Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/include/asm-arm/bitops.h b/include/asm-arm/bitops.h
new file mode 100644
index 0000000..4edd4dc
--- /dev/null
+++ b/include/asm-arm/bitops.h
@@ -0,0 +1,416 @@
+/*
+ * Copyright 1995, Russell King.
+ * Various bits and pieces copyrights include:
+ *  Linus Torvalds (test_bit).
+ * Big endian support: Copyright 2001, Nicolas Pitre
+ *  reworked by rmk.
+ *
+ * bit 0 is the LSB of an "unsigned long" quantity.
+ *
+ * Please note that the code in this file should never be included
+ * from user space.  Many of these are not implemented in assembler
+ * since they would be too costly.  Also, they require privileged
+ * instructions (which are not available from user mode) to ensure
+ * that they are atomic.
+ */
+
+#ifndef __ASM_ARM_BITOPS_H
+#define __ASM_ARM_BITOPS_H
+
+#ifdef __KERNEL__
+
+#include <asm/system.h>
+
+#define smp_mb__before_clear_bit()	do { } while (0)
+#define smp_mb__after_clear_bit()	do { } while (0)
+
+/*
+ * These functions are the basis of our bit ops.
+ *
+ * First, the atomic bitops. These use native endian.
+ */
+static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
+{
+	unsigned long flags;
+	unsigned long mask = 1UL << (bit & 31);
+
+	p += bit >> 5;
+
+	local_irq_save(flags);
+	*p |= mask;
+	local_irq_restore(flags);
+}
+
+static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
+{
+	unsigned long flags;
+	unsigned long mask = 1UL << (bit & 31);
+
+	p += bit >> 5;
+
+	local_irq_save(flags);
+	*p &= ~mask;
+	local_irq_restore(flags);
+}
+
+static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
+{
+	unsigned long flags;
+	unsigned long mask = 1UL << (bit & 31);
+
+	p += bit >> 5;
+
+	local_irq_save(flags);
+	*p ^= mask;
+	local_irq_restore(flags);
+}
+
+static inline int
+____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
+{
+	unsigned long flags;
+	unsigned int res;
+	unsigned long mask = 1UL << (bit & 31);
+
+	p += bit >> 5;
+
+	local_irq_save(flags);
+	res = *p;
+	*p = res | mask;
+	local_irq_restore(flags);
+
+	return res & mask;
+}
+
+static inline int
+____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
+{
+	unsigned long flags;
+	unsigned int res;
+	unsigned long mask = 1UL << (bit & 31);
+
+	p += bit >> 5;
+
+	local_irq_save(flags);
+	res = *p;
+	*p = res & ~mask;
+	local_irq_restore(flags);
+
+	return res & mask;
+}
+
+static inline int
+____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
+{
+	unsigned long flags;
+	unsigned int res;
+	unsigned long mask = 1UL << (bit & 31);
+
+	p += bit >> 5;
+
+	local_irq_save(flags);
+	res = *p;
+	*p = res ^ mask;
+	local_irq_restore(flags);
+
+	return res & mask;
+}
+
+/*
+ * Now the non-atomic variants.  We let the compiler handle all
+ * optimisations for these.  These are all _native_ endian.
+ */
+static inline void __set_bit(int nr, volatile unsigned long *p)
+{
+	p[nr >> 5] |= (1UL << (nr & 31));
+}
+
+static inline void __clear_bit(int nr, volatile unsigned long *p)
+{
+	p[nr >> 5] &= ~(1UL << (nr & 31));
+}
+
+static inline void __change_bit(int nr, volatile unsigned long *p)
+{
+	p[nr >> 5] ^= (1UL << (nr & 31));
+}
+
+static inline int __test_and_set_bit(int nr, volatile unsigned long *p)
+{
+	unsigned long oldval, mask = 1UL << (nr & 31);
+
+	p += nr >> 5;
+
+	oldval = *p;
+	*p = oldval | mask;
+	return oldval & mask;
+}
+
+static inline int __test_and_clear_bit(int nr, volatile unsigned long *p)
+{
+	unsigned long oldval, mask = 1UL << (nr & 31);
+
+	p += nr >> 5;
+
+	oldval = *p;
+	*p = oldval & ~mask;
+	return oldval & mask;
+}
+
+static inline int __test_and_change_bit(int nr, volatile unsigned long *p)
+{
+	unsigned long oldval, mask = 1UL << (nr & 31);
+
+	p += nr >> 5;
+
+	oldval = *p;
+	*p = oldval ^ mask;
+	return oldval & mask;
+}
+
+/*
+ * This routine doesn't need to be atomic.
