| /* |
| * Copyright 2013 Emilio López |
| * |
| * Emilio López <emilio@elopez.com.ar> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/clk-provider.h> |
| #include <linux/clkdev.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/reset-controller.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/log2.h> |
| |
| #include "clk-factors.h" |
| |
| static DEFINE_SPINLOCK(clk_lock); |
| |
| /** |
| * sun6i_a31_ahb1_clk_setup() - Setup function for a31 ahb1 composite clk |
| */ |
| |
| #define SUN6I_AHB1_MAX_PARENTS 4 |
| #define SUN6I_AHB1_MUX_PARENT_PLL6 3 |
| #define SUN6I_AHB1_MUX_SHIFT 12 |
| /* un-shifted mask is what mux_clk expects */ |
| #define SUN6I_AHB1_MUX_MASK 0x3 |
| #define SUN6I_AHB1_MUX_GET_PARENT(reg) ((reg >> SUN6I_AHB1_MUX_SHIFT) & \ |
| SUN6I_AHB1_MUX_MASK) |
| |
| #define SUN6I_AHB1_DIV_SHIFT 4 |
| #define SUN6I_AHB1_DIV_MASK (0x3 << SUN6I_AHB1_DIV_SHIFT) |
| #define SUN6I_AHB1_DIV_GET(reg) ((reg & SUN6I_AHB1_DIV_MASK) >> \ |
| SUN6I_AHB1_DIV_SHIFT) |
| #define SUN6I_AHB1_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_DIV_MASK) | \ |
| (div << SUN6I_AHB1_DIV_SHIFT)) |
| #define SUN6I_AHB1_PLL6_DIV_SHIFT 6 |
| #define SUN6I_AHB1_PLL6_DIV_MASK (0x3 << SUN6I_AHB1_PLL6_DIV_SHIFT) |
| #define SUN6I_AHB1_PLL6_DIV_GET(reg) ((reg & SUN6I_AHB1_PLL6_DIV_MASK) >> \ |
| SUN6I_AHB1_PLL6_DIV_SHIFT) |
| #define SUN6I_AHB1_PLL6_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_PLL6_DIV_MASK) | \ |
| (div << SUN6I_AHB1_PLL6_DIV_SHIFT)) |
| |
| struct sun6i_ahb1_clk { |
| struct clk_hw hw; |
| void __iomem *reg; |
| }; |
| |
| #define to_sun6i_ahb1_clk(_hw) container_of(_hw, struct sun6i_ahb1_clk, hw) |
| |
| static unsigned long sun6i_ahb1_clk_recalc_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw); |
| unsigned long rate; |
| u32 reg; |
| |
| /* Fetch the register value */ |
| reg = readl(ahb1->reg); |
| |
| /* apply pre-divider first if parent is pll6 */ |
| if (SUN6I_AHB1_MUX_GET_PARENT(reg) == SUN6I_AHB1_MUX_PARENT_PLL6) |
| parent_rate /= SUN6I_AHB1_PLL6_DIV_GET(reg) + 1; |
| |
| /* clk divider */ |
| rate = parent_rate >> SUN6I_AHB1_DIV_GET(reg); |
| |
| return rate; |
| } |
| |
| static long sun6i_ahb1_clk_round(unsigned long rate, u8 *divp, u8 *pre_divp, |
| u8 parent, unsigned long parent_rate) |
| { |
| u8 div, calcp, calcm = 1; |
| |
| /* |
| * clock can only divide, so we will never be able to achieve |
| * frequencies higher than the parent frequency |
| */ |
| if (parent_rate && rate > parent_rate) |
| rate = parent_rate; |
| |
| div = DIV_ROUND_UP(parent_rate, rate); |
| |
| /* calculate pre-divider if parent is pll6 */ |
| if (parent == SUN6I_AHB1_MUX_PARENT_PLL6) { |
| if (div < 4) |
| calcp = 0; |
| else if (div / 2 < 4) |
| calcp = 1; |
| else if (div / 4 < 4) |
| calcp = 2; |
| else |
| calcp = 3; |
| |
| calcm = DIV_ROUND_UP(div, 1 << calcp); |
| } else { |
| calcp = __roundup_pow_of_two(div); |
| calcp = calcp > 3 ? 3 : calcp; |
| } |
| |
| /* we were asked to pass back divider values */ |
| if (divp) { |
| *divp = calcp; |
| *pre_divp = calcm - 1; |
| } |
| |
| return (parent_rate / calcm) >> calcp; |
| } |
| |
| static int sun6i_ahb1_clk_determine_rate(struct clk_hw *hw, |
| struct clk_rate_request *req) |
| { |
| struct clk_hw *parent, *best_parent = NULL; |
| int i, num_parents; |
| unsigned long parent_rate, best = 0, child_rate, best_child_rate = 0; |
| |
| /* find the parent that can help provide the fastest rate <= rate */ |
