Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/include/asm-m32r/bitops.h b/include/asm-m32r/bitops.h
new file mode 100644
index 0000000..e784439
--- /dev/null
+++ b/include/asm-m32r/bitops.h
@@ -0,0 +1,702 @@
+#ifndef _ASM_M32R_BITOPS_H
+#define _ASM_M32R_BITOPS_H
+
+/*
+ *  linux/include/asm-m32r/bitops.h
+ *
+ *  Copyright 1992, Linus Torvalds.
+ *
+ *  M32R version:
+ *    Copyright (C) 2001, 2002  Hitoshi Yamamoto
+ *    Copyright (C) 2004  Hirokazu Takata <takata at linux-m32r.org>
+ */
+
+#include <linux/config.h>
+#include <linux/compiler.h>
+#include <asm/assembler.h>
+#include <asm/system.h>
+#include <asm/byteorder.h>
+#include <asm/types.h>
+
+/*
+ * These have to be done with inline assembly: that way the bit-setting
+ * is guaranteed to be atomic. All bit operations return 0 if the bit
+ * was cleared before the operation and != 0 if it was not.
+ *
+ * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
+ */
+
+/**
+ * set_bit - Atomically set a bit in memory
+ * @nr: the bit to set
+ * @addr: the address to start counting from
+ *
+ * This function is atomic and may not be reordered.  See __set_bit()
+ * if you do not require the atomic guarantees.
+ * Note that @nr may be almost arbitrarily large; this function is not
+ * restricted to acting on a single-word quantity.
+ */
+static __inline__ void set_bit(int nr, volatile void * addr)
+{
+	__u32 mask;
+	volatile __u32 *a = addr;
+	unsigned long flags;
+	unsigned long tmp;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+
+	local_irq_save(flags);
+	__asm__ __volatile__ (
+		DCACHE_CLEAR("%0", "r6", "%1")
+		M32R_LOCK" %0, @%1;		\n\t"
+		"or	%0, %2;			\n\t"
+		M32R_UNLOCK" %0, @%1;		\n\t"
+		: "=&r" (tmp)
+		: "r" (a), "r" (mask)
+		: "memory"
+#ifdef CONFIG_CHIP_M32700_TS1
+		, "r6"
+#endif	/* CONFIG_CHIP_M32700_TS1 */
+	);
+	local_irq_restore(flags);
+}
+
+/**
+ * __set_bit - Set a bit in memory
+ * @nr: the bit to set
+ * @addr: the address to start counting from
+ *
+ * Unlike set_bit(), this function is non-atomic and may be reordered.
+ * If it's called on the same region of memory simultaneously, the effect
+ * may be that only one operation succeeds.
+ */
+static __inline__ void __set_bit(int nr, volatile void * addr)
+{
+	__u32 mask;
+	volatile __u32 *a = addr;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+	*a |= mask;
+}
+
+/**
+ * clear_bit - Clears a bit in memory
+ * @nr: Bit to clear
+ * @addr: Address to start counting from
+ *
+ * clear_bit() is atomic and may not be reordered.  However, it does
+ * not contain a memory barrier, so if it is used for locking purposes,
+ * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
+ * in order to ensure changes are visible on other processors.
+ */
+static __inline__ void clear_bit(int nr, volatile void * addr)
+{
+	__u32 mask;
+	volatile __u32 *a = addr;
+	unsigned long flags;
+	unsigned long tmp;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+
+	local_irq_save(flags);
+
+	__asm__ __volatile__ (
+		DCACHE_CLEAR("%0", "r6", "%1")
+		M32R_LOCK" %0, @%1;		\n\t"
+		"and	%0, %2;			\n\t"
+		M32R_UNLOCK" %0, @%1;		\n\t"
+		: "=&r" (tmp)
+		: "r" (a), "r" (~mask)
+		: "memory"
+#ifdef CONFIG_CHIP_M32700_TS1
+		, "r6"
+#endif	/* CONFIG_CHIP_M32700_TS1 */
+	);
+	local_irq_restore(flags);
+}
+
+static __inline__ void __clear_bit(int nr, volatile unsigned long * addr)
+{
+	unsigned long mask;
+	volatile unsigned long *a = addr;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+	*a &= ~mask;
+}
+
+#define smp_mb__before_clear_bit()	barrier()
+#define smp_mb__after_clear_bit()	barrier()
+
+/**
+ * __change_bit - Toggle a bit in memory
+ * @nr: the bit to set
+ * @addr: the address to start counting from
+ *
+ * Unlike change_bit(), this function is non-atomic and may be reordered.
