| /* |
| * Disk Array driver for HP Smart Array SAS controllers |
| * Copyright 2014-2015 PMC-Sierra, Inc. |
| * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for more details. |
| * |
| * Questions/Comments/Bugfixes to storagedev@pmcs.com |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/pci-aspm.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/fs.h> |
| #include <linux/timer.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/compat.h> |
| #include <linux/blktrace_api.h> |
| #include <linux/uaccess.h> |
| #include <linux/io.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/completion.h> |
| #include <linux/moduleparam.h> |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_tcq.h> |
| #include <scsi/scsi_eh.h> |
| #include <scsi/scsi_dbg.h> |
| #include <linux/cciss_ioctl.h> |
| #include <linux/string.h> |
| #include <linux/bitmap.h> |
| #include <linux/atomic.h> |
| #include <linux/jiffies.h> |
| #include <linux/percpu-defs.h> |
| #include <linux/percpu.h> |
| #include <asm/unaligned.h> |
| #include <asm/div64.h> |
| #include "hpsa_cmd.h" |
| #include "hpsa.h" |
| |
| /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ |
| #define HPSA_DRIVER_VERSION "3.4.10-0" |
| #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" |
| #define HPSA "hpsa" |
| |
| /* How long to wait for CISS doorbell communication */ |
| #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */ |
| #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */ |
| #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */ |
| #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */ |
| #define MAX_IOCTL_CONFIG_WAIT 1000 |
| |
| /*define how many times we will try a command because of bus resets */ |
| #define MAX_CMD_RETRIES 3 |
| |
| /* Embedded module documentation macros - see modules.h */ |
| MODULE_AUTHOR("Hewlett-Packard Company"); |
| MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ |
| HPSA_DRIVER_VERSION); |
| MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); |
| MODULE_VERSION(HPSA_DRIVER_VERSION); |
| MODULE_LICENSE("GPL"); |
| |
| static int hpsa_allow_any; |
| module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); |
| MODULE_PARM_DESC(hpsa_allow_any, |
| "Allow hpsa driver to access unknown HP Smart Array hardware"); |
| static int hpsa_simple_mode; |
| module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); |
| MODULE_PARM_DESC(hpsa_simple_mode, |
| "Use 'simple mode' rather than 'performant mode'"); |
| |
| /* define the PCI info for the cards we can control */ |
| static const struct pci_device_id hpsa_pci_device_id[] = { |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE}, |
| {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580}, |
| {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581}, |
| {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582}, |
| {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583}, |
| {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584}, |
| {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585}, |
| {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, |
| {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, |
| {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, |
| {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, |
| {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, |
| {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, |
| PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, |
| {0,} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); |
| |
| /* board_id = Subsystem Device ID & Vendor ID |
| * product = Marketing Name for the board |
| * access = Address of the struct of function pointers |
| */ |
| static struct board_type products[] = { |
| {0x3241103C, "Smart Array P212", &SA5_access}, |
| {0x3243103C, "Smart Array P410", &SA5_access}, |
| {0x3245103C, "Smart Array P410i", &SA5_access}, |
| {0x3247103C, "Smart Array P411", &SA5_access}, |
| {0x3249103C, "Smart Array P812", &SA5_access}, |
| {0x324A103C, "Smart Array P712m", &SA5_access}, |
| {0x324B103C, "Smart Array P711m", &SA5_access}, |
| {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ |
| {0x3350103C, "Smart Array P222", &SA5_access}, |
| {0x3351103C, "Smart Array P420", &SA5_access}, |
| {0x3352103C, "Smart Array P421", &SA5_access}, |
| {0x3353103C, "Smart Array P822", &SA5_access}, |
| {0x3354103C, "Smart Array P420i", &SA5_access}, |
| {0x3355103C, "Smart Array P220i", &SA5_access}, |
| {0x3356103C, "Smart Array P721m", &SA5_access}, |
| {0x1921103C, "Smart Array P830i", &SA5_access}, |
| {0x1922103C, "Smart Array P430", &SA5_access}, |
| {0x1923103C, "Smart Array P431", &SA5_access}, |
| {0x1924103C, "Smart Array P830", &SA5_access}, |
| {0x1926103C, "Smart Array P731m", &SA5_access}, |
| {0x1928103C, "Smart Array P230i", &SA5_access}, |
| {0x1929103C, "Smart Array P530", &SA5_access}, |
| {0x21BD103C, "Smart Array P244br", &SA5_access}, |
| {0x21BE103C, "Smart Array P741m", &SA5_access}, |
| {0x21BF103C, "Smart HBA H240ar", &SA5_access}, |
| {0x21C0103C, "Smart Array P440ar", &SA5_access}, |
| {0x21C1103C, "Smart Array P840ar", &SA5_access}, |
| {0x21C2103C, "Smart Array P440", &SA5_access}, |
| {0x21C3103C, "Smart Array P441", &SA5_access}, |
| {0x21C4103C, "Smart Array", &SA5_access}, |
| {0x21C5103C, "Smart Array P841", &SA5_access}, |
| {0x21C6103C, "Smart HBA H244br", &SA5_access}, |
| {0x21C7103C, "Smart HBA H240", &SA5_access}, |
| {0x21C8103C, "Smart HBA H241", &SA5_access}, |
| {0x21C9103C, "Smart Array", &SA5_access}, |
| {0x21CA103C, "Smart Array P246br", &SA5_access}, |
| {0x21CB103C, "Smart Array P840", &SA5_access}, |
| {0x21CC103C, "Smart Array", &SA5_access}, |
| {0x21CD103C, "Smart Array", &SA5_access}, |
| {0x21CE103C, "Smart HBA", &SA5_access}, |
| {0x05809005, "SmartHBA-SA", &SA5_access}, |
| {0x05819005, "SmartHBA-SA 8i", &SA5_access}, |
| {0x05829005, "SmartHBA-SA 8i8e", &SA5_access}, |
| {0x05839005, "SmartHBA-SA 8e", &SA5_access}, |
| {0x05849005, "SmartHBA-SA 16i", &SA5_access}, |
| {0x05859005, "SmartHBA-SA 4i4e", &SA5_access}, |
| {0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, |
| {0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, |
| {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, |
| {0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, |
| {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, |
| {0xFFFF103C, "Unknown Smart Array", &SA5_access}, |
| }; |
| |
| #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy) |
| static const struct scsi_cmnd hpsa_cmd_busy; |
| #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle) |
| static const struct scsi_cmnd hpsa_cmd_idle; |
| static int number_of_controllers; |
| |
| static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); |
| static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); |
| static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg); |
| |
| #ifdef CONFIG_COMPAT |
| static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, |
| void __user *arg); |
| #endif |
| |
| static void cmd_free(struct ctlr_info *h, struct CommandList *c); |
| static struct CommandList *cmd_alloc(struct ctlr_info *h); |
| static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c); |
| static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, |
| struct scsi_cmnd *scmd); |
| static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, |
| void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, |
| int cmd_type); |
| static void hpsa_free_cmd_pool(struct ctlr_info *h); |
| #define VPD_PAGE (1 << 8) |
| #define HPSA_SIMPLE_ERROR_BITS 0x03 |
| |
| static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); |
| static void hpsa_scan_start(struct Scsi_Host *); |
| static int hpsa_scan_finished(struct Scsi_Host *sh, |
| unsigned long elapsed_time); |
| static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth); |
| |
| static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); |
| static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd); |
| static int hpsa_slave_alloc(struct scsi_device *sdev); |
| static int hpsa_slave_configure(struct scsi_device *sdev); |
| static void hpsa_slave_destroy(struct scsi_device *sdev); |
| |
| static void hpsa_update_scsi_devices(struct ctlr_info *h); |
| static int check_for_unit_attention(struct ctlr_info *h, |
| struct CommandList *c); |
| static void check_ioctl_unit_attention(struct ctlr_info *h, |
| struct CommandList *c); |
| /* performant mode helper functions */ |
| static void calc_bucket_map(int *bucket, int num_buckets, |
| int nsgs, int min_blocks, u32 *bucket_map); |
| static void hpsa_free_performant_mode(struct ctlr_info *h); |
| static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); |
| static inline u32 next_command(struct ctlr_info *h, u8 q); |
| static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, |
| u32 *cfg_base_addr, u64 *cfg_base_addr_index, |
| u64 *cfg_offset); |
| static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, |
| unsigned long *memory_bar); |
| static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); |
| static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, |
| int wait_for_ready); |
| static inline void finish_cmd(struct CommandList *c); |
| static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h); |
| #define BOARD_NOT_READY 0 |
| #define BOARD_READY 1 |
| static void hpsa_drain_accel_commands(struct ctlr_info *h); |
| static void hpsa_flush_cache(struct ctlr_info *h); |
| static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, |
| struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, |
| u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk); |
| static void hpsa_command_resubmit_worker(struct work_struct *work); |
| static u32 lockup_detected(struct ctlr_info *h); |
| static int detect_controller_lockup(struct ctlr_info *h); |
| static void hpsa_disable_rld_caching(struct ctlr_info *h); |
| static int hpsa_luns_changed(struct ctlr_info *h); |
| |
| static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) |
| { |
| unsigned long *priv = shost_priv(sdev->host); |
| return (struct ctlr_info *) *priv; |
| } |
| |
| static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) |
| { |
| unsigned long *priv = shost_priv(sh); |
| return (struct ctlr_info *) *priv; |
| } |
| |
| static inline bool hpsa_is_cmd_idle(struct CommandList *c) |
| { |
| return c->scsi_cmd == SCSI_CMD_IDLE; |
| } |
| |
| static inline bool hpsa_is_pending_event(struct CommandList *c) |
| { |
| return c->abort_pending || c->reset_pending; |
| } |
| |
| /* extract sense key, asc, and ascq from sense data. -1 means invalid. */ |
| static void decode_sense_data(const u8 *sense_data, int sense_data_len, |
| u8 *sense_key, u8 *asc, u8 *ascq) |
| { |
| struct scsi_sense_hdr sshdr; |
| bool rc; |
| |
| *sense_key = -1; |
| *asc = -1; |
| *ascq = -1; |
| |
| if (sense_data_len < 1) |
| return; |
| |
| rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr); |
| if (rc) { |
| *sense_key = sshdr.sense_key; |
| *asc = sshdr.asc; |
| *ascq = sshdr.ascq; |
| } |
| } |
| |
| static int check_for_unit_attention(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| u8 sense_key, asc, ascq; |
| int sense_len; |
| |
| if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) |
| sense_len = sizeof(c->err_info->SenseInfo); |
| else |
| sense_len = c->err_info->SenseLen; |
| |
| decode_sense_data(c->err_info->SenseInfo, sense_len, |
| &sense_key, &asc, &ascq); |
| if (sense_key != UNIT_ATTENTION || asc == 0xff) |
| return 0; |
| |
| switch (asc) { |
| case STATE_CHANGED: |
| dev_warn(&h->pdev->dev, |
| "%s: a state change detected, command retried\n", |
| h->devname); |
| break; |
| case LUN_FAILED: |
| dev_warn(&h->pdev->dev, |
| "%s: LUN failure detected\n", h->devname); |
| break; |
| case REPORT_LUNS_CHANGED: |
| dev_warn(&h->pdev->dev, |
| "%s: report LUN data changed\n", h->devname); |
| /* |
| * Note: this REPORT_LUNS_CHANGED condition only occurs on the external |
| * target (array) devices. |
| */ |
| break; |
| case POWER_OR_RESET: |
| dev_warn(&h->pdev->dev, |
| "%s: a power on or device reset detected\n", |
| h->devname); |
| break; |
| case UNIT_ATTENTION_CLEARED: |
| dev_warn(&h->pdev->dev, |
| "%s: unit attention cleared by another initiator\n", |
| h->devname); |
| break; |
| default: |
| dev_warn(&h->pdev->dev, |
| "%s: unknown unit attention detected\n", |
| h->devname); |
| break; |
| } |
| return 1; |
| } |
| |
| static int check_for_busy(struct ctlr_info *h, struct CommandList *c) |
| { |
| if (c->err_info->CommandStatus != CMD_TARGET_STATUS || |
| (c->err_info->ScsiStatus != SAM_STAT_BUSY && |
| c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) |
| return 0; |
| dev_warn(&h->pdev->dev, HPSA "device busy"); |
| return 1; |
| } |
| |
| static u32 lockup_detected(struct ctlr_info *h); |
| static ssize_t host_show_lockup_detected(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int ld; |
| struct ctlr_info *h; |
| struct Scsi_Host *shost = class_to_shost(dev); |
| |
| h = shost_to_hba(shost); |
| ld = lockup_detected(h); |
| |
| return sprintf(buf, "ld=%d\n", ld); |
| } |
| |
| static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int status, len; |
| struct ctlr_info *h; |
| struct Scsi_Host *shost = class_to_shost(dev); |
| char tmpbuf[10]; |
| |
| if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) |
| return -EACCES; |
| len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; |
| strncpy(tmpbuf, buf, len); |
| tmpbuf[len] = '\0'; |
| if (sscanf(tmpbuf, "%d", &status) != 1) |
| return -EINVAL; |
| h = shost_to_hba(shost); |
| h->acciopath_status = !!status; |
| dev_warn(&h->pdev->dev, |
| "hpsa: HP SSD Smart Path %s via sysfs update.\n", |
| h->acciopath_status ? "enabled" : "disabled"); |
| return count; |
| } |
| |
| static ssize_t host_store_raid_offload_debug(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int debug_level, len; |
| struct ctlr_info *h; |
| struct Scsi_Host *shost = class_to_shost(dev); |
| char tmpbuf[10]; |
| |
| if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) |
| return -EACCES; |
| len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; |
| strncpy(tmpbuf, buf, len); |
| tmpbuf[len] = '\0'; |
| if (sscanf(tmpbuf, "%d", &debug_level) != 1) |
| return -EINVAL; |
| if (debug_level < 0) |
| debug_level = 0; |
| h = shost_to_hba(shost); |
| h->raid_offload_debug = debug_level; |
| dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", |
| h->raid_offload_debug); |
| return count; |
| } |
| |
| static ssize_t host_store_rescan(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct ctlr_info *h; |
| struct Scsi_Host *shost = class_to_shost(dev); |
| h = shost_to_hba(shost); |
| hpsa_scan_start(h->scsi_host); |
| return count; |
| } |
| |
| static ssize_t host_show_firmware_revision(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct Scsi_Host *shost = class_to_shost(dev); |
| unsigned char *fwrev; |
| |
| h = shost_to_hba(shost); |
| if (!h->hba_inquiry_data) |
| return 0; |
| fwrev = &h->hba_inquiry_data[32]; |
| return snprintf(buf, 20, "%c%c%c%c\n", |
| fwrev[0], fwrev[1], fwrev[2], fwrev[3]); |
| } |
| |
| static ssize_t host_show_commands_outstanding(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct ctlr_info *h = shost_to_hba(shost); |
| |
| return snprintf(buf, 20, "%d\n", |
| atomic_read(&h->commands_outstanding)); |
| } |
| |
| static ssize_t host_show_transport_mode(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct Scsi_Host *shost = class_to_shost(dev); |
| |
| h = shost_to_hba(shost); |
| return snprintf(buf, 20, "%s\n", |
| h->transMethod & CFGTBL_Trans_Performant ? |
| "performant" : "simple"); |
| } |
| |
| static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct Scsi_Host *shost = class_to_shost(dev); |
| |
| h = shost_to_hba(shost); |
| return snprintf(buf, 30, "HP SSD Smart Path %s\n", |
| (h->acciopath_status == 1) ? "enabled" : "disabled"); |
| } |
| |
| /* List of controllers which cannot be hard reset on kexec with reset_devices */ |
| static u32 unresettable_controller[] = { |
| 0x324a103C, /* Smart Array P712m */ |
| 0x324b103C, /* Smart Array P711m */ |
| 0x3223103C, /* Smart Array P800 */ |
| 0x3234103C, /* Smart Array P400 */ |
| 0x3235103C, /* Smart Array P400i */ |
| 0x3211103C, /* Smart Array E200i */ |
| 0x3212103C, /* Smart Array E200 */ |
| 0x3213103C, /* Smart Array E200i */ |
| 0x3214103C, /* Smart Array E200i */ |
| 0x3215103C, /* Smart Array E200i */ |
| 0x3237103C, /* Smart Array E500 */ |
| 0x323D103C, /* Smart Array P700m */ |
| 0x40800E11, /* Smart Array 5i */ |
| 0x409C0E11, /* Smart Array 6400 */ |
| 0x409D0E11, /* Smart Array 6400 EM */ |
| 0x40700E11, /* Smart Array 5300 */ |
| 0x40820E11, /* Smart Array 532 */ |
| 0x40830E11, /* Smart Array 5312 */ |
| 0x409A0E11, /* Smart Array 641 */ |
| 0x409B0E11, /* Smart Array 642 */ |
| 0x40910E11, /* Smart Array 6i */ |
| }; |
| |
| /* List of controllers which cannot even be soft reset */ |
| static u32 soft_unresettable_controller[] = { |
| 0x40800E11, /* Smart Array 5i */ |
| 0x40700E11, /* Smart Array 5300 */ |
| 0x40820E11, /* Smart Array 532 */ |
| 0x40830E11, /* Smart Array 5312 */ |
| 0x409A0E11, /* Smart Array 641 */ |
| 0x409B0E11, /* Smart Array 642 */ |
| 0x40910E11, /* Smart Array 6i */ |
| /* Exclude 640x boards. These are two pci devices in one slot |
| * which share a battery backed cache module. One controls the |
| * cache, the other accesses the cache through the one that controls |
| * it. If we reset the one controlling the cache, the other will |
| * likely not be happy. Just forbid resetting this conjoined mess. |
| * The 640x isn't really supported by hpsa anyway. |
| */ |
| 0x409C0E11, /* Smart Array 6400 */ |
| 0x409D0E11, /* Smart Array 6400 EM */ |
| }; |
| |
| static u32 needs_abort_tags_swizzled[] = { |
| 0x323D103C, /* Smart Array P700m */ |
| 0x324a103C, /* Smart Array P712m */ |
| 0x324b103C, /* SmartArray P711m */ |
| }; |
| |
| static int board_id_in_array(u32 a[], int nelems, u32 board_id) |
| { |
| int i; |
| |
| for (i = 0; i < nelems; i++) |
| if (a[i] == board_id) |
| return 1; |
| return 0; |
| } |
| |
| static int ctlr_is_hard_resettable(u32 board_id) |
| { |
| return !board_id_in_array(unresettable_controller, |
| ARRAY_SIZE(unresettable_controller), board_id); |
| } |
| |
| static int ctlr_is_soft_resettable(u32 board_id) |
| { |
| return !board_id_in_array(soft_unresettable_controller, |
| ARRAY_SIZE(soft_unresettable_controller), board_id); |
| } |
| |
| static int ctlr_is_resettable(u32 board_id) |
| { |
| return ctlr_is_hard_resettable(board_id) || |
| ctlr_is_soft_resettable(board_id); |
| } |
| |
| static int ctlr_needs_abort_tags_swizzled(u32 board_id) |
| { |
| return board_id_in_array(needs_abort_tags_swizzled, |
| ARRAY_SIZE(needs_abort_tags_swizzled), board_id); |
| } |
| |
| static ssize_t host_show_resettable(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct Scsi_Host *shost = class_to_shost(dev); |
| |
| h = shost_to_hba(shost); |
| return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); |
| } |
| |
| static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) |
| { |
| return (scsi3addr[3] & 0xC0) == 0x40; |
| } |
| |
| static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6", |
| "1(+0)ADM", "UNKNOWN", "PHYS DRV" |
| }; |
| #define HPSA_RAID_0 0 |
| #define HPSA_RAID_4 1 |
| #define HPSA_RAID_1 2 /* also used for RAID 10 */ |
| #define HPSA_RAID_5 3 /* also used for RAID 50 */ |
| #define HPSA_RAID_51 4 |
| #define HPSA_RAID_6 5 /* also used for RAID 60 */ |
| #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ |
| #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2) |
| #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1) |
| |
| static inline bool is_logical_device(struct hpsa_scsi_dev_t *device) |
| { |
| return !device->physical_device; |
| } |
| |
| static ssize_t raid_level_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| ssize_t l = 0; |
| unsigned char rlevel; |
| struct ctlr_info *h; |
| struct scsi_device *sdev; |
| struct hpsa_scsi_dev_t *hdev; |
| unsigned long flags; |
| |
| sdev = to_scsi_device(dev); |
| h = sdev_to_hba(sdev); |
| spin_lock_irqsave(&h->lock, flags); |
| hdev = sdev->hostdata; |
| if (!hdev) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -ENODEV; |
| } |
| |
| /* Is this even a logical drive? */ |
| if (!is_logical_device(hdev)) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| l = snprintf(buf, PAGE_SIZE, "N/A\n"); |
| return l; |
| } |
| |
| rlevel = hdev->raid_level; |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (rlevel > RAID_UNKNOWN) |
| rlevel = RAID_UNKNOWN; |
| l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); |
| return l; |
| } |
| |
| static ssize_t lunid_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct scsi_device *sdev; |
| struct hpsa_scsi_dev_t *hdev; |
| unsigned long flags; |
| unsigned char lunid[8]; |
| |
| sdev = to_scsi_device(dev); |
| h = sdev_to_hba(sdev); |
| spin_lock_irqsave(&h->lock, flags); |
| hdev = sdev->hostdata; |
| if (!hdev) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -ENODEV; |
| } |
| memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); |
| spin_unlock_irqrestore(&h->lock, flags); |
| return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", |
| lunid[0], lunid[1], lunid[2], lunid[3], |
| lunid[4], lunid[5], lunid[6], lunid[7]); |
| } |
| |
| static ssize_t unique_id_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct scsi_device *sdev; |
| struct hpsa_scsi_dev_t *hdev; |
| unsigned long flags; |
| unsigned char sn[16]; |
| |
| sdev = to_scsi_device(dev); |
| h = sdev_to_hba(sdev); |
| spin_lock_irqsave(&h->lock, flags); |
| hdev = sdev->hostdata; |
| if (!hdev) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -ENODEV; |
| } |
| memcpy(sn, hdev->device_id, sizeof(sn)); |
| spin_unlock_irqrestore(&h->lock, flags); |
| return snprintf(buf, 16 * 2 + 2, |
| "%02X%02X%02X%02X%02X%02X%02X%02X" |
| "%02X%02X%02X%02X%02X%02X%02X%02X\n", |
| sn[0], sn[1], sn[2], sn[3], |
| sn[4], sn[5], sn[6], sn[7], |
| sn[8], sn[9], sn[10], sn[11], |
| sn[12], sn[13], sn[14], sn[15]); |
| } |
| |
| static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct scsi_device *sdev; |
| struct hpsa_scsi_dev_t *hdev; |
| unsigned long flags; |
| int offload_enabled; |
| |
| sdev = to_scsi_device(dev); |
| h = sdev_to_hba(sdev); |
| spin_lock_irqsave(&h->lock, flags); |
| hdev = sdev->hostdata; |
| if (!hdev) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -ENODEV; |
| } |
| offload_enabled = hdev->offload_enabled; |
| spin_unlock_irqrestore(&h->lock, flags); |
| return snprintf(buf, 20, "%d\n", offload_enabled); |
| } |
| |
| #define MAX_PATHS 8 |
| |
| static ssize_t path_info_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct scsi_device *sdev; |
| struct hpsa_scsi_dev_t *hdev; |
| unsigned long flags; |
| int i; |
| int output_len = 0; |
| u8 box; |
| u8 bay; |
| u8 path_map_index = 0; |
| char *active; |
| unsigned char phys_connector[2]; |
| |
| sdev = to_scsi_device(dev); |
| h = sdev_to_hba(sdev); |
| spin_lock_irqsave(&h->devlock, flags); |
| hdev = sdev->hostdata; |
| if (!hdev) { |
| spin_unlock_irqrestore(&h->devlock, flags); |
| return -ENODEV; |
| } |
| |
| bay = hdev->bay; |
| for (i = 0; i < MAX_PATHS; i++) { |
| path_map_index = 1<<i; |
| if (i == hdev->active_path_index) |
| active = "Active"; |
| else if (hdev->path_map & path_map_index) |
| active = "Inactive"; |
| else |
| continue; |
| |
| output_len += scnprintf(buf + output_len, |
| PAGE_SIZE - output_len, |
| "[%d:%d:%d:%d] %20.20s ", |
| h->scsi_host->host_no, |
| hdev->bus, hdev->target, hdev->lun, |
| scsi_device_type(hdev->devtype)); |
| |
| if (hdev->external || |
| hdev->devtype == TYPE_RAID || |
| is_logical_device(hdev)) { |
| output_len += snprintf(buf + output_len, |
| PAGE_SIZE - output_len, |
| "%s\n", active); |
| continue; |
| } |
| |
| box = hdev->box[i]; |
| memcpy(&phys_connector, &hdev->phys_connector[i], |
| sizeof(phys_connector)); |
| if (phys_connector[0] < '0') |
| phys_connector[0] = '0'; |
| if (phys_connector[1] < '0') |
| phys_connector[1] = '0'; |
| if (hdev->phys_connector[i] > 0) |
| output_len += snprintf(buf + output_len, |
| PAGE_SIZE - output_len, |
| "PORT: %.2s ", |
| phys_connector); |
| if (hdev->devtype == TYPE_DISK && hdev->expose_device) { |
| if (box == 0 || box == 0xFF) { |
| output_len += snprintf(buf + output_len, |
| PAGE_SIZE - output_len, |
| "BAY: %hhu %s\n", |
| bay, active); |
| } else { |
| output_len += snprintf(buf + output_len, |
| PAGE_SIZE - output_len, |
| "BOX: %hhu BAY: %hhu %s\n", |
| box, bay, active); |
| } |
| } else if (box != 0 && box != 0xFF) { |
| output_len += snprintf(buf + output_len, |
| PAGE_SIZE - output_len, "BOX: %hhu %s\n", |
| box, active); |
| } else |
| output_len += snprintf(buf + output_len, |
| PAGE_SIZE - output_len, "%s\n", active); |
| } |
| |
| spin_unlock_irqrestore(&h->devlock, flags); |
| return output_len; |
| } |
| |
| static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); |
| static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); |
| static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); |
| static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); |
| static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, |
| host_show_hp_ssd_smart_path_enabled, NULL); |
| static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL); |
| static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, |
| host_show_hp_ssd_smart_path_status, |
| host_store_hp_ssd_smart_path_status); |
| static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, |
| host_store_raid_offload_debug); |
| static DEVICE_ATTR(firmware_revision, S_IRUGO, |
| host_show_firmware_revision, NULL); |
| static DEVICE_ATTR(commands_outstanding, S_IRUGO, |
| host_show_commands_outstanding, NULL); |
| static DEVICE_ATTR(transport_mode, S_IRUGO, |
| host_show_transport_mode, NULL); |
| static DEVICE_ATTR(resettable, S_IRUGO, |
| host_show_resettable, NULL); |
| static DEVICE_ATTR(lockup_detected, S_IRUGO, |
| host_show_lockup_detected, NULL); |
| |
| static struct device_attribute *hpsa_sdev_attrs[] = { |
| &dev_attr_raid_level, |
| &dev_attr_lunid, |
| &dev_attr_unique_id, |
| &dev_attr_hp_ssd_smart_path_enabled, |
| &dev_attr_path_info, |
| &dev_attr_lockup_detected, |
| NULL, |
| }; |
| |
| static struct device_attribute *hpsa_shost_attrs[] = { |
| &dev_attr_rescan, |
| &dev_attr_firmware_revision, |
| &dev_attr_commands_outstanding, |
| &dev_attr_transport_mode, |
| &dev_attr_resettable, |
| &dev_attr_hp_ssd_smart_path_status, |
| &dev_attr_raid_offload_debug, |
| NULL, |
| }; |
| |
| #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \ |
| HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS) |
| |
| static struct scsi_host_template hpsa_driver_template = { |
| .module = THIS_MODULE, |
| .name = HPSA, |
| .proc_name = HPSA, |
| .queuecommand = hpsa_scsi_queue_command, |
| .scan_start = hpsa_scan_start, |
| .scan_finished = hpsa_scan_finished, |
| .change_queue_depth = hpsa_change_queue_depth, |
| .this_id = -1, |
| .use_clustering = ENABLE_CLUSTERING, |
| .eh_abort_handler = hpsa_eh_abort_handler, |
| .eh_device_reset_handler = hpsa_eh_device_reset_handler, |
| .ioctl = hpsa_ioctl, |
| .slave_alloc = hpsa_slave_alloc, |
| .slave_configure = hpsa_slave_configure, |
| .slave_destroy = hpsa_slave_destroy, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = hpsa_compat_ioctl, |
| #endif |
| .sdev_attrs = hpsa_sdev_attrs, |
| .shost_attrs = hpsa_shost_attrs, |
| .max_sectors = 8192, |
| .no_write_same = 1, |
| }; |
| |
| static inline u32 next_command(struct ctlr_info *h, u8 q) |
| { |
| u32 a; |
| struct reply_queue_buffer *rq = &h->reply_queue[q]; |
| |
| if (h->transMethod & CFGTBL_Trans_io_accel1) |
| return h->access.command_completed(h, q); |
| |
| if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) |
| return h->access.command_completed(h, q); |
| |
| if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { |
| a = rq->head[rq->current_entry]; |
| rq->current_entry++; |
| atomic_dec(&h->commands_outstanding); |
| } else { |
| a = FIFO_EMPTY; |
| } |
| /* Check for wraparound */ |
| if (rq->current_entry == h->max_commands) { |
| rq->current_entry = 0; |
| rq->wraparound ^= 1; |
| } |
| return a; |
| } |
| |
| /* |
| * There are some special bits in the bus address of the |
| * command that we have to set for the controller to know |
| * how to process the command: |
| * |
| * Normal performant mode: |
| * bit 0: 1 means performant mode, 0 means simple mode. |
| * bits 1-3 = block fetch table entry |
| * bits 4-6 = command type (== 0) |
| * |
| * ioaccel1 mode: |
| * bit 0 = "performant mode" bit. |
| * bits 1-3 = block fetch table entry |
| * bits 4-6 = command type (== 110) |
| * (command type is needed because ioaccel1 mode |
| * commands are submitted through the same register as normal |
| * mode commands, so this is how the controller knows whether |
| * the command is normal mode or ioaccel1 mode.) |
| * |
| * ioaccel2 mode: |
| * bit 0 = "performant mode" bit. |
| * bits 1-4 = block fetch table entry (note extra bit) |
| * bits 4-6 = not needed, because ioaccel2 mode has |
| * a separate special register for submitting commands. |
| */ |
| |
| /* |
| * set_performant_mode: Modify the tag for cciss performant |
| * set bit 0 for pull model, bits 3-1 for block fetch |
| * register number |
| */ |
| #define DEFAULT_REPLY_QUEUE (-1) |
| static void set_performant_mode(struct ctlr_info *h, struct CommandList *c, |
| int reply_queue) |
| { |
| if (likely(h->transMethod & CFGTBL_Trans_Performant)) { |
| c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); |
| if (unlikely(!h->msix_vector)) |
| return; |
| if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) |
| c->Header.ReplyQueue = |
| raw_smp_processor_id() % h->nreply_queues; |
| else |
| c->Header.ReplyQueue = reply_queue % h->nreply_queues; |
| } |
| } |
| |
| static void set_ioaccel1_performant_mode(struct ctlr_info *h, |
| struct CommandList *c, |
| int reply_queue) |
| { |
| struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; |
| |
| /* |
| * Tell the controller to post the reply to the queue for this |
| * processor. This seems to give the best I/O throughput. |
| */ |
| if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) |
| cp->ReplyQueue = smp_processor_id() % h->nreply_queues; |
| else |
| cp->ReplyQueue = reply_queue % h->nreply_queues; |
| /* |
| * Set the bits in the address sent down to include: |
| * - performant mode bit (bit 0) |
| * - pull count (bits 1-3) |
| * - command type (bits 4-6) |
| */ |
| c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | |
| IOACCEL1_BUSADDR_CMDTYPE; |
| } |
| |
| static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h, |
| struct CommandList *c, |
| int reply_queue) |
| { |
| struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *) |
| &h->ioaccel2_cmd_pool[c->cmdindex]; |
| |
| /* Tell the controller to post the reply to the queue for this |
| * processor. This seems to give the best I/O throughput. |
| */ |
| if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) |
| cp->reply_queue = smp_processor_id() % h->nreply_queues; |
| else |
| cp->reply_queue = reply_queue % h->nreply_queues; |
| /* Set the bits in the address sent down to include: |
| * - performant mode bit not used in ioaccel mode 2 |
| * - pull count (bits 0-3) |
| * - command type isn't needed for ioaccel2 |
| */ |
| c->busaddr |= h->ioaccel2_blockFetchTable[0]; |
| } |
| |
| static void set_ioaccel2_performant_mode(struct ctlr_info *h, |
| struct CommandList *c, |
| int reply_queue) |
| { |
| struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; |
| |
| /* |
| * Tell the controller to post the reply to the queue for this |
| * processor. This seems to give the best I/O throughput. |
| */ |
| if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) |
| cp->reply_queue = smp_processor_id() % h->nreply_queues; |
| else |
| cp->reply_queue = reply_queue % h->nreply_queues; |
| /* |
| * Set the bits in the address sent down to include: |
| * - performant mode bit not used in ioaccel mode 2 |
| * - pull count (bits 0-3) |
| * - command type isn't needed for ioaccel2 |
| */ |
| c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); |
| } |
| |
| static int is_firmware_flash_cmd(u8 *cdb) |
| { |
| return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; |
| } |
| |
| /* |
| * During firmware flash, the heartbeat register may not update as frequently |
| * as it should. So we dial down lockup detection during firmware flash. and |
| * dial it back up when firmware flash completes. |
| */ |
| #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) |
| #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) |
| static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| if (!is_firmware_flash_cmd(c->Request.CDB)) |
| return; |
| atomic_inc(&h->firmware_flash_in_progress); |
| h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; |
| } |
| |
| static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| if (is_firmware_flash_cmd(c->Request.CDB) && |
| atomic_dec_and_test(&h->firmware_flash_in_progress)) |
| h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; |
| } |
| |
| static void __enqueue_cmd_and_start_io(struct ctlr_info *h, |
| struct CommandList *c, int reply_queue) |
| { |
| dial_down_lockup_detection_during_fw_flash(h, c); |
| atomic_inc(&h->commands_outstanding); |
| switch (c->cmd_type) { |
| case CMD_IOACCEL1: |
| set_ioaccel1_performant_mode(h, c, reply_queue); |
| writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); |
| break; |
| case CMD_IOACCEL2: |
| set_ioaccel2_performant_mode(h, c, reply_queue); |
| writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); |
| break; |
| case IOACCEL2_TMF: |
| set_ioaccel2_tmf_performant_mode(h, c, reply_queue); |
| writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); |
| break; |
| default: |
| set_performant_mode(h, c, reply_queue); |
| h->access.submit_command(h, c); |
| } |
| } |
| |
| static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c) |
| { |
| if (unlikely(hpsa_is_pending_event(c))) |
| return finish_cmd(c); |
| |
| __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE); |
| } |
| |
| static inline int is_hba_lunid(unsigned char scsi3addr[]) |
| { |
| return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; |
| } |
| |
| static inline int is_scsi_rev_5(struct ctlr_info *h) |
| { |
| if (!h->hba_inquiry_data) |
| return 0; |
| if ((h->hba_inquiry_data[2] & 0x07) == 5) |
| return 1; |
| return 0; |
| } |
| |
| static int hpsa_find_target_lun(struct ctlr_info *h, |
| unsigned char scsi3addr[], int bus, int *target, int *lun) |
| { |
| /* finds an unused bus, target, lun for a new physical device |
| * assumes h->devlock is held |
| */ |
| int i, found = 0; |
| DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); |
| |
| bitmap_zero(lun_taken, HPSA_MAX_DEVICES); |
| |
| for (i = 0; i < h->ndevices; i++) { |