| num_parents = clk_hw_get_num_parents(hw); |
| for (i = 0; i < num_parents; i++) { |
| parent = clk_hw_get_parent_by_index(hw, i); |
| if (!parent) |
| continue; |
| if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) |
| parent_rate = clk_hw_round_rate(parent, req->rate); |
| else |
| parent_rate = clk_hw_get_rate(parent); |
| |
| child_rate = sun6i_ahb1_clk_round(req->rate, NULL, NULL, i, |
| parent_rate); |
| |
| if (child_rate <= req->rate && child_rate > best_child_rate) { |
| best_parent = parent; |
| best = parent_rate; |
| best_child_rate = child_rate; |
| } |
| } |
| |
| if (!best_parent) |
| return -EINVAL; |
| |
| req->best_parent_hw = best_parent; |
| req->best_parent_rate = best; |
| req->rate = best_child_rate; |
| |
| return 0; |
| } |
| |
| static int sun6i_ahb1_clk_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long parent_rate) |
| { |
| struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw); |
| unsigned long flags; |
| u8 div, pre_div, parent; |
| u32 reg; |
| |
| spin_lock_irqsave(&clk_lock, flags); |
| |
| reg = readl(ahb1->reg); |
| |
| /* need to know which parent is used to apply pre-divider */ |
| parent = SUN6I_AHB1_MUX_GET_PARENT(reg); |
| sun6i_ahb1_clk_round(rate, &div, &pre_div, parent, parent_rate); |
| |
| reg = SUN6I_AHB1_DIV_SET(reg, div); |
| reg = SUN6I_AHB1_PLL6_DIV_SET(reg, pre_div); |
| writel(reg, ahb1->reg); |
| |
| spin_unlock_irqrestore(&clk_lock, flags); |
| |
| return 0; |
| } |
| |
| static const struct clk_ops sun6i_ahb1_clk_ops = { |
| .determine_rate = sun6i_ahb1_clk_determine_rate, |
| .recalc_rate = sun6i_ahb1_clk_recalc_rate, |
| .set_rate = sun6i_ahb1_clk_set_rate, |
| }; |
| |
| static void __init sun6i_ahb1_clk_setup(struct device_node *node) |
| { |
| struct clk *clk; |
| struct sun6i_ahb1_clk *ahb1; |
| struct clk_mux *mux; |
| const char *clk_name = node->name; |
| const char *parents[SUN6I_AHB1_MAX_PARENTS]; |
| void __iomem *reg; |
| int i; |
| |
| reg = of_io_request_and_map(node, 0, of_node_full_name(node)); |
| if (IS_ERR(reg)) |
| return; |
| |
| /* we have a mux, we will have >1 parents */ |
| i = of_clk_parent_fill(node, parents, SUN6I_AHB1_MAX_PARENTS); |
| of_property_read_string(node, "clock-output-names", &clk_name); |
| |
| ahb1 = kzalloc(sizeof(struct sun6i_ahb1_clk), GFP_KERNEL); |
| if (!ahb1) |
| return; |
| |
| mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL); |
| if (!mux) { |
| kfree(ahb1); |
| return; |
| } |
| |
| /* set up clock properties */ |
| mux->reg = reg; |
| mux->shift = SUN6I_AHB1_MUX_SHIFT; |
| mux->mask = SUN6I_AHB1_MUX_MASK; |
| mux->lock = &clk_lock; |
| ahb1->reg = reg; |
| |
| clk = clk_register_composite(NULL, clk_name, parents, i, |
| &mux->hw, &clk_mux_ops, |
| &ahb1->hw, &sun6i_ahb1_clk_ops, |
| NULL, NULL, 0); |
| |
| if (!IS_ERR(clk)) { |
| of_clk_add_provider(node, of_clk_src_simple_get, clk); |
| clk_register_clkdev(clk, clk_name, NULL); |
| } |
| } |
| CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk", sun6i_ahb1_clk_setup); |
| |
| /* Maximum number of parents our clocks have */ |
| #define SUNXI_MAX_PARENTS 5 |
| |
| /** |
| * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1 |
| * PLL1 rate is calculated as follows |
| * rate = (parent_rate * n * (k + 1) >> p) / (m + 1); |
| * parent_rate is always 24Mhz |
| */ |
| |
| static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u8 div; |
| |
| /* Normalize value to a 6M multiple */ |