+ * If it's called on the same region of memory simultaneously, the effect
+ * may be that only one operation succeeds.
+ */
+static __inline__ void __change_bit(int nr, volatile void * addr)
+{
+	__u32 mask;
+	volatile __u32 *a = addr;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+	*a ^= mask;
+}
+
+/**
+ * change_bit - Toggle a bit in memory
+ * @nr: Bit to clear
+ * @addr: Address to start counting from
+ *
+ * change_bit() is atomic and may not be reordered.
+ * Note that @nr may be almost arbitrarily large; this function is not
+ * restricted to acting on a single-word quantity.
+ */
+static __inline__ void change_bit(int nr, volatile void * addr)
+{
+	__u32  mask;
+	volatile __u32  *a = addr;
+	unsigned long flags;
+	unsigned long tmp;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+
+	local_irq_save(flags);
+	__asm__ __volatile__ (
+		DCACHE_CLEAR("%0", "r6", "%1")
+		M32R_LOCK" %0, @%1;		\n\t"
+		"xor	%0, %2;			\n\t"
+		M32R_UNLOCK" %0, @%1;		\n\t"
+		: "=&r" (tmp)
+		: "r" (a), "r" (mask)
+		: "memory"
+#ifdef CONFIG_CHIP_M32700_TS1
+		, "r6"
+#endif	/* CONFIG_CHIP_M32700_TS1 */
+	);
+	local_irq_restore(flags);
+}
+
+/**
+ * test_and_set_bit - Set a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is atomic and cannot be reordered.
+ * It also implies a memory barrier.
+ */
+static __inline__ int test_and_set_bit(int nr, volatile void * addr)
+{
+	__u32 mask, oldbit;
+	volatile __u32 *a = addr;
+	unsigned long flags;
+	unsigned long tmp;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+
+	local_irq_save(flags);
+	__asm__ __volatile__ (
+		DCACHE_CLEAR("%0", "%1", "%2")
+		M32R_LOCK" %0, @%2;		\n\t"
+		"mv	%1, %0;			\n\t"
+		"and	%0, %3;			\n\t"
+		"or	%1, %3;			\n\t"
+		M32R_UNLOCK" %1, @%2;		\n\t"
+		: "=&r" (oldbit), "=&r" (tmp)
+		: "r" (a), "r" (mask)
+		: "memory"
+	);
+	local_irq_restore(flags);
+
+	return (oldbit != 0);
+}
+
+/**
+ * __test_and_set_bit - Set a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is non-atomic and can be reordered.
+ * If two examples of this operation race, one can appear to succeed
+ * but actually fail.  You must protect multiple accesses with a lock.
+ */
+static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
+{
+	__u32 mask, oldbit;
+	volatile __u32 *a = addr;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+	oldbit = (*a & mask);
+	*a |= mask;
+
+	return (oldbit != 0);
+}
+
+/**
+ * test_and_clear_bit - Clear a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is atomic and cannot be reordered.
+ * It also implies a memory barrier.
+ */
+static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
+{
+	__u32 mask, oldbit;
+	volatile __u32 *a = addr;
+	unsigned long flags;
+	unsigned long tmp;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+
+	local_irq_save(flags);
+
+	__asm__ __volatile__ (
+		DCACHE_CLEAR("%0", "%1", "%3")
+		M32R_LOCK" %0, @%3;		\n\t"
+		"mv	%1, %0;			\n\t"
+		"and	%0, %2;			\n\t"
+		"not	%2, %2;			\n\t"
+		"and	%1, %2;			\n\t"
+		M32R_UNLOCK" %1, @%3;		\n\t"
+		: "=&r" (oldbit), "=&r" (tmp), "+r" (mask)
+		: "r" (a)
+		: "memory"
+	);
+	local_irq_restore(flags);
+
+	return (oldbit != 0);
+}
+
+/**
+ * __test_and_clear_bit - Clear a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is non-atomic and can be reordered.