| if (h->dev[i]->bus == bus && h->dev[i]->target != -1) |
| __set_bit(h->dev[i]->target, lun_taken); |
| } |
| |
| i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); |
| if (i < HPSA_MAX_DEVICES) { |
| /* *bus = 1; */ |
| *target = i; |
| *lun = 0; |
| found = 1; |
| } |
| return !found; |
| } |
| |
| static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h, |
| struct hpsa_scsi_dev_t *dev, char *description) |
| { |
| #define LABEL_SIZE 25 |
| char label[LABEL_SIZE]; |
| |
| if (h == NULL || h->pdev == NULL || h->scsi_host == NULL) |
| return; |
| |
| switch (dev->devtype) { |
| case TYPE_RAID: |
| snprintf(label, LABEL_SIZE, "controller"); |
| break; |
| case TYPE_ENCLOSURE: |
| snprintf(label, LABEL_SIZE, "enclosure"); |
| break; |
| case TYPE_DISK: |
| if (dev->external) |
| snprintf(label, LABEL_SIZE, "external"); |
| else if (!is_logical_dev_addr_mode(dev->scsi3addr)) |
| snprintf(label, LABEL_SIZE, "%s", |
| raid_label[PHYSICAL_DRIVE]); |
| else |
| snprintf(label, LABEL_SIZE, "RAID-%s", |
| dev->raid_level > RAID_UNKNOWN ? "?" : |
| raid_label[dev->raid_level]); |
| break; |
| case TYPE_ROM: |
| snprintf(label, LABEL_SIZE, "rom"); |
| break; |
| case TYPE_TAPE: |
| snprintf(label, LABEL_SIZE, "tape"); |
| break; |
| case TYPE_MEDIUM_CHANGER: |
| snprintf(label, LABEL_SIZE, "changer"); |
| break; |
| default: |
| snprintf(label, LABEL_SIZE, "UNKNOWN"); |
| break; |
| } |
| |
| dev_printk(level, &h->pdev->dev, |
| "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n", |
| h->scsi_host->host_no, dev->bus, dev->target, dev->lun, |
| description, |
| scsi_device_type(dev->devtype), |
| dev->vendor, |
| dev->model, |
| label, |
| dev->offload_config ? '+' : '-', |
| dev->offload_enabled ? '+' : '-', |
| dev->expose_device); |
| } |
| |
| /* Add an entry into h->dev[] array. */ |
| static int hpsa_scsi_add_entry(struct ctlr_info *h, |
| struct hpsa_scsi_dev_t *device, |
| struct hpsa_scsi_dev_t *added[], int *nadded) |
| { |
| /* assumes h->devlock is held */ |
| int n = h->ndevices; |
| int i; |
| unsigned char addr1[8], addr2[8]; |
| struct hpsa_scsi_dev_t *sd; |
| |
| if (n >= HPSA_MAX_DEVICES) { |
| dev_err(&h->pdev->dev, "too many devices, some will be " |
| "inaccessible.\n"); |
| return -1; |
| } |
| |
| /* physical devices do not have lun or target assigned until now. */ |
| if (device->lun != -1) |
| /* Logical device, lun is already assigned. */ |
| goto lun_assigned; |
| |
| /* If this device a non-zero lun of a multi-lun device |
| * byte 4 of the 8-byte LUN addr will contain the logical |
| * unit no, zero otherwise. |
| */ |
| if (device->scsi3addr[4] == 0) { |
| /* This is not a non-zero lun of a multi-lun device */ |
| if (hpsa_find_target_lun(h, device->scsi3addr, |
| device->bus, &device->target, &device->lun) != 0) |
| return -1; |
| goto lun_assigned; |
| } |
| |
| /* This is a non-zero lun of a multi-lun device. |
| * Search through our list and find the device which |
| * has the same 8 byte LUN address, excepting byte 4 and 5. |
| * Assign the same bus and target for this new LUN. |
| * Use the logical unit number from the firmware. |
| */ |
| memcpy(addr1, device->scsi3addr, 8); |
| addr1[4] = 0; |
| addr1[5] = 0; |
| for (i = 0; i < n; i++) { |
| sd = h->dev[i]; |
| memcpy(addr2, sd->scsi3addr, 8); |
| addr2[4] = 0; |
| addr2[5] = 0; |
| /* differ only in byte 4 and 5? */ |
| if (memcmp(addr1, addr2, 8) == 0) { |
| device->bus = sd->bus; |
| device->target = sd->target; |
| device->lun = device->scsi3addr[4]; |
| break; |
| } |
| } |
| if (device->lun == -1) { |
| dev_warn(&h->pdev->dev, "physical device with no LUN=0," |
| " suspect firmware bug or unsupported hardware " |
| "configuration.\n"); |
| return -1; |
| } |
| |
| lun_assigned: |
| |
| h->dev[n] = device; |
| h->ndevices++; |
| added[*nadded] = device; |
| (*nadded)++; |
| hpsa_show_dev_msg(KERN_INFO, h, device, |
| device->expose_device ? "added" : "masked"); |
| device->offload_to_be_enabled = device->offload_enabled; |
| device->offload_enabled = 0; |
| return 0; |
| } |
| |
| /* Update an entry in h->dev[] array. */ |
| static void hpsa_scsi_update_entry(struct ctlr_info *h, |
| int entry, struct hpsa_scsi_dev_t *new_entry) |
| { |
| int offload_enabled; |
| /* assumes h->devlock is held */ |
| BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); |
| |
| /* Raid level changed. */ |
| h->dev[entry]->raid_level = new_entry->raid_level; |
| |
| /* Raid offload parameters changed. Careful about the ordering. */ |
| if (new_entry->offload_config && new_entry->offload_enabled) { |
| /* |
| * if drive is newly offload_enabled, we want to copy the |
| * raid map data first. If previously offload_enabled and |
| * offload_config were set, raid map data had better be |
| * the same as it was before. if raid map data is changed |
| * then it had better be the case that |
| * h->dev[entry]->offload_enabled is currently 0. |
| */ |
| h->dev[entry]->raid_map = new_entry->raid_map; |
| h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; |
| } |
| if (new_entry->hba_ioaccel_enabled) { |
| h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; |
| wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */ |
| } |
| h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled; |
| h->dev[entry]->offload_config = new_entry->offload_config; |
| h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; |
| h->dev[entry]->queue_depth = new_entry->queue_depth; |
| |
| /* |
| * We can turn off ioaccel offload now, but need to delay turning |
| * it on until we can update h->dev[entry]->phys_disk[], but we |
| * can't do that until all the devices are updated. |
| */ |
| h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled; |
| if (!new_entry->offload_enabled) |
| h->dev[entry]->offload_enabled = 0; |
| |
| offload_enabled = h->dev[entry]->offload_enabled; |
| h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled; |
| hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated"); |
| h->dev[entry]->offload_enabled = offload_enabled; |
| } |
| |
| /* Replace an entry from h->dev[] array. */ |
| static void hpsa_scsi_replace_entry(struct ctlr_info *h, |
| int entry, struct hpsa_scsi_dev_t *new_entry, |
| struct hpsa_scsi_dev_t *added[], int *nadded, |
| struct hpsa_scsi_dev_t *removed[], int *nremoved) |
| { |
| /* assumes h->devlock is held */ |
| BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); |
| removed[*nremoved] = h->dev[entry]; |
| (*nremoved)++; |
| |
| /* |
| * New physical devices won't have target/lun assigned yet |
| * so we need to preserve the values in the slot we are replacing. |
| */ |
| if (new_entry->target == -1) { |
| new_entry->target = h->dev[entry]->target; |
| new_entry->lun = h->dev[entry]->lun; |
| } |
| |
| h->dev[entry] = new_entry; |
| added[*nadded] = new_entry; |
| (*nadded)++; |
| hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced"); |
| new_entry->offload_to_be_enabled = new_entry->offload_enabled; |
| new_entry->offload_enabled = 0; |
| } |
| |
| /* Remove an entry from h->dev[] array. */ |
| static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry, |
| struct hpsa_scsi_dev_t *removed[], int *nremoved) |
| { |
| /* assumes h->devlock is held */ |
| int i; |
| struct hpsa_scsi_dev_t *sd; |
| |
| BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); |
| |
| sd = h->dev[entry]; |
| removed[*nremoved] = h->dev[entry]; |
| (*nremoved)++; |
| |
| for (i = entry; i < h->ndevices-1; i++) |
| h->dev[i] = h->dev[i+1]; |
| h->ndevices--; |
| hpsa_show_dev_msg(KERN_INFO, h, sd, "removed"); |
| } |
| |
| #define SCSI3ADDR_EQ(a, b) ( \ |
| (a)[7] == (b)[7] && \ |
| (a)[6] == (b)[6] && \ |
| (a)[5] == (b)[5] && \ |
| (a)[4] == (b)[4] && \ |
| (a)[3] == (b)[3] && \ |
| (a)[2] == (b)[2] && \ |
| (a)[1] == (b)[1] && \ |
| (a)[0] == (b)[0]) |
| |
| static void fixup_botched_add(struct ctlr_info *h, |
| struct hpsa_scsi_dev_t *added) |
| { |
| /* called when scsi_add_device fails in order to re-adjust |
| * h->dev[] to match the mid layer's view. |
| */ |
| unsigned long flags; |
| int i, j; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| for (i = 0; i < h->ndevices; i++) { |
| if (h->dev[i] == added) { |
| for (j = i; j < h->ndevices-1; j++) |
| h->dev[j] = h->dev[j+1]; |
| h->ndevices--; |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| kfree(added); |
| } |
| |
| static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, |
| struct hpsa_scsi_dev_t *dev2) |
| { |
| /* we compare everything except lun and target as these |
| * are not yet assigned. Compare parts likely |
| * to differ first |
| */ |
| if (memcmp(dev1->scsi3addr, dev2->scsi3addr, |
| sizeof(dev1->scsi3addr)) != 0) |
| return 0; |
| if (memcmp(dev1->device_id, dev2->device_id, |
| sizeof(dev1->device_id)) != 0) |
| return 0; |
| if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) |
| return 0; |
| if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) |
| return 0; |
| if (dev1->devtype != dev2->devtype) |
| return 0; |
| if (dev1->bus != dev2->bus) |
| return 0; |
| return 1; |
| } |
| |
| static inline int device_updated(struct hpsa_scsi_dev_t *dev1, |
| struct hpsa_scsi_dev_t *dev2) |
| { |
| /* Device attributes that can change, but don't mean |
| * that the device is a different device, nor that the OS |
| * needs to be told anything about the change. |
| */ |
| if (dev1->raid_level != dev2->raid_level) |
| return 1; |
| if (dev1->offload_config != dev2->offload_config) |
| return 1; |
| if (dev1->offload_enabled != dev2->offload_enabled) |
| return 1; |
| if (!is_logical_dev_addr_mode(dev1->scsi3addr)) |
| if (dev1->queue_depth != dev2->queue_depth) |
| return 1; |
| return 0; |
| } |
| |
| /* Find needle in haystack. If exact match found, return DEVICE_SAME, |
| * and return needle location in *index. If scsi3addr matches, but not |
| * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle |
| * location in *index. |
| * In the case of a minor device attribute change, such as RAID level, just |
| * return DEVICE_UPDATED, along with the updated device's location in index. |
| * If needle not found, return DEVICE_NOT_FOUND. |
| */ |
| static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, |
| struct hpsa_scsi_dev_t *haystack[], int haystack_size, |
| int *index) |
| { |
| int i; |
| #define DEVICE_NOT_FOUND 0 |
| #define DEVICE_CHANGED 1 |
| #define DEVICE_SAME 2 |
| #define DEVICE_UPDATED 3 |
| if (needle == NULL) |
| return DEVICE_NOT_FOUND; |
| |
| for (i = 0; i < haystack_size; i++) { |
| if (haystack[i] == NULL) /* previously removed. */ |
| continue; |
| if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { |
| *index = i; |
| if (device_is_the_same(needle, haystack[i])) { |
| if (device_updated(needle, haystack[i])) |
| return DEVICE_UPDATED; |
| return DEVICE_SAME; |
| } else { |
| /* Keep offline devices offline */ |
| if (needle->volume_offline) |
| return DEVICE_NOT_FOUND; |
| return DEVICE_CHANGED; |
| } |
| } |
| } |
| *index = -1; |
| return DEVICE_NOT_FOUND; |
| } |
| |
| static void hpsa_monitor_offline_device(struct ctlr_info *h, |
| unsigned char scsi3addr[]) |
| { |
| struct offline_device_entry *device; |
| unsigned long flags; |
| |
| /* Check to see if device is already on the list */ |
| spin_lock_irqsave(&h->offline_device_lock, flags); |
| list_for_each_entry(device, &h->offline_device_list, offline_list) { |
| if (memcmp(device->scsi3addr, scsi3addr, |
| sizeof(device->scsi3addr)) == 0) { |
| spin_unlock_irqrestore(&h->offline_device_lock, flags); |
| return; |
| } |
| } |
| spin_unlock_irqrestore(&h->offline_device_lock, flags); |
| |
| /* Device is not on the list, add it. */ |
| device = kmalloc(sizeof(*device), GFP_KERNEL); |
| if (!device) { |
| dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__); |
| return; |
| } |
| memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); |
| spin_lock_irqsave(&h->offline_device_lock, flags); |
| list_add_tail(&device->offline_list, &h->offline_device_list); |
| spin_unlock_irqrestore(&h->offline_device_lock, flags); |
| } |
| |
| /* Print a message explaining various offline volume states */ |
| static void hpsa_show_volume_status(struct ctlr_info *h, |
| struct hpsa_scsi_dev_t *sd) |
| { |
| if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) |
| dev_info(&h->pdev->dev, |
| "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", |
| h->scsi_host->host_no, |
| sd->bus, sd->target, sd->lun); |
| switch (sd->volume_offline) { |
| case HPSA_LV_OK: |
| break; |
| case HPSA_LV_UNDERGOING_ERASE: |
| dev_info(&h->pdev->dev, |
| "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", |
| h->scsi_host->host_no, |
| sd->bus, sd->target, sd->lun); |
| break; |
| case HPSA_LV_NOT_AVAILABLE: |
| dev_info(&h->pdev->dev, |
| "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n", |
| h->scsi_host->host_no, |
| sd->bus, sd->target, sd->lun); |
| break; |
| case HPSA_LV_UNDERGOING_RPI: |
| dev_info(&h->pdev->dev, |
| "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n", |
| h->scsi_host->host_no, |
| sd->bus, sd->target, sd->lun); |
| break; |
| case HPSA_LV_PENDING_RPI: |
| dev_info(&h->pdev->dev, |
| "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", |
| h->scsi_host->host_no, |
| sd->bus, sd->target, sd->lun); |
| break; |
| case HPSA_LV_ENCRYPTED_NO_KEY: |
| dev_info(&h->pdev->dev, |
| "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", |
| h->scsi_host->host_no, |
| sd->bus, sd->target, sd->lun); |
| break; |
| case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: |
| dev_info(&h->pdev->dev, |
| "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", |
| h->scsi_host->host_no, |
| sd->bus, sd->target, sd->lun); |
| break; |
| case HPSA_LV_UNDERGOING_ENCRYPTION: |
| dev_info(&h->pdev->dev, |
| "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", |
| h->scsi_host->host_no, |
| sd->bus, sd->target, sd->lun); |
| break; |
| case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: |
| dev_info(&h->pdev->dev, |
| "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", |
| h->scsi_host->host_no, |
| sd->bus, sd->target, sd->lun); |
| break; |
| case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: |
| dev_info(&h->pdev->dev, |
| "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", |
| h->scsi_host->host_no, |
| sd->bus, sd->target, sd->lun); |
| break; |
| case HPSA_LV_PENDING_ENCRYPTION: |
| dev_info(&h->pdev->dev, |
| "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", |
| h->scsi_host->host_no, |
| sd->bus, sd->target, sd->lun); |
| break; |
| case HPSA_LV_PENDING_ENCRYPTION_REKEYING: |
| dev_info(&h->pdev->dev, |
| "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", |
| h->scsi_host->host_no, |
| sd->bus, sd->target, sd->lun); |
| break; |
| } |
| } |
| |
| /* |
| * Figure the list of physical drive pointers for a logical drive with |
| * raid offload configured. |
| */ |
| static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h, |
| struct hpsa_scsi_dev_t *dev[], int ndevices, |
| struct hpsa_scsi_dev_t *logical_drive) |
| { |
| struct raid_map_data *map = &logical_drive->raid_map; |
| struct raid_map_disk_data *dd = &map->data[0]; |
| int i, j; |
| int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + |
| le16_to_cpu(map->metadata_disks_per_row); |
| int nraid_map_entries = le16_to_cpu(map->row_cnt) * |
| le16_to_cpu(map->layout_map_count) * |
| total_disks_per_row; |
| int nphys_disk = le16_to_cpu(map->layout_map_count) * |
| total_disks_per_row; |
| int qdepth; |
| |
| if (nraid_map_entries > RAID_MAP_MAX_ENTRIES) |
| nraid_map_entries = RAID_MAP_MAX_ENTRIES; |
| |
| logical_drive->nphysical_disks = nraid_map_entries; |
| |
| qdepth = 0; |
| for (i = 0; i < nraid_map_entries; i++) { |
| logical_drive->phys_disk[i] = NULL; |
| if (!logical_drive->offload_config) |
| continue; |
| for (j = 0; j < ndevices; j++) { |
| if (dev[j] == NULL) |
| continue; |
| if (dev[j]->devtype != TYPE_DISK) |
| continue; |
| if (is_logical_device(dev[j])) |
| continue; |
| if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle) |
| continue; |
| |
| logical_drive->phys_disk[i] = dev[j]; |
| if (i < nphys_disk) |
| qdepth = min(h->nr_cmds, qdepth + |
| logical_drive->phys_disk[i]->queue_depth); |
| break; |
| } |
| |
| /* |
| * This can happen if a physical drive is removed and |
| * the logical drive is degraded. In that case, the RAID |
| * map data will refer to a physical disk which isn't actually |
| * present. And in that case offload_enabled should already |
| * be 0, but we'll turn it off here just in case |
| */ |
| if (!logical_drive->phys_disk[i]) { |
| logical_drive->offload_enabled = 0; |
| logical_drive->offload_to_be_enabled = 0; |
| logical_drive->queue_depth = 8; |
| } |
| } |
| if (nraid_map_entries) |
| /* |
| * This is correct for reads, too high for full stripe writes, |
| * way too high for partial stripe writes |
| */ |
| logical_drive->queue_depth = qdepth; |
| else |
| logical_drive->queue_depth = h->nr_cmds; |
| } |
| |
| static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h, |
| struct hpsa_scsi_dev_t *dev[], int ndevices) |
| { |
| int i; |
| |
| for (i = 0; i < ndevices; i++) { |
| if (dev[i] == NULL) |
| continue; |
| if (dev[i]->devtype != TYPE_DISK) |
| continue; |
| if (!is_logical_device(dev[i])) |
| continue; |
| |
| /* |
| * If offload is currently enabled, the RAID map and |
| * phys_disk[] assignment *better* not be changing |
| * and since it isn't changing, we do not need to |
| * update it. |
| */ |
| if (dev[i]->offload_enabled) |
| continue; |
| |
| hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]); |
| } |
| } |
| |
| static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) |
| { |
| int rc = 0; |
| |
| if (!h->scsi_host) |
| return 1; |
| |
| rc = scsi_add_device(h->scsi_host, device->bus, |
| device->target, device->lun); |
| return rc; |
| } |
| |
| static void hpsa_remove_device(struct ctlr_info *h, |
| struct hpsa_scsi_dev_t *device) |
| { |
| struct scsi_device *sdev = NULL; |
| |
| if (!h->scsi_host) |
| return; |
| |
| sdev = scsi_device_lookup(h->scsi_host, device->bus, |
| device->target, device->lun); |
| |
| if (sdev) { |
| scsi_remove_device(sdev); |
| scsi_device_put(sdev); |
| } else { |
| /* |
| * We don't expect to get here. Future commands |
| * to this device will get a selection timeout as |
| * if the device were gone. |
| */ |
| hpsa_show_dev_msg(KERN_WARNING, h, device, |
| "didn't find device for removal."); |
| } |
| } |
| |
| static void adjust_hpsa_scsi_table(struct ctlr_info *h, |
| struct hpsa_scsi_dev_t *sd[], int nsds) |
| { |
| /* sd contains scsi3 addresses and devtypes, and inquiry |
| * data. This function takes what's in sd to be the current |
| * reality and updates h->dev[] to reflect that reality. |
| */ |
| int i, entry, device_change, changes = 0; |
| struct hpsa_scsi_dev_t *csd; |
| unsigned long flags; |
| struct hpsa_scsi_dev_t **added, **removed; |
| int nadded, nremoved; |
| |
| /* |
| * A reset can cause a device status to change |
| * re-schedule the scan to see what happened. |
| */ |
| if (h->reset_in_progress) { |
| h->drv_req_rescan = 1; |
| return; |
| } |
| |
| added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL); |
| removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL); |
| |
| if (!added || !removed) { |
| dev_warn(&h->pdev->dev, "out of memory in " |
| "adjust_hpsa_scsi_table\n"); |
| goto free_and_out; |
| } |
| |
| spin_lock_irqsave(&h->devlock, flags); |
| |
| /* find any devices in h->dev[] that are not in |
| * sd[] and remove them from h->dev[], and for any |
| * devices which have changed, remove the old device |
| * info and add the new device info. |
| * If minor device attributes change, just update |
| * the existing device structure. |
| */ |
| i = 0; |
| nremoved = 0; |
| nadded = 0; |
| while (i < h->ndevices) { |
| csd = h->dev[i]; |
| device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); |
| if (device_change == DEVICE_NOT_FOUND) { |
| changes++; |
| hpsa_scsi_remove_entry(h, i, removed, &nremoved); |
| continue; /* remove ^^^, hence i not incremented */ |
| } else if (device_change == DEVICE_CHANGED) { |
| changes++; |
| hpsa_scsi_replace_entry(h, i, sd[entry], |
| added, &nadded, removed, &nremoved); |
| /* Set it to NULL to prevent it from being freed |
| * at the bottom of hpsa_update_scsi_devices() |
| */ |
| sd[entry] = NULL; |
| } else if (device_change == DEVICE_UPDATED) { |
| hpsa_scsi_update_entry(h, i, sd[entry]); |
| } |
| i++; |
| } |
| |
| /* Now, make sure every device listed in sd[] is also |
| * listed in h->dev[], adding them if they aren't found |
| */ |
| |
| for (i = 0; i < nsds; i++) { |
| if (!sd[i]) /* if already added above. */ |
| continue; |
| |
| /* Don't add devices which are NOT READY, FORMAT IN PROGRESS |
| * as the SCSI mid-layer does not handle such devices well. |
| * It relentlessly loops sending TUR at 3Hz, then READ(10) |
| * at 160Hz, and prevents the system from coming up. |
| */ |
| if (sd[i]->volume_offline) { |
| hpsa_show_volume_status(h, sd[i]); |
| hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline"); |
| continue; |
| } |
| |
| device_change = hpsa_scsi_find_entry(sd[i], h->dev, |
| h->ndevices, &entry); |
| if (device_change == DEVICE_NOT_FOUND) { |
| changes++; |
| if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0) |
| break; |
| sd[i] = NULL; /* prevent from being freed later. */ |
| } else if (device_change == DEVICE_CHANGED) { |
| /* should never happen... */ |
| changes++; |
| dev_warn(&h->pdev->dev, |
| "device unexpectedly changed.\n"); |
| /* but if it does happen, we just ignore that device */ |
| } |
| } |
| hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices); |
| |
| /* Now that h->dev[]->phys_disk[] is coherent, we can enable |
| * any logical drives that need it enabled. |
| */ |
| for (i = 0; i < h->ndevices; i++) { |
| if (h->dev[i] == NULL) |
| continue; |
| h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled; |
| } |
| |
| spin_unlock_irqrestore(&h->devlock, flags); |
| |
| /* Monitor devices which are in one of several NOT READY states to be |
| * brought online later. This must be done without holding h->devlock, |
| * so don't touch h->dev[] |
| */ |
| for (i = 0; i < nsds; i++) { |
| if (!sd[i]) /* if already added above. */ |
| continue; |
| if (sd[i]->volume_offline) |
| hpsa_monitor_offline_device(h, sd[i]->scsi3addr); |
| } |
| |
| /* Don't notify scsi mid layer of any changes the first time through |
| * (or if there are no changes) scsi_scan_host will do it later the |
| * first time through. |
| */ |
| if (!changes) |
| goto free_and_out; |
| |
| /* Notify scsi mid layer of any removed devices */ |
| for (i = 0; i < nremoved; i++) { |
| if (removed[i] == NULL) |
| continue; |
| if (removed[i]->expose_device) |
| hpsa_remove_device(h, removed[i]); |
| kfree(removed[i]); |
| removed[i] = NULL; |
| } |
| |
| /* Notify scsi mid layer of any added devices */ |
| for (i = 0; i < nadded; i++) { |
| int rc = 0; |
| |
| if (added[i] == NULL) |
| continue; |
| if (!(added[i]->expose_device)) |
| continue; |
| rc = hpsa_add_device(h, added[i]); |
| if (!rc) |
| continue; |
| dev_warn(&h->pdev->dev, |
| "addition failed %d, device not added.", rc); |
| /* now we have to remove it from h->dev, |
| * since it didn't get added to scsi mid layer |
| */ |
| fixup_botched_add(h, added[i]); |
| h->drv_req_rescan = 1; |
| } |
| |
| free_and_out: |
| kfree(added); |
| kfree(removed); |
| } |
| |
| /* |
| * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * |
| * Assume's h->devlock is held. |
| */ |
| static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, |
| int bus, int target, int lun) |
| { |
| int i; |
| struct hpsa_scsi_dev_t *sd; |
| |
| for (i = 0; i < h->ndevices; i++) { |
| sd = h->dev[i]; |
| if (sd->bus == bus && sd->target == target && sd->lun == lun) |
| return sd; |
| } |
| return NULL; |
| } |
| |
| static int hpsa_slave_alloc(struct scsi_device *sdev) |
| { |
| struct hpsa_scsi_dev_t *sd; |
| unsigned long flags; |
| struct ctlr_info *h; |
| |
| h = sdev_to_hba(sdev); |
| spin_lock_irqsave(&h->devlock, flags); |
| sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), |
| sdev_id(sdev), sdev->lun); |
| if (likely(sd)) { |
| atomic_set(&sd->ioaccel_cmds_out, 0); |
| sdev->hostdata = sd->expose_device ? sd : NULL; |
| } else |
| sdev->hostdata = NULL; |
| spin_unlock_irqrestore(&h->devlock, flags); |
| return 0; |
| } |
| |
| /* configure scsi device based on internal per-device structure */ |
| static int hpsa_slave_configure(struct scsi_device *sdev) |
| { |
| struct hpsa_scsi_dev_t *sd; |
| int queue_depth; |
| |
| sd = sdev->hostdata; |
| sdev->no_uld_attach = !sd || !sd->expose_device; |
| |
| if (sd) |
| queue_depth = sd->queue_depth != 0 ? |
| sd->queue_depth : sdev->host->can_queue; |
| else |
| queue_depth = sdev->host->can_queue; |
| |
| scsi_change_queue_depth(sdev, queue_depth); |
| |
| return 0; |
| } |
| |
| static void hpsa_slave_destroy(struct scsi_device *sdev) |
| { |
| /* nothing to do. */ |
| } |
| |
| static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h) |
| { |
| int i; |
| |
| if (!h->ioaccel2_cmd_sg_list) |
| return; |
| for (i = 0; i < h->nr_cmds; i++) { |
| kfree(h->ioaccel2_cmd_sg_list[i]); |
| h->ioaccel2_cmd_sg_list[i] = NULL; |
| } |
| kfree(h->ioaccel2_cmd_sg_list); |
| h->ioaccel2_cmd_sg_list = NULL; |
| } |
| |
| static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h) |
| { |
| int i; |
| |
| if (h->chainsize <= 0) |
| return 0; |
| |
| h->ioaccel2_cmd_sg_list = |
| kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds, |
| GFP_KERNEL); |
| if (!h->ioaccel2_cmd_sg_list) |
| return -ENOMEM; |
| for (i = 0; i < h->nr_cmds; i++) { |
| h->ioaccel2_cmd_sg_list[i] = |
| kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) * |
| h->maxsgentries, GFP_KERNEL); |
| if (!h->ioaccel2_cmd_sg_list[i]) |
| goto clean; |
| } |
| return 0; |
| |
| clean: |
| hpsa_free_ioaccel2_sg_chain_blocks(h); |
| return -ENOMEM; |
| } |
| |
| static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) |
| { |
| int i; |
| |
| if (!h->cmd_sg_list) |
| return; |
| for (i = 0; i < h->nr_cmds; i++) { |
| kfree(h->cmd_sg_list[i]); |
| h->cmd_sg_list[i] = NULL; |
| } |
| kfree(h->cmd_sg_list); |
| h->cmd_sg_list = NULL; |
| } |
| |
| static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h) |
| { |
| int i; |
| |
| if (h->chainsize <= 0) |
| return 0; |
| |
| h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, |
| GFP_KERNEL); |
| if (!h->cmd_sg_list) { |
| dev_err(&h->pdev->dev, "Failed to allocate SG list\n"); |
| return -ENOMEM; |
| } |
| for (i = 0; i < h->nr_cmds; i++) { |
| h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * |
| h->chainsize, GFP_KERNEL); |
| if (!h->cmd_sg_list[i]) { |
| dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n"); |
| goto clean; |
| } |
| } |
| return 0; |
| |
| clean: |
| hpsa_free_sg_chain_blocks(h); |
| return -ENOMEM; |
| } |
| |
| static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h, |
| struct io_accel2_cmd *cp, struct CommandList *c) |
| { |
| struct ioaccel2_sg_element *chain_block; |
| u64 temp64; |
| u32 chain_size; |
| |
| chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex]; |
| chain_size = le32_to_cpu(cp->sg[0].length); |
| temp64 = pci_map_single(h->pdev, chain_block, chain_size, |
| PCI_DMA_TODEVICE); |
| if (dma_mapping_error(&h->pdev->dev, temp64)) { |
| /* prevent subsequent unmapping */ |
| cp->sg->address = 0; |
| return -1; |
| } |
| cp->sg->address = cpu_to_le64(temp64); |
| return 0; |
| } |
| |
| static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h, |
| struct io_accel2_cmd *cp) |
| { |
| struct ioaccel2_sg_element *chain_sg; |
| u64 temp64; |
| u32 chain_size; |
| |
| chain_sg = cp->sg; |
| temp64 = le64_to_cpu(chain_sg->address); |
| chain_size = le32_to_cpu(cp->sg[0].length); |
| pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE); |
| } |
| |
| static int hpsa_map_sg_chain_block(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| struct SGDescriptor *chain_sg, *chain_block; |
| u64 temp64; |
| u32 chain_len; |
| |
| chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; |
| chain_block = h->cmd_sg_list[c->cmdindex]; |
| chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); |
| chain_len = sizeof(*chain_sg) * |
| (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries); |
| chain_sg->Len = cpu_to_le32(chain_len); |
| temp64 = pci_map_single(h->pdev, chain_block, chain_len, |
| PCI_DMA_TODEVICE); |
| if (dma_mapping_error(&h->pdev->dev, temp64)) { |
| /* prevent subsequent unmapping */ |
| chain_sg->Addr = cpu_to_le64(0); |
| return -1; |
| } |
| chain_sg->Addr = cpu_to_le64(temp64); |
| return 0; |
| } |
| |
| static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| struct SGDescriptor *chain_sg; |
| |
| if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) |
| return; |
| |
| chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; |
| pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr), |
| le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE); |
| } |
| |
| |
| /* Decode the various types of errors on ioaccel2 path. |
| * Return 1 for any error that should generate a RAID path retry. |
| * Return 0 for errors that don't require a RAID path retry. |
| */ |
| static int handle_ioaccel_mode2_error(struct ctlr_info *h, |
| struct CommandList *c, |
| struct scsi_cmnd *cmd, |
| struct io_accel2_cmd *c2) |
| { |
| int data_len; |
| int retry = 0; |
| u32 ioaccel2_resid = 0; |
| |
| switch (c2->error_data.serv_response) { |
| case IOACCEL2_SERV_RESPONSE_COMPLETE: |
| switch (c2->error_data.status) { |
| case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: |
| break; |
| case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: |
| cmd->result |= SAM_STAT_CHECK_CONDITION; |
| if (c2->error_data.data_present != |
| IOACCEL2_SENSE_DATA_PRESENT) { |
| memset(cmd->sense_buffer, 0, |
| SCSI_SENSE_BUFFERSIZE); |
| break; |
| } |
| /* copy the sense data */ |
| data_len = c2->error_data.sense_data_len; |
| if (data_len > SCSI_SENSE_BUFFERSIZE) |
| data_len = SCSI_SENSE_BUFFERSIZE; |
| if (data_len > sizeof(c2->error_data.sense_data_buff)) |
| data_len = |
| sizeof(c2->error_data.sense_data_buff); |
| memcpy(cmd->sense_buffer, |
| c2->error_data.sense_data_buff, data_len); |
| retry = 1; |
| break; |
| case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: |
| retry = 1; |
| break; |
| case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: |
| retry = 1; |
| break; |
| case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: |
| retry = 1; |
| break; |
| case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: |
| retry = 1; |
| break; |
| default: |
| retry = 1; |
| break; |
| } |
| break; |
| case IOACCEL2_SERV_RESPONSE_FAILURE: |
| switch (c2->error_data.status) { |
| case IOACCEL2_STATUS_SR_IO_ERROR: |
| case IOACCEL2_STATUS_SR_IO_ABORTED: |
| case IOACCEL2_STATUS_SR_OVERRUN: |
| retry = 1; |
| break; |
| case IOACCEL2_STATUS_SR_UNDERRUN: |
| cmd->result = (DID_OK << 16); /* host byte */ |
| cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ |
| ioaccel2_resid = get_unaligned_le32( |
| &c2->error_data.resid_cnt[0]); |
| scsi_set_resid(cmd, ioaccel2_resid); |
| break; |
| case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE: |
| case IOACCEL2_STATUS_SR_INVALID_DEVICE: |
| case IOACCEL2_STATUS_SR_IOACCEL_DISABLED: |
| /* We will get an event from ctlr to trigger rescan */ |
| retry = 1; |
| break; |
| default: |
| retry = 1; |
| } |
| break; |
| case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: |
| break; |
| case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: |
| break; |
| case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: |
| retry = 1; |
| break; |
| case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: |
| break; |
| default: |
| retry = 1; |
| break; |
| } |
| |
| return retry; /* retry on raid path? */ |
| } |
| |
| static void hpsa_cmd_resolve_events(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| bool do_wake = false; |
| |
| /* |
| * Prevent the following race in the abort handler: |
| * |
| * 1. LLD is requested to abort a SCSI command |
| * 2. The SCSI command completes |
| * 3. The struct CommandList associated with step 2 is made available |
| * 4. New I/O request to LLD to another LUN re-uses struct CommandList |
| * 5. Abort handler follows scsi_cmnd->host_scribble and |
| * finds struct CommandList and tries to aborts it |
| * Now we have aborted the wrong command. |
| * |
| * Reset c->scsi_cmd here so that the abort or reset handler will know |
| * this command has completed. Then, check to see if the handler is |
| * waiting for this command, and, if so, wake it. |
| */ |
| c->scsi_cmd = SCSI_CMD_IDLE; |
| mb(); /* Declare command idle before checking for pending events. */ |
| if (c->abort_pending) { |
| do_wake = true; |
| c->abort_pending = false; |
| } |
| if (c->reset_pending) { |
| unsigned long flags; |
| struct hpsa_scsi_dev_t *dev; |
| |
| /* |
| * There appears to be a reset pending; lock the lock and |
| * reconfirm. If so, then decrement the count of outstanding |
| * commands and wake the reset command if this is the last one. |
| */ |
| spin_lock_irqsave(&h->lock, flags); |
| dev = c->reset_pending; /* Re-fetch under the lock. */ |
| if (dev && atomic_dec_and_test(&dev->reset_cmds_out)) |
| do_wake = true; |
| c->reset_pending = NULL; |
| spin_unlock_irqrestore(&h->lock, flags); |
| } |
| |
| if (do_wake) |
| wake_up_all(&h->event_sync_wait_queue); |
| } |
| |
| static void hpsa_cmd_resolve_and_free(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| hpsa_cmd_resolve_events(h, c); |
| cmd_tagged_free(h, c); |
| } |
| |
| static void hpsa_cmd_free_and_done(struct ctlr_info *h, |
| struct CommandList *c, struct scsi_cmnd *cmd) |
| { |
| hpsa_cmd_resolve_and_free(h, c); |
| cmd->scsi_done(cmd); |
| } |
| |
| static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c) |
| { |
| INIT_WORK(&c->work, hpsa_command_resubmit_worker); |
| queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work); |
| } |
| |
| static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd) |
| { |
| cmd->result = DID_ABORT << 16; |
| } |
| |
| static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c, |
| struct scsi_cmnd *cmd) |
| { |
| hpsa_set_scsi_cmd_aborted(cmd); |
| dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n", |
| c->Request.CDB, c->err_info->ScsiStatus); |
| hpsa_cmd_resolve_and_free(h, c); |
| } |
| |
| static void process_ioaccel2_completion(struct ctlr_info *h, |
| struct CommandList *c, struct scsi_cmnd *cmd, |
| struct hpsa_scsi_dev_t *dev) |
| { |
| struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; |
| |
| /* check for good status */ |
| if (likely(c2->error_data.serv_response == 0 && |
| c2->error_data.status == 0)) |
| return hpsa_cmd_free_and_done(h, c, cmd); |
| |
| /* |
| * Any RAID offload error results in retry which will use |
| * the normal I/O path so the controller can handle whatever's |