| div = *freq / 6000000; |
| *freq = 6000000 * div; |
| |
| /* we were called to round the frequency, we can now return */ |
| if (n == NULL) |
| return; |
| |
| /* m is always zero for pll1 */ |
| *m = 0; |
| |
| /* k is 1 only on these cases */ |
| if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000) |
| *k = 1; |
| else |
| *k = 0; |
| |
| /* p will be 3 for divs under 10 */ |
| if (div < 10) |
| *p = 3; |
| |
| /* p will be 2 for divs between 10 - 20 and odd divs under 32 */ |
| else if (div < 20 || (div < 32 && (div & 1))) |
| *p = 2; |
| |
| /* p will be 1 for even divs under 32, divs under 40 and odd pairs |
| * of divs between 40-62 */ |
| else if (div < 40 || (div < 64 && (div & 2))) |
| *p = 1; |
| |
| /* any other entries have p = 0 */ |
| else |
| *p = 0; |
| |
| /* calculate a suitable n based on k and p */ |
| div <<= *p; |
| div /= (*k + 1); |
| *n = div / 4; |
| } |
| |
| /** |
| * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1 |
| * PLL1 rate is calculated as follows |
| * rate = parent_rate * (n + 1) * (k + 1) / (m + 1); |
| * parent_rate should always be 24MHz |
| */ |
| static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| /* |
| * We can operate only on MHz, this will make our life easier |
| * later. |
| */ |
| u32 freq_mhz = *freq / 1000000; |
| u32 parent_freq_mhz = parent_rate / 1000000; |
| |
| /* |
| * Round down the frequency to the closest multiple of either |
| * 6 or 16 |
| */ |
| u32 round_freq_6 = round_down(freq_mhz, 6); |
| u32 round_freq_16 = round_down(freq_mhz, 16); |
| |
| if (round_freq_6 > round_freq_16) |
| freq_mhz = round_freq_6; |
| else |
| freq_mhz = round_freq_16; |
| |
| *freq = freq_mhz * 1000000; |
| |
| /* |
| * If the factors pointer are null, we were just called to |
| * round down the frequency. |
| * Exit. |
| */ |
| if (n == NULL) |
| return; |
| |
| /* If the frequency is a multiple of 32 MHz, k is always 3 */ |
| if (!(freq_mhz % 32)) |
| *k = 3; |
| /* If the frequency is a multiple of 9 MHz, k is always 2 */ |
| else if (!(freq_mhz % 9)) |
| *k = 2; |
| /* If the frequency is a multiple of 8 MHz, k is always 1 */ |
| else if (!(freq_mhz % 8)) |
| *k = 1; |
| /* Otherwise, we don't use the k factor */ |
| else |
| *k = 0; |
| |
| /* |
| * If the frequency is a multiple of 2 but not a multiple of |
| * 3, m is 3. This is the first time we use 6 here, yet we |
| * will use it on several other places. |
| * We use this number because it's the lowest frequency we can |
| * generate (with n = 0, k = 0, m = 3), so every other frequency |
| * somehow relates to this frequency. |
| */ |
| if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4) |
| *m = 2; |
| /* |
| * If the frequency is a multiple of 6MHz, but the factor is |
| * odd, m will be 3 |
| */ |
| else if ((freq_mhz / 6) & 1) |
| *m = 3; |
| /* Otherwise, we end up with m = 1 */ |
| else |
| *m = 1; |
| |
| /* Calculate n thanks to the above factors we already got */ |
| *n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1; |
| |
| /* |
| * If n end up being outbound, and that we can still decrease |
| * m, do it. |
| */ |
| if ((*n + 1) > 31 && (*m + 1) > 1) { |
| *n = (*n + 1) / 2 - 1; |
| *m = (*m + 1) / 2 - 1; |
| } |
| } |
| |
| /** |
| * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1 |
| * PLL1 rate is calculated as follows |
| * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1); |
| * parent_rate is always 24Mhz |
| */ |
| |