+ */
+static inline int __test_bit(int nr, const volatile unsigned long * p)
+{
+	return (p[nr >> 5] >> (nr & 31)) & 1UL;
+}
+
+/*
+ *  A note about Endian-ness.
+ *  -------------------------
+ *
+ * When the ARM is put into big endian mode via CR15, the processor
+ * merely swaps the order of bytes within words, thus:
+ *
+ *          ------------ physical data bus bits -----------
+ *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
+ * little     byte 3       byte 2       byte 1      byte 0
+ * big        byte 0       byte 1       byte 2      byte 3
+ *
+ * This means that reading a 32-bit word at address 0 returns the same
+ * value irrespective of the endian mode bit.
+ *
+ * Peripheral devices should be connected with the data bus reversed in
+ * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
+ * available from http://www.arm.com/.
+ *
+ * The following assumes that the data bus connectivity for big endian
+ * mode has been followed.
+ *
+ * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
+ */
+
+/*
+ * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
+ */
+extern void _set_bit_le(int nr, volatile unsigned long * p);
+extern void _clear_bit_le(int nr, volatile unsigned long * p);
+extern void _change_bit_le(int nr, volatile unsigned long * p);
+extern int _test_and_set_bit_le(int nr, volatile unsigned long * p);
+extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p);
+extern int _test_and_change_bit_le(int nr, volatile unsigned long * p);
+extern int _find_first_zero_bit_le(const void * p, unsigned size);
+extern int _find_next_zero_bit_le(const void * p, int size, int offset);
+extern int _find_first_bit_le(const unsigned long *p, unsigned size);
+extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
+
+/*
+ * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
+ */
+extern void _set_bit_be(int nr, volatile unsigned long * p);
+extern void _clear_bit_be(int nr, volatile unsigned long * p);
+extern void _change_bit_be(int nr, volatile unsigned long * p);
+extern int _test_and_set_bit_be(int nr, volatile unsigned long * p);
+extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p);
+extern int _test_and_change_bit_be(int nr, volatile unsigned long * p);
+extern int _find_first_zero_bit_be(const void * p, unsigned size);
+extern int _find_next_zero_bit_be(const void * p, int size, int offset);
+extern int _find_first_bit_be(const unsigned long *p, unsigned size);
+extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
+
+/*
+ * The __* form of bitops are non-atomic and may be reordered.
+ */
+#define	ATOMIC_BITOP_LE(name,nr,p)		\
+	(__builtin_constant_p(nr) ?		\
+	 ____atomic_##name(nr, p) :		\
+	 _##name##_le(nr,p))
+
+#define	ATOMIC_BITOP_BE(name,nr,p)		\
+	(__builtin_constant_p(nr) ?		\
+	 ____atomic_##name(nr, p) :		\
+	 _##name##_be(nr,p))
+
+#define NONATOMIC_BITOP(name,nr,p)		\
+	(____nonatomic_##name(nr, p))
+
+#ifndef __ARMEB__
+/*
+ * These are the little endian, atomic definitions.
+ */
+#define set_bit(nr,p)			ATOMIC_BITOP_LE(set_bit,nr,p)
+#define clear_bit(nr,p)			ATOMIC_BITOP_LE(clear_bit,nr,p)
+#define change_bit(nr,p)		ATOMIC_BITOP_LE(change_bit,nr,p)
+#define test_and_set_bit(nr,p)		ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
+#define test_and_clear_bit(nr,p)	ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
+#define test_and_change_bit(nr,p)	ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
+#define test_bit(nr,p)			__test_bit(nr,p)
+#define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz)
+#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off)
+#define find_first_bit(p,sz)		_find_first_bit_le(p,sz)
+#define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off)
+
+#define WORD_BITOFF_TO_LE(x)		((x))
+
+#else
+
+/*
+ * These are the big endian, atomic definitions.
+ */
+#define set_bit(nr,p)			ATOMIC_BITOP_BE(set_bit,nr,p)
+#define clear_bit(nr,p)			ATOMIC_BITOP_BE(clear_bit,nr,p)
+#define change_bit(nr,p)		ATOMIC_BITOP_BE(change_bit,nr,p)
+#define test_and_set_bit(nr,p)		ATOMIC_BITOP_BE(test_and_set_bit,nr,p)
+#define test_and_clear_bit(nr,p)	ATOMIC_BITOP_BE(test_and_clear_bit,nr,p)
+#define test_and_change_bit(nr,p)	ATOMIC_BITOP_BE(test_and_change_bit,nr,p)
+#define test_bit(nr,p)			__test_bit(nr,p)
+#define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz)
+#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off)
+#define find_first_bit(p,sz)		_find_first_bit_be(p,sz)
+#define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off)
+
+#define WORD_BITOFF_TO_LE(x)		((x) ^ 0x18)
+
+#endif
+
+#if __LINUX_ARM_ARCH__ < 5
+
+/*
+ * ffz = Find First Zero in word. Undefined if no zero exists,
+ * so code should check against ~0UL first..