| * wrong. |
| */ |
| if (is_logical_device(dev) && |
| c2->error_data.serv_response == |
| IOACCEL2_SERV_RESPONSE_FAILURE) { |
| if (c2->error_data.status == |
| IOACCEL2_STATUS_SR_IOACCEL_DISABLED) |
| dev->offload_enabled = 0; |
| |
| return hpsa_retry_cmd(h, c); |
| } |
| |
| if (handle_ioaccel_mode2_error(h, c, cmd, c2)) |
| return hpsa_retry_cmd(h, c); |
| |
| return hpsa_cmd_free_and_done(h, c, cmd); |
| } |
| |
| /* Returns 0 on success, < 0 otherwise. */ |
| static int hpsa_evaluate_tmf_status(struct ctlr_info *h, |
| struct CommandList *cp) |
| { |
| u8 tmf_status = cp->err_info->ScsiStatus; |
| |
| switch (tmf_status) { |
| case CISS_TMF_COMPLETE: |
| /* |
| * CISS_TMF_COMPLETE never happens, instead, |
| * ei->CommandStatus == 0 for this case. |
| */ |
| case CISS_TMF_SUCCESS: |
| return 0; |
| case CISS_TMF_INVALID_FRAME: |
| case CISS_TMF_NOT_SUPPORTED: |
| case CISS_TMF_FAILED: |
| case CISS_TMF_WRONG_LUN: |
| case CISS_TMF_OVERLAPPED_TAG: |
| break; |
| default: |
| dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n", |
| tmf_status); |
| break; |
| } |
| return -tmf_status; |
| } |
| |
| static void complete_scsi_command(struct CommandList *cp) |
| { |
| struct scsi_cmnd *cmd; |
| struct ctlr_info *h; |
| struct ErrorInfo *ei; |
| struct hpsa_scsi_dev_t *dev; |
| struct io_accel2_cmd *c2; |
| |
| u8 sense_key; |
| u8 asc; /* additional sense code */ |
| u8 ascq; /* additional sense code qualifier */ |
| unsigned long sense_data_size; |
| |
| ei = cp->err_info; |
| cmd = cp->scsi_cmd; |
| h = cp->h; |
| dev = cmd->device->hostdata; |
| c2 = &h->ioaccel2_cmd_pool[cp->cmdindex]; |
| |
| scsi_dma_unmap(cmd); /* undo the DMA mappings */ |
| if ((cp->cmd_type == CMD_SCSI) && |
| (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries)) |
| hpsa_unmap_sg_chain_block(h, cp); |
| |
| if ((cp->cmd_type == CMD_IOACCEL2) && |
| (c2->sg[0].chain_indicator == IOACCEL2_CHAIN)) |
| hpsa_unmap_ioaccel2_sg_chain_block(h, c2); |
| |
| cmd->result = (DID_OK << 16); /* host byte */ |
| cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ |
| |
| if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) |
| atomic_dec(&cp->phys_disk->ioaccel_cmds_out); |
| |
| /* |
| * We check for lockup status here as it may be set for |
| * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by |
| * fail_all_oustanding_cmds() |
| */ |
| if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) { |
| /* DID_NO_CONNECT will prevent a retry */ |
| cmd->result = DID_NO_CONNECT << 16; |
| return hpsa_cmd_free_and_done(h, cp, cmd); |
| } |
| |
| if ((unlikely(hpsa_is_pending_event(cp)))) { |
| if (cp->reset_pending) |
| return hpsa_cmd_resolve_and_free(h, cp); |
| if (cp->abort_pending) |
| return hpsa_cmd_abort_and_free(h, cp, cmd); |
| } |
| |
| if (cp->cmd_type == CMD_IOACCEL2) |
| return process_ioaccel2_completion(h, cp, cmd, dev); |
| |
| scsi_set_resid(cmd, ei->ResidualCnt); |
| if (ei->CommandStatus == 0) |
| return hpsa_cmd_free_and_done(h, cp, cmd); |
| |
| /* For I/O accelerator commands, copy over some fields to the normal |
| * CISS header used below for error handling. |
| */ |
| if (cp->cmd_type == CMD_IOACCEL1) { |
| struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; |
| cp->Header.SGList = scsi_sg_count(cmd); |
| cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList); |
| cp->Request.CDBLen = le16_to_cpu(c->io_flags) & |
| IOACCEL1_IOFLAGS_CDBLEN_MASK; |
| cp->Header.tag = c->tag; |
| memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); |
| memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); |
| |
| /* Any RAID offload error results in retry which will use |
| * the normal I/O path so the controller can handle whatever's |
| * wrong. |
| */ |
| if (is_logical_device(dev)) { |
| if (ei->CommandStatus == CMD_IOACCEL_DISABLED) |
| dev->offload_enabled = 0; |
| return hpsa_retry_cmd(h, cp); |
| } |
| } |
| |
| /* an error has occurred */ |
| switch (ei->CommandStatus) { |
| |
| case CMD_TARGET_STATUS: |
| cmd->result |= ei->ScsiStatus; |
| /* copy the sense data */ |
| if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) |
| sense_data_size = SCSI_SENSE_BUFFERSIZE; |
| else |
| sense_data_size = sizeof(ei->SenseInfo); |
| if (ei->SenseLen < sense_data_size) |
| sense_data_size = ei->SenseLen; |
| memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); |
| if (ei->ScsiStatus) |
| decode_sense_data(ei->SenseInfo, sense_data_size, |
| &sense_key, &asc, &ascq); |
| if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { |
| if (sense_key == ABORTED_COMMAND) { |
| cmd->result |= DID_SOFT_ERROR << 16; |
| break; |
| } |
| break; |
| } |
| /* Problem was not a check condition |
| * Pass it up to the upper layers... |
| */ |
| if (ei->ScsiStatus) { |
| dev_warn(&h->pdev->dev, "cp %p has status 0x%x " |
| "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " |
| "Returning result: 0x%x\n", |
| cp, ei->ScsiStatus, |
| sense_key, asc, ascq, |
| cmd->result); |
| } else { /* scsi status is zero??? How??? */ |
| dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " |
| "Returning no connection.\n", cp), |
| |
| /* Ordinarily, this case should never happen, |
| * but there is a bug in some released firmware |
| * revisions that allows it to happen if, for |
| * example, a 4100 backplane loses power and |
| * the tape drive is in it. We assume that |
| * it's a fatal error of some kind because we |
| * can't show that it wasn't. We will make it |
| * look like selection timeout since that is |
| * the most common reason for this to occur, |
| * and it's severe enough. |
| */ |
| |
| cmd->result = DID_NO_CONNECT << 16; |
| } |
| break; |
| |
| case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ |
| break; |
| case CMD_DATA_OVERRUN: |
| dev_warn(&h->pdev->dev, |
| "CDB %16phN data overrun\n", cp->Request.CDB); |
| break; |
| case CMD_INVALID: { |
| /* print_bytes(cp, sizeof(*cp), 1, 0); |
| print_cmd(cp); */ |
| /* We get CMD_INVALID if you address a non-existent device |
| * instead of a selection timeout (no response). You will |
| * see this if you yank out a drive, then try to access it. |
| * This is kind of a shame because it means that any other |
| * CMD_INVALID (e.g. driver bug) will get interpreted as a |
| * missing target. */ |
| cmd->result = DID_NO_CONNECT << 16; |
| } |
| break; |
| case CMD_PROTOCOL_ERR: |
| cmd->result = DID_ERROR << 16; |
| dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n", |
| cp->Request.CDB); |
| break; |
| case CMD_HARDWARE_ERR: |
| cmd->result = DID_ERROR << 16; |
| dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n", |
| cp->Request.CDB); |
| break; |
| case CMD_CONNECTION_LOST: |
| cmd->result = DID_ERROR << 16; |
| dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n", |
| cp->Request.CDB); |
| break; |
| case CMD_ABORTED: |
| /* Return now to avoid calling scsi_done(). */ |
| return hpsa_cmd_abort_and_free(h, cp, cmd); |
| case CMD_ABORT_FAILED: |
| cmd->result = DID_ERROR << 16; |
| dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n", |
| cp->Request.CDB); |
| break; |
| case CMD_UNSOLICITED_ABORT: |
| cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ |
| dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n", |
| cp->Request.CDB); |
| break; |
| case CMD_TIMEOUT: |
| cmd->result = DID_TIME_OUT << 16; |
| dev_warn(&h->pdev->dev, "CDB %16phN timed out\n", |
| cp->Request.CDB); |
| break; |
| case CMD_UNABORTABLE: |
| cmd->result = DID_ERROR << 16; |
| dev_warn(&h->pdev->dev, "Command unabortable\n"); |
| break; |
| case CMD_TMF_STATUS: |
| if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */ |
| cmd->result = DID_ERROR << 16; |
| break; |
| case CMD_IOACCEL_DISABLED: |
| /* This only handles the direct pass-through case since RAID |
| * offload is handled above. Just attempt a retry. |
| */ |
| cmd->result = DID_SOFT_ERROR << 16; |
| dev_warn(&h->pdev->dev, |
| "cp %p had HP SSD Smart Path error\n", cp); |
| break; |
| default: |
| cmd->result = DID_ERROR << 16; |
| dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", |
| cp, ei->CommandStatus); |
| } |
| |
| return hpsa_cmd_free_and_done(h, cp, cmd); |
| } |
| |
| static void hpsa_pci_unmap(struct pci_dev *pdev, |
| struct CommandList *c, int sg_used, int data_direction) |
| { |
| int i; |
| |
| for (i = 0; i < sg_used; i++) |
| pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr), |
| le32_to_cpu(c->SG[i].Len), |
| data_direction); |
| } |
| |
| static int hpsa_map_one(struct pci_dev *pdev, |
| struct CommandList *cp, |
| unsigned char *buf, |
| size_t buflen, |
| int data_direction) |
| { |
| u64 addr64; |
| |
| if (buflen == 0 || data_direction == PCI_DMA_NONE) { |
| cp->Header.SGList = 0; |
| cp->Header.SGTotal = cpu_to_le16(0); |
| return 0; |
| } |
| |
| addr64 = pci_map_single(pdev, buf, buflen, data_direction); |
| if (dma_mapping_error(&pdev->dev, addr64)) { |
| /* Prevent subsequent unmap of something never mapped */ |
| cp->Header.SGList = 0; |
| cp->Header.SGTotal = cpu_to_le16(0); |
| return -1; |
| } |
| cp->SG[0].Addr = cpu_to_le64(addr64); |
| cp->SG[0].Len = cpu_to_le32(buflen); |
| cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ |
| cp->Header.SGList = 1; /* no. SGs contig in this cmd */ |
| cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ |
| return 0; |
| } |
| |
| #define NO_TIMEOUT ((unsigned long) -1) |
| #define DEFAULT_TIMEOUT 30000 /* milliseconds */ |
| static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, |
| struct CommandList *c, int reply_queue, unsigned long timeout_msecs) |
| { |
| DECLARE_COMPLETION_ONSTACK(wait); |
| |
| c->waiting = &wait; |
| __enqueue_cmd_and_start_io(h, c, reply_queue); |
| if (timeout_msecs == NO_TIMEOUT) { |
| /* TODO: get rid of this no-timeout thing */ |
| wait_for_completion_io(&wait); |
| return IO_OK; |
| } |
| if (!wait_for_completion_io_timeout(&wait, |
| msecs_to_jiffies(timeout_msecs))) { |
| dev_warn(&h->pdev->dev, "Command timed out.\n"); |
| return -ETIMEDOUT; |
| } |
| return IO_OK; |
| } |
| |
| static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c, |
| int reply_queue, unsigned long timeout_msecs) |
| { |
| if (unlikely(lockup_detected(h))) { |
| c->err_info->CommandStatus = CMD_CTLR_LOCKUP; |
| return IO_OK; |
| } |
| return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs); |
| } |
| |
| static u32 lockup_detected(struct ctlr_info *h) |
| { |
| int cpu; |
| u32 rc, *lockup_detected; |
| |
| cpu = get_cpu(); |
| lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); |
| rc = *lockup_detected; |
| put_cpu(); |
| return rc; |
| } |
| |
| #define MAX_DRIVER_CMD_RETRIES 25 |
| static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, |
| struct CommandList *c, int data_direction, unsigned long timeout_msecs) |
| { |
| int backoff_time = 10, retry_count = 0; |
| int rc; |
| |
| do { |
| memset(c->err_info, 0, sizeof(*c->err_info)); |
| rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, |
| timeout_msecs); |
| if (rc) |
| break; |
| retry_count++; |
| if (retry_count > 3) { |
| msleep(backoff_time); |
| if (backoff_time < 1000) |
| backoff_time *= 2; |
| } |
| } while ((check_for_unit_attention(h, c) || |
| check_for_busy(h, c)) && |
| retry_count <= MAX_DRIVER_CMD_RETRIES); |
| hpsa_pci_unmap(h->pdev, c, 1, data_direction); |
| if (retry_count > MAX_DRIVER_CMD_RETRIES) |
| rc = -EIO; |
| return rc; |
| } |
| |
| static void hpsa_print_cmd(struct ctlr_info *h, char *txt, |
| struct CommandList *c) |
| { |
| const u8 *cdb = c->Request.CDB; |
| const u8 *lun = c->Header.LUN.LunAddrBytes; |
| |
| dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x" |
| " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", |
| txt, lun[0], lun[1], lun[2], lun[3], |
| lun[4], lun[5], lun[6], lun[7], |
| cdb[0], cdb[1], cdb[2], cdb[3], |
| cdb[4], cdb[5], cdb[6], cdb[7], |
| cdb[8], cdb[9], cdb[10], cdb[11], |
| cdb[12], cdb[13], cdb[14], cdb[15]); |
| } |
| |
| static void hpsa_scsi_interpret_error(struct ctlr_info *h, |
| struct CommandList *cp) |
| { |
| const struct ErrorInfo *ei = cp->err_info; |
| struct device *d = &cp->h->pdev->dev; |
| u8 sense_key, asc, ascq; |
| int sense_len; |
| |
| switch (ei->CommandStatus) { |
| case CMD_TARGET_STATUS: |
| if (ei->SenseLen > sizeof(ei->SenseInfo)) |
| sense_len = sizeof(ei->SenseInfo); |
| else |
| sense_len = ei->SenseLen; |
| decode_sense_data(ei->SenseInfo, sense_len, |
| &sense_key, &asc, &ascq); |
| hpsa_print_cmd(h, "SCSI status", cp); |
| if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) |
| dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n", |
| sense_key, asc, ascq); |
| else |
| dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus); |
| if (ei->ScsiStatus == 0) |
| dev_warn(d, "SCSI status is abnormally zero. " |
| "(probably indicates selection timeout " |
| "reported incorrectly due to a known " |
| "firmware bug, circa July, 2001.)\n"); |
| break; |
| case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ |
| break; |
| case CMD_DATA_OVERRUN: |
| hpsa_print_cmd(h, "overrun condition", cp); |
| break; |
| case CMD_INVALID: { |
| /* controller unfortunately reports SCSI passthru's |
| * to non-existent targets as invalid commands. |
| */ |
| hpsa_print_cmd(h, "invalid command", cp); |
| dev_warn(d, "probably means device no longer present\n"); |
| } |
| break; |
| case CMD_PROTOCOL_ERR: |
| hpsa_print_cmd(h, "protocol error", cp); |
| break; |
| case CMD_HARDWARE_ERR: |
| hpsa_print_cmd(h, "hardware error", cp); |
| break; |
| case CMD_CONNECTION_LOST: |
| hpsa_print_cmd(h, "connection lost", cp); |
| break; |
| case CMD_ABORTED: |
| hpsa_print_cmd(h, "aborted", cp); |
| break; |
| case CMD_ABORT_FAILED: |
| hpsa_print_cmd(h, "abort failed", cp); |
| break; |
| case CMD_UNSOLICITED_ABORT: |
| hpsa_print_cmd(h, "unsolicited abort", cp); |
| break; |
| case CMD_TIMEOUT: |
| hpsa_print_cmd(h, "timed out", cp); |
| break; |
| case CMD_UNABORTABLE: |
| hpsa_print_cmd(h, "unabortable", cp); |
| break; |
| case CMD_CTLR_LOCKUP: |
| hpsa_print_cmd(h, "controller lockup detected", cp); |
| break; |
| default: |
| hpsa_print_cmd(h, "unknown status", cp); |
| dev_warn(d, "Unknown command status %x\n", |
| ei->CommandStatus); |
| } |
| } |
| |
| static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, |
| u16 page, unsigned char *buf, |
| unsigned char bufsize) |
| { |
| int rc = IO_OK; |
| struct CommandList *c; |
| struct ErrorInfo *ei; |
| |
| c = cmd_alloc(h); |
| |
| if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, |
| page, scsi3addr, TYPE_CMD)) { |
| rc = -1; |
| goto out; |
| } |
| rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
| PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
| if (rc) |
| goto out; |
| ei = c->err_info; |
| if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
| hpsa_scsi_interpret_error(h, c); |
| rc = -1; |
| } |
| out: |
| cmd_free(h, c); |
| return rc; |
| } |
| |
| static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr, |
| u8 reset_type, int reply_queue) |
| { |
| int rc = IO_OK; |
| struct CommandList *c; |
| struct ErrorInfo *ei; |
| |
| c = cmd_alloc(h); |
| |
| |
| /* fill_cmd can't fail here, no data buffer to map. */ |
| (void) fill_cmd(c, reset_type, h, NULL, 0, 0, |
| scsi3addr, TYPE_MSG); |
| rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); |
| if (rc) { |
| dev_warn(&h->pdev->dev, "Failed to send reset command\n"); |
| goto out; |
| } |
| /* no unmap needed here because no data xfer. */ |
| |
| ei = c->err_info; |
| if (ei->CommandStatus != 0) { |
| hpsa_scsi_interpret_error(h, c); |
| rc = -1; |
| } |
| out: |
| cmd_free(h, c); |
| return rc; |
| } |
| |
| static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, |
| struct hpsa_scsi_dev_t *dev, |
| unsigned char *scsi3addr) |
| { |
| int i; |
| bool match = false; |
| struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; |
| struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; |
| |
| if (hpsa_is_cmd_idle(c)) |
| return false; |
| |
| switch (c->cmd_type) { |
| case CMD_SCSI: |
| case CMD_IOCTL_PEND: |
| match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes, |
| sizeof(c->Header.LUN.LunAddrBytes)); |
| break; |
| |
| case CMD_IOACCEL1: |
| case CMD_IOACCEL2: |
| if (c->phys_disk == dev) { |
| /* HBA mode match */ |
| match = true; |
| } else { |
| /* Possible RAID mode -- check each phys dev. */ |
| /* FIXME: Do we need to take out a lock here? If |
| * so, we could just call hpsa_get_pdisk_of_ioaccel2() |
| * instead. */ |
| for (i = 0; i < dev->nphysical_disks && !match; i++) { |
| /* FIXME: an alternate test might be |
| * |
| * match = dev->phys_disk[i]->ioaccel_handle |
| * == c2->scsi_nexus; */ |
| match = dev->phys_disk[i] == c->phys_disk; |
| } |
| } |
| break; |
| |
| case IOACCEL2_TMF: |
| for (i = 0; i < dev->nphysical_disks && !match; i++) { |
| match = dev->phys_disk[i]->ioaccel_handle == |
| le32_to_cpu(ac->it_nexus); |
| } |
| break; |
| |
| case 0: /* The command is in the middle of being initialized. */ |
| match = false; |
| break; |
| |
| default: |
| dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n", |
| c->cmd_type); |
| BUG(); |
| } |
| |
| return match; |
| } |
| |
| static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, |
| unsigned char *scsi3addr, u8 reset_type, int reply_queue) |
| { |
| int i; |
| int rc = 0; |
| |
| /* We can really only handle one reset at a time */ |
| if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) { |
| dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n"); |
| return -EINTR; |
| } |
| |
| BUG_ON(atomic_read(&dev->reset_cmds_out) != 0); |
| |
| for (i = 0; i < h->nr_cmds; i++) { |
| struct CommandList *c = h->cmd_pool + i; |
| int refcount = atomic_inc_return(&c->refcount); |
| |
| if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) { |
| unsigned long flags; |
| |
| /* |
| * Mark the target command as having a reset pending, |
| * then lock a lock so that the command cannot complete |
| * while we're considering it. If the command is not |
| * idle then count it; otherwise revoke the event. |
| */ |
| c->reset_pending = dev; |
| spin_lock_irqsave(&h->lock, flags); /* Implied MB */ |
| if (!hpsa_is_cmd_idle(c)) |
| atomic_inc(&dev->reset_cmds_out); |
| else |
| c->reset_pending = NULL; |
| spin_unlock_irqrestore(&h->lock, flags); |
| } |
| |
| cmd_free(h, c); |
| } |
| |
| rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue); |
| if (!rc) |
| wait_event(h->event_sync_wait_queue, |
| atomic_read(&dev->reset_cmds_out) == 0 || |
| lockup_detected(h)); |
| |
| if (unlikely(lockup_detected(h))) { |
| dev_warn(&h->pdev->dev, |
| "Controller lockup detected during reset wait\n"); |
| rc = -ENODEV; |
| } |
| |
| if (unlikely(rc)) |
| atomic_set(&dev->reset_cmds_out, 0); |
| |
| mutex_unlock(&h->reset_mutex); |
| return rc; |
| } |
| |
| static void hpsa_get_raid_level(struct ctlr_info *h, |
| unsigned char *scsi3addr, unsigned char *raid_level) |
| { |
| int rc; |
| unsigned char *buf; |
| |
| *raid_level = RAID_UNKNOWN; |
| buf = kzalloc(64, GFP_KERNEL); |
| if (!buf) |
| return; |
| rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64); |
| if (rc == 0) |
| *raid_level = buf[8]; |
| if (*raid_level > RAID_UNKNOWN) |
| *raid_level = RAID_UNKNOWN; |
| kfree(buf); |
| return; |
| } |
| |
| #define HPSA_MAP_DEBUG |
| #ifdef HPSA_MAP_DEBUG |
| static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, |
| struct raid_map_data *map_buff) |
| { |
| struct raid_map_disk_data *dd = &map_buff->data[0]; |
| int map, row, col; |
| u16 map_cnt, row_cnt, disks_per_row; |
| |
| if (rc != 0) |
| return; |
| |
| /* Show details only if debugging has been activated. */ |
| if (h->raid_offload_debug < 2) |
| return; |
| |
| dev_info(&h->pdev->dev, "structure_size = %u\n", |
| le32_to_cpu(map_buff->structure_size)); |
| dev_info(&h->pdev->dev, "volume_blk_size = %u\n", |
| le32_to_cpu(map_buff->volume_blk_size)); |
| dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", |
| le64_to_cpu(map_buff->volume_blk_cnt)); |
| dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", |
| map_buff->phys_blk_shift); |
| dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", |
| map_buff->parity_rotation_shift); |
| dev_info(&h->pdev->dev, "strip_size = %u\n", |
| le16_to_cpu(map_buff->strip_size)); |
| dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", |
| le64_to_cpu(map_buff->disk_starting_blk)); |
| dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", |
| le64_to_cpu(map_buff->disk_blk_cnt)); |
| dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", |
| le16_to_cpu(map_buff->data_disks_per_row)); |
| dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", |
| le16_to_cpu(map_buff->metadata_disks_per_row)); |
| dev_info(&h->pdev->dev, "row_cnt = %u\n", |
| le16_to_cpu(map_buff->row_cnt)); |
| dev_info(&h->pdev->dev, "layout_map_count = %u\n", |
| le16_to_cpu(map_buff->layout_map_count)); |
| dev_info(&h->pdev->dev, "flags = 0x%x\n", |
| le16_to_cpu(map_buff->flags)); |
| dev_info(&h->pdev->dev, "encrypytion = %s\n", |
| le16_to_cpu(map_buff->flags) & |
| RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF"); |
| dev_info(&h->pdev->dev, "dekindex = %u\n", |
| le16_to_cpu(map_buff->dekindex)); |
| map_cnt = le16_to_cpu(map_buff->layout_map_count); |
| for (map = 0; map < map_cnt; map++) { |
| dev_info(&h->pdev->dev, "Map%u:\n", map); |
| row_cnt = le16_to_cpu(map_buff->row_cnt); |
| for (row = 0; row < row_cnt; row++) { |
| dev_info(&h->pdev->dev, " Row%u:\n", row); |
| disks_per_row = |
| le16_to_cpu(map_buff->data_disks_per_row); |
| for (col = 0; col < disks_per_row; col++, dd++) |
| dev_info(&h->pdev->dev, |
| " D%02u: h=0x%04x xor=%u,%u\n", |
| col, dd->ioaccel_handle, |
| dd->xor_mult[0], dd->xor_mult[1]); |
| disks_per_row = |
| le16_to_cpu(map_buff->metadata_disks_per_row); |
| for (col = 0; col < disks_per_row; col++, dd++) |
| dev_info(&h->pdev->dev, |
| " M%02u: h=0x%04x xor=%u,%u\n", |
| col, dd->ioaccel_handle, |
| dd->xor_mult[0], dd->xor_mult[1]); |
| } |
| } |
| } |
| #else |
| static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, |
| __attribute__((unused)) int rc, |
| __attribute__((unused)) struct raid_map_data *map_buff) |
| { |
| } |
| #endif |
| |
| static int hpsa_get_raid_map(struct ctlr_info *h, |
| unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) |
| { |
| int rc = 0; |
| struct CommandList *c; |
| struct ErrorInfo *ei; |
| |
| c = cmd_alloc(h); |
| |
| if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, |
| sizeof(this_device->raid_map), 0, |
| scsi3addr, TYPE_CMD)) { |
| dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n"); |
| cmd_free(h, c); |
| return -1; |
| } |
| rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
| PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
| if (rc) |
| goto out; |
| ei = c->err_info; |
| if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
| hpsa_scsi_interpret_error(h, c); |
| rc = -1; |
| goto out; |
| } |
| cmd_free(h, c); |
| |
| /* @todo in the future, dynamically allocate RAID map memory */ |
| if (le32_to_cpu(this_device->raid_map.structure_size) > |
| sizeof(this_device->raid_map)) { |
| dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); |
| rc = -1; |
| } |
| hpsa_debug_map_buff(h, rc, &this_device->raid_map); |
| return rc; |
| out: |
| cmd_free(h, c); |
| return rc; |
| } |
| |
| static int hpsa_bmic_id_controller(struct ctlr_info *h, |
| struct bmic_identify_controller *buf, size_t bufsize) |
| { |
| int rc = IO_OK; |
| struct CommandList *c; |
| struct ErrorInfo *ei; |
| |
| c = cmd_alloc(h); |
| |
| rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize, |
| 0, RAID_CTLR_LUNID, TYPE_CMD); |
| if (rc) |
| goto out; |
| |
| rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
| PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
| if (rc) |
| goto out; |
| ei = c->err_info; |
| if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
| hpsa_scsi_interpret_error(h, c); |
| rc = -1; |
| } |
| out: |
| cmd_free(h, c); |
| return rc; |
| } |
| |
| |
| static int hpsa_bmic_id_physical_device(struct ctlr_info *h, |
| unsigned char scsi3addr[], u16 bmic_device_index, |
| struct bmic_identify_physical_device *buf, size_t bufsize) |
| { |
| int rc = IO_OK; |
| struct CommandList *c; |
| struct ErrorInfo *ei; |
| |
| c = cmd_alloc(h); |
| rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize, |
| 0, RAID_CTLR_LUNID, TYPE_CMD); |
| if (rc) |
| goto out; |
| |
| c->Request.CDB[2] = bmic_device_index & 0xff; |
| c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; |
| |
| hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, |
| NO_TIMEOUT); |
| ei = c->err_info; |
| if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
| hpsa_scsi_interpret_error(h, c); |
| rc = -1; |
| } |
| out: |
| cmd_free(h, c); |
| return rc; |
| } |
| |
| static int hpsa_vpd_page_supported(struct ctlr_info *h, |
| unsigned char scsi3addr[], u8 page) |
| { |
| int rc; |
| int i; |
| int pages; |
| unsigned char *buf, bufsize; |
| |
| buf = kzalloc(256, GFP_KERNEL); |
| if (!buf) |
| return 0; |
| |
| /* Get the size of the page list first */ |
| rc = hpsa_scsi_do_inquiry(h, scsi3addr, |
| VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, |
| buf, HPSA_VPD_HEADER_SZ); |
| if (rc != 0) |
| goto exit_unsupported; |
| pages = buf[3]; |
| if ((pages + HPSA_VPD_HEADER_SZ) <= 255) |
| bufsize = pages + HPSA_VPD_HEADER_SZ; |
| else |
| bufsize = 255; |
| |
| /* Get the whole VPD page list */ |
| rc = hpsa_scsi_do_inquiry(h, scsi3addr, |
| VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, |
| buf, bufsize); |
| if (rc != 0) |
| goto exit_unsupported; |
| |
| pages = buf[3]; |
| for (i = 1; i <= pages; i++) |
| if (buf[3 + i] == page) |
| goto exit_supported; |
| exit_unsupported: |
| kfree(buf); |
| return 0; |
| exit_supported: |
| kfree(buf); |
| return 1; |
| } |
| |
| static void hpsa_get_ioaccel_status(struct ctlr_info *h, |
| unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) |
| { |
| int rc; |
| unsigned char *buf; |
| u8 ioaccel_status; |
| |
| this_device->offload_config = 0; |
| this_device->offload_enabled = 0; |
| this_device->offload_to_be_enabled = 0; |
| |
| buf = kzalloc(64, GFP_KERNEL); |
| if (!buf) |
| return; |
| if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) |
| goto out; |
| rc = hpsa_scsi_do_inquiry(h, scsi3addr, |
| VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); |
| if (rc != 0) |
| goto out; |
| |
| #define IOACCEL_STATUS_BYTE 4 |
| #define OFFLOAD_CONFIGURED_BIT 0x01 |
| #define OFFLOAD_ENABLED_BIT 0x02 |
| ioaccel_status = buf[IOACCEL_STATUS_BYTE]; |
| this_device->offload_config = |
| !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); |
| if (this_device->offload_config) { |
| this_device->offload_enabled = |
| !!(ioaccel_status & OFFLOAD_ENABLED_BIT); |
| if (hpsa_get_raid_map(h, scsi3addr, this_device)) |
| this_device->offload_enabled = 0; |
| } |
| this_device->offload_to_be_enabled = this_device->offload_enabled; |
| out: |
| kfree(buf); |
| return; |
| } |
| |
| /* Get the device id from inquiry page 0x83 */ |
| static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, |
| unsigned char *device_id, int index, int buflen) |
| { |
| int rc; |
| unsigned char *buf; |
| |
| if (buflen > 16) |
| buflen = 16; |
| buf = kzalloc(64, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64); |
| if (rc == 0) |
| memcpy(device_id, &buf[index], buflen); |
| |
| kfree(buf); |
| |
| return rc != 0; |
| } |
| |
| static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, |
| void *buf, int bufsize, |
| int extended_response) |
| { |
| int rc = IO_OK; |
| struct CommandList *c; |
| unsigned char scsi3addr[8]; |
| struct ErrorInfo *ei; |
| |
| c = cmd_alloc(h); |
| |
| /* address the controller */ |
| memset(scsi3addr, 0, sizeof(scsi3addr)); |
| if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, |
| buf, bufsize, 0, scsi3addr, TYPE_CMD)) { |
| rc = -1; |
| goto out; |
| } |
| if (extended_response) |
| c->Request.CDB[1] = extended_response; |
| rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
| PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
| if (rc) |
| goto out; |
| ei = c->err_info; |
| if (ei->CommandStatus != 0 && |
| ei->CommandStatus != CMD_DATA_UNDERRUN) { |
| hpsa_scsi_interpret_error(h, c); |
| rc = -1; |
| } else { |
| struct ReportLUNdata *rld = buf; |
| |
| if (rld->extended_response_flag != extended_response) { |
| dev_err(&h->pdev->dev, |
| "report luns requested format %u, got %u\n", |
| extended_response, |
| rld->extended_response_flag); |
| rc = -1; |
| } |
| } |
| out: |
| cmd_free(h, c); |
| return rc; |
| } |
| |
| static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, |
| struct ReportExtendedLUNdata *buf, int bufsize) |
| { |
| return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, |
| HPSA_REPORT_PHYS_EXTENDED); |
| } |
| |
| static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, |
| struct ReportLUNdata *buf, int bufsize) |
| { |
| return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); |
| } |
| |
| static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, |
| int bus, int target, int lun) |
| { |
| device->bus = bus; |
| device->target = target; |
| device->lun = lun; |
| } |
| |
| /* Use VPD inquiry to get details of volume status */ |
| static int hpsa_get_volume_status(struct ctlr_info *h, |
| unsigned char scsi3addr[]) |
| { |
| int rc; |
| int status; |
| int size; |
| unsigned char *buf; |
| |
| buf = kzalloc(64, GFP_KERNEL); |
| if (!buf) |
| return HPSA_VPD_LV_STATUS_UNSUPPORTED; |
| |
| /* Does controller have VPD for logical volume status? */ |
| if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) |
| goto exit_failed; |
| |
| /* Get the size of the VPD return buffer */ |
| rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, |
| buf, HPSA_VPD_HEADER_SZ); |
| if (rc != 0) |
| goto exit_failed; |
| size = buf[3]; |
| |
| /* Now get the whole VPD buffer */ |
| rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, |
| buf, size + HPSA_VPD_HEADER_SZ); |
| if (rc != 0) |
| goto exit_failed; |
| status = buf[4]; /* status byte */ |
| |
| kfree(buf); |
| return status; |
| exit_failed: |
| kfree(buf); |
| return HPSA_VPD_LV_STATUS_UNSUPPORTED; |
| } |
| |
| /* Determine offline status of a volume. |
| * Return either: |
| * 0 (not offline) |
| * 0xff (offline for unknown reasons) |
| * # (integer code indicating one of several NOT READY states |
| * describing why a volume is to be kept offline) |
| */ |
| static int hpsa_volume_offline(struct ctlr_info *h, |
| unsigned char scsi3addr[]) |
| { |
| struct CommandList *c; |
| unsigned char *sense; |
| u8 sense_key, asc, ascq; |
| int sense_len; |
| int rc, ldstat = 0; |
| u16 cmd_status; |
| u8 scsi_status; |
| #define ASC_LUN_NOT_READY 0x04 |
| #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 |
| #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 |
| |
| c = cmd_alloc(h); |
| |
| (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); |
| rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT); |
| if (rc) { |
| cmd_free(h, c); |
| return 0; |
| } |
| sense = c->err_info->SenseInfo; |
| if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) |
| sense_len = sizeof(c->err_info->SenseInfo); |
| else |
| sense_len = c->err_info->SenseLen; |
| decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq); |
| cmd_status = c->err_info->CommandStatus; |
| scsi_status = c->err_info->ScsiStatus; |
| cmd_free(h, c); |
| /* Is the volume 'not ready'? */ |
| if (cmd_status != CMD_TARGET_STATUS || |
| scsi_status != SAM_STAT_CHECK_CONDITION || |
| sense_key != NOT_READY || |
| asc != ASC_LUN_NOT_READY) { |
| return 0; |
| } |
| |
| /* Determine the reason for not ready state */ |
| ldstat = hpsa_get_volume_status(h, scsi3addr); |
| |
| /* Keep volume offline in certain cases: */ |
| switch (ldstat) { |
| case HPSA_LV_UNDERGOING_ERASE: |
| case HPSA_LV_NOT_AVAILABLE: |
| case HPSA_LV_UNDERGOING_RPI: |
| case HPSA_LV_PENDING_RPI: |
| case HPSA_LV_ENCRYPTED_NO_KEY: |
| case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: |
| case HPSA_LV_UNDERGOING_ENCRYPTION: |
| case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: |
| case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: |
| return ldstat; |
| case HPSA_VPD_LV_STATUS_UNSUPPORTED: |
| /* If VPD status page isn't available, |
| * use ASC/ASCQ to determine state |
| */ |
| if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || |
| (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) |
| return ldstat; |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Find out if a logical device supports aborts by simply trying one. |
| * Smart Array may claim not to support aborts on logical drives, but |
| * if a MSA2000 * is connected, the drives on that will be presented |
| * by the Smart Array as logical drives, and aborts may be sent to |
| * those devices successfully. So the simplest way to find out is |
| * to simply try an abort and see how the device responds. |
| */ |
| static int hpsa_device_supports_aborts(struct ctlr_info *h, |
| unsigned char *scsi3addr) |
| { |
| struct CommandList *c; |
| struct ErrorInfo *ei; |
| int rc = 0; |
| |
| u64 tag = (u64) -1; /* bogus tag */ |
| |
| /* Assume that physical devices support aborts */ |
| if (!is_logical_dev_addr_mode(scsi3addr)) |
| return 1; |
| |
| c = cmd_alloc(h); |
| |
| (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG); |
| (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT); |
| /* no unmap needed here because no data xfer. */ |
| ei = c->err_info; |
| switch (ei->CommandStatus) { |
| case CMD_INVALID: |
| rc = 0; |
| break; |
| case CMD_UNABORTABLE: |
| case CMD_ABORT_FAILED: |
| rc = 1; |
| break; |
| case CMD_TMF_STATUS: |
| rc = hpsa_evaluate_tmf_status(h, c); |
| break; |
| default: |
| rc = 0; |
| break; |
| } |
| cmd_free(h, c); |
| return rc; |
| } |
| |
| static void sanitize_inquiry_string(unsigned char *s, int len) |
| { |
| bool terminated = false; |
| |
| for (; len > 0; (--len, ++s)) { |
| if (*s == 0) |
| terminated = true; |
| if (terminated || *s < 0x20 || *s > 0x7e) |
| *s = ' '; |
| } |
| } |
| |
| static int hpsa_update_device_info(struct ctlr_info *h, |
| unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, |
| unsigned char *is_OBDR_device) |
| { |
| |
| #define OBDR_SIG_OFFSET 43 |
| #define OBDR_TAPE_SIG "$DR-10" |
| #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) |
| #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) |
| |
| unsigned char *inq_buff; |
| unsigned char *obdr_sig; |
| int rc = 0; |
| |
| inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); |
| if (!inq_buff) { |
| rc = -ENOMEM; |
| goto bail_out; |
| } |
| |
| /* Do an inquiry to the device to see what it is. */ |
| if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, |
| (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { |
| /* Inquiry failed (msg printed already) */ |
| dev_err(&h->pdev->dev, |
