routine which is run holding a
+ * spin lock.
+ */
+
+static void s2io_restart_nic(unsigned long data)
+{
+	struct net_device *dev = (struct net_device *) data;
+	nic_t *sp = dev->priv;
+
+	s2io_card_down(sp);
+	if (s2io_card_up(sp)) {
+		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
+			  dev->name);
+	}
+	netif_wake_queue(dev);
+	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
+		  dev->name);
+}
+
+/** 
+ *  s2io_tx_watchdog - Watchdog for transmit side. 
+ *  @dev : Pointer to net device structure
+ *  Description:
+ *  This function is triggered if the Tx Queue is stopped
+ *  for a pre-defined amount of time when the Interface is still up.
+ *  If the Interface is jammed in such a situation, the hardware is
+ *  reset (by s2io_close) and restarted again (by s2io_open) to
+ *  overcome any problem that might have been caused in the hardware.
+ *  Return value:
+ *  void
+ */
+
+static void s2io_tx_watchdog(struct net_device *dev)
+{
+	nic_t *sp = dev->priv;
+
+	if (netif_carrier_ok(dev)) {
+		schedule_work(&sp->rst_timer_task);
+	}
+}
+
+/**
+ *   rx_osm_handler - To perform some OS related operations on SKB.
+ *   @sp: private member of the device structure,pointer to s2io_nic structure.
+ *   @skb : the socket buffer pointer.
+ *   @len : length of the packet
+ *   @cksum : FCS checksum of the frame.
+ *   @ring_no : the ring from which this RxD was extracted.
+ *   Description: 
+ *   This function is called by the Tx interrupt serivce routine to perform
+ *   some OS related operations on the SKB before passing it to the upper
+ *   layers. It mainly checks if the checksum is OK, if so adds it to the
+ *   SKBs cksum variable, increments the Rx packet count and passes the SKB
+ *   to the upper layer. If the checksum is wrong, it increments the Rx
+ *   packet error count, frees the SKB and returns error.
+ *   Return value:
+ *   SUCCESS on success and -1 on failure.
+ */
+#ifndef CONFIG_2BUFF_MODE
+static int rx_osm_handler(nic_t * sp, u16 len, RxD_t * rxdp, int ring_no)
+#else
+static int rx_osm_handler(nic_t * sp, RxD_t * rxdp, int ring_no,
+			  buffAdd_t * ba)
+#endif
+{
+	struct net_device *dev = (struct net_device *) sp->dev;
+	struct sk_buff *skb =
+	    (struct sk_buff *) ((unsigned long) rxdp->Host_Control);
+	u16 l3_csum, l4_csum;
+#ifdef CONFIG_2BUFF_MODE
+	int buf0_len, buf2_len;
+	unsigned char *buff;
+#endif
+
+	l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
+	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && (sp->rx_csum)) {
+		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
+		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
+			/* 
+			 * NIC verifies if the Checksum of the received
+			 * frame is Ok or not and accordingly returns
+			 * a flag in the RxD.
+			 */
+			skb->ip_summed = CHECKSUM_UNNECESSARY;
+		} else {
+			/* 
+			 * Packet with erroneous checksum, let the 
+			 * upper layers deal with it.
+			 */
+			skb->ip_summed = CHECKSUM_NONE;
+		}
+	} else {
+		skb->ip_summed = CHECKSUM_NONE;
+	}
+
+	if (rxdp->Control_1 & RXD_T_CODE) {
+		unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
+		DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
+			  dev->name, err);
+	}
+#ifdef CONFIG_2BUFF_MODE
+	buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
+	buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2);
+#endif
+
+	skb->dev = dev;
+#ifndef CONFIG_2BUFF_MODE
+	skb_put(skb, len);
+	skb->protocol = eth_type_trans(skb, dev);
+#else
+	buff = skb_push(skb, buf0_len);
+	memcpy(buff, ba->ba_0, buf0_len);
+	skb_put(skb, buf2_len);
+	skb->protocol = eth_type_trans(skb, dev);
+#endif
+
+#ifdef CONFIG_S2IO_NAPI
+	netif_receive_skb(skb);
+#else
+	netif_rx(skb);
+#endif
+
+	dev->last_rx = jiffies;
+	sp->rx_pkt_count++;
+	sp->stats.rx_packets++;
+#ifndef CONFIG_2BUFF_MODE
+	sp->stats.rx_bytes += len;
+#else
+	sp->stats.rx_bytes += buf0_len + buf2_len;
+#endif
+
+	atomic_dec(&sp->rx_bufs_left[ring_no]);
+	rxdp->Host_Control = 0;
+	return SUCCESS;
+}
+
+/**
+ *  s2io_link - stops/starts the Tx queue.