+ * If two examples of this operation race, one can appear to succeed
+ * but actually fail.  You must protect multiple accesses with a lock.
+ */
+static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
+{
+	__u32 mask, oldbit;
+	volatile __u32 *a = addr;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+	oldbit = (*a & mask);
+	*a &= ~mask;
+
+	return (oldbit != 0);
+}
+
+/* WARNING: non atomic and it can be reordered! */
+static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
+{
+	__u32 mask, oldbit;
+	volatile __u32 *a = addr;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+	oldbit = (*a & mask);
+	*a ^= mask;
+
+	return (oldbit != 0);
+}
+
+/**
+ * test_and_change_bit - Change a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is atomic and cannot be reordered.
+ * It also implies a memory barrier.
+ */
+static __inline__ int test_and_change_bit(int nr, volatile void * addr)
+{
+	__u32 mask, oldbit;
+	volatile __u32 *a = addr;
+	unsigned long flags;
+	unsigned long tmp;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+
+	local_irq_save(flags);
+	__asm__ __volatile__ (
+		DCACHE_CLEAR("%0", "%1", "%2")
+		M32R_LOCK" %0, @%2;		\n\t"
+		"mv	%1, %0;			\n\t"
+		"and	%0, %3;			\n\t"
+		"xor	%1, %3;			\n\t"
+		M32R_UNLOCK" %1, @%2;		\n\t"
+		: "=&r" (oldbit), "=&r" (tmp)
+		: "r" (a), "r" (mask)
+		: "memory"
+	);
+	local_irq_restore(flags);
+
+	return (oldbit != 0);
+}
+
+/**
+ * test_bit - Determine whether a bit is set
+ * @nr: bit number to test
+ * @addr: Address to start counting from
+ */
+static __inline__ int test_bit(int nr, const volatile void * addr)
+{
+	__u32 mask;
+	const volatile __u32 *a = addr;
+
+	a += (nr >> 5);
+	mask = (1 << (nr & 0x1F));
+
+	return ((*a & mask) != 0);
+}
+
+/**
+ * ffz - find first zero in word.
+ * @word: The word to search
+ *
+ * Undefined if no zero exists, so code should check against ~0UL first.
+ */
+static __inline__ unsigned long ffz(unsigned long word)
+{
+	int k;
+
+	word = ~word;
+	k = 0;
+	if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
+	if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
+	if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
+	if (!(word & 0x00000003)) { k += 2; word >>= 2; }
+	if (!(word & 0x00000001)) { k += 1; }
+
+	return k;
+}
+
+/**
+ * find_first_zero_bit - find the first zero bit in a memory region
+ * @addr: The address to start the search at
+ * @size: The maximum size to search
+ *
+ * Returns the bit-number of the first zero bit, not the number of the byte
+ * containing a bit.
+ */
+
+#define find_first_zero_bit(addr, size) \
+	find_next_zero_bit((addr), (size), 0)
+
+/**
+ * find_next_zero_bit - find the first zero bit in a memory region
+ * @addr: The address to base the search on
+ * @offset: The bitnumber to start searching at
+ * @size: The maximum size to search
+ */
+static __inline__ int find_next_zero_bit(const unsigned long *addr,
+					 int size, int offset)
+{
+	const unsigned long *p = addr + (offset >> 5);
+	unsigned long result = offset & ~31UL;
+	unsigned long tmp;
+
+	if (offset >= size)
+		return size;
+	size -= result;
+	offset &= 31UL;
+	if (offset) {
+		tmp = *(p++);
+		tmp |= ~0UL >> (32-offset);
+		if (size < 32)
+			goto found_first;
+		if (~tmp)
+			goto found_middle;
+		size -= 32;
+		result += 32;
+	}
+	while (size & ~31UL) {
+		if (~(tmp = *(p++)))
+			goto found_middle;
+		result += 32;
+		size -= 32;
+	}
+	if (!size)
+		return result;
+	tmp = *p;
+
+found_first:
+	tmp |= ~0UL << size;
+found_middle:
+	return result + ffz(tmp);
+}
+
+/**
+ * __ffs - find first bit in word.