| "hpsa_update_device_info: inquiry failed\n"); |
| rc = -EIO; |
| goto bail_out; |
| } |
| |
| sanitize_inquiry_string(&inq_buff[8], 8); |
| sanitize_inquiry_string(&inq_buff[16], 16); |
| |
| this_device->devtype = (inq_buff[0] & 0x1f); |
| memcpy(this_device->scsi3addr, scsi3addr, 8); |
| memcpy(this_device->vendor, &inq_buff[8], |
| sizeof(this_device->vendor)); |
| memcpy(this_device->model, &inq_buff[16], |
| sizeof(this_device->model)); |
| memset(this_device->device_id, 0, |
| sizeof(this_device->device_id)); |
| hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8, |
| sizeof(this_device->device_id)); |
| |
| if (this_device->devtype == TYPE_DISK && |
| is_logical_dev_addr_mode(scsi3addr)) { |
| int volume_offline; |
| |
| hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); |
| if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) |
| hpsa_get_ioaccel_status(h, scsi3addr, this_device); |
| volume_offline = hpsa_volume_offline(h, scsi3addr); |
| if (volume_offline < 0 || volume_offline > 0xff) |
| volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED; |
| this_device->volume_offline = volume_offline & 0xff; |
| } else { |
| this_device->raid_level = RAID_UNKNOWN; |
| this_device->offload_config = 0; |
| this_device->offload_enabled = 0; |
| this_device->offload_to_be_enabled = 0; |
| this_device->hba_ioaccel_enabled = 0; |
| this_device->volume_offline = 0; |
| this_device->queue_depth = h->nr_cmds; |
| } |
| |
| if (is_OBDR_device) { |
| /* See if this is a One-Button-Disaster-Recovery device |
| * by looking for "$DR-10" at offset 43 in inquiry data. |
| */ |
| obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; |
| *is_OBDR_device = (this_device->devtype == TYPE_ROM && |
| strncmp(obdr_sig, OBDR_TAPE_SIG, |
| OBDR_SIG_LEN) == 0); |
| } |
| kfree(inq_buff); |
| return 0; |
| |
| bail_out: |
| kfree(inq_buff); |
| return rc; |
| } |
| |
| static void hpsa_update_device_supports_aborts(struct ctlr_info *h, |
| struct hpsa_scsi_dev_t *dev, u8 *scsi3addr) |
| { |
| unsigned long flags; |
| int rc, entry; |
| /* |
| * See if this device supports aborts. If we already know |
| * the device, we already know if it supports aborts, otherwise |
| * we have to find out if it supports aborts by trying one. |
| */ |
| spin_lock_irqsave(&h->devlock, flags); |
| rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry); |
| if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) && |
| entry >= 0 && entry < h->ndevices) { |
| dev->supports_aborts = h->dev[entry]->supports_aborts; |
| spin_unlock_irqrestore(&h->devlock, flags); |
| } else { |
| spin_unlock_irqrestore(&h->devlock, flags); |
| dev->supports_aborts = |
| hpsa_device_supports_aborts(h, scsi3addr); |
| if (dev->supports_aborts < 0) |
| dev->supports_aborts = 0; |
| } |
| } |
| |
| /* |
| * Helper function to assign bus, target, lun mapping of devices. |
| * Logical drive target and lun are assigned at this time, but |
| * physical device lun and target assignment are deferred (assigned |
| * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) |
| */ |
| static void figure_bus_target_lun(struct ctlr_info *h, |
| u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) |
| { |
| u32 lunid = get_unaligned_le32(lunaddrbytes); |
| |
| if (!is_logical_dev_addr_mode(lunaddrbytes)) { |
| /* physical device, target and lun filled in later */ |
| if (is_hba_lunid(lunaddrbytes)) |
| hpsa_set_bus_target_lun(device, |
| HPSA_HBA_BUS, 0, lunid & 0x3fff); |
| else |
| /* defer target, lun assignment for physical devices */ |
| hpsa_set_bus_target_lun(device, |
| HPSA_PHYSICAL_DEVICE_BUS, -1, -1); |
| return; |
| } |
| /* It's a logical device */ |
| if (device->external) { |
| hpsa_set_bus_target_lun(device, |
| HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff, |
| lunid & 0x00ff); |
| return; |
| } |
| hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS, |
| 0, lunid & 0x3fff); |
| } |
| |
| |
| /* |
| * Get address of physical disk used for an ioaccel2 mode command: |
| * 1. Extract ioaccel2 handle from the command. |
| * 2. Find a matching ioaccel2 handle from list of physical disks. |
| * 3. Return: |
| * 1 and set scsi3addr to address of matching physical |
| * 0 if no matching physical disk was found. |
| */ |
| static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h, |
| struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr) |
| { |
| struct io_accel2_cmd *c2 = |
| &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex]; |
| unsigned long flags; |
| int i; |
| |
| spin_lock_irqsave(&h->devlock, flags); |
| for (i = 0; i < h->ndevices; i++) |
| if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) { |
| memcpy(scsi3addr, h->dev[i]->scsi3addr, |
| sizeof(h->dev[i]->scsi3addr)); |
| spin_unlock_irqrestore(&h->devlock, flags); |
| return 1; |
| } |
| spin_unlock_irqrestore(&h->devlock, flags); |
| return 0; |
| } |
| |
| static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position, |
| int i, int nphysicals, int nlocal_logicals) |
| { |
| /* In report logicals, local logicals are listed first, |
| * then any externals. |
| */ |
| int logicals_start = nphysicals + (raid_ctlr_position == 0); |
| |
| if (i == raid_ctlr_position) |
| return 0; |
| |
| if (i < logicals_start) |
| return 0; |
| |
| /* i is in logicals range, but still within local logicals */ |
| if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals) |
| return 0; |
| |
| return 1; /* it's an external lun */ |
| } |
| |
| /* |
| * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, |
| * logdev. The number of luns in physdev and logdev are returned in |
| * *nphysicals and *nlogicals, respectively. |
| * Returns 0 on success, -1 otherwise. |
| */ |
| static int hpsa_gather_lun_info(struct ctlr_info *h, |
| struct ReportExtendedLUNdata *physdev, u32 *nphysicals, |
| struct ReportLUNdata *logdev, u32 *nlogicals) |
| { |
| if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { |
| dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); |
| return -1; |
| } |
| *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24; |
| if (*nphysicals > HPSA_MAX_PHYS_LUN) { |
| dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", |
| HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); |
| *nphysicals = HPSA_MAX_PHYS_LUN; |
| } |
| if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) { |
| dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); |
| return -1; |
| } |
| *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; |
| /* Reject Logicals in excess of our max capability. */ |
| if (*nlogicals > HPSA_MAX_LUN) { |
| dev_warn(&h->pdev->dev, |
| "maximum logical LUNs (%d) exceeded. " |
| "%d LUNs ignored.\n", HPSA_MAX_LUN, |
| *nlogicals - HPSA_MAX_LUN); |
| *nlogicals = HPSA_MAX_LUN; |
| } |
| if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { |
| dev_warn(&h->pdev->dev, |
| "maximum logical + physical LUNs (%d) exceeded. " |
| "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, |
| *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); |
| *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; |
| } |
| return 0; |
| } |
| |
| static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, |
| int i, int nphysicals, int nlogicals, |
| struct ReportExtendedLUNdata *physdev_list, |
| struct ReportLUNdata *logdev_list) |
| { |
| /* Helper function, figure out where the LUN ID info is coming from |
| * given index i, lists of physical and logical devices, where in |
| * the list the raid controller is supposed to appear (first or last) |
| */ |
| |
| int logicals_start = nphysicals + (raid_ctlr_position == 0); |
| int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); |
| |
| if (i == raid_ctlr_position) |
| return RAID_CTLR_LUNID; |
| |
| if (i < logicals_start) |
| return &physdev_list->LUN[i - |
| (raid_ctlr_position == 0)].lunid[0]; |
| |
| if (i < last_device) |
| return &logdev_list->LUN[i - nphysicals - |
| (raid_ctlr_position == 0)][0]; |
| BUG(); |
| return NULL; |
| } |
| |
| /* get physical drive ioaccel handle and queue depth */ |
| static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h, |
| struct hpsa_scsi_dev_t *dev, |
| struct ReportExtendedLUNdata *rlep, int rle_index, |
| struct bmic_identify_physical_device *id_phys) |
| { |
| int rc; |
| struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; |
| |
| dev->ioaccel_handle = rle->ioaccel_handle; |
| if ((rle->device_flags & 0x08) && dev->ioaccel_handle) |
| dev->hba_ioaccel_enabled = 1; |
| memset(id_phys, 0, sizeof(*id_phys)); |
| rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0], |
| GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys, |
| sizeof(*id_phys)); |
| if (!rc) |
| /* Reserve space for FW operations */ |
| #define DRIVE_CMDS_RESERVED_FOR_FW 2 |
| #define DRIVE_QUEUE_DEPTH 7 |
| dev->queue_depth = |
| le16_to_cpu(id_phys->current_queue_depth_limit) - |
| DRIVE_CMDS_RESERVED_FOR_FW; |
| else |
| dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */ |
| } |
| |
| static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device, |
| struct ReportExtendedLUNdata *rlep, int rle_index, |
| struct bmic_identify_physical_device *id_phys) |
| { |
| struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; |
| |
| if ((rle->device_flags & 0x08) && this_device->ioaccel_handle) |
| this_device->hba_ioaccel_enabled = 1; |
| |
| memcpy(&this_device->active_path_index, |
| &id_phys->active_path_number, |
| sizeof(this_device->active_path_index)); |
| memcpy(&this_device->path_map, |
| &id_phys->redundant_path_present_map, |
| sizeof(this_device->path_map)); |
| memcpy(&this_device->box, |
| &id_phys->alternate_paths_phys_box_on_port, |
| sizeof(this_device->box)); |
| memcpy(&this_device->phys_connector, |
| &id_phys->alternate_paths_phys_connector, |
| sizeof(this_device->phys_connector)); |
| memcpy(&this_device->bay, |
| &id_phys->phys_bay_in_box, |
| sizeof(this_device->bay)); |
| } |
| |
| /* get number of local logical disks. */ |
| static int hpsa_set_local_logical_count(struct ctlr_info *h, |
| struct bmic_identify_controller *id_ctlr, |
| u32 *nlocals) |
| { |
| int rc; |
| |
| if (!id_ctlr) { |
| dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n", |
| __func__); |
| return -ENOMEM; |
| } |
| memset(id_ctlr, 0, sizeof(*id_ctlr)); |
| rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr)); |
| if (!rc) |
| if (id_ctlr->configured_logical_drive_count < 256) |
| *nlocals = id_ctlr->configured_logical_drive_count; |
| else |
| *nlocals = le16_to_cpu( |
| id_ctlr->extended_logical_unit_count); |
| else |
| *nlocals = -1; |
| return rc; |
| } |
| |
| |
| static void hpsa_update_scsi_devices(struct ctlr_info *h) |
| { |
| /* the idea here is we could get notified |
| * that some devices have changed, so we do a report |
| * physical luns and report logical luns cmd, and adjust |
| * our list of devices accordingly. |
| * |
| * The scsi3addr's of devices won't change so long as the |
| * adapter is not reset. That means we can rescan and |
| * tell which devices we already know about, vs. new |
| * devices, vs. disappearing devices. |
| */ |
| struct ReportExtendedLUNdata *physdev_list = NULL; |
| struct ReportLUNdata *logdev_list = NULL; |
| struct bmic_identify_physical_device *id_phys = NULL; |
| struct bmic_identify_controller *id_ctlr = NULL; |
| u32 nphysicals = 0; |
| u32 nlogicals = 0; |
| u32 nlocal_logicals = 0; |
| u32 ndev_allocated = 0; |
| struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; |
| int ncurrent = 0; |
| int i, n_ext_target_devs, ndevs_to_allocate; |
| int raid_ctlr_position; |
| bool physical_device; |
| DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); |
| |
| currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL); |
| physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); |
| logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); |
| tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); |
| id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); |
| id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL); |
| |
| if (!currentsd || !physdev_list || !logdev_list || |
| !tmpdevice || !id_phys || !id_ctlr) { |
| dev_err(&h->pdev->dev, "out of memory\n"); |
| goto out; |
| } |
| memset(lunzerobits, 0, sizeof(lunzerobits)); |
| |
| h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */ |
| |
| if (hpsa_gather_lun_info(h, physdev_list, &nphysicals, |
| logdev_list, &nlogicals)) { |
| h->drv_req_rescan = 1; |
| goto out; |
| } |
| |
| /* Set number of local logicals (non PTRAID) */ |
| if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) { |
| dev_warn(&h->pdev->dev, |
| "%s: Can't determine number of local logical devices.\n", |
| __func__); |
| } |
| |
| /* We might see up to the maximum number of logical and physical disks |
| * plus external target devices, and a device for the local RAID |
| * controller. |
| */ |
| ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; |
| |
| /* Allocate the per device structures */ |
| for (i = 0; i < ndevs_to_allocate; i++) { |
| if (i >= HPSA_MAX_DEVICES) { |
| dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." |
| " %d devices ignored.\n", HPSA_MAX_DEVICES, |
| ndevs_to_allocate - HPSA_MAX_DEVICES); |
| break; |
| } |
| |
| currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); |
| if (!currentsd[i]) { |
| dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", |
| __FILE__, __LINE__); |
| h->drv_req_rescan = 1; |
| goto out; |
| } |
| ndev_allocated++; |
| } |
| |
| if (is_scsi_rev_5(h)) |
| raid_ctlr_position = 0; |
| else |
| raid_ctlr_position = nphysicals + nlogicals; |
| |
| /* adjust our table of devices */ |
| n_ext_target_devs = 0; |
| for (i = 0; i < nphysicals + nlogicals + 1; i++) { |
| u8 *lunaddrbytes, is_OBDR = 0; |
| int rc = 0; |
| int phys_dev_index = i - (raid_ctlr_position == 0); |
| |
| physical_device = i < nphysicals + (raid_ctlr_position == 0); |
| |
| /* Figure out where the LUN ID info is coming from */ |
| lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, |
| i, nphysicals, nlogicals, physdev_list, logdev_list); |
| |
| /* skip masked non-disk devices */ |
| if (MASKED_DEVICE(lunaddrbytes) && physical_device && |
| (physdev_list->LUN[phys_dev_index].device_flags & 0x01)) |
| continue; |
| |
| /* Get device type, vendor, model, device id */ |
| rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice, |
| &is_OBDR); |
| if (rc == -ENOMEM) { |
| dev_warn(&h->pdev->dev, |
| "Out of memory, rescan deferred.\n"); |
| h->drv_req_rescan = 1; |
| goto out; |
| } |
| if (rc) { |
| dev_warn(&h->pdev->dev, |
| "Inquiry failed, skipping device.\n"); |
| continue; |
| } |
| |
| /* Determine if this is a lun from an external target array */ |
| tmpdevice->external = |
| figure_external_status(h, raid_ctlr_position, i, |
| nphysicals, nlocal_logicals); |
| |
| figure_bus_target_lun(h, lunaddrbytes, tmpdevice); |
| hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes); |
| this_device = currentsd[ncurrent]; |
| |
| /* Turn on discovery_polling if there are ext target devices. |
| * Event-based change notification is unreliable for those. |
| */ |
| if (!h->discovery_polling) { |
| if (tmpdevice->external) { |
| h->discovery_polling = 1; |
| dev_info(&h->pdev->dev, |
| "External target, activate discovery polling.\n"); |
| } |
| } |
| |
| |
| *this_device = *tmpdevice; |
| this_device->physical_device = physical_device; |
| |
| /* |
| * Expose all devices except for physical devices that |
| * are masked. |
| */ |
| if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device) |
| this_device->expose_device = 0; |
| else |
| this_device->expose_device = 1; |
| |
| switch (this_device->devtype) { |
| case TYPE_ROM: |
| /* We don't *really* support actual CD-ROM devices, |
| * just "One Button Disaster Recovery" tape drive |
| * which temporarily pretends to be a CD-ROM drive. |
| * So we check that the device is really an OBDR tape |
| * device by checking for "$DR-10" in bytes 43-48 of |
| * the inquiry data. |
| */ |
| if (is_OBDR) |
| ncurrent++; |
| break; |
| case TYPE_DISK: |
| if (this_device->physical_device) { |
| /* The disk is in HBA mode. */ |
| /* Never use RAID mapper in HBA mode. */ |
| this_device->offload_enabled = 0; |
| hpsa_get_ioaccel_drive_info(h, this_device, |
| physdev_list, phys_dev_index, id_phys); |
| hpsa_get_path_info(this_device, |
| physdev_list, phys_dev_index, id_phys); |
| } |
| ncurrent++; |
| break; |
| case TYPE_TAPE: |
| case TYPE_MEDIUM_CHANGER: |
| case TYPE_ENCLOSURE: |
| ncurrent++; |
| break; |
| case TYPE_RAID: |
| /* Only present the Smartarray HBA as a RAID controller. |
| * If it's a RAID controller other than the HBA itself |
| * (an external RAID controller, MSA500 or similar) |
| * don't present it. |
| */ |
| if (!is_hba_lunid(lunaddrbytes)) |
| break; |
| ncurrent++; |
| break; |
| default: |
| break; |
| } |
| if (ncurrent >= HPSA_MAX_DEVICES) |
| break; |
| } |
| adjust_hpsa_scsi_table(h, currentsd, ncurrent); |
| out: |
| kfree(tmpdevice); |
| for (i = 0; i < ndev_allocated; i++) |
| kfree(currentsd[i]); |
| kfree(currentsd); |
| kfree(physdev_list); |
| kfree(logdev_list); |
| kfree(id_ctlr); |
| kfree(id_phys); |
| } |
| |
| static void hpsa_set_sg_descriptor(struct SGDescriptor *desc, |
| struct scatterlist *sg) |
| { |
| u64 addr64 = (u64) sg_dma_address(sg); |
| unsigned int len = sg_dma_len(sg); |
| |
| desc->Addr = cpu_to_le64(addr64); |
| desc->Len = cpu_to_le32(len); |
| desc->Ext = 0; |
| } |
| |
| /* |
| * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci |
| * dma mapping and fills in the scatter gather entries of the |
| * hpsa command, cp. |
| */ |
| static int hpsa_scatter_gather(struct ctlr_info *h, |
| struct CommandList *cp, |
| struct scsi_cmnd *cmd) |
| { |
| struct scatterlist *sg; |
| int use_sg, i, sg_limit, chained, last_sg; |
| struct SGDescriptor *curr_sg; |
| |
| BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); |
| |
| use_sg = scsi_dma_map(cmd); |
| if (use_sg < 0) |
| return use_sg; |
| |
| if (!use_sg) |
| goto sglist_finished; |
| |
| /* |
| * If the number of entries is greater than the max for a single list, |
| * then we have a chained list; we will set up all but one entry in the |
| * first list (the last entry is saved for link information); |
| * otherwise, we don't have a chained list and we'll set up at each of |
| * the entries in the one list. |
| */ |
| curr_sg = cp->SG; |
| chained = use_sg > h->max_cmd_sg_entries; |
| sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg; |
| last_sg = scsi_sg_count(cmd) - 1; |
| scsi_for_each_sg(cmd, sg, sg_limit, i) { |
| hpsa_set_sg_descriptor(curr_sg, sg); |
| curr_sg++; |
| } |
| |
| if (chained) { |
| /* |
| * Continue with the chained list. Set curr_sg to the chained |
| * list. Modify the limit to the total count less the entries |
| * we've already set up. Resume the scan at the list entry |
| * where the previous loop left off. |
| */ |
| curr_sg = h->cmd_sg_list[cp->cmdindex]; |
| sg_limit = use_sg - sg_limit; |
| for_each_sg(sg, sg, sg_limit, i) { |
| hpsa_set_sg_descriptor(curr_sg, sg); |
| curr_sg++; |
| } |
| } |
| |
| /* Back the pointer up to the last entry and mark it as "last". */ |
| (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST); |
| |
| if (use_sg + chained > h->maxSG) |
| h->maxSG = use_sg + chained; |
| |
| if (chained) { |
| cp->Header.SGList = h->max_cmd_sg_entries; |
| cp->Header.SGTotal = cpu_to_le16(use_sg + 1); |
| if (hpsa_map_sg_chain_block(h, cp)) { |
| scsi_dma_unmap(cmd); |
| return -1; |
| } |
| return 0; |
| } |
| |
| sglist_finished: |
| |
| cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ |
| cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */ |
| return 0; |
| } |
| |
| #define IO_ACCEL_INELIGIBLE (1) |
| static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) |
| { |
| int is_write = 0; |
| u32 block; |
| u32 block_cnt; |
| |
| /* Perform some CDB fixups if needed using 10 byte reads/writes only */ |
| switch (cdb[0]) { |
| case WRITE_6: |
| case WRITE_12: |
| is_write = 1; |
| case READ_6: |
| case READ_12: |
| if (*cdb_len == 6) { |
| block = get_unaligned_be16(&cdb[2]); |
| block_cnt = cdb[4]; |
| if (block_cnt == 0) |
| block_cnt = 256; |
| } else { |
| BUG_ON(*cdb_len != 12); |
| block = get_unaligned_be32(&cdb[2]); |
| block_cnt = get_unaligned_be32(&cdb[6]); |
| } |
| if (block_cnt > 0xffff) |
| return IO_ACCEL_INELIGIBLE; |
| |
| cdb[0] = is_write ? WRITE_10 : READ_10; |
| cdb[1] = 0; |
| cdb[2] = (u8) (block >> 24); |
| cdb[3] = (u8) (block >> 16); |
| cdb[4] = (u8) (block >> 8); |
| cdb[5] = (u8) (block); |
| cdb[6] = 0; |
| cdb[7] = (u8) (block_cnt >> 8); |
| cdb[8] = (u8) (block_cnt); |
| cdb[9] = 0; |
| *cdb_len = 10; |
| break; |
| } |
| return 0; |
| } |
| |
| static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, |
| struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, |
| u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) |
| { |
| struct scsi_cmnd *cmd = c->scsi_cmd; |
| struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; |
| unsigned int len; |
| unsigned int total_len = 0; |
| struct scatterlist *sg; |
| u64 addr64; |
| int use_sg, i; |
| struct SGDescriptor *curr_sg; |
| u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; |
| |
| /* TODO: implement chaining support */ |
| if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { |
| atomic_dec(&phys_disk->ioaccel_cmds_out); |
| return IO_ACCEL_INELIGIBLE; |
| } |
| |
| BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); |
| |
| if (fixup_ioaccel_cdb(cdb, &cdb_len)) { |
| atomic_dec(&phys_disk->ioaccel_cmds_out); |
| return IO_ACCEL_INELIGIBLE; |
| } |
| |
| c->cmd_type = CMD_IOACCEL1; |
| |
| /* Adjust the DMA address to point to the accelerated command buffer */ |
| c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + |
| (c->cmdindex * sizeof(*cp)); |
| BUG_ON(c->busaddr & 0x0000007F); |
| |
| use_sg = scsi_dma_map(cmd); |
| if (use_sg < 0) { |
| atomic_dec(&phys_disk->ioaccel_cmds_out); |
| return use_sg; |
| } |
| |
| if (use_sg) { |
| curr_sg = cp->SG; |
| scsi_for_each_sg(cmd, sg, use_sg, i) { |
| addr64 = (u64) sg_dma_address(sg); |
| len = sg_dma_len(sg); |
| total_len += len; |
| curr_sg->Addr = cpu_to_le64(addr64); |
| curr_sg->Len = cpu_to_le32(len); |
| curr_sg->Ext = cpu_to_le32(0); |
| curr_sg++; |
| } |
| (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); |
| |
| switch (cmd->sc_data_direction) { |
| case DMA_TO_DEVICE: |
| control |= IOACCEL1_CONTROL_DATA_OUT; |
| break; |
| case DMA_FROM_DEVICE: |
| control |= IOACCEL1_CONTROL_DATA_IN; |
| break; |
| case DMA_NONE: |
| control |= IOACCEL1_CONTROL_NODATAXFER; |
| break; |
| default: |
| dev_err(&h->pdev->dev, "unknown data direction: %d\n", |
| cmd->sc_data_direction); |
| BUG(); |
| break; |
| } |
| } else { |
| control |= IOACCEL1_CONTROL_NODATAXFER; |
| } |
| |
| c->Header.SGList = use_sg; |
| /* Fill out the command structure to submit */ |
| cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF); |
| cp->transfer_len = cpu_to_le32(total_len); |
| cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ | |
| (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK)); |
| cp->control = cpu_to_le32(control); |
| memcpy(cp->CDB, cdb, cdb_len); |
| memcpy(cp->CISS_LUN, scsi3addr, 8); |
| /* Tag was already set at init time. */ |
| enqueue_cmd_and_start_io(h, c); |
| return 0; |
| } |
| |
| /* |
| * Queue a command directly to a device behind the controller using the |
| * I/O accelerator path. |
| */ |
| static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| struct scsi_cmnd *cmd = c->scsi_cmd; |
| struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; |
| |
| c->phys_disk = dev; |
| |
| return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, |
| cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev); |
| } |
| |
| /* |
| * Set encryption parameters for the ioaccel2 request |
| */ |
| static void set_encrypt_ioaccel2(struct ctlr_info *h, |
| struct CommandList *c, struct io_accel2_cmd *cp) |
| { |
| struct scsi_cmnd *cmd = c->scsi_cmd; |
| struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; |
| struct raid_map_data *map = &dev->raid_map; |
| u64 first_block; |
| |
| /* Are we doing encryption on this device */ |
| if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON)) |
| return; |
| /* Set the data encryption key index. */ |
| cp->dekindex = map->dekindex; |
| |
| /* Set the encryption enable flag, encoded into direction field. */ |
| cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; |
| |
| /* Set encryption tweak values based on logical block address |
| * If block size is 512, tweak value is LBA. |
| * For other block sizes, tweak is (LBA * block size)/ 512) |
| */ |
| switch (cmd->cmnd[0]) { |
| /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ |
| case WRITE_6: |
| case READ_6: |
| first_block = get_unaligned_be16(&cmd->cmnd[2]); |
| break; |
| case WRITE_10: |
| case READ_10: |
| /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ |
| case WRITE_12: |
| case READ_12: |
| first_block = get_unaligned_be32(&cmd->cmnd[2]); |
| break; |
| case WRITE_16: |
| case READ_16: |
| first_block = get_unaligned_be64(&cmd->cmnd[2]); |
| break; |
| default: |
| dev_err(&h->pdev->dev, |
| "ERROR: %s: size (0x%x) not supported for encryption\n", |
| __func__, cmd->cmnd[0]); |
| BUG(); |
| break; |
| } |
| |
| if (le32_to_cpu(map->volume_blk_size) != 512) |
| first_block = first_block * |
| le32_to_cpu(map->volume_blk_size)/512; |
| |
| cp->tweak_lower = cpu_to_le32(first_block); |
| cp->tweak_upper = cpu_to_le32(first_block >> 32); |
| } |
| |
| static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, |
| struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, |
| u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) |
| { |
| struct scsi_cmnd *cmd = c->scsi_cmd; |
| struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; |
| struct ioaccel2_sg_element *curr_sg; |
| int use_sg, i; |
| struct scatterlist *sg; |
| u64 addr64; |
| u32 len; |
| u32 total_len = 0; |
| |
| BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); |
| |
| if (fixup_ioaccel_cdb(cdb, &cdb_len)) { |
| atomic_dec(&phys_disk->ioaccel_cmds_out); |
| return IO_ACCEL_INELIGIBLE; |
| } |
| |
| c->cmd_type = CMD_IOACCEL2; |
| /* Adjust the DMA address to point to the accelerated command buffer */ |
| c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + |
| (c->cmdindex * sizeof(*cp)); |
| BUG_ON(c->busaddr & 0x0000007F); |
| |
| memset(cp, 0, sizeof(*cp)); |
| cp->IU_type = IOACCEL2_IU_TYPE; |
| |
| use_sg = scsi_dma_map(cmd); |
| if (use_sg < 0) { |
| atomic_dec(&phys_disk->ioaccel_cmds_out); |
| return use_sg; |
| } |
| |
| if (use_sg) { |
| curr_sg = cp->sg; |
| if (use_sg > h->ioaccel_maxsg) { |
| addr64 = le64_to_cpu( |
| h->ioaccel2_cmd_sg_list[c->cmdindex]->address); |
| curr_sg->address = cpu_to_le64(addr64); |
| curr_sg->length = 0; |
| curr_sg->reserved[0] = 0; |
| curr_sg->reserved[1] = 0; |
| curr_sg->reserved[2] = 0; |
| curr_sg->chain_indicator = 0x80; |
| |
| curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex]; |
| } |
| scsi_for_each_sg(cmd, sg, use_sg, i) { |
| addr64 = (u64) sg_dma_address(sg); |
| len = sg_dma_len(sg); |
| total_len += len; |
| curr_sg->address = cpu_to_le64(addr64); |
| curr_sg->length = cpu_to_le32(len); |
| curr_sg->reserved[0] = 0; |
| curr_sg->reserved[1] = 0; |
| curr_sg->reserved[2] = 0; |
| curr_sg->chain_indicator = 0; |
| curr_sg++; |
| } |
| |
| switch (cmd->sc_data_direction) { |
| case DMA_TO_DEVICE: |
| cp->direction &= ~IOACCEL2_DIRECTION_MASK; |
| cp->direction |= IOACCEL2_DIR_DATA_OUT; |
| break; |
| case DMA_FROM_DEVICE: |
| cp->direction &= ~IOACCEL2_DIRECTION_MASK; |
| cp->direction |= IOACCEL2_DIR_DATA_IN; |
| break; |
| case DMA_NONE: |
| cp->direction &= ~IOACCEL2_DIRECTION_MASK; |
| cp->direction |= IOACCEL2_DIR_NO_DATA; |
| break; |
| default: |
| dev_err(&h->pdev->dev, "unknown data direction: %d\n", |
| cmd->sc_data_direction); |
| BUG(); |
| break; |
| } |
| } else { |
| cp->direction &= ~IOACCEL2_DIRECTION_MASK; |
| cp->direction |= IOACCEL2_DIR_NO_DATA; |
| } |
| |
| /* Set encryption parameters, if necessary */ |
| set_encrypt_ioaccel2(h, c, cp); |
| |
| cp->scsi_nexus = cpu_to_le32(ioaccel_handle); |
| cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT); |
| memcpy(cp->cdb, cdb, sizeof(cp->cdb)); |
| |
| cp->data_len = cpu_to_le32(total_len); |
| cp->err_ptr = cpu_to_le64(c->busaddr + |
| offsetof(struct io_accel2_cmd, error_data)); |
| cp->err_len = cpu_to_le32(sizeof(cp->error_data)); |
| |
| /* fill in sg elements */ |
| if (use_sg > h->ioaccel_maxsg) { |
| cp->sg_count = 1; |
| cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0])); |
| if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) { |
| atomic_dec(&phys_disk->ioaccel_cmds_out); |
| scsi_dma_unmap(cmd); |
| return -1; |
| } |
| } else |
| cp->sg_count = (u8) use_sg; |
| |
| enqueue_cmd_and_start_io(h, c); |
| return 0; |
| } |
| |
| /* |
| * Queue a command to the correct I/O accelerator path. |
| */ |
| static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, |
| struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, |
| u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) |
| { |
| /* Try to honor the device's queue depth */ |
| if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) > |
| phys_disk->queue_depth) { |
| atomic_dec(&phys_disk->ioaccel_cmds_out); |
| return IO_ACCEL_INELIGIBLE; |
| } |
| if (h->transMethod & CFGTBL_Trans_io_accel1) |
| return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, |
| cdb, cdb_len, scsi3addr, |
| phys_disk); |
| else |
| return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, |
| cdb, cdb_len, scsi3addr, |
| phys_disk); |
| } |
| |
| static void raid_map_helper(struct raid_map_data *map, |
| int offload_to_mirror, u32 *map_index, u32 *current_group) |
| { |
| if (offload_to_mirror == 0) { |
| /* use physical disk in the first mirrored group. */ |
| *map_index %= le16_to_cpu(map->data_disks_per_row); |
| return; |
| } |
| do { |
| /* determine mirror group that *map_index indicates */ |
| *current_group = *map_index / |
| le16_to_cpu(map->data_disks_per_row); |
| if (offload_to_mirror == *current_group) |
| continue; |
| if (*current_group < le16_to_cpu(map->layout_map_count) - 1) { |
| /* select map index from next group */ |
| *map_index += le16_to_cpu(map->data_disks_per_row); |
| (*current_group)++; |
| } else { |
| /* select map index from first group */ |
| *map_index %= le16_to_cpu(map->data_disks_per_row); |
| *current_group = 0; |
| } |
| } while (offload_to_mirror != *current_group); |
| } |
| |
| /* |
| * Attempt to perform offload RAID mapping for a logical volume I/O. |
| */ |
| static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| struct scsi_cmnd *cmd = c->scsi_cmd; |
| struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; |
| struct raid_map_data *map = &dev->raid_map; |
| struct raid_map_disk_data *dd = &map->data[0]; |
| int is_write = 0; |
| u32 map_index; |
| u64 first_block, last_block; |
| u32 block_cnt; |
| u32 blocks_per_row; |
| u64 first_row, last_row; |
| u32 first_row_offset, last_row_offset; |
| u32 first_column, last_column; |
| u64 r0_first_row, r0_last_row; |
| u32 r5or6_blocks_per_row; |
| u64 r5or6_first_row, r5or6_last_row; |
| u32 r5or6_first_row_offset, r5or6_last_row_offset; |
| u32 r5or6_first_column, r5or6_last_column; |
| u32 total_disks_per_row; |
| u32 stripesize; |
| u32 first_group, last_group, current_group; |
| u32 map_row; |
| u32 disk_handle; |
| u64 disk_block; |
| u32 disk_block_cnt; |
| u8 cdb[16]; |
| u8 cdb_len; |
| u16 strip_size; |
| #if BITS_PER_LONG == 32 |
| u64 tmpdiv; |
| #endif |
| int offload_to_mirror; |
| |
| /* check for valid opcode, get LBA and block count */ |
| switch (cmd->cmnd[0]) { |
| case WRITE_6: |
| is_write = 1; |
| case READ_6: |
| first_block = get_unaligned_be16(&cmd->cmnd[2]); |
| block_cnt = cmd->cmnd[4]; |
| if (block_cnt == 0) |
| block_cnt = 256; |
| break; |
| case WRITE_10: |
| is_write = 1; |
| case READ_10: |
| first_block = |
| (((u64) cmd->cmnd[2]) << 24) | |
| (((u64) cmd->cmnd[3]) << 16) | |
| (((u64) cmd->cmnd[4]) << 8) | |
| cmd->cmnd[5]; |
| block_cnt = |
| (((u32) cmd->cmnd[7]) << 8) | |
| cmd->cmnd[8]; |
| break; |
| case WRITE_12: |
| is_write = 1; |
| case READ_12: |
| first_block = |
| (((u64) cmd->cmnd[2]) << 24) | |
| (((u64) cmd->cmnd[3]) << 16) | |
| (((u64) cmd->cmnd[4]) << 8) | |
| cmd->cmnd[5]; |
| block_cnt = |
| (((u32) cmd->cmnd[6]) << 24) | |
| (((u32) cmd->cmnd[7]) << 16) | |
| (((u32) cmd->cmnd[8]) << 8) | |
| cmd->cmnd[9]; |
| break; |
| case WRITE_16: |
| is_write = 1; |
| case READ_16: |
| first_block = |
| (((u64) cmd->cmnd[2]) << 56) | |
| (((u64) cmd->cmnd[3]) << 48) | |
| (((u64) cmd->cmnd[4]) << 40) | |
| (((u64) cmd->cmnd[5]) << 32) | |
| (((u64) cmd->cmnd[6]) << 24) | |
| (((u64) cmd->cmnd[7]) << 16) | |
| (((u64) cmd->cmnd[8]) << 8) | |
| cmd->cmnd[9]; |
| block_cnt = |
| (((u32) cmd->cmnd[10]) << 24) | |
| (((u32) cmd->cmnd[11]) << 16) | |
| (((u32) cmd->cmnd[12]) << 8) | |
| cmd->cmnd[13]; |
| break; |
| default: |
| return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ |
| } |
| last_block = first_block + block_cnt - 1; |
| |
| /* check for write to non-RAID-0 */ |
| if (is_write && dev->raid_level != 0) |
| return IO_ACCEL_INELIGIBLE; |
| |
| /* check for invalid block or wraparound */ |
| if (last_block >= le64_to_cpu(map->volume_blk_cnt) || |
| last_block < first_block) |
| return IO_ACCEL_INELIGIBLE; |
| |
| /* calculate stripe information for the request */ |
| blocks_per_row = le16_to_cpu(map->data_disks_per_row) * |
| le16_to_cpu(map->strip_size); |
| strip_size = le16_to_cpu(map->strip_size); |
| #if BITS_PER_LONG == 32 |
| tmpdiv = first_block; |
| (void) do_div(tmpdiv, blocks_per_row); |
| first_row = tmpdiv; |
| tmpdiv = last_block; |
| (void) do_div(tmpdiv, blocks_per_row); |
| last_row = tmpdiv; |
| first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); |
| last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); |
| tmpdiv = first_row_offset; |
| (void) do_div(tmpdiv, strip_size); |
| first_column = tmpdiv; |
| tmpdiv = last_row_offset; |
| (void) do_div(tmpdiv, strip_size); |
| last_column = tmpdiv; |
| #else |
| first_row = first_block / blocks_per_row; |
| last_row = last_block / blocks_per_row; |
| first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); |
| last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); |
| first_column = first_row_offset / strip_size; |
| last_column = last_row_offset / strip_size; |
| #endif |
| |
| /* if this isn't a single row/column then give to the controller */ |
| if ((first_row != last_row) || (first_column != last_column)) |
| return IO_ACCEL_INELIGIBLE; |
| |
| /* proceeding with driver mapping */ |
| total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + |
| le16_to_cpu(map->metadata_disks_per_row); |
| map_row = ((u32)(first_row >> map->parity_rotation_shift)) % |
| le16_to_cpu(map->row_cnt); |