+ */
+static inline unsigned long ffz(unsigned long word)
+{
+	int k;
+
+	word = ~word;
+	k = 31;
+	if (word & 0x0000ffff) { k -= 16; word <<= 16; }
+	if (word & 0x00ff0000) { k -= 8;  word <<= 8;  }
+	if (word & 0x0f000000) { k -= 4;  word <<= 4;  }
+	if (word & 0x30000000) { k -= 2;  word <<= 2;  }
+	if (word & 0x40000000) { k -= 1; }
+        return k;
+}
+
+/*
+ * ffz = Find First Zero in word. Undefined if no zero exists,
+ * so code should check against ~0UL first..
+ */
+static inline unsigned long __ffs(unsigned long word)
+{
+	int k;
+
+	k = 31;
+	if (word & 0x0000ffff) { k -= 16; word <<= 16; }
+	if (word & 0x00ff0000) { k -= 8;  word <<= 8;  }
+	if (word & 0x0f000000) { k -= 4;  word <<= 4;  }
+	if (word & 0x30000000) { k -= 2;  word <<= 2;  }
+	if (word & 0x40000000) { k -= 1; }
+        return k;
+}
+
+/*
+ * fls: find last bit set.
+ */
+
+#define fls(x) generic_fls(x)
+
+/*
+ * ffs: find first bit set. This is defined the same way as
+ * the libc and compiler builtin ffs routines, therefore
+ * differs in spirit from the above ffz (man ffs).
+ */
+
+#define ffs(x) generic_ffs(x)
+
+#else
+
+/*
+ * On ARMv5 and above those functions can be implemented around
+ * the clz instruction for much better code efficiency.
+ */
+
+static __inline__ int generic_fls(int x);
+#define fls(x) \
+	( __builtin_constant_p(x) ? generic_fls(x) : \
+	  ({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) )
+#define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
+#define __ffs(x) (ffs(x) - 1)
+#define ffz(x) __ffs( ~(x) )
+
+#endif
+
+/*
+ * Find first bit set in a 168-bit bitmap, where the first
+ * 128 bits are unlikely to be set.
+ */
+static inline int sched_find_first_bit(const unsigned long *b)
+{
+	unsigned long v;
+	unsigned int off;
+
+	for (off = 0; v = b[off], off < 4; off++) {
+		if (unlikely(v))
+			break;
+	}
+	return __ffs(v) + off * 32;
+}
+
+/*
+ * hweightN: returns the hamming weight (i.e. the number
+ * of bits set) of a N-bit word
+ */
+
+#define hweight32(x) generic_hweight32(x)
+#define hweight16(x) generic_hweight16(x)
+#define hweight8(x) generic_hweight8(x)
+
+/*
+ * Ext2 is defined to use little-endian byte ordering.
+ * These do not need to be atomic.
+ */
+#define ext2_set_bit(nr,p)			\
+		__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
+#define ext2_set_bit_atomic(lock,nr,p)          \
+                test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
+#define ext2_clear_bit(nr,p)			\
+		__test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
+#define ext2_clear_bit_atomic(lock,nr,p)        \
+                test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
+#define ext2_test_bit(nr,p)			\
+		__test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
+#define ext2_find_first_zero_bit(p,sz)		\
+		_find_first_zero_bit_le(p,sz)
+#define ext2_find_next_zero_bit(p,sz,off)	\
+		_find_next_zero_bit_le(p,sz,off)
+
+/*
+ * Minix is defined to use little-endian byte ordering.
+ * These do not need to be atomic.
+ */
+#define minix_set_bit(nr,p)			\
+		__set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
+#define minix_test_bit(nr,p)			\
+		__test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
+#define minix_test_and_set_bit(nr,p)		\
+		__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
+#define minix_test_and_clear_bit(nr,p)		\
+		__test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
+#define minix_find_first_zero_bit(p,sz)		\
+		_find_first_zero_bit_le(p,sz)
+
+#endif /* __KERNEL__ */
+
+#endif /* _ARM_BITOPS_H */