+ *  @sp : private member of the device structure, which is a pointer to the
+ *  s2io_nic structure.
+ *  @link : inidicates whether link is UP/DOWN.
+ *  Description:
+ *  This function stops/starts the Tx queue depending on whether the link
+ *  status of the NIC is is down or up. This is called by the Alarm 
+ *  interrupt handler whenever a link change interrupt comes up. 
+ *  Return value:
+ *  void.
+ */
+
+static void s2io_link(nic_t * sp, int link)
+{
+	struct net_device *dev = (struct net_device *) sp->dev;
+
+	if (link != sp->last_link_state) {
+		if (link == LINK_DOWN) {
+			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
+			netif_carrier_off(dev);
+		} else {
+			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
+			netif_carrier_on(dev);
+		}
+	}
+	sp->last_link_state = link;
+}
+
+/**
+ *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers . 
+ *  @sp : private member of the device structure, which is a pointer to the 
+ *  s2io_nic structure.
+ *  Description:
+ *  This function initializes a few of the PCI and PCI-X configuration registers
+ *  with recommended values.
+ *  Return value:
+ *  void
+ */
+
+static void s2io_init_pci(nic_t * sp)
+{
+	u16 pci_cmd = 0;
+
+	/* Enable Data Parity Error Recovery in PCI-X command register. */
+	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+			     &(sp->pcix_cmd));
+	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+			      (sp->pcix_cmd | 1));
+	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+			     &(sp->pcix_cmd));
+
+	/* Set the PErr Response bit in PCI command register. */
+	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
+	pci_write_config_word(sp->pdev, PCI_COMMAND,
+			      (pci_cmd | PCI_COMMAND_PARITY));
+	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
+
+	/* Set MMRB count to 1024 in PCI-X Command register. */
+	sp->pcix_cmd &= 0xFFF3;
+	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, (sp->pcix_cmd | (0x1 << 2)));	/* MMRBC 1K */
+	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+			     &(sp->pcix_cmd));
+
+	/*  Setting Maximum outstanding splits based on system type. */
+	sp->pcix_cmd &= 0xFF8F;
+
+	sp->pcix_cmd |= XENA_MAX_OUTSTANDING_SPLITS(0x1);	/* 2 splits. */
+	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+			      sp->pcix_cmd);
+	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+			     &(sp->pcix_cmd));
+	/* Forcibly disabling relaxed ordering capability of the card. */
+	sp->pcix_cmd &= 0xfffd;
+	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+			      sp->pcix_cmd);
+	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+			     &(sp->pcix_cmd));
+}
+
+MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
+MODULE_LICENSE("GPL");
+module_param(tx_fifo_num, int, 0);
+module_param_array(tx_fifo_len, int, NULL, 0);
+module_param(rx_ring_num, int, 0);
+module_param_array(rx_ring_sz, int, NULL, 0);
+module_param(Stats_refresh_time, int, 0);
+module_param(rmac_pause_time, int, 0);
+module_param(mc_pause_threshold_q0q3, int, 0);
+module_param(mc_pause_threshold_q4q7, int, 0);
+module_param(shared_splits, int, 0);
+module_param(tmac_util_period, int, 0);
+module_param(rmac_util_period, int, 0);
+#ifndef CONFIG_S2IO_NAPI
+module_param(indicate_max_pkts, int, 0);
+#endif
+/**
+ *  s2io_init_nic - Initialization of the adapter . 
+ *  @pdev : structure containing the PCI related information of the device.
+ *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
+ *  Description:
+ *  The function initializes an adapter identified by the pci_dec structure.
+ *  All OS related initialization including memory and device structure and 
+ *  initlaization of the device private variable is done. Also the swapper 
+ *  control register is initialized to enable read and write into the I/O 
+ *  registers of the device.