| map_index = (map_row * total_disks_per_row) + first_column; |
| |
| switch (dev->raid_level) { |
| case HPSA_RAID_0: |
| break; /* nothing special to do */ |
| case HPSA_RAID_1: |
| /* Handles load balance across RAID 1 members. |
| * (2-drive R1 and R10 with even # of drives.) |
| * Appropriate for SSDs, not optimal for HDDs |
| */ |
| BUG_ON(le16_to_cpu(map->layout_map_count) != 2); |
| if (dev->offload_to_mirror) |
| map_index += le16_to_cpu(map->data_disks_per_row); |
| dev->offload_to_mirror = !dev->offload_to_mirror; |
| break; |
| case HPSA_RAID_ADM: |
| /* Handles N-way mirrors (R1-ADM) |
| * and R10 with # of drives divisible by 3.) |
| */ |
| BUG_ON(le16_to_cpu(map->layout_map_count) != 3); |
| |
| offload_to_mirror = dev->offload_to_mirror; |
| raid_map_helper(map, offload_to_mirror, |
| &map_index, ¤t_group); |
| /* set mirror group to use next time */ |
| offload_to_mirror = |
| (offload_to_mirror >= |
| le16_to_cpu(map->layout_map_count) - 1) |
| ? 0 : offload_to_mirror + 1; |
| dev->offload_to_mirror = offload_to_mirror; |
| /* Avoid direct use of dev->offload_to_mirror within this |
| * function since multiple threads might simultaneously |
| * increment it beyond the range of dev->layout_map_count -1. |
| */ |
| break; |
| case HPSA_RAID_5: |
| case HPSA_RAID_6: |
| if (le16_to_cpu(map->layout_map_count) <= 1) |
| break; |
| |
| /* Verify first and last block are in same RAID group */ |
| r5or6_blocks_per_row = |
| le16_to_cpu(map->strip_size) * |
| le16_to_cpu(map->data_disks_per_row); |
| BUG_ON(r5or6_blocks_per_row == 0); |
| stripesize = r5or6_blocks_per_row * |
| le16_to_cpu(map->layout_map_count); |
| #if BITS_PER_LONG == 32 |
| tmpdiv = first_block; |
| first_group = do_div(tmpdiv, stripesize); |
| tmpdiv = first_group; |
| (void) do_div(tmpdiv, r5or6_blocks_per_row); |
| first_group = tmpdiv; |
| tmpdiv = last_block; |
| last_group = do_div(tmpdiv, stripesize); |
| tmpdiv = last_group; |
| (void) do_div(tmpdiv, r5or6_blocks_per_row); |
| last_group = tmpdiv; |
| #else |
| first_group = (first_block % stripesize) / r5or6_blocks_per_row; |
| last_group = (last_block % stripesize) / r5or6_blocks_per_row; |
| #endif |
| if (first_group != last_group) |
| return IO_ACCEL_INELIGIBLE; |
| |
| /* Verify request is in a single row of RAID 5/6 */ |
| #if BITS_PER_LONG == 32 |
| tmpdiv = first_block; |
| (void) do_div(tmpdiv, stripesize); |
| first_row = r5or6_first_row = r0_first_row = tmpdiv; |
| tmpdiv = last_block; |
| (void) do_div(tmpdiv, stripesize); |
| r5or6_last_row = r0_last_row = tmpdiv; |
| #else |
| first_row = r5or6_first_row = r0_first_row = |
| first_block / stripesize; |
| r5or6_last_row = r0_last_row = last_block / stripesize; |
| #endif |
| if (r5or6_first_row != r5or6_last_row) |
| return IO_ACCEL_INELIGIBLE; |
| |
| |
| /* Verify request is in a single column */ |
| #if BITS_PER_LONG == 32 |
| tmpdiv = first_block; |
| first_row_offset = do_div(tmpdiv, stripesize); |
| tmpdiv = first_row_offset; |
| first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); |
| r5or6_first_row_offset = first_row_offset; |
| tmpdiv = last_block; |
| r5or6_last_row_offset = do_div(tmpdiv, stripesize); |
| tmpdiv = r5or6_last_row_offset; |
| r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); |
| tmpdiv = r5or6_first_row_offset; |
| (void) do_div(tmpdiv, map->strip_size); |
| first_column = r5or6_first_column = tmpdiv; |
| tmpdiv = r5or6_last_row_offset; |
| (void) do_div(tmpdiv, map->strip_size); |
| r5or6_last_column = tmpdiv; |
| #else |
| first_row_offset = r5or6_first_row_offset = |
| (u32)((first_block % stripesize) % |
| r5or6_blocks_per_row); |
| |
| r5or6_last_row_offset = |
| (u32)((last_block % stripesize) % |
| r5or6_blocks_per_row); |
| |
| first_column = r5or6_first_column = |
| r5or6_first_row_offset / le16_to_cpu(map->strip_size); |
| r5or6_last_column = |
| r5or6_last_row_offset / le16_to_cpu(map->strip_size); |
| #endif |
| if (r5or6_first_column != r5or6_last_column) |
| return IO_ACCEL_INELIGIBLE; |
| |
| /* Request is eligible */ |
| map_row = ((u32)(first_row >> map->parity_rotation_shift)) % |
| le16_to_cpu(map->row_cnt); |
| |
| map_index = (first_group * |
| (le16_to_cpu(map->row_cnt) * total_disks_per_row)) + |
| (map_row * total_disks_per_row) + first_column; |
| break; |
| default: |
| return IO_ACCEL_INELIGIBLE; |
| } |
| |
| if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) |
| return IO_ACCEL_INELIGIBLE; |
| |
| c->phys_disk = dev->phys_disk[map_index]; |
| |
| disk_handle = dd[map_index].ioaccel_handle; |
| disk_block = le64_to_cpu(map->disk_starting_blk) + |
| first_row * le16_to_cpu(map->strip_size) + |
| (first_row_offset - first_column * |
| le16_to_cpu(map->strip_size)); |
| disk_block_cnt = block_cnt; |
| |
| /* handle differing logical/physical block sizes */ |
| if (map->phys_blk_shift) { |
| disk_block <<= map->phys_blk_shift; |
| disk_block_cnt <<= map->phys_blk_shift; |
| } |
| BUG_ON(disk_block_cnt > 0xffff); |
| |
| /* build the new CDB for the physical disk I/O */ |
| if (disk_block > 0xffffffff) { |
| cdb[0] = is_write ? WRITE_16 : READ_16; |
| cdb[1] = 0; |
| cdb[2] = (u8) (disk_block >> 56); |
| cdb[3] = (u8) (disk_block >> 48); |
| cdb[4] = (u8) (disk_block >> 40); |
| cdb[5] = (u8) (disk_block >> 32); |
| cdb[6] = (u8) (disk_block >> 24); |
| cdb[7] = (u8) (disk_block >> 16); |
| cdb[8] = (u8) (disk_block >> 8); |
| cdb[9] = (u8) (disk_block); |
| cdb[10] = (u8) (disk_block_cnt >> 24); |
| cdb[11] = (u8) (disk_block_cnt >> 16); |
| cdb[12] = (u8) (disk_block_cnt >> 8); |
| cdb[13] = (u8) (disk_block_cnt); |
| cdb[14] = 0; |
| cdb[15] = 0; |
| cdb_len = 16; |
| } else { |
| cdb[0] = is_write ? WRITE_10 : READ_10; |
| cdb[1] = 0; |
| cdb[2] = (u8) (disk_block >> 24); |
| cdb[3] = (u8) (disk_block >> 16); |
| cdb[4] = (u8) (disk_block >> 8); |
| cdb[5] = (u8) (disk_block); |
| cdb[6] = 0; |
| cdb[7] = (u8) (disk_block_cnt >> 8); |
| cdb[8] = (u8) (disk_block_cnt); |
| cdb[9] = 0; |
| cdb_len = 10; |
| } |
| return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, |
| dev->scsi3addr, |
| dev->phys_disk[map_index]); |
| } |
| |
| /* |
| * Submit commands down the "normal" RAID stack path |
| * All callers to hpsa_ciss_submit must check lockup_detected |
| * beforehand, before (opt.) and after calling cmd_alloc |
| */ |
| static int hpsa_ciss_submit(struct ctlr_info *h, |
| struct CommandList *c, struct scsi_cmnd *cmd, |
| unsigned char scsi3addr[]) |
| { |
| cmd->host_scribble = (unsigned char *) c; |
| c->cmd_type = CMD_SCSI; |
| c->scsi_cmd = cmd; |
| c->Header.ReplyQueue = 0; /* unused in simple mode */ |
| memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); |
| c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT)); |
| |
| /* Fill in the request block... */ |
| |
| c->Request.Timeout = 0; |
| BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); |
| c->Request.CDBLen = cmd->cmd_len; |
| memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); |
| switch (cmd->sc_data_direction) { |
| case DMA_TO_DEVICE: |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); |
| break; |
| case DMA_FROM_DEVICE: |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); |
| break; |
| case DMA_NONE: |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); |
| break; |
| case DMA_BIDIRECTIONAL: |
| /* This can happen if a buggy application does a scsi passthru |
| * and sets both inlen and outlen to non-zero. ( see |
| * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) |
| */ |
| |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); |
| /* This is technically wrong, and hpsa controllers should |
| * reject it with CMD_INVALID, which is the most correct |
| * response, but non-fibre backends appear to let it |
| * slide by, and give the same results as if this field |
| * were set correctly. Either way is acceptable for |
| * our purposes here. |
| */ |
| |
| break; |
| |
| default: |
| dev_err(&h->pdev->dev, "unknown data direction: %d\n", |
| cmd->sc_data_direction); |
| BUG(); |
| break; |
| } |
| |
| if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ |
| hpsa_cmd_resolve_and_free(h, c); |
| return SCSI_MLQUEUE_HOST_BUSY; |
| } |
| enqueue_cmd_and_start_io(h, c); |
| /* the cmd'll come back via intr handler in complete_scsi_command() */ |
| return 0; |
| } |
| |
| static void hpsa_cmd_init(struct ctlr_info *h, int index, |
| struct CommandList *c) |
| { |
| dma_addr_t cmd_dma_handle, err_dma_handle; |
| |
| /* Zero out all of commandlist except the last field, refcount */ |
| memset(c, 0, offsetof(struct CommandList, refcount)); |
| c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT)); |
| cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); |
| c->err_info = h->errinfo_pool + index; |
| memset(c->err_info, 0, sizeof(*c->err_info)); |
| err_dma_handle = h->errinfo_pool_dhandle |
| + index * sizeof(*c->err_info); |
| c->cmdindex = index; |
| c->busaddr = (u32) cmd_dma_handle; |
| c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle); |
| c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info)); |
| c->h = h; |
| c->scsi_cmd = SCSI_CMD_IDLE; |
| } |
| |
| static void hpsa_preinitialize_commands(struct ctlr_info *h) |
| { |
| int i; |
| |
| for (i = 0; i < h->nr_cmds; i++) { |
| struct CommandList *c = h->cmd_pool + i; |
| |
| hpsa_cmd_init(h, i, c); |
| atomic_set(&c->refcount, 0); |
| } |
| } |
| |
| static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index, |
| struct CommandList *c) |
| { |
| dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); |
| |
| BUG_ON(c->cmdindex != index); |
| |
| memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); |
| memset(c->err_info, 0, sizeof(*c->err_info)); |
| c->busaddr = (u32) cmd_dma_handle; |
| } |
| |
| static int hpsa_ioaccel_submit(struct ctlr_info *h, |
| struct CommandList *c, struct scsi_cmnd *cmd, |
| unsigned char *scsi3addr) |
| { |
| struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; |
| int rc = IO_ACCEL_INELIGIBLE; |
| |
| cmd->host_scribble = (unsigned char *) c; |
| |
| if (dev->offload_enabled) { |
| hpsa_cmd_init(h, c->cmdindex, c); |
| c->cmd_type = CMD_SCSI; |
| c->scsi_cmd = cmd; |
| rc = hpsa_scsi_ioaccel_raid_map(h, c); |
| if (rc < 0) /* scsi_dma_map failed. */ |
| rc = SCSI_MLQUEUE_HOST_BUSY; |
| } else if (dev->hba_ioaccel_enabled) { |
| hpsa_cmd_init(h, c->cmdindex, c); |
| c->cmd_type = CMD_SCSI; |
| c->scsi_cmd = cmd; |
| rc = hpsa_scsi_ioaccel_direct_map(h, c); |
| if (rc < 0) /* scsi_dma_map failed. */ |
| rc = SCSI_MLQUEUE_HOST_BUSY; |
| } |
| return rc; |
| } |
| |
| static void hpsa_command_resubmit_worker(struct work_struct *work) |
| { |
| struct scsi_cmnd *cmd; |
| struct hpsa_scsi_dev_t *dev; |
| struct CommandList *c = container_of(work, struct CommandList, work); |
| |
| cmd = c->scsi_cmd; |
| dev = cmd->device->hostdata; |
| if (!dev) { |
| cmd->result = DID_NO_CONNECT << 16; |
| return hpsa_cmd_free_and_done(c->h, c, cmd); |
| } |
| if (c->reset_pending) |
| return hpsa_cmd_resolve_and_free(c->h, c); |
| if (c->abort_pending) |
| return hpsa_cmd_abort_and_free(c->h, c, cmd); |
| if (c->cmd_type == CMD_IOACCEL2) { |
| struct ctlr_info *h = c->h; |
| struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; |
| int rc; |
| |
| if (c2->error_data.serv_response == |
| IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) { |
| rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr); |
| if (rc == 0) |
| return; |
| if (rc == SCSI_MLQUEUE_HOST_BUSY) { |
| /* |
| * If we get here, it means dma mapping failed. |
| * Try again via scsi mid layer, which will |
| * then get SCSI_MLQUEUE_HOST_BUSY. |
| */ |
| cmd->result = DID_IMM_RETRY << 16; |
| return hpsa_cmd_free_and_done(h, c, cmd); |
| } |
| /* else, fall thru and resubmit down CISS path */ |
| } |
| } |
| hpsa_cmd_partial_init(c->h, c->cmdindex, c); |
| if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) { |
| /* |
| * If we get here, it means dma mapping failed. Try |
| * again via scsi mid layer, which will then get |
| * SCSI_MLQUEUE_HOST_BUSY. |
| * |
| * hpsa_ciss_submit will have already freed c |
| * if it encountered a dma mapping failure. |
| */ |
| cmd->result = DID_IMM_RETRY << 16; |
| cmd->scsi_done(cmd); |
| } |
| } |
| |
| /* Running in struct Scsi_Host->host_lock less mode */ |
| static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) |
| { |
| struct ctlr_info *h; |
| struct hpsa_scsi_dev_t *dev; |
| unsigned char scsi3addr[8]; |
| struct CommandList *c; |
| int rc = 0; |
| |
| /* Get the ptr to our adapter structure out of cmd->host. */ |
| h = sdev_to_hba(cmd->device); |
| |
| BUG_ON(cmd->request->tag < 0); |
| |
| dev = cmd->device->hostdata; |
| if (!dev) { |
| cmd->result = DID_NO_CONNECT << 16; |
| cmd->scsi_done(cmd); |
| return 0; |
| } |
| |
| memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); |
| |
| if (unlikely(lockup_detected(h))) { |
| cmd->result = DID_NO_CONNECT << 16; |
| cmd->scsi_done(cmd); |
| return 0; |
| } |
| c = cmd_tagged_alloc(h, cmd); |
| |
| /* |
| * Call alternate submit routine for I/O accelerated commands. |
| * Retries always go down the normal I/O path. |
| */ |
| if (likely(cmd->retries == 0 && |
| cmd->request->cmd_type == REQ_TYPE_FS && |
| h->acciopath_status)) { |
| rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr); |
| if (rc == 0) |
| return 0; |
| if (rc == SCSI_MLQUEUE_HOST_BUSY) { |
| hpsa_cmd_resolve_and_free(h, c); |
| return SCSI_MLQUEUE_HOST_BUSY; |
| } |
| } |
| return hpsa_ciss_submit(h, c, cmd, scsi3addr); |
| } |
| |
| static void hpsa_scan_complete(struct ctlr_info *h) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&h->scan_lock, flags); |
| h->scan_finished = 1; |
| wake_up_all(&h->scan_wait_queue); |
| spin_unlock_irqrestore(&h->scan_lock, flags); |
| } |
| |
| static void hpsa_scan_start(struct Scsi_Host *sh) |
| { |
| struct ctlr_info *h = shost_to_hba(sh); |
| unsigned long flags; |
| |
| /* |
| * Don't let rescans be initiated on a controller known to be locked |
| * up. If the controller locks up *during* a rescan, that thread is |
| * probably hosed, but at least we can prevent new rescan threads from |
| * piling up on a locked up controller. |
| */ |
| if (unlikely(lockup_detected(h))) |
| return hpsa_scan_complete(h); |
| |
| /* wait until any scan already in progress is finished. */ |
| while (1) { |
| spin_lock_irqsave(&h->scan_lock, flags); |
| if (h->scan_finished) |
| break; |
| spin_unlock_irqrestore(&h->scan_lock, flags); |
| wait_event(h->scan_wait_queue, h->scan_finished); |
| /* Note: We don't need to worry about a race between this |
| * thread and driver unload because the midlayer will |
| * have incremented the reference count, so unload won't |
| * happen if we're in here. |
| */ |
| } |
| h->scan_finished = 0; /* mark scan as in progress */ |
| spin_unlock_irqrestore(&h->scan_lock, flags); |
| |
| if (unlikely(lockup_detected(h))) |
| return hpsa_scan_complete(h); |
| |
| hpsa_update_scsi_devices(h); |
| |
| hpsa_scan_complete(h); |
| } |
| |
| static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth) |
| { |
| struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata; |
| |
| if (!logical_drive) |
| return -ENODEV; |
| |
| if (qdepth < 1) |
| qdepth = 1; |
| else if (qdepth > logical_drive->queue_depth) |
| qdepth = logical_drive->queue_depth; |
| |
| return scsi_change_queue_depth(sdev, qdepth); |
| } |
| |
| static int hpsa_scan_finished(struct Scsi_Host *sh, |
| unsigned long elapsed_time) |
| { |
| struct ctlr_info *h = shost_to_hba(sh); |
| unsigned long flags; |
| int finished; |
| |
| spin_lock_irqsave(&h->scan_lock, flags); |
| finished = h->scan_finished; |
| spin_unlock_irqrestore(&h->scan_lock, flags); |
| return finished; |
| } |
| |
| static int hpsa_scsi_host_alloc(struct ctlr_info *h) |
| { |
| struct Scsi_Host *sh; |
| int error; |
| |
| sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); |
| if (sh == NULL) { |
| dev_err(&h->pdev->dev, "scsi_host_alloc failed\n"); |
| return -ENOMEM; |
| } |
| |
| sh->io_port = 0; |
| sh->n_io_port = 0; |
| sh->this_id = -1; |
| sh->max_channel = 3; |
| sh->max_cmd_len = MAX_COMMAND_SIZE; |
| sh->max_lun = HPSA_MAX_LUN; |
| sh->max_id = HPSA_MAX_LUN; |
| sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS; |
| sh->cmd_per_lun = sh->can_queue; |
| sh->sg_tablesize = h->maxsgentries; |
| sh->hostdata[0] = (unsigned long) h; |
| sh->irq = h->intr[h->intr_mode]; |
| sh->unique_id = sh->irq; |
| error = scsi_init_shared_tag_map(sh, sh->can_queue); |
| if (error) { |
| dev_err(&h->pdev->dev, |
| "%s: scsi_init_shared_tag_map failed for controller %d\n", |
| __func__, h->ctlr); |
| scsi_host_put(sh); |
| return error; |
| } |
| h->scsi_host = sh; |
| return 0; |
| } |
| |
| static int hpsa_scsi_add_host(struct ctlr_info *h) |
| { |
| int rv; |
| |
| rv = scsi_add_host(h->scsi_host, &h->pdev->dev); |
| if (rv) { |
| dev_err(&h->pdev->dev, "scsi_add_host failed\n"); |
| return rv; |
| } |
| scsi_scan_host(h->scsi_host); |
| return 0; |
| } |
| |
| /* |
| * The block layer has already gone to the trouble of picking out a unique, |
| * small-integer tag for this request. We use an offset from that value as |
| * an index to select our command block. (The offset allows us to reserve the |
| * low-numbered entries for our own uses.) |
| */ |
| static int hpsa_get_cmd_index(struct scsi_cmnd *scmd) |
| { |
| int idx = scmd->request->tag; |
| |
| if (idx < 0) |
| return idx; |
| |
| /* Offset to leave space for internal cmds. */ |
| return idx += HPSA_NRESERVED_CMDS; |
| } |
| |
| /* |
| * Send a TEST_UNIT_READY command to the specified LUN using the specified |
| * reply queue; returns zero if the unit is ready, and non-zero otherwise. |
| */ |
| static int hpsa_send_test_unit_ready(struct ctlr_info *h, |
| struct CommandList *c, unsigned char lunaddr[], |
| int reply_queue) |
| { |
| int rc; |
| |
| /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ |
| (void) fill_cmd(c, TEST_UNIT_READY, h, |
| NULL, 0, 0, lunaddr, TYPE_CMD); |
| rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); |
| if (rc) |
| return rc; |
| /* no unmap needed here because no data xfer. */ |
| |
| /* Check if the unit is already ready. */ |
| if (c->err_info->CommandStatus == CMD_SUCCESS) |
| return 0; |
| |
| /* |
| * The first command sent after reset will receive "unit attention" to |
| * indicate that the LUN has been reset...this is actually what we're |
| * looking for (but, success is good too). |
| */ |
| if (c->err_info->CommandStatus == CMD_TARGET_STATUS && |
| c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && |
| (c->err_info->SenseInfo[2] == NO_SENSE || |
| c->err_info->SenseInfo[2] == UNIT_ATTENTION)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * Wait for a TEST_UNIT_READY command to complete, retrying as necessary; |
| * returns zero when the unit is ready, and non-zero when giving up. |
| */ |
| static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h, |
| struct CommandList *c, |
| unsigned char lunaddr[], int reply_queue) |
| { |
| int rc; |
| int count = 0; |
| int waittime = 1; /* seconds */ |
| |
| /* Send test unit ready until device ready, or give up. */ |
| for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) { |
| |
| /* |
| * Wait for a bit. do this first, because if we send |
| * the TUR right away, the reset will just abort it. |
| */ |
| msleep(1000 * waittime); |
| |
| rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue); |
| if (!rc) |
| break; |
| |
| /* Increase wait time with each try, up to a point. */ |
| if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) |
| waittime *= 2; |
| |
| dev_warn(&h->pdev->dev, |
| "waiting %d secs for device to become ready.\n", |
| waittime); |
| } |
| |
| return rc; |
| } |
| |
| static int wait_for_device_to_become_ready(struct ctlr_info *h, |
| unsigned char lunaddr[], |
| int reply_queue) |
| { |
| int first_queue; |
| int last_queue; |
| int rq; |
| int rc = 0; |
| struct CommandList *c; |
| |
| c = cmd_alloc(h); |
| |
| /* |
| * If no specific reply queue was requested, then send the TUR |
| * repeatedly, requesting a reply on each reply queue; otherwise execute |
| * the loop exactly once using only the specified queue. |
| */ |
| if (reply_queue == DEFAULT_REPLY_QUEUE) { |
| first_queue = 0; |
| last_queue = h->nreply_queues - 1; |
| } else { |
| first_queue = reply_queue; |
| last_queue = reply_queue; |
| } |
| |
| for (rq = first_queue; rq <= last_queue; rq++) { |
| rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq); |
| if (rc) |
| break; |
| } |
| |
| if (rc) |
| dev_warn(&h->pdev->dev, "giving up on device.\n"); |
| else |
| dev_warn(&h->pdev->dev, "device is ready.\n"); |
| |
| cmd_free(h, c); |
| return rc; |
| } |
| |
| /* Need at least one of these error handlers to keep ../scsi/hosts.c from |
| * complaining. Doing a host- or bus-reset can't do anything good here. |
| */ |
| static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) |
| { |
| int rc; |
| struct ctlr_info *h; |
| struct hpsa_scsi_dev_t *dev; |
| u8 reset_type; |
| char msg[48]; |
| |
| /* find the controller to which the command to be aborted was sent */ |
| h = sdev_to_hba(scsicmd->device); |
| if (h == NULL) /* paranoia */ |
| return FAILED; |
| |
| if (lockup_detected(h)) |
| return FAILED; |
| |
| dev = scsicmd->device->hostdata; |
| if (!dev) { |
| dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__); |
| return FAILED; |
| } |
| |
| /* if controller locked up, we can guarantee command won't complete */ |
| if (lockup_detected(h)) { |
| snprintf(msg, sizeof(msg), |
| "cmd %d RESET FAILED, lockup detected", |
| hpsa_get_cmd_index(scsicmd)); |
| hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); |
| return FAILED; |
| } |
| |
| /* this reset request might be the result of a lockup; check */ |
| if (detect_controller_lockup(h)) { |
| snprintf(msg, sizeof(msg), |
| "cmd %d RESET FAILED, new lockup detected", |
| hpsa_get_cmd_index(scsicmd)); |
| hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); |
| return FAILED; |
| } |
| |
| /* Do not attempt on controller */ |
| if (is_hba_lunid(dev->scsi3addr)) |
| return SUCCESS; |
| |
| if (is_logical_dev_addr_mode(dev->scsi3addr)) |
| reset_type = HPSA_DEVICE_RESET_MSG; |
| else |
| reset_type = HPSA_PHYS_TARGET_RESET; |
| |
| sprintf(msg, "resetting %s", |
| reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical "); |
| hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); |
| |
| h->reset_in_progress = 1; |
| |
| /* send a reset to the SCSI LUN which the command was sent to */ |
| rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type, |
| DEFAULT_REPLY_QUEUE); |
| sprintf(msg, "reset %s %s", |
| reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ", |
| rc == 0 ? "completed successfully" : "failed"); |
| hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); |
| h->reset_in_progress = 0; |
| return rc == 0 ? SUCCESS : FAILED; |
| } |
| |
| static void swizzle_abort_tag(u8 *tag) |
| { |
| u8 original_tag[8]; |
| |
| memcpy(original_tag, tag, 8); |
| tag[0] = original_tag[3]; |
| tag[1] = original_tag[2]; |
| tag[2] = original_tag[1]; |
| tag[3] = original_tag[0]; |
| tag[4] = original_tag[7]; |
| tag[5] = original_tag[6]; |
| tag[6] = original_tag[5]; |
| tag[7] = original_tag[4]; |
| } |
| |
| static void hpsa_get_tag(struct ctlr_info *h, |
| struct CommandList *c, __le32 *taglower, __le32 *tagupper) |
| { |
| u64 tag; |
| if (c->cmd_type == CMD_IOACCEL1) { |
| struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *) |
| &h->ioaccel_cmd_pool[c->cmdindex]; |
| tag = le64_to_cpu(cm1->tag); |
| *tagupper = cpu_to_le32(tag >> 32); |
| *taglower = cpu_to_le32(tag); |
| return; |
| } |
| if (c->cmd_type == CMD_IOACCEL2) { |
| struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *) |
| &h->ioaccel2_cmd_pool[c->cmdindex]; |
| /* upper tag not used in ioaccel2 mode */ |
| memset(tagupper, 0, sizeof(*tagupper)); |
| *taglower = cm2->Tag; |
| return; |
| } |
| tag = le64_to_cpu(c->Header.tag); |
| *tagupper = cpu_to_le32(tag >> 32); |
| *taglower = cpu_to_le32(tag); |
| } |
| |
| static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr, |
| struct CommandList *abort, int reply_queue) |
| { |
| int rc = IO_OK; |
| struct CommandList *c; |
| struct ErrorInfo *ei; |
| __le32 tagupper, taglower; |
| |
| c = cmd_alloc(h); |
| |
| /* fill_cmd can't fail here, no buffer to map */ |
| (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag, |
| 0, 0, scsi3addr, TYPE_MSG); |
| if (h->needs_abort_tags_swizzled) |
| swizzle_abort_tag(&c->Request.CDB[4]); |
| (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); |
| hpsa_get_tag(h, abort, &taglower, &tagupper); |
| dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n", |
| __func__, tagupper, taglower); |
| /* no unmap needed here because no data xfer. */ |
| |
| ei = c->err_info; |
| switch (ei->CommandStatus) { |
| case CMD_SUCCESS: |
| break; |
| case CMD_TMF_STATUS: |
| rc = hpsa_evaluate_tmf_status(h, c); |
| break; |
| case CMD_UNABORTABLE: /* Very common, don't make noise. */ |
| rc = -1; |
| break; |
| default: |
| dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n", |
| __func__, tagupper, taglower); |
| hpsa_scsi_interpret_error(h, c); |
| rc = -1; |
| break; |
| } |
| cmd_free(h, c); |
| dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", |
| __func__, tagupper, taglower); |
| return rc; |
| } |
| |
| static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h, |
| struct CommandList *command_to_abort, int reply_queue) |
| { |
| struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; |
| struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; |
| struct io_accel2_cmd *c2a = |
| &h->ioaccel2_cmd_pool[command_to_abort->cmdindex]; |
| struct scsi_cmnd *scmd = command_to_abort->scsi_cmd; |
| struct hpsa_scsi_dev_t *dev = scmd->device->hostdata; |
| |
| /* |
| * We're overlaying struct hpsa_tmf_struct on top of something which |
| * was allocated as a struct io_accel2_cmd, so we better be sure it |
| * actually fits, and doesn't overrun the error info space. |
| */ |
| BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) > |
| sizeof(struct io_accel2_cmd)); |
| BUG_ON(offsetof(struct io_accel2_cmd, error_data) < |
| offsetof(struct hpsa_tmf_struct, error_len) + |
| sizeof(ac->error_len)); |
| |
| c->cmd_type = IOACCEL2_TMF; |
| c->scsi_cmd = SCSI_CMD_BUSY; |
| |
| /* Adjust the DMA address to point to the accelerated command buffer */ |
| c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + |
| (c->cmdindex * sizeof(struct io_accel2_cmd)); |
| BUG_ON(c->busaddr & 0x0000007F); |
| |
| memset(ac, 0, sizeof(*c2)); /* yes this is correct */ |
| ac->iu_type = IOACCEL2_IU_TMF_TYPE; |
| ac->reply_queue = reply_queue; |
| ac->tmf = IOACCEL2_TMF_ABORT; |
| ac->it_nexus = cpu_to_le32(dev->ioaccel_handle); |
| memset(ac->lun_id, 0, sizeof(ac->lun_id)); |
| ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT); |
| ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag)); |
| ac->error_ptr = cpu_to_le64(c->busaddr + |
| offsetof(struct io_accel2_cmd, error_data)); |
| ac->error_len = cpu_to_le32(sizeof(c2->error_data)); |
| } |
| |
| /* ioaccel2 path firmware cannot handle abort task requests. |
| * Change abort requests to physical target reset, and send to the |
| * address of the physical disk used for the ioaccel 2 command. |
| * Return 0 on success (IO_OK) |
| * -1 on failure |
| */ |
| |
| static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h, |
| unsigned char *scsi3addr, struct CommandList *abort, int reply_queue) |
| { |
| int rc = IO_OK; |
| struct scsi_cmnd *scmd; /* scsi command within request being aborted */ |
| struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */ |
| unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */ |
| unsigned char *psa = &phys_scsi3addr[0]; |
| |
| /* Get a pointer to the hpsa logical device. */ |
| scmd = abort->scsi_cmd; |
| dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata); |
| if (dev == NULL) { |
| dev_warn(&h->pdev->dev, |
| "Cannot abort: no device pointer for command.\n"); |
| return -1; /* not abortable */ |
| } |
| |
| if (h->raid_offload_debug > 0) |
| dev_info(&h->pdev->dev, |
| "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", |
| h->scsi_host->host_no, dev->bus, dev->target, dev->lun, |
| "Reset as abort", |
| scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3], |
| scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]); |
| |
| if (!dev->offload_enabled) { |
| dev_warn(&h->pdev->dev, |
| "Can't abort: device is not operating in HP SSD Smart Path mode.\n"); |
| return -1; /* not abortable */ |
| } |
| |
| /* Incoming scsi3addr is logical addr. We need physical disk addr. */ |
| if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) { |
| dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n"); |
| return -1; /* not abortable */ |
| } |
| |
| /* send the reset */ |
| if (h->raid_offload_debug > 0) |
| dev_info(&h->pdev->dev, |
| "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", |
| psa[0], psa[1], psa[2], psa[3], |
| psa[4], psa[5], psa[6], psa[7]); |
| rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue); |
| if (rc != 0) { |
| dev_warn(&h->pdev->dev, |
| "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", |
| psa[0], psa[1], psa[2], psa[3], |
| psa[4], psa[5], psa[6], psa[7]); |
| return rc; /* failed to reset */ |
| } |
| |
| /* wait for device to recover */ |
| if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) { |
| dev_warn(&h->pdev->dev, |
| "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", |
| psa[0], psa[1], psa[2], psa[3], |
| psa[4], psa[5], psa[6], psa[7]); |
| return -1; /* failed to recover */ |
| } |
| |
| /* device recovered */ |
| dev_info(&h->pdev->dev, |
| "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", |
| psa[0], psa[1], psa[2], psa[3], |
| psa[4], psa[5], psa[6], psa[7]); |
| |
| return rc; /* success */ |
| } |
| |
| static int hpsa_send_abort_ioaccel2(struct ctlr_info *h, |
| struct CommandList *abort, int reply_queue) |
| { |
| int rc = IO_OK; |
| struct CommandList *c; |
| __le32 taglower, tagupper; |
| struct hpsa_scsi_dev_t *dev; |
| struct io_accel2_cmd *c2; |
| |
| dev = abort->scsi_cmd->device->hostdata; |
| if (!dev->offload_enabled && !dev->hba_ioaccel_enabled) |
| return -1; |
| |
| c = cmd_alloc(h); |
| setup_ioaccel2_abort_cmd(c, h, abort, reply_queue); |
| c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; |
| (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); |
| hpsa_get_tag(h, abort, &taglower, &tagupper); |
| dev_dbg(&h->pdev->dev, |
| "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n", |
| __func__, tagupper, taglower); |
| /* no unmap needed here because no data xfer. */ |
| |
| dev_dbg(&h->pdev->dev, |
| "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n", |
| __func__, tagupper, taglower, c2->error_data.serv_response); |
| switch (c2->error_data.serv_response) { |
| case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: |
| case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: |
| rc = 0; |
| break; |
| case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: |
| case IOACCEL2_SERV_RESPONSE_FAILURE: |
| case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: |
| rc = -1; |
| break; |
| default: |
| dev_warn(&h->pdev->dev, |
| "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n", |
| __func__, tagupper, taglower, |
| c2->error_data.serv_response); |
| rc = -1; |
| } |
| cmd_free(h, c); |
| dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__, |
| tagupper, taglower); |
| return rc; |
| } |
| |
| static int hpsa_send_abort_both_ways(struct ctlr_info *h, |
| unsigned char *scsi3addr, struct CommandList *abort, int reply_queue) |
| { |
| /* |
| * ioccelerator mode 2 commands should be aborted via the |
| * accelerated path, since RAID path is unaware of these commands, |
| * but not all underlying firmware can handle abort TMF. |
| * Change abort to physical device reset when abort TMF is unsupported. |
| */ |
| if (abort->cmd_type == CMD_IOACCEL2) { |
| if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) |
| return hpsa_send_abort_ioaccel2(h, abort, |
| reply_queue); |
| else |
| return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, |
| abort, reply_queue); |
| } |
| return hpsa_send_abort(h, scsi3addr, abort, reply_queue); |
| } |
| |
| /* Find out which reply queue a command was meant to return on */ |
| static int hpsa_extract_reply_queue(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| if (c->cmd_type == CMD_IOACCEL2) |
| return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue; |
| return c->Header.ReplyQueue; |
| } |
| |
| /* |
| * Limit concurrency of abort commands to prevent |
| * over-subscription of commands |
| */ |
| static inline int wait_for_available_abort_cmd(struct ctlr_info *h) |
| { |
| #define ABORT_CMD_WAIT_MSECS 5000 |
| return !wait_event_timeout(h->abort_cmd_wait_queue, |
| atomic_dec_if_positive(&h->abort_cmds_available) >= 0, |
| msecs_to_jiffies(ABORT_CMD_WAIT_MSECS)); |
| } |
| |
| /* Send an abort for the specified command. |
| * If the device and controller support it, |
| * send a task abort request. |
| */ |
| static int hpsa_eh_abort_handler(struct scsi_cmnd *sc) |
| { |
| |
| int rc; |
| struct ctlr_info *h; |
| struct hpsa_scsi_dev_t *dev; |
| struct CommandList *abort; /* pointer to command to be aborted */ |
| struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */ |
| char msg[256]; /* For debug messaging. */ |
| int ml = 0; |
| __le32 tagupper, taglower; |
| int refcount, reply_queue; |
| |
| if (sc == NULL) |
| return FAILED; |
| |
| if (sc->device == NULL) |
| return FAILED; |
| |
| /* Find the controller of the command to be aborted */ |
| h = sdev_to_hba(sc->device); |
| if (h == NULL) |
| return FAILED; |
| |
| /* Find the device of the command to be aborted */ |
| dev = sc->device->hostdata; |
| if (!dev) { |
| dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n", |
| msg); |
| return FAILED; |
| } |
| |
| /* If controller locked up, we can guarantee command won't complete */ |
| if (lockup_detected(h)) { |
| hpsa_show_dev_msg(KERN_WARNING, h, dev, |
| "ABORT FAILED, lockup detected"); |
| return FAILED; |
| } |
| |
| /* This is a good time to check if controller lockup has occurred */ |
| if (detect_controller_lockup(h)) { |
| hpsa_show_dev_msg(KERN_WARNING, h, dev, |
| "ABORT FAILED, new lockup detected"); |
| return FAILED; |
| } |
| |
| /* Check that controller supports some kind of task abort */ |
| if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) && |
| !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) |
| return FAILED; |
| |
| memset(msg, 0, sizeof(msg)); |
| ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p", |
| h->scsi_host->host_no, sc->device->channel, |
| sc->device->id, sc->device->lun, |
| "Aborting command", sc); |
| |
| /* Get SCSI command to be aborted */ |
| abort = (struct CommandList *) sc->host_scribble; |
| if (abort == NULL) { |