| static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u8 div; |
| |
| /* Normalize value to a 6M multiple */ |
| div = *freq / 6000000; |
| *freq = 6000000 * div; |
| |
| /* we were called to round the frequency, we can now return */ |
| if (n == NULL) |
| return; |
| |
| /* m is always zero for pll1 */ |
| *m = 0; |
| |
| /* k is 1 only on these cases */ |
| if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000) |
| *k = 1; |
| else |
| *k = 0; |
| |
| /* p will be 2 for divs under 20 and odd divs under 32 */ |
| if (div < 20 || (div < 32 && (div & 1))) |
| *p = 2; |
| |
| /* p will be 1 for even divs under 32, divs under 40 and odd pairs |
| * of divs between 40-62 */ |
| else if (div < 40 || (div < 64 && (div & 2))) |
| *p = 1; |
| |
| /* any other entries have p = 0 */ |
| else |
| *p = 0; |
| |
| /* calculate a suitable n based on k and p */ |
| div <<= *p; |
| div /= (*k + 1); |
| *n = div / 4 - 1; |
| } |
| |
| /** |
| * sun4i_get_pll5_factors() - calculates n, k factors for PLL5 |
| * PLL5 rate is calculated as follows |
| * rate = parent_rate * n * (k + 1) |
| * parent_rate is always 24Mhz |
| */ |
| |
| static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u8 div; |
| |
| /* Normalize value to a parent_rate multiple (24M) */ |
| div = *freq / parent_rate; |
| *freq = parent_rate * div; |
| |
| /* we were called to round the frequency, we can now return */ |
| if (n == NULL) |
| return; |
| |
| if (div < 31) |
| *k = 0; |
| else if (div / 2 < 31) |
| *k = 1; |
| else if (div / 3 < 31) |
| *k = 2; |
| else |
| *k = 3; |
| |
| *n = DIV_ROUND_UP(div, (*k+1)); |
| } |
| |
| /** |
| * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2 |
| * PLL6x2 rate is calculated as follows |
| * rate = parent_rate * (n + 1) * (k + 1) |
| * parent_rate is always 24Mhz |
| */ |
| |
| static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u8 div; |
| |
| /* Normalize value to a parent_rate multiple (24M) */ |
| div = *freq / parent_rate; |
| *freq = parent_rate * div; |
| |
| /* we were called to round the frequency, we can now return */ |
| if (n == NULL) |
| return; |
| |
| *k = div / 32; |
| if (*k > 3) |
| *k = 3; |
| |
| *n = DIV_ROUND_UP(div, (*k+1)) - 1; |
| } |
| |
| /** |
| * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB |
| * AHB rate is calculated as follows |
| * rate = parent_rate >> p |
| */ |
| |
| static void sun5i_a13_get_ahb_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u32 div; |
| |
| /* divide only */ |
| if (parent_rate < *freq) |
| *freq = parent_rate; |
| |
| /* |
| * user manual says valid speed is 8k ~ 276M, but tests show it |
| * can work at speeds up to 300M, just after reparenting to pll6 |
| */ |
| if (*freq < 8000) |
| *freq = 8000; |
| if (*freq > 300000000) |
| *freq = 300000000; |
| |
| div = order_base_2(DIV_ROUND_UP(parent_rate, *freq)); |
| |
| /* p = 0 ~ 3 */ |
| if (div > 3) |
| div = 3; |
| |
| *freq = parent_rate >> div; |
| |
| /* we were called to round the frequency, we can now return */ |
| if (p == NULL) |
| return; |
| |
| *p = div; |
| } |
| |
| /** |
| * sun4i_get_apb1_factors() - calculates m, p factors for APB1 |
| * APB1 rate is calculated as follows |
| * rate = (parent_rate >> p) / (m + 1); |
| */ |
| |
| static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u8 calcm, calcp; |
| |
| if (parent_rate < *freq) |
| *freq = parent_rate; |
| |
| parent_rate = DIV_ROUND_UP(parent_rate, *freq); |
| |
| /* Invalid rate! */ |