+ *  Return value:
+ *  returns 0 on success and negative on failure.
+ */
+
+static int __devinit
+s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
+{
+	nic_t *sp;
+	struct net_device *dev;
+	char *dev_name = "S2IO 10GE NIC";
+	int i, j, ret;
+	int dma_flag = FALSE;
+	u32 mac_up, mac_down;
+	u64 val64 = 0, tmp64 = 0;
+	XENA_dev_config_t __iomem *bar0 = NULL;
+	u16 subid;
+	mac_info_t *mac_control;
+	struct config_param *config;
+
+
+	DBG_PRINT(ERR_DBG, "Loading S2IO driver with %s\n",
+		s2io_driver_version);
+
+	if ((ret = pci_enable_device(pdev))) {
+		DBG_PRINT(ERR_DBG,
+			  "s2io_init_nic: pci_enable_device failed\n");
+		return ret;
+	}
+
+	if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) {
+		DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
+		dma_flag = TRUE;
+
+		if (pci_set_consistent_dma_mask
+		    (pdev, 0xffffffffffffffffULL)) {
+			DBG_PRINT(ERR_DBG,
+				  "Unable to obtain 64bit DMA for \
+					consistent allocations\n");
+			pci_disable_device(pdev);
+			return -ENOMEM;
+		}
+	} else if (!pci_set_dma_mask(pdev, 0xffffffffUL)) {
+		DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
+	} else {
+		pci_disable_device(pdev);
+		return -ENOMEM;
+	}
+
+	if (pci_request_regions(pdev, s2io_driver_name)) {
+		DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
+		    pci_disable_device(pdev);
+		return -ENODEV;
+	}
+
+	dev = alloc_etherdev(sizeof(nic_t));
+	if (dev == NULL) {
+		DBG_PRINT(ERR_DBG, "Device allocation failed\n");
+		pci_disable_device(pdev);
+		pci_release_regions(pdev);
+		return -ENODEV;
+	}
+
+	pci_set_master(pdev);
+	pci_set_drvdata(pdev, dev);
+	SET_MODULE_OWNER(dev);
+	SET_NETDEV_DEV(dev, &pdev->dev);
+
+	/*  Private member variable initialized to s2io NIC structure */
+	sp = dev->priv;
+	memset(sp, 0, sizeof(nic_t));
+	sp->dev = dev;
+	sp->pdev = pdev;
+	sp->vendor_id = pdev->vendor;
+	sp->device_id = pdev->device;
+	sp->high_dma_flag = dma_flag;
+	sp->irq = pdev->irq;
+	sp->device_enabled_once = FALSE;
+	strcpy(sp->name, dev_name);
+
+	/* Initialize some PCI/PCI-X fields of the NIC. */
+	s2io_init_pci(sp);
+
+	/* 
+	 * Setting the device configuration parameters.
+	 * Most of these parameters can be specified by the user during 
+	 * module insertion as they are module loadable parameters. If 
+	 * these parameters are not not specified during load time, they 
+	 * are initialized with default values.