| /* This can happen if the command already completed. */ |
| return SUCCESS; |
| } |
| refcount = atomic_inc_return(&abort->refcount); |
| if (refcount == 1) { /* Command is done already. */ |
| cmd_free(h, abort); |
| return SUCCESS; |
| } |
| |
| /* Don't bother trying the abort if we know it won't work. */ |
| if (abort->cmd_type != CMD_IOACCEL2 && |
| abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) { |
| cmd_free(h, abort); |
| return FAILED; |
| } |
| |
| /* |
| * Check that we're aborting the right command. |
| * It's possible the CommandList already completed and got re-used. |
| */ |
| if (abort->scsi_cmd != sc) { |
| cmd_free(h, abort); |
| return SUCCESS; |
| } |
| |
| abort->abort_pending = true; |
| hpsa_get_tag(h, abort, &taglower, &tagupper); |
| reply_queue = hpsa_extract_reply_queue(h, abort); |
| ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower); |
| as = abort->scsi_cmd; |
| if (as != NULL) |
| ml += sprintf(msg+ml, |
| "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ", |
| as->cmd_len, as->cmnd[0], as->cmnd[1], |
| as->serial_number); |
| dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg); |
| hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command"); |
| |
| /* |
| * Command is in flight, or possibly already completed |
| * by the firmware (but not to the scsi mid layer) but we can't |
| * distinguish which. Send the abort down. |
| */ |
| if (wait_for_available_abort_cmd(h)) { |
| dev_warn(&h->pdev->dev, |
| "%s FAILED, timeout waiting for an abort command to become available.\n", |
| msg); |
| cmd_free(h, abort); |
| return FAILED; |
| } |
| rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue); |
| atomic_inc(&h->abort_cmds_available); |
| wake_up_all(&h->abort_cmd_wait_queue); |
| if (rc != 0) { |
| dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg); |
| hpsa_show_dev_msg(KERN_WARNING, h, dev, |
| "FAILED to abort command"); |
| cmd_free(h, abort); |
| return FAILED; |
| } |
| dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg); |
| wait_event(h->event_sync_wait_queue, |
| abort->scsi_cmd != sc || lockup_detected(h)); |
| cmd_free(h, abort); |
| return !lockup_detected(h) ? SUCCESS : FAILED; |
| } |
| |
| /* |
| * For operations with an associated SCSI command, a command block is allocated |
| * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the |
| * block request tag as an index into a table of entries. cmd_tagged_free() is |
| * the complement, although cmd_free() may be called instead. |
| */ |
| static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, |
| struct scsi_cmnd *scmd) |
| { |
| int idx = hpsa_get_cmd_index(scmd); |
| struct CommandList *c = h->cmd_pool + idx; |
| |
| if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) { |
| dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n", |
| idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1); |
| /* The index value comes from the block layer, so if it's out of |
| * bounds, it's probably not our bug. |
| */ |
| BUG(); |
| } |
| |
| atomic_inc(&c->refcount); |
| if (unlikely(!hpsa_is_cmd_idle(c))) { |
| /* |
| * We expect that the SCSI layer will hand us a unique tag |
| * value. Thus, there should never be a collision here between |
| * two requests...because if the selected command isn't idle |
| * then someone is going to be very disappointed. |
| */ |
| dev_err(&h->pdev->dev, |
| "tag collision (tag=%d) in cmd_tagged_alloc().\n", |
| idx); |
| if (c->scsi_cmd != NULL) |
| scsi_print_command(c->scsi_cmd); |
| scsi_print_command(scmd); |
| } |
| |
| hpsa_cmd_partial_init(h, idx, c); |
| return c; |
| } |
| |
| static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c) |
| { |
| /* |
| * Release our reference to the block. We don't need to do anything |
| * else to free it, because it is accessed by index. (There's no point |
| * in checking the result of the decrement, since we cannot guarantee |
| * that there isn't a concurrent abort which is also accessing it.) |
| */ |
| (void)atomic_dec(&c->refcount); |
| } |
| |
| /* |
| * For operations that cannot sleep, a command block is allocated at init, |
| * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track |
| * which ones are free or in use. Lock must be held when calling this. |
| * cmd_free() is the complement. |
| * This function never gives up and returns NULL. If it hangs, |
| * another thread must call cmd_free() to free some tags. |
| */ |
| |
| static struct CommandList *cmd_alloc(struct ctlr_info *h) |
| { |
| struct CommandList *c; |
| int refcount, i; |
| int offset = 0; |
| |
| /* |
| * There is some *extremely* small but non-zero chance that that |
| * multiple threads could get in here, and one thread could |
| * be scanning through the list of bits looking for a free |
| * one, but the free ones are always behind him, and other |
| * threads sneak in behind him and eat them before he can |
| * get to them, so that while there is always a free one, a |
| * very unlucky thread might be starved anyway, never able to |
| * beat the other threads. In reality, this happens so |
| * infrequently as to be indistinguishable from never. |
| * |
| * Note that we start allocating commands before the SCSI host structure |
| * is initialized. Since the search starts at bit zero, this |
| * all works, since we have at least one command structure available; |
| * however, it means that the structures with the low indexes have to be |
| * reserved for driver-initiated requests, while requests from the block |
| * layer will use the higher indexes. |
| */ |
| |
| for (;;) { |
| i = find_next_zero_bit(h->cmd_pool_bits, |
| HPSA_NRESERVED_CMDS, |
| offset); |
| if (unlikely(i >= HPSA_NRESERVED_CMDS)) { |
| offset = 0; |
| continue; |
| } |
| c = h->cmd_pool + i; |
| refcount = atomic_inc_return(&c->refcount); |
| if (unlikely(refcount > 1)) { |
| cmd_free(h, c); /* already in use */ |
| offset = (i + 1) % HPSA_NRESERVED_CMDS; |
| continue; |
| } |
| set_bit(i & (BITS_PER_LONG - 1), |
| h->cmd_pool_bits + (i / BITS_PER_LONG)); |
| break; /* it's ours now. */ |
| } |
| hpsa_cmd_partial_init(h, i, c); |
| return c; |
| } |
| |
| /* |
| * This is the complementary operation to cmd_alloc(). Note, however, in some |
| * corner cases it may also be used to free blocks allocated by |
| * cmd_tagged_alloc() in which case the ref-count decrement does the trick and |
| * the clear-bit is harmless. |
| */ |
| static void cmd_free(struct ctlr_info *h, struct CommandList *c) |
| { |
| if (atomic_dec_and_test(&c->refcount)) { |
| int i; |
| |
| i = c - h->cmd_pool; |
| clear_bit(i & (BITS_PER_LONG - 1), |
| h->cmd_pool_bits + (i / BITS_PER_LONG)); |
| } |
| } |
| |
| #ifdef CONFIG_COMPAT |
| |
| static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, |
| void __user *arg) |
| { |
| IOCTL32_Command_struct __user *arg32 = |
| (IOCTL32_Command_struct __user *) arg; |
| IOCTL_Command_struct arg64; |
| IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); |
| int err; |
| u32 cp; |
| |
| memset(&arg64, 0, sizeof(arg64)); |
| err = 0; |
| err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
| sizeof(arg64.LUN_info)); |
| err |= copy_from_user(&arg64.Request, &arg32->Request, |
| sizeof(arg64.Request)); |
| err |= copy_from_user(&arg64.error_info, &arg32->error_info, |
| sizeof(arg64.error_info)); |
| err |= get_user(arg64.buf_size, &arg32->buf_size); |
| err |= get_user(cp, &arg32->buf); |
| arg64.buf = compat_ptr(cp); |
| err |= copy_to_user(p, &arg64, sizeof(arg64)); |
| |
| if (err) |
| return -EFAULT; |
| |
| err = hpsa_ioctl(dev, CCISS_PASSTHRU, p); |
| if (err) |
| return err; |
| err |= copy_in_user(&arg32->error_info, &p->error_info, |
| sizeof(arg32->error_info)); |
| if (err) |
| return -EFAULT; |
| return err; |
| } |
| |
| static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, |
| int cmd, void __user *arg) |
| { |
| BIG_IOCTL32_Command_struct __user *arg32 = |
| (BIG_IOCTL32_Command_struct __user *) arg; |
| BIG_IOCTL_Command_struct arg64; |
| BIG_IOCTL_Command_struct __user *p = |
| compat_alloc_user_space(sizeof(arg64)); |
| int err; |
| u32 cp; |
| |
| memset(&arg64, 0, sizeof(arg64)); |
| err = 0; |
| err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
| sizeof(arg64.LUN_info)); |
| err |= copy_from_user(&arg64.Request, &arg32->Request, |
| sizeof(arg64.Request)); |
| err |= copy_from_user(&arg64.error_info, &arg32->error_info, |
| sizeof(arg64.error_info)); |
| err |= get_user(arg64.buf_size, &arg32->buf_size); |
| err |= get_user(arg64.malloc_size, &arg32->malloc_size); |
| err |= get_user(cp, &arg32->buf); |
| arg64.buf = compat_ptr(cp); |
| err |= copy_to_user(p, &arg64, sizeof(arg64)); |
| |
| if (err) |
| return -EFAULT; |
| |
| err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p); |
| if (err) |
| return err; |
| err |= copy_in_user(&arg32->error_info, &p->error_info, |
| sizeof(arg32->error_info)); |
| if (err) |
| return -EFAULT; |
| return err; |
| } |
| |
| static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg) |
| { |
| switch (cmd) { |
| case CCISS_GETPCIINFO: |
| case CCISS_GETINTINFO: |
| case CCISS_SETINTINFO: |
| case CCISS_GETNODENAME: |
| case CCISS_SETNODENAME: |
| case CCISS_GETHEARTBEAT: |
| case CCISS_GETBUSTYPES: |
| case CCISS_GETFIRMVER: |
| case CCISS_GETDRIVVER: |
| case CCISS_REVALIDVOLS: |
| case CCISS_DEREGDISK: |
| case CCISS_REGNEWDISK: |
| case CCISS_REGNEWD: |
| case CCISS_RESCANDISK: |
| case CCISS_GETLUNINFO: |
| return hpsa_ioctl(dev, cmd, arg); |
| |
| case CCISS_PASSTHRU32: |
| return hpsa_ioctl32_passthru(dev, cmd, arg); |
| case CCISS_BIG_PASSTHRU32: |
| return hpsa_ioctl32_big_passthru(dev, cmd, arg); |
| |
| default: |
| return -ENOIOCTLCMD; |
| } |
| } |
| #endif |
| |
| static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) |
| { |
| struct hpsa_pci_info pciinfo; |
| |
| if (!argp) |
| return -EINVAL; |
| pciinfo.domain = pci_domain_nr(h->pdev->bus); |
| pciinfo.bus = h->pdev->bus->number; |
| pciinfo.dev_fn = h->pdev->devfn; |
| pciinfo.board_id = h->board_id; |
| if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) |
| { |
| DriverVer_type DriverVer; |
| unsigned char vmaj, vmin, vsubmin; |
| int rc; |
| |
| rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", |
| &vmaj, &vmin, &vsubmin); |
| if (rc != 3) { |
| dev_info(&h->pdev->dev, "driver version string '%s' " |
| "unrecognized.", HPSA_DRIVER_VERSION); |
| vmaj = 0; |
| vmin = 0; |
| vsubmin = 0; |
| } |
| DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; |
| if (!argp) |
| return -EINVAL; |
| if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) |
| { |
| IOCTL_Command_struct iocommand; |
| struct CommandList *c; |
| char *buff = NULL; |
| u64 temp64; |
| int rc = 0; |
| |
| if (!argp) |
| return -EINVAL; |
| if (!capable(CAP_SYS_RAWIO)) |
| return -EPERM; |
| if (copy_from_user(&iocommand, argp, sizeof(iocommand))) |
| return -EFAULT; |
| if ((iocommand.buf_size < 1) && |
| (iocommand.Request.Type.Direction != XFER_NONE)) { |
| return -EINVAL; |
| } |
| if (iocommand.buf_size > 0) { |
| buff = kmalloc(iocommand.buf_size, GFP_KERNEL); |
| if (buff == NULL) |
| return -ENOMEM; |
| if (iocommand.Request.Type.Direction & XFER_WRITE) { |
| /* Copy the data into the buffer we created */ |
| if (copy_from_user(buff, iocommand.buf, |
| iocommand.buf_size)) { |
| rc = -EFAULT; |
| goto out_kfree; |
| } |
| } else { |
| memset(buff, 0, iocommand.buf_size); |
| } |
| } |
| c = cmd_alloc(h); |
| |
| /* Fill in the command type */ |
| c->cmd_type = CMD_IOCTL_PEND; |
| c->scsi_cmd = SCSI_CMD_BUSY; |
| /* Fill in Command Header */ |
| c->Header.ReplyQueue = 0; /* unused in simple mode */ |
| if (iocommand.buf_size > 0) { /* buffer to fill */ |
| c->Header.SGList = 1; |
| c->Header.SGTotal = cpu_to_le16(1); |
| } else { /* no buffers to fill */ |
| c->Header.SGList = 0; |
| c->Header.SGTotal = cpu_to_le16(0); |
| } |
| memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); |
| |
| /* Fill in Request block */ |
| memcpy(&c->Request, &iocommand.Request, |
| sizeof(c->Request)); |
| |
| /* Fill in the scatter gather information */ |
| if (iocommand.buf_size > 0) { |
| temp64 = pci_map_single(h->pdev, buff, |
| iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); |
| if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { |
| c->SG[0].Addr = cpu_to_le64(0); |
| c->SG[0].Len = cpu_to_le32(0); |
| rc = -ENOMEM; |
| goto out; |
| } |
| c->SG[0].Addr = cpu_to_le64(temp64); |
| c->SG[0].Len = cpu_to_le32(iocommand.buf_size); |
| c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ |
| } |
| rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT); |
| if (iocommand.buf_size > 0) |
| hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); |
| check_ioctl_unit_attention(h, c); |
| if (rc) { |
| rc = -EIO; |
| goto out; |
| } |
| |
| /* Copy the error information out */ |
| memcpy(&iocommand.error_info, c->err_info, |
| sizeof(iocommand.error_info)); |
| if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { |
| rc = -EFAULT; |
| goto out; |
| } |
| if ((iocommand.Request.Type.Direction & XFER_READ) && |
| iocommand.buf_size > 0) { |
| /* Copy the data out of the buffer we created */ |
| if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { |
| rc = -EFAULT; |
| goto out; |
| } |
| } |
| out: |
| cmd_free(h, c); |
| out_kfree: |
| kfree(buff); |
| return rc; |
| } |
| |
| static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) |
| { |
| BIG_IOCTL_Command_struct *ioc; |
| struct CommandList *c; |
| unsigned char **buff = NULL; |
| int *buff_size = NULL; |
| u64 temp64; |
| BYTE sg_used = 0; |
| int status = 0; |
| u32 left; |
| u32 sz; |
| BYTE __user *data_ptr; |
| |
| if (!argp) |
| return -EINVAL; |
| if (!capable(CAP_SYS_RAWIO)) |
| return -EPERM; |
| ioc = (BIG_IOCTL_Command_struct *) |
| kmalloc(sizeof(*ioc), GFP_KERNEL); |
| if (!ioc) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| if (copy_from_user(ioc, argp, sizeof(*ioc))) { |
| status = -EFAULT; |
| goto cleanup1; |
| } |
| if ((ioc->buf_size < 1) && |
| (ioc->Request.Type.Direction != XFER_NONE)) { |
| status = -EINVAL; |
| goto cleanup1; |
| } |
| /* Check kmalloc limits using all SGs */ |
| if (ioc->malloc_size > MAX_KMALLOC_SIZE) { |
| status = -EINVAL; |
| goto cleanup1; |
| } |
| if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { |
| status = -EINVAL; |
| goto cleanup1; |
| } |
| buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL); |
| if (!buff) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL); |
| if (!buff_size) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| left = ioc->buf_size; |
| data_ptr = ioc->buf; |
| while (left) { |
| sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; |
| buff_size[sg_used] = sz; |
| buff[sg_used] = kmalloc(sz, GFP_KERNEL); |
| if (buff[sg_used] == NULL) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| if (ioc->Request.Type.Direction & XFER_WRITE) { |
| if (copy_from_user(buff[sg_used], data_ptr, sz)) { |
| status = -EFAULT; |
| goto cleanup1; |
| } |
| } else |
| memset(buff[sg_used], 0, sz); |
| left -= sz; |
| data_ptr += sz; |
| sg_used++; |
| } |
| c = cmd_alloc(h); |
| |
| c->cmd_type = CMD_IOCTL_PEND; |
| c->scsi_cmd = SCSI_CMD_BUSY; |
| c->Header.ReplyQueue = 0; |
| c->Header.SGList = (u8) sg_used; |
| c->Header.SGTotal = cpu_to_le16(sg_used); |
| memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); |
| memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); |
| if (ioc->buf_size > 0) { |
| int i; |
| for (i = 0; i < sg_used; i++) { |
| temp64 = pci_map_single(h->pdev, buff[i], |
| buff_size[i], PCI_DMA_BIDIRECTIONAL); |
| if (dma_mapping_error(&h->pdev->dev, |
| (dma_addr_t) temp64)) { |
| c->SG[i].Addr = cpu_to_le64(0); |
| c->SG[i].Len = cpu_to_le32(0); |
| hpsa_pci_unmap(h->pdev, c, i, |
| PCI_DMA_BIDIRECTIONAL); |
| status = -ENOMEM; |
| goto cleanup0; |
| } |
| c->SG[i].Addr = cpu_to_le64(temp64); |
| c->SG[i].Len = cpu_to_le32(buff_size[i]); |
| c->SG[i].Ext = cpu_to_le32(0); |
| } |
| c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); |
| } |
| status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT); |
| if (sg_used) |
| hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); |
| check_ioctl_unit_attention(h, c); |
| if (status) { |
| status = -EIO; |
| goto cleanup0; |
| } |
| |
| /* Copy the error information out */ |
| memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); |
| if (copy_to_user(argp, ioc, sizeof(*ioc))) { |
| status = -EFAULT; |
| goto cleanup0; |
| } |
| if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { |
| int i; |
| |
| /* Copy the data out of the buffer we created */ |
| BYTE __user *ptr = ioc->buf; |
| for (i = 0; i < sg_used; i++) { |
| if (copy_to_user(ptr, buff[i], buff_size[i])) { |
| status = -EFAULT; |
| goto cleanup0; |
| } |
| ptr += buff_size[i]; |
| } |
| } |
| status = 0; |
| cleanup0: |
| cmd_free(h, c); |
| cleanup1: |
| if (buff) { |
| int i; |
| |
| for (i = 0; i < sg_used; i++) |
| kfree(buff[i]); |
| kfree(buff); |
| } |
| kfree(buff_size); |
| kfree(ioc); |
| return status; |
| } |
| |
| static void check_ioctl_unit_attention(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| if (c->err_info->CommandStatus == CMD_TARGET_STATUS && |
| c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) |
| (void) check_for_unit_attention(h, c); |
| } |
| |
| /* |
| * ioctl |
| */ |
| static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg) |
| { |
| struct ctlr_info *h; |
| void __user *argp = (void __user *)arg; |
| int rc; |
| |
| h = sdev_to_hba(dev); |
| |
| switch (cmd) { |
| case CCISS_DEREGDISK: |
| case CCISS_REGNEWDISK: |
| case CCISS_REGNEWD: |
| hpsa_scan_start(h->scsi_host); |
| return 0; |
| case CCISS_GETPCIINFO: |
| return hpsa_getpciinfo_ioctl(h, argp); |
| case CCISS_GETDRIVVER: |
| return hpsa_getdrivver_ioctl(h, argp); |
| case CCISS_PASSTHRU: |
| if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) |
| return -EAGAIN; |
| rc = hpsa_passthru_ioctl(h, argp); |
| atomic_inc(&h->passthru_cmds_avail); |
| return rc; |
| case CCISS_BIG_PASSTHRU: |
| if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) |
| return -EAGAIN; |
| rc = hpsa_big_passthru_ioctl(h, argp); |
| atomic_inc(&h->passthru_cmds_avail); |
| return rc; |
| default: |
| return -ENOTTY; |
| } |
| } |
| |
| static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr, |
| u8 reset_type) |
| { |
| struct CommandList *c; |
| |
| c = cmd_alloc(h); |
| |
| /* fill_cmd can't fail here, no data buffer to map */ |
| (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, |
| RAID_CTLR_LUNID, TYPE_MSG); |
| c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ |
| c->waiting = NULL; |
| enqueue_cmd_and_start_io(h, c); |
| /* Don't wait for completion, the reset won't complete. Don't free |
| * the command either. This is the last command we will send before |
| * re-initializing everything, so it doesn't matter and won't leak. |
| */ |
| return; |
| } |
| |
| static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, |
| void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, |
| int cmd_type) |
| { |
| int pci_dir = XFER_NONE; |
| u64 tag; /* for commands to be aborted */ |
| |
| c->cmd_type = CMD_IOCTL_PEND; |
| c->scsi_cmd = SCSI_CMD_BUSY; |
| c->Header.ReplyQueue = 0; |
| if (buff != NULL && size > 0) { |
| c->Header.SGList = 1; |
| c->Header.SGTotal = cpu_to_le16(1); |
| } else { |
| c->Header.SGList = 0; |
| c->Header.SGTotal = cpu_to_le16(0); |
| } |
| memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); |
| |
| if (cmd_type == TYPE_CMD) { |
| switch (cmd) { |
| case HPSA_INQUIRY: |
| /* are we trying to read a vital product page */ |
| if (page_code & VPD_PAGE) { |
| c->Request.CDB[1] = 0x01; |
| c->Request.CDB[2] = (page_code & 0xff); |
| } |
| c->Request.CDBLen = 6; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = HPSA_INQUIRY; |
| c->Request.CDB[4] = size & 0xFF; |
| break; |
| case HPSA_REPORT_LOG: |
| case HPSA_REPORT_PHYS: |
| /* Talking to controller so It's a physical command |
| mode = 00 target = 0. Nothing to write. |
| */ |
| c->Request.CDBLen = 12; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; |
| c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ |
| c->Request.CDB[7] = (size >> 16) & 0xFF; |
| c->Request.CDB[8] = (size >> 8) & 0xFF; |
| c->Request.CDB[9] = size & 0xFF; |
| break; |
| case BMIC_SENSE_DIAG_OPTIONS: |
| c->Request.CDBLen = 16; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
| c->Request.Timeout = 0; |
| /* Spec says this should be BMIC_WRITE */ |
| c->Request.CDB[0] = BMIC_READ; |
| c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS; |
| break; |
| case BMIC_SET_DIAG_OPTIONS: |
| c->Request.CDBLen = 16; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, |
| ATTR_SIMPLE, XFER_WRITE); |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = BMIC_WRITE; |
| c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS; |
| break; |
| case HPSA_CACHE_FLUSH: |
| c->Request.CDBLen = 12; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, |
| ATTR_SIMPLE, XFER_WRITE); |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = BMIC_WRITE; |
| c->Request.CDB[6] = BMIC_CACHE_FLUSH; |
| c->Request.CDB[7] = (size >> 8) & 0xFF; |
| c->Request.CDB[8] = size & 0xFF; |
| break; |
| case TEST_UNIT_READY: |
| c->Request.CDBLen = 6; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); |
| c->Request.Timeout = 0; |
| break; |
| case HPSA_GET_RAID_MAP: |
| c->Request.CDBLen = 12; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = HPSA_CISS_READ; |
| c->Request.CDB[1] = cmd; |
| c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ |
| c->Request.CDB[7] = (size >> 16) & 0xFF; |
| c->Request.CDB[8] = (size >> 8) & 0xFF; |
| c->Request.CDB[9] = size & 0xFF; |
| break; |
| case BMIC_SENSE_CONTROLLER_PARAMETERS: |
| c->Request.CDBLen = 10; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = BMIC_READ; |
| c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; |
| c->Request.CDB[7] = (size >> 16) & 0xFF; |
| c->Request.CDB[8] = (size >> 8) & 0xFF; |
| break; |
| case BMIC_IDENTIFY_PHYSICAL_DEVICE: |
| c->Request.CDBLen = 10; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = BMIC_READ; |
| c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE; |
| c->Request.CDB[7] = (size >> 16) & 0xFF; |
| c->Request.CDB[8] = (size >> 8) & 0XFF; |
| break; |
| case BMIC_IDENTIFY_CONTROLLER: |
| c->Request.CDBLen = 10; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = BMIC_READ; |
| c->Request.CDB[1] = 0; |
| c->Request.CDB[2] = 0; |
| c->Request.CDB[3] = 0; |
| c->Request.CDB[4] = 0; |
| c->Request.CDB[5] = 0; |
| c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER; |
| c->Request.CDB[7] = (size >> 16) & 0xFF; |
| c->Request.CDB[8] = (size >> 8) & 0XFF; |
| c->Request.CDB[9] = 0; |
| break; |
| |
| default: |
| dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); |
| BUG(); |
| return -1; |
| } |
| } else if (cmd_type == TYPE_MSG) { |
| switch (cmd) { |
| |
| case HPSA_PHYS_TARGET_RESET: |
| c->Request.CDBLen = 16; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); |
| c->Request.Timeout = 0; /* Don't time out */ |
| memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); |
| c->Request.CDB[0] = HPSA_RESET; |
| c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE; |
| /* Physical target reset needs no control bytes 4-7*/ |
| c->Request.CDB[4] = 0x00; |
| c->Request.CDB[5] = 0x00; |
| c->Request.CDB[6] = 0x00; |
| c->Request.CDB[7] = 0x00; |
| break; |
| case HPSA_DEVICE_RESET_MSG: |
| c->Request.CDBLen = 16; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); |
| c->Request.Timeout = 0; /* Don't time out */ |
| memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); |
| c->Request.CDB[0] = cmd; |
| c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; |
| /* If bytes 4-7 are zero, it means reset the */ |
| /* LunID device */ |
| c->Request.CDB[4] = 0x00; |
| c->Request.CDB[5] = 0x00; |
| c->Request.CDB[6] = 0x00; |
| c->Request.CDB[7] = 0x00; |
| break; |
| case HPSA_ABORT_MSG: |
| memcpy(&tag, buff, sizeof(tag)); |
| dev_dbg(&h->pdev->dev, |
| "Abort Tag:0x%016llx using rqst Tag:0x%016llx", |
| tag, c->Header.tag); |
| c->Request.CDBLen = 16; |
| c->Request.type_attr_dir = |
| TYPE_ATTR_DIR(cmd_type, |
| ATTR_SIMPLE, XFER_WRITE); |
| c->Request.Timeout = 0; /* Don't time out */ |
| c->Request.CDB[0] = HPSA_TASK_MANAGEMENT; |
| c->Request.CDB[1] = HPSA_TMF_ABORT_TASK; |
| c->Request.CDB[2] = 0x00; /* reserved */ |
| c->Request.CDB[3] = 0x00; /* reserved */ |
| /* Tag to abort goes in CDB[4]-CDB[11] */ |
| memcpy(&c->Request.CDB[4], &tag, sizeof(tag)); |
| c->Request.CDB[12] = 0x00; /* reserved */ |
| c->Request.CDB[13] = 0x00; /* reserved */ |
| c->Request.CDB[14] = 0x00; /* reserved */ |
| c->Request.CDB[15] = 0x00; /* reserved */ |
| break; |
| default: |
| dev_warn(&h->pdev->dev, "unknown message type %d\n", |
| cmd); |
| BUG(); |
| } |
| } else { |
| dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); |
| BUG(); |
| } |
| |
| switch (GET_DIR(c->Request.type_attr_dir)) { |
| case XFER_READ: |
| pci_dir = PCI_DMA_FROMDEVICE; |
| break; |
| case XFER_WRITE: |
| pci_dir = PCI_DMA_TODEVICE; |
| break; |
| case XFER_NONE: |
| pci_dir = PCI_DMA_NONE; |
| break; |
| default: |
| pci_dir = PCI_DMA_BIDIRECTIONAL; |
| } |
| if (hpsa_map_one(h->pdev, c, buff, size, pci_dir)) |
| return -1; |
| return 0; |
| } |
| |
| /* |
| * Map (physical) PCI mem into (virtual) kernel space |
| */ |
| static void __iomem *remap_pci_mem(ulong base, ulong size) |
| { |
| ulong page_base = ((ulong) base) & PAGE_MASK; |
| ulong page_offs = ((ulong) base) - page_base; |
| void __iomem *page_remapped = ioremap_nocache(page_base, |
| page_offs + size); |
| |
| return page_remapped ? (page_remapped + page_offs) : NULL; |
| } |
| |
| static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) |
| { |
| return h->access.command_completed(h, q); |
| } |
| |
| static inline bool interrupt_pending(struct ctlr_info *h) |
| { |
| return h->access.intr_pending(h); |
| } |
| |
| static inline long interrupt_not_for_us(struct ctlr_info *h) |
| { |
| return (h->access.intr_pending(h) == 0) || |
| (h->interrupts_enabled == 0); |
| } |
| |
| static inline int bad_tag(struct ctlr_info *h, u32 tag_index, |
| u32 raw_tag) |
| { |
| if (unlikely(tag_index >= h->nr_cmds)) { |
| dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline void finish_cmd(struct CommandList *c) |
| { |
| dial_up_lockup_detection_on_fw_flash_complete(c->h, c); |
| if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI |
| || c->cmd_type == CMD_IOACCEL2)) |
| complete_scsi_command(c); |
| else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF) |
| complete(c->waiting); |
| } |
| |
| /* process completion of an indexed ("direct lookup") command */ |
| static inline void process_indexed_cmd(struct ctlr_info *h, |
| u32 raw_tag) |
| { |
| u32 tag_index; |
| struct CommandList *c; |
| |
| tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT; |
| if (!bad_tag(h, tag_index, raw_tag)) { |
| c = h->cmd_pool + tag_index; |
| finish_cmd(c); |
| } |
| } |
| |
| /* Some controllers, like p400, will give us one interrupt |
| * after a soft reset, even if we turned interrupts off. |
| * Only need to check for this in the hpsa_xxx_discard_completions |
| * functions. |
| */ |
| static int ignore_bogus_interrupt(struct ctlr_info *h) |
| { |
| if (likely(!reset_devices)) |
| return 0; |
| |
| if (likely(h->interrupts_enabled)) |
| return 0; |
| |
| dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " |
| "(known firmware bug.) Ignoring.\n"); |
| |
| return 1; |
| } |
| |
| /* |
| * Convert &h->q[x] (passed to interrupt handlers) back to h. |
| * Relies on (h-q[x] == x) being true for x such that |
| * 0 <= x < MAX_REPLY_QUEUES. |
| */ |
| static struct ctlr_info *queue_to_hba(u8 *queue) |
| { |
| return container_of((queue - *queue), struct ctlr_info, q[0]); |
| } |
| |
| static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) |
| { |
| struct ctlr_info *h = queue_to_hba(queue); |
| u8 q = *(u8 *) queue; |
| u32 raw_tag; |
| |
| if (ignore_bogus_interrupt(h)) |
| return IRQ_NONE; |
| |
| if (interrupt_not_for_us(h)) |
| return IRQ_NONE; |
| h->last_intr_timestamp = get_jiffies_64(); |
| while (interrupt_pending(h)) { |
| raw_tag = get_next_completion(h, q); |
| while (raw_tag != FIFO_EMPTY) |
| raw_tag = next_command(h, q); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) |
| { |
| struct ctlr_info *h = queue_to_hba(queue); |
| u32 raw_tag; |
| u8 q = *(u8 *) queue; |
| |
| if (ignore_bogus_interrupt(h)) |
| return IRQ_NONE; |
| |
| h->last_intr_timestamp = get_jiffies_64(); |
| raw_tag = get_next_completion(h, q); |
| while (raw_tag != FIFO_EMPTY) |
| raw_tag = next_command(h, q); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) |
| { |
| struct ctlr_info *h = queue_to_hba((u8 *) queue); |
| u32 raw_tag; |
| u8 q = *(u8 *) queue; |
| |
| if (interrupt_not_for_us(h)) |
| return IRQ_NONE; |
| h->last_intr_timestamp = get_jiffies_64(); |
| while (interrupt_pending(h)) { |
| raw_tag = get_next_completion(h, q); |
| while (raw_tag != FIFO_EMPTY) { |
| process_indexed_cmd(h, raw_tag); |
| raw_tag = next_command(h, q); |
| } |
| } |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) |
| { |
| struct ctlr_info *h = queue_to_hba(queue); |
| u32 raw_tag; |
| u8 q = *(u8 *) queue; |
| |
| h->last_intr_timestamp = get_jiffies_64(); |
| raw_tag = get_next_completion(h, q); |
| while (raw_tag != FIFO_EMPTY) { |
| process_indexed_cmd(h, raw_tag); |
| raw_tag = next_command(h, q); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /* Send a message CDB to the firmware. Careful, this only works |
| * in simple mode, not performant mode due to the tag lookup. |
| * We only ever use this immediately after a controller reset. |
| */ |
| static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, |
| unsigned char type) |
| { |
| struct Command { |
| struct CommandListHeader CommandHeader; |
| struct RequestBlock Request; |
| struct ErrDescriptor ErrorDescriptor; |
| }; |
| struct Command *cmd; |
| static const size_t cmd_sz = sizeof(*cmd) + |
| sizeof(cmd->ErrorDescriptor); |
| dma_addr_t paddr64; |
| __le32 paddr32; |
| u32 tag; |
| void __iomem *vaddr; |
| int i, err; |
| |
| vaddr = pci_ioremap_bar(pdev, 0); |
| if (vaddr == NULL) |
| return -ENOMEM; |
| |
| /* The Inbound Post Queue only accepts 32-bit physical addresses for the |
| * CCISS commands, so they must be allocated from the lower 4GiB of |
| * memory. |
| */ |
| err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (err) { |
| iounmap(vaddr); |
| return err; |
| } |
| |
| cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); |
| if (cmd == NULL) { |
| iounmap(vaddr); |
| return -ENOMEM; |
| } |
| |
| /* This must fit, because of the 32-bit consistent DMA mask. Also, |
| * although there's no guarantee, we assume that the address is at |
| * least 4-byte aligned (most likely, it's page-aligned). |
| */ |
| paddr32 = cpu_to_le32(paddr64); |
| |
| cmd->CommandHeader.ReplyQueue = 0; |
| cmd->CommandHeader.SGList = 0; |
| cmd->CommandHeader.SGTotal = cpu_to_le16(0); |
| cmd->CommandHeader.tag = cpu_to_le64(paddr64); |
| memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); |
| |
| cmd->Request.CDBLen = 16; |
| cmd->Request.type_attr_dir = |
| TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); |
| cmd->Request.Timeout = 0; /* Don't time out */ |
| cmd->Request.CDB[0] = opcode; |
| cmd->Request.CDB[1] = type; |
| memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ |
| cmd->ErrorDescriptor.Addr = |
| cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd))); |
| cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); |
| |
| writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET); |
| |
| for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { |
| tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); |
| if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64) |
| break; |
| msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); |
| } |
| |
| iounmap(vaddr); |
| |
| /* we leak the DMA buffer here ... no choice since the controller could |
| * still complete the command. |
| */ |
| if (i == HPSA_MSG_SEND_RETRY_LIMIT) { |
| dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", |
| opcode, type); |
| return -ETIMEDOUT; |
| } |
| |
| pci_free_consistent(pdev, cmd_sz, cmd, paddr64); |
| |
| if (tag & HPSA_ERROR_BIT) { |
| dev_err(&pdev->dev, "controller message %02x:%02x failed\n", |
| opcode, type); |
| return -EIO; |
| } |
| |
| dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", |
| opcode, type); |
| return 0; |
| } |
| |
| #define hpsa_noop(p) hpsa_message(p, 3, 0) |
| |
| static int hpsa_controller_hard_reset(struct pci_dev *pdev, |
| void __iomem *vaddr, u32 use_doorbell) |
| { |
| |
| if (use_doorbell) { |
| /* For everything after the P600, the PCI power state method |
| * of resetting the controller doesn't work, so we have this |
| * other way using the doorbell register. |
| */ |
| dev_info(&pdev->dev, "using doorbell to reset controller\n"); |
| writel(use_doorbell, vaddr + SA5_DOORBELL); |
| |
| /* PMC hardware guys tell us we need a 10 second delay after |
| * doorbell reset and before any attempt to talk to the board |
| * at all to ensure that this actually works and doesn't fall |
| * over in some weird corner cases. |
| */ |
| msleep(10000); |
| } else { /* Try to do it the PCI power state way */ |
| |
| /* Quoting from the Open CISS Specification: "The Power |
| * Management Control/Status Register (CSR) controls the power |
| * state of the device. The normal operating state is D0, |
| * CSR=00h. The software off state is D3, CSR=03h. To reset |
| * the controller, place the interface device in D3 then to D0, |
| * this causes a secondary PCI reset which will reset the |
| * controller." */ |
| |
| int rc = 0; |
| |
| dev_info(&pdev->dev, "using PCI PM to reset controller\n"); |
| |
| /* enter the D3hot power management state */ |
| rc = pci_set_power_state(pdev, PCI_D3hot); |
| if (rc) |
| return rc; |
| |
| msleep(500); |
| |
| /* enter the D0 power management state */ |
| rc = pci_set_power_state(pdev, PCI_D0); |
| if (rc) |
| return rc; |
| |
| /* |
| * The P600 requires a small delay when changing states. |
| * Otherwise we may think the board did not reset and we bail. |
| * This for kdump only and is particular to the P600. |
| */ |
| msleep(500); |
| } |
| return 0; |
| } |
| |
| static void init_driver_version(char *driver_version, int len) |
| { |
| memset(driver_version, 0, len); |
| strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); |
| } |
| |
| static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) |
| { |
| char *driver_version; |
| int i, size = sizeof(cfgtable->driver_version); |
| |
| driver_version = kmalloc(size, GFP_KERNEL); |
| if (!driver_version) |
| return -ENOMEM; |
| |
| init_driver_version(driver_version, size); |
| for (i = 0; i < size; i++) |
| writeb(driver_version[i], &cfgtable->driver_version[i]); |
| kfree(driver_version); |