+ * @word: The word to search
+ *
+ * Undefined if no bit exists, so code should check against 0 first.
+ */
+static __inline__ unsigned long __ffs(unsigned long word)
+{
+	int k = 0;
+
+	if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
+	if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
+	if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
+	if (!(word & 0x00000003)) { k += 2; word >>= 2; }
+	if (!(word & 0x00000001)) { k += 1;}
+
+	return k;
+}
+
+/*
+ * fls: find last bit set.
+ */
+#define fls(x) generic_fls(x)
+
+#ifdef __KERNEL__
+
+/*
+ * Every architecture must define this function. It's the fastest
+ * way of searching a 140-bit bitmap where the first 100 bits are
+ * unlikely to be set. It's guaranteed that at least one of the 140
+ * bits is cleared.
+ */
+static inline int sched_find_first_bit(unsigned long *b)
+{
+	if (unlikely(b[0]))
+		return __ffs(b[0]);
+	if (unlikely(b[1]))
+		return __ffs(b[1]) + 32;
+	if (unlikely(b[2]))
+		return __ffs(b[2]) + 64;
+	if (b[3])
+		return __ffs(b[3]) + 96;
+	return __ffs(b[4]) + 128;
+}
+
+/**
+ * find_next_bit - find the first set bit in a memory region
+ * @addr: The address to base the search on
+ * @offset: The bitnumber to start searching at
+ * @size: The maximum size to search
+ */
+static inline unsigned long find_next_bit(const unsigned long *addr,
+	unsigned long size, unsigned long offset)
+{
+	unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
+	unsigned int result = offset & ~31UL;
+	unsigned int tmp;
+
+	if (offset >= size)
+		return size;
+	size -= result;
+	offset &= 31UL;
+	if (offset) {
+		tmp = *p++;
+		tmp &= ~0UL << offset;
+		if (size < 32)
+			goto found_first;
+		if (tmp)
+			goto found_middle;
+		size -= 32;
+		result += 32;
+	}
+	while (size >= 32) {
+		if ((tmp = *p++) != 0)
+			goto found_middle;
+		result += 32;
+		size -= 32;
+	}
+	if (!size)
+		return result;
+	tmp = *p;
+
+found_first:
+	tmp &= ~0UL >> (32 - size);
+	if (tmp == 0UL)        /* Are any bits set? */
+		return result + size; /* Nope. */
+found_middle:
+	return result + __ffs(tmp);
+}
+
+/**
+ * find_first_bit - find the first set bit in a memory region
+ * @addr: The address to start the search at
+ * @size: The maximum size to search
+ *
+ * Returns the bit-number of the first set bit, not the number of the byte
+ * containing a bit.
+ */
+#define find_first_bit(addr, size) \
+	find_next_bit((addr), (size), 0)
+
+/**
+ * ffs - find first bit set
+ * @x: the word to search
+ *
+ * This is defined the same way as
+ * the libc and compiler builtin ffs routines, therefore
+ * differs in spirit from the above ffz (man ffs).
+ */
+#define ffs(x)	generic_ffs(x)
+
+/**
+ * hweightN - returns the hamming weight of a N-bit word
+ * @x: the word to weigh
+ *
+ * The Hamming Weight of a number is the total number of bits set in it.