+	 */
+	mac_control = &sp->mac_control;
+	config = &sp->config;
+
+	/* Tx side parameters. */
+	tx_fifo_len[0] = DEFAULT_FIFO_LEN;	/* Default value. */
+	config->tx_fifo_num = tx_fifo_num;
+	for (i = 0; i < MAX_TX_FIFOS; i++) {
+		config->tx_cfg[i].fifo_len = tx_fifo_len[i];
+		config->tx_cfg[i].fifo_priority = i;
+	}
+
+	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
+	for (i = 0; i < config->tx_fifo_num; i++) {
+		config->tx_cfg[i].f_no_snoop =
+		    (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
+		if (config->tx_cfg[i].fifo_len < 65) {
+			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
+			break;
+		}
+	}
+	config->max_txds = MAX_SKB_FRAGS;
+
+	/* Rx side parameters. */
+	rx_ring_sz[0] = SMALL_BLK_CNT;	/* Default value. */
+	config->rx_ring_num = rx_ring_num;
+	for (i = 0; i < MAX_RX_RINGS; i++) {
+		config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
+		    (MAX_RXDS_PER_BLOCK + 1);
+		config->rx_cfg[i].ring_priority = i;
+	}
+
+	for (i = 0; i < rx_ring_num; i++) {
+		config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
+		config->rx_cfg[i].f_no_snoop =
+		    (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
+	}
+
+	/*  Setting Mac Control parameters */
+	mac_control->rmac_pause_time = rmac_pause_time;
+	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
+	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
+
+
+	/* Initialize Ring buffer parameters. */
+	for (i = 0; i < config->rx_ring_num; i++)
+		atomic_set(&sp->rx_bufs_left[i], 0);
+
+	/*  initialize the shared memory used by the NIC and the host */
+	if (init_shared_mem(sp)) {
+		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
+			  dev->name);
+		ret = -ENOMEM;
+		goto mem_alloc_failed;
+	}
+
+	sp->bar0 = ioremap(pci_resource_start(pdev, 0),
+				     pci_resource_len(pdev, 0));
+	if (!sp->bar0) {
+		DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
+			  dev->name);
+		ret = -ENOMEM;
+		goto bar0_remap_failed;
+	}
+
+	sp->bar1 = ioremap(pci_resource_start(pdev, 2),
+				     pci_resource_len(pdev, 2));
+	if (!sp->bar1) {
+		DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
+			  dev->name);
+		ret = -ENOMEM;
+		goto bar1_remap_failed;
+	}
+
+	dev->irq = pdev->irq;
+	dev->base_addr = (unsigned long) sp->bar0;
+
+	/* Initializing the BAR1 address as the start of the FIFO pointer. */
+	for (j = 0; j < MAX_TX_FIFOS; j++) {
+		mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
+		    (sp->bar1 + (j * 0x00020000));
+	}
+
+	/*  Driver entry points */
+	dev->open = &s2io_open;
+	dev->stop = &s2io_close;
+	dev->hard_start_xmit = &s2io_xmit;
+	dev->get_stats = &s2io_get_stats;
+	dev->set_multicast_list = &s2io_set_multicast;
+	dev->do_ioctl = &s2io_ioctl;
+	dev->change_mtu = &s2io_change_mtu;
+	SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
+	/*
+	 * will use eth_mac_addr() for  dev->set_mac_address
+	 * mac address will be set every time dev->open() is called
+	 */
+#ifdef CONFIG_S2IO_NAPI
+	dev->poll = s2io_poll;
+	dev->weight = 90;
+#endif
+
+	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
+	if (sp->high_dma_flag == TRUE)
+		dev->features |= NETIF_F_HIGHDMA;
+#ifdef NETIF_F_TSO
+	dev->features |= NETIF_F_TSO;
+#endif
+
+	dev->tx_timeout = &s2io_tx_watchdog;
+	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
+	INIT_WORK(&sp->rst_timer_task,
+		  (void (*)(void *)) s2io_restart_nic, dev);
+	INIT_WORK(&sp->set_link_task,
+		  (void (*)(void *)) s2io_set_link, sp);
+
+	pci_save_state(sp->pdev);
+
+	/* Setting swapper control on the NIC, for proper reset operation */
+	if (s2io_set_swapper(sp)) {
+		DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
+			  dev->name);
+		ret = -EAGAIN;
+		goto set_swap_failed;
+	}
+
+	/* Fix for all "FFs" MAC address problems observed on Alpha platforms */
+	fix_mac_address(sp);
+	s2io_reset(sp);
+
+	/*
+	 * Setting swapper control on the NIC, so the MAC address can be read.
+	 */
+	if (s2io_set_swapper(sp)) {
+		DBG_PRINT(ERR_DBG,
+			  "%s: S2IO: swapper settings are wrong\n",
+			  dev->name);
+		ret = -EAGAIN;
+		goto set_swap_failed;
+	}
+
+	/*  
+	 * MAC address initialization.
+	 * For now only one mac address will be read and used.