| return 0; |
| } |
| |
| static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, |
| unsigned char *driver_ver) |
| { |
| int i; |
| |
| for (i = 0; i < sizeof(cfgtable->driver_version); i++) |
| driver_ver[i] = readb(&cfgtable->driver_version[i]); |
| } |
| |
| static int controller_reset_failed(struct CfgTable __iomem *cfgtable) |
| { |
| |
| char *driver_ver, *old_driver_ver; |
| int rc, size = sizeof(cfgtable->driver_version); |
| |
| old_driver_ver = kmalloc(2 * size, GFP_KERNEL); |
| if (!old_driver_ver) |
| return -ENOMEM; |
| driver_ver = old_driver_ver + size; |
| |
| /* After a reset, the 32 bytes of "driver version" in the cfgtable |
| * should have been changed, otherwise we know the reset failed. |
| */ |
| init_driver_version(old_driver_ver, size); |
| read_driver_ver_from_cfgtable(cfgtable, driver_ver); |
| rc = !memcmp(driver_ver, old_driver_ver, size); |
| kfree(old_driver_ver); |
| return rc; |
| } |
| /* This does a hard reset of the controller using PCI power management |
| * states or the using the doorbell register. |
| */ |
| static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id) |
| { |
| u64 cfg_offset; |
| u32 cfg_base_addr; |
| u64 cfg_base_addr_index; |
| void __iomem *vaddr; |
| unsigned long paddr; |
| u32 misc_fw_support; |
| int rc; |
| struct CfgTable __iomem *cfgtable; |
| u32 use_doorbell; |
| u16 command_register; |
| |
| /* For controllers as old as the P600, this is very nearly |
| * the same thing as |
| * |
| * pci_save_state(pci_dev); |
| * pci_set_power_state(pci_dev, PCI_D3hot); |
| * pci_set_power_state(pci_dev, PCI_D0); |
| * pci_restore_state(pci_dev); |
| * |
| * For controllers newer than the P600, the pci power state |
| * method of resetting doesn't work so we have another way |
| * using the doorbell register. |
| */ |
| |
| if (!ctlr_is_resettable(board_id)) { |
| dev_warn(&pdev->dev, "Controller not resettable\n"); |
| return -ENODEV; |
| } |
| |
| /* if controller is soft- but not hard resettable... */ |
| if (!ctlr_is_hard_resettable(board_id)) |
| return -ENOTSUPP; /* try soft reset later. */ |
| |
| /* Save the PCI command register */ |
| pci_read_config_word(pdev, 4, &command_register); |
| pci_save_state(pdev); |
| |
| /* find the first memory BAR, so we can find the cfg table */ |
| rc = hpsa_pci_find_memory_BAR(pdev, &paddr); |
| if (rc) |
| return rc; |
| vaddr = remap_pci_mem(paddr, 0x250); |
| if (!vaddr) |
| return -ENOMEM; |
| |
| /* find cfgtable in order to check if reset via doorbell is supported */ |
| rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, |
| &cfg_base_addr_index, &cfg_offset); |
| if (rc) |
| goto unmap_vaddr; |
| cfgtable = remap_pci_mem(pci_resource_start(pdev, |
| cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); |
| if (!cfgtable) { |
| rc = -ENOMEM; |
| goto unmap_vaddr; |
| } |
| rc = write_driver_ver_to_cfgtable(cfgtable); |
| if (rc) |
| goto unmap_cfgtable; |
| |
| /* If reset via doorbell register is supported, use that. |
| * There are two such methods. Favor the newest method. |
| */ |
| misc_fw_support = readl(&cfgtable->misc_fw_support); |
| use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; |
| if (use_doorbell) { |
| use_doorbell = DOORBELL_CTLR_RESET2; |
| } else { |
| use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; |
| if (use_doorbell) { |
| dev_warn(&pdev->dev, |
| "Soft reset not supported. Firmware update is required.\n"); |
| rc = -ENOTSUPP; /* try soft reset */ |
| goto unmap_cfgtable; |
| } |
| } |
| |
| rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); |
| if (rc) |
| goto unmap_cfgtable; |
| |
| pci_restore_state(pdev); |
| pci_write_config_word(pdev, 4, command_register); |
| |
| /* Some devices (notably the HP Smart Array 5i Controller) |
| need a little pause here */ |
| msleep(HPSA_POST_RESET_PAUSE_MSECS); |
| |
| rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); |
| if (rc) { |
| dev_warn(&pdev->dev, |
| "Failed waiting for board to become ready after hard reset\n"); |
| goto unmap_cfgtable; |
| } |
| |
| rc = controller_reset_failed(vaddr); |
| if (rc < 0) |
| goto unmap_cfgtable; |
| if (rc) { |
| dev_warn(&pdev->dev, "Unable to successfully reset " |
| "controller. Will try soft reset.\n"); |
| rc = -ENOTSUPP; |
| } else { |
| dev_info(&pdev->dev, "board ready after hard reset.\n"); |
| } |
| |
| unmap_cfgtable: |
| iounmap(cfgtable); |
| |
| unmap_vaddr: |
| iounmap(vaddr); |
| return rc; |
| } |
| |
| /* |
| * We cannot read the structure directly, for portability we must use |
| * the io functions. |
| * This is for debug only. |
| */ |
| static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) |
| { |
| #ifdef HPSA_DEBUG |
| int i; |
| char temp_name[17]; |
| |
| dev_info(dev, "Controller Configuration information\n"); |
| dev_info(dev, "------------------------------------\n"); |
| for (i = 0; i < 4; i++) |
| temp_name[i] = readb(&(tb->Signature[i])); |
| temp_name[4] = '\0'; |
| dev_info(dev, " Signature = %s\n", temp_name); |
| dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); |
| dev_info(dev, " Transport methods supported = 0x%x\n", |
| readl(&(tb->TransportSupport))); |
| dev_info(dev, " Transport methods active = 0x%x\n", |
| readl(&(tb->TransportActive))); |
| dev_info(dev, " Requested transport Method = 0x%x\n", |
| readl(&(tb->HostWrite.TransportRequest))); |
| dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", |
| readl(&(tb->HostWrite.CoalIntDelay))); |
| dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", |
| readl(&(tb->HostWrite.CoalIntCount))); |
| dev_info(dev, " Max outstanding commands = %d\n", |
| readl(&(tb->CmdsOutMax))); |
| dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); |
| for (i = 0; i < 16; i++) |
| temp_name[i] = readb(&(tb->ServerName[i])); |
| temp_name[16] = '\0'; |
| dev_info(dev, " Server Name = %s\n", temp_name); |
| dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", |
| readl(&(tb->HeartBeat))); |
| #endif /* HPSA_DEBUG */ |
| } |
| |
| static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) |
| { |
| int i, offset, mem_type, bar_type; |
| |
| if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ |
| return 0; |
| offset = 0; |
| for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
| bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; |
| if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) |
| offset += 4; |
| else { |
| mem_type = pci_resource_flags(pdev, i) & |
| PCI_BASE_ADDRESS_MEM_TYPE_MASK; |
| switch (mem_type) { |
| case PCI_BASE_ADDRESS_MEM_TYPE_32: |
| case PCI_BASE_ADDRESS_MEM_TYPE_1M: |
| offset += 4; /* 32 bit */ |
| break; |
| case PCI_BASE_ADDRESS_MEM_TYPE_64: |
| offset += 8; |
| break; |
| default: /* reserved in PCI 2.2 */ |
| dev_warn(&pdev->dev, |
| "base address is invalid\n"); |
| return -1; |
| break; |
| } |
| } |
| if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) |
| return i + 1; |
| } |
| return -1; |
| } |
| |
| static void hpsa_disable_interrupt_mode(struct ctlr_info *h) |
| { |
| if (h->msix_vector) { |
| if (h->pdev->msix_enabled) |
| pci_disable_msix(h->pdev); |
| h->msix_vector = 0; |
| } else if (h->msi_vector) { |
| if (h->pdev->msi_enabled) |
| pci_disable_msi(h->pdev); |
| h->msi_vector = 0; |
| } |
| } |
| |
| /* If MSI/MSI-X is supported by the kernel we will try to enable it on |
| * controllers that are capable. If not, we use legacy INTx mode. |
| */ |
| static void hpsa_interrupt_mode(struct ctlr_info *h) |
| { |
| #ifdef CONFIG_PCI_MSI |
| int err, i; |
| struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES]; |
| |
| for (i = 0; i < MAX_REPLY_QUEUES; i++) { |
| hpsa_msix_entries[i].vector = 0; |
| hpsa_msix_entries[i].entry = i; |
| } |
| |
| /* Some boards advertise MSI but don't really support it */ |
| if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || |
| (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) |
| goto default_int_mode; |
| if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { |
| dev_info(&h->pdev->dev, "MSI-X capable controller\n"); |
| h->msix_vector = MAX_REPLY_QUEUES; |
| if (h->msix_vector > num_online_cpus()) |
| h->msix_vector = num_online_cpus(); |
| err = pci_enable_msix_range(h->pdev, hpsa_msix_entries, |
| 1, h->msix_vector); |
| if (err < 0) { |
| dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err); |
| h->msix_vector = 0; |
| goto single_msi_mode; |
| } else if (err < h->msix_vector) { |
| dev_warn(&h->pdev->dev, "only %d MSI-X vectors " |
| "available\n", err); |
| } |
| h->msix_vector = err; |
| for (i = 0; i < h->msix_vector; i++) |
| h->intr[i] = hpsa_msix_entries[i].vector; |
| return; |
| } |
| single_msi_mode: |
| if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { |
| dev_info(&h->pdev->dev, "MSI capable controller\n"); |
| if (!pci_enable_msi(h->pdev)) |
| h->msi_vector = 1; |
| else |
| dev_warn(&h->pdev->dev, "MSI init failed\n"); |
| } |
| default_int_mode: |
| #endif /* CONFIG_PCI_MSI */ |
| /* if we get here we're going to use the default interrupt mode */ |
| h->intr[h->intr_mode] = h->pdev->irq; |
| } |
| |
| static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) |
| { |
| int i; |
| u32 subsystem_vendor_id, subsystem_device_id; |
| |
| subsystem_vendor_id = pdev->subsystem_vendor; |
| subsystem_device_id = pdev->subsystem_device; |
| *board_id = ((subsystem_device_id << 16) & 0xffff0000) | |
| subsystem_vendor_id; |
| |
| for (i = 0; i < ARRAY_SIZE(products); i++) |
| if (*board_id == products[i].board_id) |
| return i; |
| |
| if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && |
| subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || |
| !hpsa_allow_any) { |
| dev_warn(&pdev->dev, "unrecognized board ID: " |
| "0x%08x, ignoring.\n", *board_id); |
| return -ENODEV; |
| } |
| return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ |
| } |
| |
| static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, |
| unsigned long *memory_bar) |
| { |
| int i; |
| |
| for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) |
| if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { |
| /* addressing mode bits already removed */ |
| *memory_bar = pci_resource_start(pdev, i); |
| dev_dbg(&pdev->dev, "memory BAR = %lx\n", |
| *memory_bar); |
| return 0; |
| } |
| dev_warn(&pdev->dev, "no memory BAR found\n"); |
| return -ENODEV; |
| } |
| |
| static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, |
| int wait_for_ready) |
| { |
| int i, iterations; |
| u32 scratchpad; |
| if (wait_for_ready) |
| iterations = HPSA_BOARD_READY_ITERATIONS; |
| else |
| iterations = HPSA_BOARD_NOT_READY_ITERATIONS; |
| |
| for (i = 0; i < iterations; i++) { |
| scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); |
| if (wait_for_ready) { |
| if (scratchpad == HPSA_FIRMWARE_READY) |
| return 0; |
| } else { |
| if (scratchpad != HPSA_FIRMWARE_READY) |
| return 0; |
| } |
| msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); |
| } |
| dev_warn(&pdev->dev, "board not ready, timed out.\n"); |
| return -ENODEV; |
| } |
| |
| static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, |
| u32 *cfg_base_addr, u64 *cfg_base_addr_index, |
| u64 *cfg_offset) |
| { |
| *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); |
| *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); |
| *cfg_base_addr &= (u32) 0x0000ffff; |
| *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); |
| if (*cfg_base_addr_index == -1) { |
| dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| static void hpsa_free_cfgtables(struct ctlr_info *h) |
| { |
| if (h->transtable) { |
| iounmap(h->transtable); |
| h->transtable = NULL; |
| } |
| if (h->cfgtable) { |
| iounmap(h->cfgtable); |
| h->cfgtable = NULL; |
| } |
| } |
| |
| /* Find and map CISS config table and transfer table |
| + * several items must be unmapped (freed) later |
| + * */ |
| static int hpsa_find_cfgtables(struct ctlr_info *h) |
| { |
| u64 cfg_offset; |
| u32 cfg_base_addr; |
| u64 cfg_base_addr_index; |
| u32 trans_offset; |
| int rc; |
| |
| rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, |
| &cfg_base_addr_index, &cfg_offset); |
| if (rc) |
| return rc; |
| h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, |
| cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); |
| if (!h->cfgtable) { |
| dev_err(&h->pdev->dev, "Failed mapping cfgtable\n"); |
| return -ENOMEM; |
| } |
| rc = write_driver_ver_to_cfgtable(h->cfgtable); |
| if (rc) |
| return rc; |
| /* Find performant mode table. */ |
| trans_offset = readl(&h->cfgtable->TransMethodOffset); |
| h->transtable = remap_pci_mem(pci_resource_start(h->pdev, |
| cfg_base_addr_index)+cfg_offset+trans_offset, |
| sizeof(*h->transtable)); |
| if (!h->transtable) { |
| dev_err(&h->pdev->dev, "Failed mapping transfer table\n"); |
| hpsa_free_cfgtables(h); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) |
| { |
| #define MIN_MAX_COMMANDS 16 |
| BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS); |
| |
| h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands); |
| |
| /* Limit commands in memory limited kdump scenario. */ |
| if (reset_devices && h->max_commands > 32) |
| h->max_commands = 32; |
| |
| if (h->max_commands < MIN_MAX_COMMANDS) { |
| dev_warn(&h->pdev->dev, |
| "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n", |
| h->max_commands, |
| MIN_MAX_COMMANDS); |
| h->max_commands = MIN_MAX_COMMANDS; |
| } |
| } |
| |
| /* If the controller reports that the total max sg entries is greater than 512, |
| * then we know that chained SG blocks work. (Original smart arrays did not |
| * support chained SG blocks and would return zero for max sg entries.) |
| */ |
| static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h) |
| { |
| return h->maxsgentries > 512; |
| } |
| |
| /* Interrogate the hardware for some limits: |
| * max commands, max SG elements without chaining, and with chaining, |
| * SG chain block size, etc. |
| */ |
| static void hpsa_find_board_params(struct ctlr_info *h) |
| { |
| hpsa_get_max_perf_mode_cmds(h); |
| h->nr_cmds = h->max_commands; |
| h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); |
| h->fw_support = readl(&(h->cfgtable->misc_fw_support)); |
| if (hpsa_supports_chained_sg_blocks(h)) { |
| /* Limit in-command s/g elements to 32 save dma'able memory. */ |
| h->max_cmd_sg_entries = 32; |
| h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; |
| h->maxsgentries--; /* save one for chain pointer */ |
| } else { |
| /* |
| * Original smart arrays supported at most 31 s/g entries |
| * embedded inline in the command (trying to use more |
| * would lock up the controller) |
| */ |
| h->max_cmd_sg_entries = 31; |
| h->maxsgentries = 31; /* default to traditional values */ |
| h->chainsize = 0; |
| } |
| |
| /* Find out what task management functions are supported and cache */ |
| h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); |
| if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) |
| dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); |
| if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) |
| dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); |
| if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)) |
| dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n"); |
| } |
| |
| static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) |
| { |
| if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { |
| dev_err(&h->pdev->dev, "not a valid CISS config table\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) |
| { |
| u32 driver_support; |
| |
| driver_support = readl(&(h->cfgtable->driver_support)); |
| /* Need to enable prefetch in the SCSI core for 6400 in x86 */ |
| #ifdef CONFIG_X86 |
| driver_support |= ENABLE_SCSI_PREFETCH; |
| #endif |
| driver_support |= ENABLE_UNIT_ATTN; |
| writel(driver_support, &(h->cfgtable->driver_support)); |
| } |
| |
| /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result |
| * in a prefetch beyond physical memory. |
| */ |
| static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) |
| { |
| u32 dma_prefetch; |
| |
| if (h->board_id != 0x3225103C) |
| return; |
| dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); |
| dma_prefetch |= 0x8000; |
| writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); |
| } |
| |
| static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) |
| { |
| int i; |
| u32 doorbell_value; |
| unsigned long flags; |
| /* wait until the clear_event_notify bit 6 is cleared by controller. */ |
| for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) { |
| spin_lock_irqsave(&h->lock, flags); |
| doorbell_value = readl(h->vaddr + SA5_DOORBELL); |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) |
| goto done; |
| /* delay and try again */ |
| msleep(CLEAR_EVENT_WAIT_INTERVAL); |
| } |
| return -ENODEV; |
| done: |
| return 0; |
| } |
| |
| static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h) |
| { |
| int i; |
| u32 doorbell_value; |
| unsigned long flags; |
| |
| /* under certain very rare conditions, this can take awhile. |
| * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right |
| * as we enter this code.) |
| */ |
| for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) { |
| if (h->remove_in_progress) |
| goto done; |
| spin_lock_irqsave(&h->lock, flags); |
| doorbell_value = readl(h->vaddr + SA5_DOORBELL); |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (!(doorbell_value & CFGTBL_ChangeReq)) |
| goto done; |
| /* delay and try again */ |
| msleep(MODE_CHANGE_WAIT_INTERVAL); |
| } |
| return -ENODEV; |
| done: |
| return 0; |
| } |
| |
| /* return -ENODEV or other reason on error, 0 on success */ |
| static int hpsa_enter_simple_mode(struct ctlr_info *h) |
| { |
| u32 trans_support; |
| |
| trans_support = readl(&(h->cfgtable->TransportSupport)); |
| if (!(trans_support & SIMPLE_MODE)) |
| return -ENOTSUPP; |
| |
| h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); |
| |
| /* Update the field, and then ring the doorbell */ |
| writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); |
| writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); |
| writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
| if (hpsa_wait_for_mode_change_ack(h)) |
| goto error; |
| print_cfg_table(&h->pdev->dev, h->cfgtable); |
| if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) |
| goto error; |
| h->transMethod = CFGTBL_Trans_Simple; |
| return 0; |
| error: |
| dev_err(&h->pdev->dev, "failed to enter simple mode\n"); |
| return -ENODEV; |
| } |
| |
| /* free items allocated or mapped by hpsa_pci_init */ |
| static void hpsa_free_pci_init(struct ctlr_info *h) |
| { |
| hpsa_free_cfgtables(h); /* pci_init 4 */ |
| iounmap(h->vaddr); /* pci_init 3 */ |
| h->vaddr = NULL; |
| hpsa_disable_interrupt_mode(h); /* pci_init 2 */ |
| /* |
| * call pci_disable_device before pci_release_regions per |
| * Documentation/PCI/pci.txt |
| */ |
| pci_disable_device(h->pdev); /* pci_init 1 */ |
| pci_release_regions(h->pdev); /* pci_init 2 */ |
| } |
| |
| /* several items must be freed later */ |
| static int hpsa_pci_init(struct ctlr_info *h) |
| { |
| int prod_index, err; |
| |
| prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); |
| if (prod_index < 0) |
| return prod_index; |
| h->product_name = products[prod_index].product_name; |
| h->access = *(products[prod_index].access); |
| |
| h->needs_abort_tags_swizzled = |
| ctlr_needs_abort_tags_swizzled(h->board_id); |
| |
| pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | |
| PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); |
| |
| err = pci_enable_device(h->pdev); |
| if (err) { |
| dev_err(&h->pdev->dev, "failed to enable PCI device\n"); |
| pci_disable_device(h->pdev); |
| return err; |
| } |
| |
| err = pci_request_regions(h->pdev, HPSA); |
| if (err) { |
| dev_err(&h->pdev->dev, |
| "failed to obtain PCI resources\n"); |
| pci_disable_device(h->pdev); |
| return err; |
| } |
| |
| pci_set_master(h->pdev); |
| |
| hpsa_interrupt_mode(h); |
| err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); |
| if (err) |
| goto clean2; /* intmode+region, pci */ |
| h->vaddr = remap_pci_mem(h->paddr, 0x250); |
| if (!h->vaddr) { |
| dev_err(&h->pdev->dev, "failed to remap PCI mem\n"); |
| err = -ENOMEM; |
| goto clean2; /* intmode+region, pci */ |
| } |
| err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); |
| if (err) |
| goto clean3; /* vaddr, intmode+region, pci */ |
| err = hpsa_find_cfgtables(h); |
| if (err) |
| goto clean3; /* vaddr, intmode+region, pci */ |
| hpsa_find_board_params(h); |
| |
| if (!hpsa_CISS_signature_present(h)) { |
| err = -ENODEV; |
| goto clean4; /* cfgtables, vaddr, intmode+region, pci */ |
| } |
| hpsa_set_driver_support_bits(h); |
| hpsa_p600_dma_prefetch_quirk(h); |
| err = hpsa_enter_simple_mode(h); |
| if (err) |
| goto clean4; /* cfgtables, vaddr, intmode+region, pci */ |
| return 0; |
| |
| clean4: /* cfgtables, vaddr, intmode+region, pci */ |
| hpsa_free_cfgtables(h); |
| clean3: /* vaddr, intmode+region, pci */ |
| iounmap(h->vaddr); |
| h->vaddr = NULL; |
| clean2: /* intmode+region, pci */ |
| hpsa_disable_interrupt_mode(h); |
| /* |
| * call pci_disable_device before pci_release_regions per |
| * Documentation/PCI/pci.txt |
| */ |
| pci_disable_device(h->pdev); |
| pci_release_regions(h->pdev); |
| return err; |
| } |
| |
| static void hpsa_hba_inquiry(struct ctlr_info *h) |
| { |
| int rc; |
| |
| #define HBA_INQUIRY_BYTE_COUNT 64 |
| h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); |
| if (!h->hba_inquiry_data) |
| return; |
| rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, |
| h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); |
| if (rc != 0) { |
| kfree(h->hba_inquiry_data); |
| h->hba_inquiry_data = NULL; |
| } |
| } |
| |
| static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id) |
| { |
| int rc, i; |
| void __iomem *vaddr; |
| |
| if (!reset_devices) |
| return 0; |
| |
| /* kdump kernel is loading, we don't know in which state is |
| * the pci interface. The dev->enable_cnt is equal zero |
| * so we call enable+disable, wait a while and switch it on. |
| */ |
| rc = pci_enable_device(pdev); |
| if (rc) { |
| dev_warn(&pdev->dev, "Failed to enable PCI device\n"); |
| return -ENODEV; |
| } |
| pci_disable_device(pdev); |
| msleep(260); /* a randomly chosen number */ |
| rc = pci_enable_device(pdev); |
| if (rc) { |
| dev_warn(&pdev->dev, "failed to enable device.\n"); |
| return -ENODEV; |
| } |
| |
| pci_set_master(pdev); |
| |
| vaddr = pci_ioremap_bar(pdev, 0); |
| if (vaddr == NULL) { |
| rc = -ENOMEM; |
| goto out_disable; |
| } |
| writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET); |
| iounmap(vaddr); |
| |
| /* Reset the controller with a PCI power-cycle or via doorbell */ |
| rc = hpsa_kdump_hard_reset_controller(pdev, board_id); |
| |
| /* -ENOTSUPP here means we cannot reset the controller |
| * but it's already (and still) up and running in |
| * "performant mode". Or, it might be 640x, which can't reset |
| * due to concerns about shared bbwc between 6402/6404 pair. |
| */ |
| if (rc) |
| goto out_disable; |
| |
| /* Now try to get the controller to respond to a no-op */ |
| dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n"); |
| for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { |
| if (hpsa_noop(pdev) == 0) |
| break; |
| else |
| dev_warn(&pdev->dev, "no-op failed%s\n", |
| (i < 11 ? "; re-trying" : "")); |
| } |
| |
| out_disable: |
| |
| pci_disable_device(pdev); |
| return rc; |
| } |
| |
| static void hpsa_free_cmd_pool(struct ctlr_info *h) |
| { |
| kfree(h->cmd_pool_bits); |
| h->cmd_pool_bits = NULL; |
| if (h->cmd_pool) { |
| pci_free_consistent(h->pdev, |
| h->nr_cmds * sizeof(struct CommandList), |
| h->cmd_pool, |
| h->cmd_pool_dhandle); |
| h->cmd_pool = NULL; |
| h->cmd_pool_dhandle = 0; |
| } |
| if (h->errinfo_pool) { |
| pci_free_consistent(h->pdev, |
| h->nr_cmds * sizeof(struct ErrorInfo), |
| h->errinfo_pool, |
| h->errinfo_pool_dhandle); |
| h->errinfo_pool = NULL; |
| h->errinfo_pool_dhandle = 0; |
| } |
| } |
| |
| static int hpsa_alloc_cmd_pool(struct ctlr_info *h) |
| { |
| h->cmd_pool_bits = kzalloc( |
| DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * |
| sizeof(unsigned long), GFP_KERNEL); |
| h->cmd_pool = pci_alloc_consistent(h->pdev, |
| h->nr_cmds * sizeof(*h->cmd_pool), |
| &(h->cmd_pool_dhandle)); |
| h->errinfo_pool = pci_alloc_consistent(h->pdev, |
| h->nr_cmds * sizeof(*h->errinfo_pool), |
| &(h->errinfo_pool_dhandle)); |
| if ((h->cmd_pool_bits == NULL) |
| || (h->cmd_pool == NULL) |
| || (h->errinfo_pool == NULL)) { |
| dev_err(&h->pdev->dev, "out of memory in %s", __func__); |
| goto clean_up; |
| } |
| hpsa_preinitialize_commands(h); |
| return 0; |
| clean_up: |
| hpsa_free_cmd_pool(h); |
| return -ENOMEM; |
| } |
| |
| static void hpsa_irq_affinity_hints(struct ctlr_info *h) |
| { |
| int i, cpu; |
| |
| cpu = cpumask_first(cpu_online_mask); |
| for (i = 0; i < h->msix_vector; i++) { |
| irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu)); |
| cpu = cpumask_next(cpu, cpu_online_mask); |
| } |
| } |
| |
| /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */ |
| static void hpsa_free_irqs(struct ctlr_info *h) |
| { |
| int i; |
| |
| if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) { |
| /* Single reply queue, only one irq to free */ |
| i = h->intr_mode; |
| irq_set_affinity_hint(h->intr[i], NULL); |
| free_irq(h->intr[i], &h->q[i]); |
| h->q[i] = 0; |
| return; |
| } |
| |
| for (i = 0; i < h->msix_vector; i++) { |
| irq_set_affinity_hint(h->intr[i], NULL); |
| free_irq(h->intr[i], &h->q[i]); |
| h->q[i] = 0; |
| } |
| for (; i < MAX_REPLY_QUEUES; i++) |
| h->q[i] = 0; |
| } |
| |
| /* returns 0 on success; cleans up and returns -Enn on error */ |
| static int hpsa_request_irqs(struct ctlr_info *h, |
| irqreturn_t (*msixhandler)(int, void *), |
| irqreturn_t (*intxhandler)(int, void *)) |
| { |
| int rc, i; |
| |
| /* |
| * initialize h->q[x] = x so that interrupt handlers know which |
| * queue to process. |
| */ |
| for (i = 0; i < MAX_REPLY_QUEUES; i++) |
| h->q[i] = (u8) i; |
| |
| if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) { |
| /* If performant mode and MSI-X, use multiple reply queues */ |
| for (i = 0; i < h->msix_vector; i++) { |
| sprintf(h->intrname[i], "%s-msix%d", h->devname, i); |
| rc = request_irq(h->intr[i], msixhandler, |
| 0, h->intrname[i], |
| &h->q[i]); |
| if (rc) { |
| int j; |
| |
| dev_err(&h->pdev->dev, |
| "failed to get irq %d for %s\n", |
| h->intr[i], h->devname); |
| for (j = 0; j < i; j++) { |
| free_irq(h->intr[j], &h->q[j]); |
| h->q[j] = 0; |
| } |
| for (; j < MAX_REPLY_QUEUES; j++) |
| h->q[j] = 0; |
| return rc; |
| } |
| } |
| hpsa_irq_affinity_hints(h); |
| } else { |
| /* Use single reply pool */ |
| if (h->msix_vector > 0 || h->msi_vector) { |
| if (h->msix_vector) |
| sprintf(h->intrname[h->intr_mode], |
| "%s-msix", h->devname); |
| else |
| sprintf(h->intrname[h->intr_mode], |
| "%s-msi", h->devname); |
| rc = request_irq(h->intr[h->intr_mode], |
| msixhandler, 0, |
| h->intrname[h->intr_mode], |
| &h->q[h->intr_mode]); |
| } else { |
| sprintf(h->intrname[h->intr_mode], |
| "%s-intx", h->devname); |
| rc = request_irq(h->intr[h->intr_mode], |
| intxhandler, IRQF_SHARED, |
| h->intrname[h->intr_mode], |
| &h->q[h->intr_mode]); |
| } |
| irq_set_affinity_hint(h->intr[h->intr_mode], NULL); |
| } |
| if (rc) { |
| dev_err(&h->pdev->dev, "failed to get irq %d for %s\n", |
| h->intr[h->intr_mode], h->devname); |
| hpsa_free_irqs(h); |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| static int hpsa_kdump_soft_reset(struct ctlr_info *h) |
| { |
| int rc; |
| hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER); |
| |
| dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); |
| rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY); |
| if (rc) { |
| dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); |
| return rc; |
| } |
| |
| dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); |
| rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); |
| if (rc) { |
| dev_warn(&h->pdev->dev, "Board failed to become ready " |
| "after soft reset.\n"); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static void hpsa_free_reply_queues(struct ctlr_info *h) |
| { |
| int i; |
| |
| for (i = 0; i < h->nreply_queues; i++) { |
| if (!h->reply_queue[i].head) |
| continue; |
| pci_free_consistent(h->pdev, |
| h->reply_queue_size, |
| h->reply_queue[i].head, |
| h->reply_queue[i].busaddr); |
| h->reply_queue[i].head = NULL; |
| h->reply_queue[i].busaddr = 0; |
| } |
| h->reply_queue_size = 0; |
| } |
| |
| static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) |
| { |
| hpsa_free_performant_mode(h); /* init_one 7 */ |
| hpsa_free_sg_chain_blocks(h); /* init_one 6 */ |
| hpsa_free_cmd_pool(h); /* init_one 5 */ |
| hpsa_free_irqs(h); /* init_one 4 */ |
| scsi_host_put(h->scsi_host); /* init_one 3 */ |
| h->scsi_host = NULL; /* init_one 3 */ |
| hpsa_free_pci_init(h); /* init_one 2_5 */ |
| free_percpu(h->lockup_detected); /* init_one 2 */ |
| h->lockup_detected = NULL; /* init_one 2 */ |
| if (h->resubmit_wq) { |
| destroy_workqueue(h->resubmit_wq); /* init_one 1 */ |
| h->resubmit_wq = NULL; |
| } |
| if (h->rescan_ctlr_wq) { |
| destroy_workqueue(h->rescan_ctlr_wq); |
| h->rescan_ctlr_wq = NULL; |
| } |
| kfree(h); /* init_one 1 */ |
| } |
| |
| /* Called when controller lockup detected. */ |
| static void fail_all_outstanding_cmds(struct ctlr_info *h) |
| { |
| int i, refcount; |
| struct CommandList *c; |
| int failcount = 0; |
| |
| flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */ |
| for (i = 0; i < h->nr_cmds; i++) { |
| c = h->cmd_pool + i; |
| refcount = atomic_inc_return(&c->refcount); |
| if (refcount > 1) { |
| c->err_info->CommandStatus = CMD_CTLR_LOCKUP; |
| finish_cmd(c); |
| atomic_dec(&h->commands_outstanding); |
| failcount++; |
| } |
| cmd_free(h, c); |
| } |
| dev_warn(&h->pdev->dev, |
| "failed %d commands in fail_all\n", failcount); |
| } |
| |
| static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) { |
| u32 *lockup_detected; |
| lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); |
| *lockup_detected = value; |
| } |
| wmb(); /* be sure the per-cpu variables are out to memory */ |
| } |
| |
| static void controller_lockup_detected(struct ctlr_info *h) |
| { |
| unsigned long flags; |
| u32 lockup_detected; |
| |
| h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| spin_lock_irqsave(&h->lock, flags); |
| lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); |
| if (!lockup_detected) { |
| /* no heartbeat, but controller gave us a zero. */ |
| dev_warn(&h->pdev->dev, |
| "lockup detected after %d but scratchpad register is zero\n", |
| h->heartbeat_sample_interval / HZ); |
| lockup_detected = 0xffffffff; |
| } |
| set_lockup_detected_for_all_cpus(h, lockup_detected); |
| spin_unlock_irqrestore(&h->lock, flags); |
| dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n", |
| lockup_detected, h->heartbeat_sample_interval / HZ); |
| pci_disable_device(h->pdev); |
| fail_all_outstanding_cmds(h); |
| } |
| |
| static int detect_controller_lockup(struct ctlr_info *h) |
| { |
| u64 now; |
| u32 heartbeat; |
| unsigned long flags; |
| |
| now = get_jiffies_64(); |
| /* If we've received an interrupt recently, we're ok. */ |
| if (time_after64(h->last_intr_timestamp + |
| (h->heartbeat_sample_interval), now)) |
| return false; |
| |
| /* |
| * If we've already checked the heartbeat recently, we're ok. |
| * This could happen if someone sends us a signal. We |
| * otherwise don't care about signals in this thread. |
| */ |
| if (time_after64(h->last_heartbeat_timestamp + |
| (h->heartbeat_sample_interval), now)) |
| return false; |
| |
| /* If heartbeat has not changed since we last looked, we're not ok. */ |
| spin_lock_irqsave(&h->lock, flags); |
| heartbeat = readl(&h->cfgtable->HeartBeat); |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (h->last_heartbeat == heartbeat) { |
| controller_lockup_detected(h); |
| return true; |
| } |
| |
| /* We're ok. */ |
| h->last_heartbeat = heartbeat; |
| h->last_heartbeat_timestamp = now; |
| return false; |
| } |
| |
| static void hpsa_ack_ctlr_events(struct ctlr_info *h) |
| { |
| int i; |
| char *event_type; |
| |
| if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) |
| return; |
| |
| /* Ask the controller to clear the events we're handling. */ |
| if ((h->transMethod & (CFGTBL_Trans_io_accel1 |
| | CFGTBL_Trans_io_accel2)) && |
| (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || |
| h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { |
| |
| if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) |
| event_type = "state change"; |
| if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) |
| event_type = "configuration change"; |
| /* Stop sending new RAID offload reqs via the IO accelerator */ |
| scsi_block_requests(h->scsi_host); |
| for (i = 0; i < h->ndevices; i++) |
| h->dev[i]->offload_enabled = 0; |
| hpsa_drain_accel_commands(h); |
| /* Set 'accelerator path config change' bit */ |
| dev_warn(&h->pdev->dev, |
| "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", |
| h->events, event_type); |
| writel(h->events, &(h->cfgtable->clear_event_notify)); |
| /* Set the "clear event notify field update" bit 6 */ |
| writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); |
| /* Wait until ctlr clears 'clear event notify field', bit 6 */ |
| hpsa_wait_for_clear_event_notify_ack(h); |
| scsi_unblock_requests(h->scsi_host); |
| } else { |
| /* Acknowledge controller notification events. */ |
| writel(h->events, &(h->cfgtable->clear_event_notify)); |
| writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); |
| hpsa_wait_for_clear_event_notify_ack(h); |
| #if 0 |
| writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
| hpsa_wait_for_mode_change_ack(h); |
| #endif |
| } |
| return; |
| } |
| |
| /* Check a register on the controller to see if there are configuration |
| * changes (added/changed/removed logical drives, etc.) which mean that |
| * we should rescan the controller for devices. |
| * Also check flag for driver-initiated rescan. |
| */ |
| static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) |
| { |
| if (h->drv_req_rescan) { |
| h->drv_req_rescan = 0; |
| return 1; |
| } |
| |
| if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) |
| return 0; |
| |
| h->events = readl(&(h->cfgtable->event_notify)); |
| return h->events & RESCAN_REQUIRED_EVENT_BITS; |
| } |
| |
| /* |
| * Check if any of the offline devices have become ready |
| */ |
| static int hpsa_offline_devices_ready(struct ctlr_info *h) |
| { |
| unsigned long flags; |
| struct offline_device_entry *d; |
| struct list_head *this, *tmp; |
| |
| spin_lock_irqsave(&h->offline_device_lock, flags); |
| list_for_each_safe(this, tmp, &h->offline_device_list) { |
| d = list_entry(this, struct offline_device_entry, |
| offline_list); |
| spin_unlock_irqrestore(&h->offline_device_lock, flags); |