+ */
+
+#define hweight32(x)	generic_hweight32(x)
+#define hweight16(x)	generic_hweight16(x)
+#define hweight8(x)	generic_hweight8(x)
+
+#endif /* __KERNEL__ */
+
+#ifdef __KERNEL__
+
+/*
+ * ext2_XXXX function
+ * orig: include/asm-sh/bitops.h
+ */
+
+#ifdef __LITTLE_ENDIAN__
+#define ext2_set_bit			test_and_set_bit
+#define ext2_clear_bit			__test_and_clear_bit
+#define ext2_test_bit			test_bit
+#define ext2_find_first_zero_bit	find_first_zero_bit
+#define ext2_find_next_zero_bit		find_next_zero_bit
+#else
+static inline int ext2_set_bit(int nr, volatile void * addr)
+{
+	__u8 mask, oldbit;
+	volatile __u8 *a = addr;
+
+	a += (nr >> 3);
+	mask = (1 << (nr & 0x07));
+	oldbit = (*a & mask);
+	*a |= mask;
+
+	return (oldbit != 0);
+}
+
+static inline int ext2_clear_bit(int nr, volatile void * addr)
+{
+	__u8 mask, oldbit;
+	volatile __u8 *a = addr;
+
+	a += (nr >> 3);
+	mask = (1 << (nr & 0x07));
+	oldbit = (*a & mask);
+	*a &= ~mask;
+
+	return (oldbit != 0);
+}
+
+static inline int ext2_test_bit(int nr, const volatile void * addr)
+{
+	__u32 mask;
+	const volatile __u8 *a = addr;
+
+	a += (nr >> 3);
+	mask = (1 << (nr & 0x07));
+
+	return ((mask & *a) != 0);
+}
+
+#define ext2_find_first_zero_bit(addr, size) \
+	ext2_find_next_zero_bit((addr), (size), 0)
+
+static inline unsigned long ext2_find_next_zero_bit(void *addr,
+	unsigned long size, unsigned long offset)
+{
+	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
+	unsigned long result = offset & ~31UL;
+	unsigned long tmp;
+
+	if (offset >= size)
+		return size;
+	size -= result;
+	offset &= 31UL;
+	if(offset) {
+		/* We hold the little endian value in tmp, but then the
+		 * shift is illegal. So we could keep a big endian value
+		 * in tmp, like this:
+		 *
+		 * tmp = __swab32(*(p++));
+		 * tmp |= ~0UL >> (32-offset);
+		 *
+		 * but this would decrease preformance, so we change the
+		 * shift:
+		 */
+		tmp = *(p++);
+		tmp |= __swab32(~0UL >> (32-offset));
+		if(size < 32)
+			goto found_first;
+		if(~tmp)
+			goto found_middle;
+		size -= 32;
+		result += 32;
+	}
+	while(size & ~31UL) {
+		if(~(tmp = *(p++)))
+			goto found_middle;
+		result += 32;
+		size -= 32;
+	}
+	if(!size)
+		return result;
+	tmp = *p;
+
+found_first:
+	/* tmp is little endian, so we would have to swab the shift,
+	 * see above. But then we have to swab tmp below for ffz, so
+	 * we might as well do this here.
+	 */
+	return result + ffz(__swab32(tmp) | (~0UL << size));
+found_middle:
+	return result + ffz(__swab32(tmp));
+}
+#endif
+
+#define ext2_set_bit_atomic(lock, nr, addr)		\
+	({						\
+		int ret;				\
+		spin_lock(lock);			\
+		ret = ext2_set_bit((nr), (addr));	\
+		spin_unlock(lock);			\
+		ret;					\
+	})
+
+#define ext2_clear_bit_atomic(lock, nr, addr)		\
+	({						\
+		int ret;				\
+		spin_lock(lock);			\
+		ret = ext2_clear_bit((nr), (addr));	\
+		spin_unlock(lock);			\
+		ret;					\
+	})
+
+/* Bitmap functions for the minix filesystem.  */
+#define minix_test_and_set_bit(nr,addr)		__test_and_set_bit(nr,addr)
+#define minix_set_bit(nr,addr)			__set_bit(nr,addr)
+#define minix_test_and_clear_bit(nr,addr)	__test_and_clear_bit(nr,addr)
+#define minix_test_bit(nr,addr) test_bit(nr,addr)
+#define minix_find_first_zero_bit(addr,size)	find_first_zero_bit(addr,size)
+
+#endif /* __KERNEL__ */
+
+#endif /* _ASM_M32R_BITOPS_H */