+	 */
+	bar0 = sp->bar0;
+	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+	    RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
+	writeq(val64, &bar0->rmac_addr_cmd_mem);
+	wait_for_cmd_complete(sp);
+
+	tmp64 = readq(&bar0->rmac_addr_data0_mem);
+	mac_down = (u32) tmp64;
+	mac_up = (u32) (tmp64 >> 32);
+
+	memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
+
+	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
+	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
+	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
+	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
+	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
+	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
+
+	DBG_PRINT(INIT_DBG,
+		  "DEFAULT MAC ADDR:0x%02x-%02x-%02x-%02x-%02x-%02x\n",
+		  sp->def_mac_addr[0].mac_addr[0],
+		  sp->def_mac_addr[0].mac_addr[1],
+		  sp->def_mac_addr[0].mac_addr[2],
+		  sp->def_mac_addr[0].mac_addr[3],
+		  sp->def_mac_addr[0].mac_addr[4],
+		  sp->def_mac_addr[0].mac_addr[5]);
+
+	/*  Set the factory defined MAC address initially   */
+	dev->addr_len = ETH_ALEN;
+	memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
+
+	/*
+	 * Initialize the tasklet status and link state flags 
+	 * and the card statte parameter
+	 */
+	atomic_set(&(sp->card_state), 0);
+	sp->tasklet_status = 0;
+	sp->link_state = 0;
+
+
+	/* Initialize spinlocks */
+	spin_lock_init(&sp->tx_lock);
+#ifndef CONFIG_S2IO_NAPI
+	spin_lock_init(&sp->put_lock);
+#endif
+
+	/* 
+	 * SXE-002: Configure link and activity LED to init state 
+	 * on driver load. 
+	 */
+	subid = sp->pdev->subsystem_device;
+	if ((subid & 0xFF) >= 0x07) {
+		val64 = readq(&bar0->gpio_control);
+		val64 |= 0x0000800000000000ULL;
+		writeq(val64, &bar0->gpio_control);
+		val64 = 0x0411040400000000ULL;
+		writeq(val64, (void __iomem *) bar0 + 0x2700);
+		val64 = readq(&bar0->gpio_control);
+	}
+
+	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
+
+	if (register_netdev(dev)) {
+		DBG_PRINT(ERR_DBG, "Device registration failed\n");
+		ret = -ENODEV;
+		goto register_failed;
+	}
+
+	/* 
+	 * Make Link state as off at this point, when the Link change 
+	 * interrupt comes the state will be automatically changed to 
+	 * the right state.
+	 */
+	netif_carrier_off(dev);
+	sp->last_link_state = LINK_DOWN;
+
+	return 0;
+
+      register_failed:
+      set_swap_failed:
+	iounmap(sp->bar1);
+      bar1_remap_failed:
+	iounmap(sp->bar0);
+      bar0_remap_failed:
+      mem_alloc_failed:
+	free_shared_mem(sp);
+	pci_disable_device(pdev);
+	pci_release_regions(pdev);
+	pci_set_drvdata(pdev, NULL);
+	free_netdev(dev);
+
+	return ret;
+}
+
+/**
+ * s2io_rem_nic - Free the PCI device 
+ * @pdev: structure containing the PCI related information of the device.
+ * Description: This function is called by the Pci subsystem to release a 
+ * PCI device and free up all resource held up by the device. This could
+ * be in response to a Hot plug event or when the driver is to be removed 
+ * from memory.
+ */
+
+static void __devexit s2io_rem_nic(struct pci_dev *pdev)
+{
+	struct net_device *dev =
+	    (struct net_device *) pci_get_drvdata(pdev);
+	nic_t *sp;
+
+	if (dev == NULL) {
+		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
+		return;
+	}
+
+	sp = dev->priv;
+	unregister_netdev(dev);
+
+	free_shared_mem(sp);
+	iounmap(sp->bar0);
+	iounmap(sp->bar1);
+	pci_disable_device(pdev);
+	pci_release_regions(pdev);
+	pci_set_drvdata(pdev, NULL);
+
+	free_netdev(dev);
+}
+
+/**
+ * s2io_starter - Entry point for the driver
+ * Description: This function is the entry point for the driver. It verifies
+ * the module loadable parameters and initializes PCI configuration space.
+ */
+
+int __init s2io_starter(void)
+{
+	return pci_module_init(&s2io_driver);
+}
+
+/**
+ * s2io_closer - Cleanup routine for the driver 
+ * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
+ */
+
+static void s2io_closer(void)
+{
+	pci_unregister_driver(&s2io_driver);
+	DBG_PRINT(INIT_DBG, "cleanup done\n");
+}
+
+module_init(s2io_starter);
+module_exit(s2io_closer);