| if (!hpsa_volume_offline(h, d->scsi3addr)) { |
| spin_lock_irqsave(&h->offline_device_lock, flags); |
| list_del(&d->offline_list); |
| spin_unlock_irqrestore(&h->offline_device_lock, flags); |
| return 1; |
| } |
| spin_lock_irqsave(&h->offline_device_lock, flags); |
| } |
| spin_unlock_irqrestore(&h->offline_device_lock, flags); |
| return 0; |
| } |
| |
| static int hpsa_luns_changed(struct ctlr_info *h) |
| { |
| int rc = 1; /* assume there are changes */ |
| struct ReportLUNdata *logdev = NULL; |
| |
| /* if we can't find out if lun data has changed, |
| * assume that it has. |
| */ |
| |
| if (!h->lastlogicals) |
| goto out; |
| |
| logdev = kzalloc(sizeof(*logdev), GFP_KERNEL); |
| if (!logdev) { |
| dev_warn(&h->pdev->dev, |
| "Out of memory, can't track lun changes.\n"); |
| goto out; |
| } |
| if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) { |
| dev_warn(&h->pdev->dev, |
| "report luns failed, can't track lun changes.\n"); |
| goto out; |
| } |
| if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) { |
| dev_info(&h->pdev->dev, |
| "Lun changes detected.\n"); |
| memcpy(h->lastlogicals, logdev, sizeof(*logdev)); |
| goto out; |
| } else |
| rc = 0; /* no changes detected. */ |
| out: |
| kfree(logdev); |
| return rc; |
| } |
| |
| static void hpsa_rescan_ctlr_worker(struct work_struct *work) |
| { |
| unsigned long flags; |
| struct ctlr_info *h = container_of(to_delayed_work(work), |
| struct ctlr_info, rescan_ctlr_work); |
| |
| |
| if (h->remove_in_progress) |
| return; |
| |
| if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) { |
| scsi_host_get(h->scsi_host); |
| hpsa_ack_ctlr_events(h); |
| hpsa_scan_start(h->scsi_host); |
| scsi_host_put(h->scsi_host); |
| } else if (h->discovery_polling) { |
| hpsa_disable_rld_caching(h); |
| if (hpsa_luns_changed(h)) { |
| struct Scsi_Host *sh = NULL; |
| |
| dev_info(&h->pdev->dev, |
| "driver discovery polling rescan.\n"); |
| sh = scsi_host_get(h->scsi_host); |
| if (sh != NULL) { |
| hpsa_scan_start(sh); |
| scsi_host_put(sh); |
| } |
| } |
| } |
| spin_lock_irqsave(&h->lock, flags); |
| if (!h->remove_in_progress) |
| queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, |
| h->heartbeat_sample_interval); |
| spin_unlock_irqrestore(&h->lock, flags); |
| } |
| |
| static void hpsa_monitor_ctlr_worker(struct work_struct *work) |
| { |
| unsigned long flags; |
| struct ctlr_info *h = container_of(to_delayed_work(work), |
| struct ctlr_info, monitor_ctlr_work); |
| |
| detect_controller_lockup(h); |
| if (lockup_detected(h)) |
| return; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| if (!h->remove_in_progress) |
| schedule_delayed_work(&h->monitor_ctlr_work, |
| h->heartbeat_sample_interval); |
| spin_unlock_irqrestore(&h->lock, flags); |
| } |
| |
| static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h, |
| char *name) |
| { |
| struct workqueue_struct *wq = NULL; |
| |
| wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr); |
| if (!wq) |
| dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name); |
| |
| return wq; |
| } |
| |
| static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| int dac, rc; |
| struct ctlr_info *h; |
| int try_soft_reset = 0; |
| unsigned long flags; |
| u32 board_id; |
| |
| if (number_of_controllers == 0) |
| printk(KERN_INFO DRIVER_NAME "\n"); |
| |
| rc = hpsa_lookup_board_id(pdev, &board_id); |
| if (rc < 0) { |
| dev_warn(&pdev->dev, "Board ID not found\n"); |
| return rc; |
| } |
| |
| rc = hpsa_init_reset_devices(pdev, board_id); |
| if (rc) { |
| if (rc != -ENOTSUPP) |
| return rc; |
| /* If the reset fails in a particular way (it has no way to do |
| * a proper hard reset, so returns -ENOTSUPP) we can try to do |
| * a soft reset once we get the controller configured up to the |
| * point that it can accept a command. |
| */ |
| try_soft_reset = 1; |
| rc = 0; |
| } |
| |
| reinit_after_soft_reset: |
| |
| /* Command structures must be aligned on a 32-byte boundary because |
| * the 5 lower bits of the address are used by the hardware. and by |
| * the driver. See comments in hpsa.h for more info. |
| */ |
| BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); |
| h = kzalloc(sizeof(*h), GFP_KERNEL); |
| if (!h) { |
| dev_err(&pdev->dev, "Failed to allocate controller head\n"); |
| return -ENOMEM; |
| } |
| |
| h->pdev = pdev; |
| |
| h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; |
| INIT_LIST_HEAD(&h->offline_device_list); |
| spin_lock_init(&h->lock); |
| spin_lock_init(&h->offline_device_lock); |
| spin_lock_init(&h->scan_lock); |
| atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS); |
| atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS); |
| |
| /* Allocate and clear per-cpu variable lockup_detected */ |
| h->lockup_detected = alloc_percpu(u32); |
| if (!h->lockup_detected) { |
| dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n"); |
| rc = -ENOMEM; |
| goto clean1; /* aer/h */ |
| } |
| set_lockup_detected_for_all_cpus(h, 0); |
| |
| rc = hpsa_pci_init(h); |
| if (rc) |
| goto clean2; /* lu, aer/h */ |
| |
| /* relies on h-> settings made by hpsa_pci_init, including |
| * interrupt_mode h->intr */ |
| rc = hpsa_scsi_host_alloc(h); |
| if (rc) |
| goto clean2_5; /* pci, lu, aer/h */ |
| |
| sprintf(h->devname, HPSA "%d", h->scsi_host->host_no); |
| h->ctlr = number_of_controllers; |
| number_of_controllers++; |
| |
| /* configure PCI DMA stuff */ |
| rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); |
| if (rc == 0) { |
| dac = 1; |
| } else { |
| rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (rc == 0) { |
| dac = 0; |
| } else { |
| dev_err(&pdev->dev, "no suitable DMA available\n"); |
| goto clean3; /* shost, pci, lu, aer/h */ |
| } |
| } |
| |
| /* make sure the board interrupts are off */ |
| h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| |
| rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx); |
| if (rc) |
| goto clean3; /* shost, pci, lu, aer/h */ |
| rc = hpsa_alloc_cmd_pool(h); |
| if (rc) |
| goto clean4; /* irq, shost, pci, lu, aer/h */ |
| rc = hpsa_alloc_sg_chain_blocks(h); |
| if (rc) |
| goto clean5; /* cmd, irq, shost, pci, lu, aer/h */ |
| init_waitqueue_head(&h->scan_wait_queue); |
| init_waitqueue_head(&h->abort_cmd_wait_queue); |
| init_waitqueue_head(&h->event_sync_wait_queue); |
| mutex_init(&h->reset_mutex); |
| h->scan_finished = 1; /* no scan currently in progress */ |
| |
| pci_set_drvdata(pdev, h); |
| h->ndevices = 0; |
| |
| spin_lock_init(&h->devlock); |
| rc = hpsa_put_ctlr_into_performant_mode(h); |
| if (rc) |
| goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */ |
| |
| /* hook into SCSI subsystem */ |
| rc = hpsa_scsi_add_host(h); |
| if (rc) |
| goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ |
| |
| /* create the resubmit workqueue */ |
| h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan"); |
| if (!h->rescan_ctlr_wq) { |
| rc = -ENOMEM; |
| goto clean7; |
| } |
| |
| h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit"); |
| if (!h->resubmit_wq) { |
| rc = -ENOMEM; |
| goto clean7; /* aer/h */ |
| } |
| |
| /* |
| * At this point, the controller is ready to take commands. |
| * Now, if reset_devices and the hard reset didn't work, try |
| * the soft reset and see if that works. |
| */ |
| if (try_soft_reset) { |
| |
| /* This is kind of gross. We may or may not get a completion |
| * from the soft reset command, and if we do, then the value |
| * from the fifo may or may not be valid. So, we wait 10 secs |
| * after the reset throwing away any completions we get during |
| * that time. Unregister the interrupt handler and register |
| * fake ones to scoop up any residual completions. |
| */ |
| spin_lock_irqsave(&h->lock, flags); |
| h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| spin_unlock_irqrestore(&h->lock, flags); |
| hpsa_free_irqs(h); |
| rc = hpsa_request_irqs(h, hpsa_msix_discard_completions, |
| hpsa_intx_discard_completions); |
| if (rc) { |
| dev_warn(&h->pdev->dev, |
| "Failed to request_irq after soft reset.\n"); |
| /* |
| * cannot goto clean7 or free_irqs will be called |
| * again. Instead, do its work |
| */ |
| hpsa_free_performant_mode(h); /* clean7 */ |
| hpsa_free_sg_chain_blocks(h); /* clean6 */ |
| hpsa_free_cmd_pool(h); /* clean5 */ |
| /* |
| * skip hpsa_free_irqs(h) clean4 since that |
| * was just called before request_irqs failed |
| */ |
| goto clean3; |
| } |
| |
| rc = hpsa_kdump_soft_reset(h); |
| if (rc) |
| /* Neither hard nor soft reset worked, we're hosed. */ |
| goto clean7; |
| |
| dev_info(&h->pdev->dev, "Board READY.\n"); |
| dev_info(&h->pdev->dev, |
| "Waiting for stale completions to drain.\n"); |
| h->access.set_intr_mask(h, HPSA_INTR_ON); |
| msleep(10000); |
| h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| |
| rc = controller_reset_failed(h->cfgtable); |
| if (rc) |
| dev_info(&h->pdev->dev, |
| "Soft reset appears to have failed.\n"); |
| |
| /* since the controller's reset, we have to go back and re-init |
| * everything. Easiest to just forget what we've done and do it |
| * all over again. |
| */ |
| hpsa_undo_allocations_after_kdump_soft_reset(h); |
| try_soft_reset = 0; |
| if (rc) |
| /* don't goto clean, we already unallocated */ |
| return -ENODEV; |
| |
| goto reinit_after_soft_reset; |
| } |
| |
| /* Enable Accelerated IO path at driver layer */ |
| h->acciopath_status = 1; |
| /* Disable discovery polling.*/ |
| h->discovery_polling = 0; |
| |
| |
| /* Turn the interrupts on so we can service requests */ |
| h->access.set_intr_mask(h, HPSA_INTR_ON); |
| |
| hpsa_hba_inquiry(h); |
| |
| h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL); |
| if (!h->lastlogicals) |
| dev_info(&h->pdev->dev, |
| "Can't track change to report lun data\n"); |
| |
| /* Monitor the controller for firmware lockups */ |
| h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; |
| INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); |
| schedule_delayed_work(&h->monitor_ctlr_work, |
| h->heartbeat_sample_interval); |
| INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker); |
| queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, |
| h->heartbeat_sample_interval); |
| return 0; |
| |
| clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ |
| hpsa_free_performant_mode(h); |
| h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */ |
| hpsa_free_sg_chain_blocks(h); |
| clean5: /* cmd, irq, shost, pci, lu, aer/h */ |
| hpsa_free_cmd_pool(h); |
| clean4: /* irq, shost, pci, lu, aer/h */ |
| hpsa_free_irqs(h); |
| clean3: /* shost, pci, lu, aer/h */ |
| scsi_host_put(h->scsi_host); |
| h->scsi_host = NULL; |
| clean2_5: /* pci, lu, aer/h */ |
| hpsa_free_pci_init(h); |
| clean2: /* lu, aer/h */ |
| if (h->lockup_detected) { |
| free_percpu(h->lockup_detected); |
| h->lockup_detected = NULL; |
| } |
| clean1: /* wq/aer/h */ |
| if (h->resubmit_wq) { |
| destroy_workqueue(h->resubmit_wq); |
| h->resubmit_wq = NULL; |
| } |
| if (h->rescan_ctlr_wq) { |
| destroy_workqueue(h->rescan_ctlr_wq); |
| h->rescan_ctlr_wq = NULL; |
| } |
| kfree(h); |
| return rc; |
| } |
| |
| static void hpsa_flush_cache(struct ctlr_info *h) |
| { |
| char *flush_buf; |
| struct CommandList *c; |
| int rc; |
| |
| if (unlikely(lockup_detected(h))) |
| return; |
| flush_buf = kzalloc(4, GFP_KERNEL); |
| if (!flush_buf) |
| return; |
| |
| c = cmd_alloc(h); |
| |
| if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, |
| RAID_CTLR_LUNID, TYPE_CMD)) { |
| goto out; |
| } |
| rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
| PCI_DMA_TODEVICE, NO_TIMEOUT); |
| if (rc) |
| goto out; |
| if (c->err_info->CommandStatus != 0) |
| out: |
| dev_warn(&h->pdev->dev, |
| "error flushing cache on controller\n"); |
| cmd_free(h, c); |
| kfree(flush_buf); |
| } |
| |
| /* Make controller gather fresh report lun data each time we |
| * send down a report luns request |
| */ |
| static void hpsa_disable_rld_caching(struct ctlr_info *h) |
| { |
| u32 *options; |
| struct CommandList *c; |
| int rc; |
| |
| /* Don't bother trying to set diag options if locked up */ |
| if (unlikely(h->lockup_detected)) |
| return; |
| |
| options = kzalloc(sizeof(*options), GFP_KERNEL); |
| if (!options) { |
| dev_err(&h->pdev->dev, |
| "Error: failed to disable rld caching, during alloc.\n"); |
| return; |
| } |
| |
| c = cmd_alloc(h); |
| |
| /* first, get the current diag options settings */ |
| if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, |
| RAID_CTLR_LUNID, TYPE_CMD)) |
| goto errout; |
| |
| rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
| PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
| if ((rc != 0) || (c->err_info->CommandStatus != 0)) |
| goto errout; |
| |
| /* Now, set the bit for disabling the RLD caching */ |
| *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING; |
| |
| if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0, |
| RAID_CTLR_LUNID, TYPE_CMD)) |
| goto errout; |
| |
| rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
| PCI_DMA_TODEVICE, NO_TIMEOUT); |
| if ((rc != 0) || (c->err_info->CommandStatus != 0)) |
| goto errout; |
| |
| /* Now verify that it got set: */ |
| if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, |
| RAID_CTLR_LUNID, TYPE_CMD)) |
| goto errout; |
| |
| rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
| PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
| if ((rc != 0) || (c->err_info->CommandStatus != 0)) |
| goto errout; |
| |
| if (*options && HPSA_DIAG_OPTS_DISABLE_RLD_CACHING) |
| goto out; |
| |
| errout: |
| dev_err(&h->pdev->dev, |
| "Error: failed to disable report lun data caching.\n"); |
| out: |
| cmd_free(h, c); |
| kfree(options); |
| } |
| |
| static void hpsa_shutdown(struct pci_dev *pdev) |
| { |
| struct ctlr_info *h; |
| |
| h = pci_get_drvdata(pdev); |
| /* Turn board interrupts off and send the flush cache command |
| * sendcmd will turn off interrupt, and send the flush... |
| * To write all data in the battery backed cache to disks |
| */ |
| hpsa_flush_cache(h); |
| h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| hpsa_free_irqs(h); /* init_one 4 */ |
| hpsa_disable_interrupt_mode(h); /* pci_init 2 */ |
| } |
| |
| static void hpsa_free_device_info(struct ctlr_info *h) |
| { |
| int i; |
| |
| for (i = 0; i < h->ndevices; i++) { |
| kfree(h->dev[i]); |
| h->dev[i] = NULL; |
| } |
| } |
| |
| static void hpsa_remove_one(struct pci_dev *pdev) |
| { |
| struct ctlr_info *h; |
| unsigned long flags; |
| |
| if (pci_get_drvdata(pdev) == NULL) { |
| dev_err(&pdev->dev, "unable to remove device\n"); |
| return; |
| } |
| h = pci_get_drvdata(pdev); |
| |
| /* Get rid of any controller monitoring work items */ |
| spin_lock_irqsave(&h->lock, flags); |
| h->remove_in_progress = 1; |
| spin_unlock_irqrestore(&h->lock, flags); |
| cancel_delayed_work_sync(&h->monitor_ctlr_work); |
| cancel_delayed_work_sync(&h->rescan_ctlr_work); |
| destroy_workqueue(h->rescan_ctlr_wq); |
| destroy_workqueue(h->resubmit_wq); |
| |
| /* |
| * Call before disabling interrupts. |
| * scsi_remove_host can trigger I/O operations especially |
| * when multipath is enabled. There can be SYNCHRONIZE CACHE |
| * operations which cannot complete and will hang the system. |
| */ |
| if (h->scsi_host) |
| scsi_remove_host(h->scsi_host); /* init_one 8 */ |
| /* includes hpsa_free_irqs - init_one 4 */ |
| /* includes hpsa_disable_interrupt_mode - pci_init 2 */ |
| hpsa_shutdown(pdev); |
| |
| hpsa_free_device_info(h); /* scan */ |
| |
| kfree(h->hba_inquiry_data); /* init_one 10 */ |
| h->hba_inquiry_data = NULL; /* init_one 10 */ |
| hpsa_free_ioaccel2_sg_chain_blocks(h); |
| hpsa_free_performant_mode(h); /* init_one 7 */ |
| hpsa_free_sg_chain_blocks(h); /* init_one 6 */ |
| hpsa_free_cmd_pool(h); /* init_one 5 */ |
| kfree(h->lastlogicals); |
| |
| /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */ |
| |
| scsi_host_put(h->scsi_host); /* init_one 3 */ |
| h->scsi_host = NULL; /* init_one 3 */ |
| |
| /* includes hpsa_disable_interrupt_mode - pci_init 2 */ |
| hpsa_free_pci_init(h); /* init_one 2.5 */ |
| |
| free_percpu(h->lockup_detected); /* init_one 2 */ |
| h->lockup_detected = NULL; /* init_one 2 */ |
| /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */ |
| kfree(h); /* init_one 1 */ |
| } |
| |
| static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, |
| __attribute__((unused)) pm_message_t state) |
| { |
| return -ENOSYS; |
| } |
| |
| static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) |
| { |
| return -ENOSYS; |
| } |
| |
| static struct pci_driver hpsa_pci_driver = { |
| .name = HPSA, |
| .probe = hpsa_init_one, |
| .remove = hpsa_remove_one, |
| .id_table = hpsa_pci_device_id, /* id_table */ |
| .shutdown = hpsa_shutdown, |
| .suspend = hpsa_suspend, |
| .resume = hpsa_resume, |
| }; |
| |
| /* Fill in bucket_map[], given nsgs (the max number of |
| * scatter gather elements supported) and bucket[], |
| * which is an array of 8 integers. The bucket[] array |
| * contains 8 different DMA transfer sizes (in 16 |
| * byte increments) which the controller uses to fetch |
| * commands. This function fills in bucket_map[], which |
| * maps a given number of scatter gather elements to one of |
| * the 8 DMA transfer sizes. The point of it is to allow the |
| * controller to only do as much DMA as needed to fetch the |
| * command, with the DMA transfer size encoded in the lower |
| * bits of the command address. |
| */ |
| static void calc_bucket_map(int bucket[], int num_buckets, |
| int nsgs, int min_blocks, u32 *bucket_map) |
| { |
| int i, j, b, size; |
| |
| /* Note, bucket_map must have nsgs+1 entries. */ |
| for (i = 0; i <= nsgs; i++) { |
| /* Compute size of a command with i SG entries */ |
| size = i + min_blocks; |
| b = num_buckets; /* Assume the biggest bucket */ |
| /* Find the bucket that is just big enough */ |
| for (j = 0; j < num_buckets; j++) { |
| if (bucket[j] >= size) { |
| b = j; |
| break; |
| } |
| } |
| /* for a command with i SG entries, use bucket b. */ |
| bucket_map[i] = b; |
| } |
| } |
| |
| /* |
| * return -ENODEV on err, 0 on success (or no action) |
| * allocates numerous items that must be freed later |
| */ |
| static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) |
| { |
| int i; |
| unsigned long register_value; |
| unsigned long transMethod = CFGTBL_Trans_Performant | |
| (trans_support & CFGTBL_Trans_use_short_tags) | |
| CFGTBL_Trans_enable_directed_msix | |
| (trans_support & (CFGTBL_Trans_io_accel1 | |
| CFGTBL_Trans_io_accel2)); |
| struct access_method access = SA5_performant_access; |
| |
| /* This is a bit complicated. There are 8 registers on |
| * the controller which we write to to tell it 8 different |
| * sizes of commands which there may be. It's a way of |
| * reducing the DMA done to fetch each command. Encoded into |
| * each command's tag are 3 bits which communicate to the controller |
| * which of the eight sizes that command fits within. The size of |
| * each command depends on how many scatter gather entries there are. |
| * Each SG entry requires 16 bytes. The eight registers are programmed |
| * with the number of 16-byte blocks a command of that size requires. |
| * The smallest command possible requires 5 such 16 byte blocks. |
| * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte |
| * blocks. Note, this only extends to the SG entries contained |
| * within the command block, and does not extend to chained blocks |
| * of SG elements. bft[] contains the eight values we write to |
| * the registers. They are not evenly distributed, but have more |
| * sizes for small commands, and fewer sizes for larger commands. |
| */ |
| int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; |
| #define MIN_IOACCEL2_BFT_ENTRY 5 |
| #define HPSA_IOACCEL2_HEADER_SZ 4 |
| int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, |
| 13, 14, 15, 16, 17, 18, 19, |
| HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; |
| BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); |
| BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); |
| BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > |
| 16 * MIN_IOACCEL2_BFT_ENTRY); |
| BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); |
| BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); |
| /* 5 = 1 s/g entry or 4k |
| * 6 = 2 s/g entry or 8k |
| * 8 = 4 s/g entry or 16k |
| * 10 = 6 s/g entry or 24k |
| */ |
| |
| /* If the controller supports either ioaccel method then |
| * we can also use the RAID stack submit path that does not |
| * perform the superfluous readl() after each command submission. |
| */ |
| if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) |
| access = SA5_performant_access_no_read; |
| |
| /* Controller spec: zero out this buffer. */ |
| for (i = 0; i < h->nreply_queues; i++) |
| memset(h->reply_queue[i].head, 0, h->reply_queue_size); |
| |
| bft[7] = SG_ENTRIES_IN_CMD + 4; |
| calc_bucket_map(bft, ARRAY_SIZE(bft), |
| SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); |
| for (i = 0; i < 8; i++) |
| writel(bft[i], &h->transtable->BlockFetch[i]); |
| |
| /* size of controller ring buffer */ |
| writel(h->max_commands, &h->transtable->RepQSize); |
| writel(h->nreply_queues, &h->transtable->RepQCount); |
| writel(0, &h->transtable->RepQCtrAddrLow32); |
| writel(0, &h->transtable->RepQCtrAddrHigh32); |
| |
| for (i = 0; i < h->nreply_queues; i++) { |
| writel(0, &h->transtable->RepQAddr[i].upper); |
| writel(h->reply_queue[i].busaddr, |
| &h->transtable->RepQAddr[i].lower); |
| } |
| |
| writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); |
| writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); |
| /* |
| * enable outbound interrupt coalescing in accelerator mode; |
| */ |
| if (trans_support & CFGTBL_Trans_io_accel1) { |
| access = SA5_ioaccel_mode1_access; |
| writel(10, &h->cfgtable->HostWrite.CoalIntDelay); |
| writel(4, &h->cfgtable->HostWrite.CoalIntCount); |
| } else { |
| if (trans_support & CFGTBL_Trans_io_accel2) { |
| access = SA5_ioaccel_mode2_access; |
| writel(10, &h->cfgtable->HostWrite.CoalIntDelay); |
| writel(4, &h->cfgtable->HostWrite.CoalIntCount); |
| } |
| } |
| writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
| if (hpsa_wait_for_mode_change_ack(h)) { |
| dev_err(&h->pdev->dev, |
| "performant mode problem - doorbell timeout\n"); |
| return -ENODEV; |
| } |
| register_value = readl(&(h->cfgtable->TransportActive)); |
| if (!(register_value & CFGTBL_Trans_Performant)) { |
| dev_err(&h->pdev->dev, |
| "performant mode problem - transport not active\n"); |
| return -ENODEV; |
| } |
| /* Change the access methods to the performant access methods */ |
| h->access = access; |
| h->transMethod = transMethod; |
| |
| if (!((trans_support & CFGTBL_Trans_io_accel1) || |
| (trans_support & CFGTBL_Trans_io_accel2))) |
| return 0; |
| |
| if (trans_support & CFGTBL_Trans_io_accel1) { |
| /* Set up I/O accelerator mode */ |
| for (i = 0; i < h->nreply_queues; i++) { |
| writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); |
| h->reply_queue[i].current_entry = |
| readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); |
| } |
| bft[7] = h->ioaccel_maxsg + 8; |
| calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, |
| h->ioaccel1_blockFetchTable); |
| |
| /* initialize all reply queue entries to unused */ |
| for (i = 0; i < h->nreply_queues; i++) |
| memset(h->reply_queue[i].head, |
| (u8) IOACCEL_MODE1_REPLY_UNUSED, |
| h->reply_queue_size); |
| |
| /* set all the constant fields in the accelerator command |
| * frames once at init time to save CPU cycles later. |
| */ |
| for (i = 0; i < h->nr_cmds; i++) { |
| struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; |
| |
| cp->function = IOACCEL1_FUNCTION_SCSIIO; |
| cp->err_info = (u32) (h->errinfo_pool_dhandle + |
| (i * sizeof(struct ErrorInfo))); |
| cp->err_info_len = sizeof(struct ErrorInfo); |
| cp->sgl_offset = IOACCEL1_SGLOFFSET; |
| cp->host_context_flags = |
| cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT); |
| cp->timeout_sec = 0; |
| cp->ReplyQueue = 0; |
| cp->tag = |
| cpu_to_le64((i << DIRECT_LOOKUP_SHIFT)); |
| cp->host_addr = |
| cpu_to_le64(h->ioaccel_cmd_pool_dhandle + |
| (i * sizeof(struct io_accel1_cmd))); |
| } |
| } else if (trans_support & CFGTBL_Trans_io_accel2) { |
| u64 cfg_offset, cfg_base_addr_index; |
| u32 bft2_offset, cfg_base_addr; |
| int rc; |
| |
| rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, |
| &cfg_base_addr_index, &cfg_offset); |
| BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); |
| bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; |
| calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, |
| 4, h->ioaccel2_blockFetchTable); |
| bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); |
| BUILD_BUG_ON(offsetof(struct CfgTable, |
| io_accel_request_size_offset) != 0xb8); |
| h->ioaccel2_bft2_regs = |
| remap_pci_mem(pci_resource_start(h->pdev, |
| cfg_base_addr_index) + |
| cfg_offset + bft2_offset, |
| ARRAY_SIZE(bft2) * |
| sizeof(*h->ioaccel2_bft2_regs)); |
| for (i = 0; i < ARRAY_SIZE(bft2); i++) |
| writel(bft2[i], &h->ioaccel2_bft2_regs[i]); |
| } |
| writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
| if (hpsa_wait_for_mode_change_ack(h)) { |
| dev_err(&h->pdev->dev, |
| "performant mode problem - enabling ioaccel mode\n"); |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| /* Free ioaccel1 mode command blocks and block fetch table */ |
| static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h) |
| { |
| if (h->ioaccel_cmd_pool) { |
| pci_free_consistent(h->pdev, |
| h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), |
| h->ioaccel_cmd_pool, |
| h->ioaccel_cmd_pool_dhandle); |
| h->ioaccel_cmd_pool = NULL; |
| h->ioaccel_cmd_pool_dhandle = 0; |
| } |
| kfree(h->ioaccel1_blockFetchTable); |
| h->ioaccel1_blockFetchTable = NULL; |
| } |
| |
| /* Allocate ioaccel1 mode command blocks and block fetch table */ |
| static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h) |
| { |
| h->ioaccel_maxsg = |
| readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); |
| if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) |
| h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; |
| |
| /* Command structures must be aligned on a 128-byte boundary |
| * because the 7 lower bits of the address are used by the |
| * hardware. |
| */ |
| BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % |
| IOACCEL1_COMMANDLIST_ALIGNMENT); |
| h->ioaccel_cmd_pool = |
| pci_alloc_consistent(h->pdev, |
| h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), |
| &(h->ioaccel_cmd_pool_dhandle)); |
| |
| h->ioaccel1_blockFetchTable = |
| kmalloc(((h->ioaccel_maxsg + 1) * |
| sizeof(u32)), GFP_KERNEL); |
| |
| if ((h->ioaccel_cmd_pool == NULL) || |
| (h->ioaccel1_blockFetchTable == NULL)) |
| goto clean_up; |
| |
| memset(h->ioaccel_cmd_pool, 0, |
| h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); |
| return 0; |
| |
| clean_up: |
| hpsa_free_ioaccel1_cmd_and_bft(h); |
| return -ENOMEM; |
| } |
| |
| /* Free ioaccel2 mode command blocks and block fetch table */ |
| static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h) |
| { |
| hpsa_free_ioaccel2_sg_chain_blocks(h); |
| |
| if (h->ioaccel2_cmd_pool) { |
| pci_free_consistent(h->pdev, |
| h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), |
| h->ioaccel2_cmd_pool, |
| h->ioaccel2_cmd_pool_dhandle); |
| h->ioaccel2_cmd_pool = NULL; |
| h->ioaccel2_cmd_pool_dhandle = 0; |
| } |
| kfree(h->ioaccel2_blockFetchTable); |
| h->ioaccel2_blockFetchTable = NULL; |
| } |
| |
| /* Allocate ioaccel2 mode command blocks and block fetch table */ |
| static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h) |
| { |
| int rc; |
| |
| /* Allocate ioaccel2 mode command blocks and block fetch table */ |
| |
| h->ioaccel_maxsg = |
| readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); |
| if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) |
| h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; |
| |
| BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % |
| IOACCEL2_COMMANDLIST_ALIGNMENT); |
| h->ioaccel2_cmd_pool = |
| pci_alloc_consistent(h->pdev, |
| h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), |
| &(h->ioaccel2_cmd_pool_dhandle)); |
| |
| h->ioaccel2_blockFetchTable = |
| kmalloc(((h->ioaccel_maxsg + 1) * |
| sizeof(u32)), GFP_KERNEL); |
| |
| if ((h->ioaccel2_cmd_pool == NULL) || |
| (h->ioaccel2_blockFetchTable == NULL)) { |
| rc = -ENOMEM; |
| goto clean_up; |
| } |
| |
| rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h); |
| if (rc) |
| goto clean_up; |
| |
| memset(h->ioaccel2_cmd_pool, 0, |
| h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); |
| return 0; |
| |
| clean_up: |
| hpsa_free_ioaccel2_cmd_and_bft(h); |
| return rc; |
| } |
| |
| /* Free items allocated by hpsa_put_ctlr_into_performant_mode */ |
| static void hpsa_free_performant_mode(struct ctlr_info *h) |
| { |
| kfree(h->blockFetchTable); |
| h->blockFetchTable = NULL; |
| hpsa_free_reply_queues(h); |
| hpsa_free_ioaccel1_cmd_and_bft(h); |
| hpsa_free_ioaccel2_cmd_and_bft(h); |
| } |
| |
| /* return -ENODEV on error, 0 on success (or no action) |
| * allocates numerous items that must be freed later |
| */ |
| static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) |
| { |
| u32 trans_support; |
| unsigned long transMethod = CFGTBL_Trans_Performant | |
| CFGTBL_Trans_use_short_tags; |
| int i, rc; |
| |
| if (hpsa_simple_mode) |
| return 0; |
| |
| trans_support = readl(&(h->cfgtable->TransportSupport)); |
| if (!(trans_support & PERFORMANT_MODE)) |
| return 0; |
| |
| /* Check for I/O accelerator mode support */ |
| if (trans_support & CFGTBL_Trans_io_accel1) { |
| transMethod |= CFGTBL_Trans_io_accel1 | |
| CFGTBL_Trans_enable_directed_msix; |
| rc = hpsa_alloc_ioaccel1_cmd_and_bft(h); |
| if (rc) |
| return rc; |
| } else if (trans_support & CFGTBL_Trans_io_accel2) { |
| transMethod |= CFGTBL_Trans_io_accel2 | |
| CFGTBL_Trans_enable_directed_msix; |
| rc = hpsa_alloc_ioaccel2_cmd_and_bft(h); |
| if (rc) |
| return rc; |
| } |
| |
| h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1; |
| hpsa_get_max_perf_mode_cmds(h); |
| /* Performant mode ring buffer and supporting data structures */ |
| h->reply_queue_size = h->max_commands * sizeof(u64); |
| |
| for (i = 0; i < h->nreply_queues; i++) { |
| h->reply_queue[i].head = pci_alloc_consistent(h->pdev, |
| h->reply_queue_size, |
| &(h->reply_queue[i].busaddr)); |
| if (!h->reply_queue[i].head) { |
| rc = -ENOMEM; |
| goto clean1; /* rq, ioaccel */ |
| } |
| h->reply_queue[i].size = h->max_commands; |
| h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ |
| h->reply_queue[i].current_entry = 0; |
| } |
| |
| /* Need a block fetch table for performant mode */ |
| h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * |
| sizeof(u32)), GFP_KERNEL); |
| if (!h->blockFetchTable) { |
| rc = -ENOMEM; |
| goto clean1; /* rq, ioaccel */ |
| } |
| |
| rc = hpsa_enter_performant_mode(h, trans_support); |
| if (rc) |
| goto clean2; /* bft, rq, ioaccel */ |
| return 0; |
| |
| clean2: /* bft, rq, ioaccel */ |
| kfree(h->blockFetchTable); |
| h->blockFetchTable = NULL; |
| clean1: /* rq, ioaccel */ |
| hpsa_free_reply_queues(h); |
| hpsa_free_ioaccel1_cmd_and_bft(h); |
| hpsa_free_ioaccel2_cmd_and_bft(h); |
| return rc; |
| } |
| |
| static int is_accelerated_cmd(struct CommandList *c) |
| { |
| return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; |
| } |
| |
| static void hpsa_drain_accel_commands(struct ctlr_info *h) |
| { |
| struct CommandList *c = NULL; |
| int i, accel_cmds_out; |
| int refcount; |
| |
| do { /* wait for all outstanding ioaccel commands to drain out */ |
| accel_cmds_out = 0; |
| for (i = 0; i < h->nr_cmds; i++) { |
| c = h->cmd_pool + i; |
| refcount = atomic_inc_return(&c->refcount); |
| if (refcount > 1) /* Command is allocated */ |
| accel_cmds_out += is_accelerated_cmd(c); |
| cmd_free(h, c); |
| } |
| if (accel_cmds_out <= 0) |
| break; |
| msleep(100); |
| } while (1); |
| } |
| |
| /* |
| * This is it. Register the PCI driver information for the cards we control |
| * the OS will call our registered routines when it finds one of our cards. |
| */ |
| static int __init hpsa_init(void) |
| { |
| return pci_register_driver(&hpsa_pci_driver); |
| } |
| |
| static void __exit hpsa_cleanup(void) |
| { |
| pci_unregister_driver(&hpsa_pci_driver); |
| } |
| |
| static void __attribute__((unused)) verify_offsets(void) |
| { |
| #define VERIFY_OFFSET(member, offset) \ |
| BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) |
| |
| VERIFY_OFFSET(structure_size, 0); |
| VERIFY_OFFSET(volume_blk_size, 4); |
| VERIFY_OFFSET(volume_blk_cnt, 8); |
| VERIFY_OFFSET(phys_blk_shift, 16); |
| VERIFY_OFFSET(parity_rotation_shift, 17); |
| VERIFY_OFFSET(strip_size, 18); |
| VERIFY_OFFSET(disk_starting_blk, 20); |
| VERIFY_OFFSET(disk_blk_cnt, 28); |
| VERIFY_OFFSET(data_disks_per_row, 36); |
| VERIFY_OFFSET(metadata_disks_per_row, 38); |
| VERIFY_OFFSET(row_cnt, 40); |
| VERIFY_OFFSET(layout_map_count, 42); |
| VERIFY_OFFSET(flags, 44); |
| VERIFY_OFFSET(dekindex, 46); |
| /* VERIFY_OFFSET(reserved, 48 */ |
| VERIFY_OFFSET(data, 64); |
| |
| #undef VERIFY_OFFSET |
| |
| #define VERIFY_OFFSET(member, offset) \ |
| BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) |
| |
| VERIFY_OFFSET(IU_type, 0); |
| VERIFY_OFFSET(direction, 1); |
| VERIFY_OFFSET(reply_queue, 2); |
| /* VERIFY_OFFSET(reserved1, 3); */ |
| VERIFY_OFFSET(scsi_nexus, 4); |
| VERIFY_OFFSET(Tag, 8); |
| VERIFY_OFFSET(cdb, 16); |
| VERIFY_OFFSET(cciss_lun, 32); |
| VERIFY_OFFSET(data_len, 40); |
| VERIFY_OFFSET(cmd_priority_task_attr, 44); |
| VERIFY_OFFSET(sg_count, 45); |
| /* VERIFY_OFFSET(reserved3 */ |
| VERIFY_OFFSET(err_ptr, 48); |
| VERIFY_OFFSET(err_len, 56); |
| /* VERIFY_OFFSET(reserved4 */ |
| VERIFY_OFFSET(sg, 64); |
| |
| #undef VERIFY_OFFSET |
| |
| #define VERIFY_OFFSET(member, offset) \ |
| BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) |
| |
| VERIFY_OFFSET(dev_handle, 0x00); |
| VERIFY_OFFSET(reserved1, 0x02); |
| VERIFY_OFFSET(function, 0x03); |
| VERIFY_OFFSET(reserved2, 0x04); |
| VERIFY_OFFSET(err_info, 0x0C); |
| VERIFY_OFFSET(reserved3, 0x10); |
| VERIFY_OFFSET(err_info_len, 0x12); |
| VERIFY_OFFSET(reserved4, 0x13); |
| VERIFY_OFFSET(sgl_offset, 0x14); |
| VERIFY_OFFSET(reserved5, 0x15); |
| VERIFY_OFFSET(transfer_len, 0x1C); |
| VERIFY_OFFSET(reserved6, 0x20); |
| VERIFY_OFFSET(io_flags, 0x24); |
| VERIFY_OFFSET(reserved7, 0x26); |
| VERIFY_OFFSET(LUN, 0x34); |
| VERIFY_OFFSET(control, 0x3C); |
| VERIFY_OFFSET(CDB, 0x40); |
| VERIFY_OFFSET(reserved8, 0x50); |
| VERIFY_OFFSET(host_context_flags, 0x60); |
| VERIFY_OFFSET(timeout_sec, 0x62); |
| VERIFY_OFFSET(ReplyQueue, 0x64); |
| VERIFY_OFFSET(reserved9, 0x65); |
| VERIFY_OFFSET(tag, 0x68); |
| VERIFY_OFFSET(host_addr, 0x70); |
| VERIFY_OFFSET(CISS_LUN, 0x78); |
| VERIFY_OFFSET(SG, 0x78 + 8); |
| #undef VERIFY_OFFSET |
| } |
| |
| module_init(hpsa_init); |
| module_exit(hpsa_cleanup); |