| if (parent_rate > 32) |
| return; |
| |
| if (parent_rate <= 4) |
| calcp = 0; |
| else if (parent_rate <= 8) |
| calcp = 1; |
| else if (parent_rate <= 16) |
| calcp = 2; |
| else |
| calcp = 3; |
| |
| calcm = (parent_rate >> calcp) - 1; |
| |
| *freq = (parent_rate >> calcp) / (calcm + 1); |
| |
| /* we were called to round the frequency, we can now return */ |
| if (n == NULL) |
| return; |
| |
| *m = calcm; |
| *p = calcp; |
| } |
| |
| |
| |
| |
| /** |
| * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B |
| * CLK_OUT rate is calculated as follows |
| * rate = (parent_rate >> p) / (m + 1); |
| */ |
| |
| static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u8 div, calcm, calcp; |
| |
| /* These clocks can only divide, so we will never be able to achieve |
| * frequencies higher than the parent frequency */ |
| if (*freq > parent_rate) |
| *freq = parent_rate; |
| |
| div = DIV_ROUND_UP(parent_rate, *freq); |
| |
| if (div < 32) |
| calcp = 0; |
| else if (div / 2 < 32) |
| calcp = 1; |
| else if (div / 4 < 32) |
| calcp = 2; |
| else |
| calcp = 3; |
| |
| calcm = DIV_ROUND_UP(div, 1 << calcp); |
| |
| *freq = (parent_rate >> calcp) / calcm; |
| |
| /* we were called to round the frequency, we can now return */ |
| if (n == NULL) |
| return; |
| |
| *m = calcm - 1; |
| *p = calcp; |
| } |
| |
| /** |
| * sunxi_factors_clk_setup() - Setup function for factor clocks |
| */ |
| |
| static struct clk_factors_config sun4i_pll1_config = { |
| .nshift = 8, |
| .nwidth = 5, |
| .kshift = 4, |
| .kwidth = 2, |
| .mshift = 0, |
| .mwidth = 2, |
| .pshift = 16, |
| .pwidth = 2, |
| }; |
| |
| static struct clk_factors_config sun6i_a31_pll1_config = { |
| .nshift = 8, |
| .nwidth = 5, |
| .kshift = 4, |
| .kwidth = 2, |
| .mshift = 0, |
| .mwidth = 2, |
| .n_start = 1, |
| }; |
| |
| static struct clk_factors_config sun8i_a23_pll1_config = { |
| .nshift = 8, |
| .nwidth = 5, |
| .kshift = 4, |
| .kwidth = 2, |
| .mshift = 0, |
| .mwidth = 2, |
| .pshift = 16, |
| .pwidth = 2, |
| .n_start = 1, |
| }; |
| |
| static struct clk_factors_config sun4i_pll5_config = { |
| .nshift = 8, |
| .nwidth = 5, |
| .kshift = 4, |
| .kwidth = 2, |
| }; |
| |
| static struct clk_factors_config sun6i_a31_pll6_config = { |
| .nshift = 8, |
| .nwidth = 5, |
| .kshift = 4, |
| .kwidth = 2, |
| .n_start = 1, |
| }; |
| |
| static struct clk_factors_config sun5i_a13_ahb_config = { |
| .pshift = 4, |
| .pwidth = 2, |
| }; |
| |
| static struct clk_factors_config sun4i_apb1_config = { |
| .mshift = 0, |
| .mwidth = 5, |
| .pshift = 16, |
| .pwidth = 2, |
| }; |
| |
| /* user manual says "n" but it's really "p" */ |
| static struct clk_factors_config sun7i_a20_out_config = { |
| .mshift = 8, |
| .mwidth = 5, |
| .pshift = 20, |
| .pwidth = 2, |
| }; |
| |
| static const struct factors_data sun4i_pll1_data __initconst = { |
| .enable = 31, |
| .table = &sun4i_pll1_config, |
| .getter = sun4i_get_pll1_factors, |
| }; |
| |
| static const struct factors_data sun6i_a31_pll1_data __initconst = { |
| .enable = 31, |
| .table = &sun6i_a31_pll1_config, |
| .getter = sun6i_a31_get_pll1_factors, |
| }; |
| |
| static const struct factors_data sun8i_a23_pll1_data __initconst = { |
| .enable = 31, |
| .table = &sun8i_a23_pll1_config, |
| .getter = sun8i_a23_get_pll1_factors, |
| }; |
| |
| static const struct factors_data sun7i_a20_pll4_data __initconst = { |
| .enable = 31, |
| .table = &sun4i_pll5_config, |
| .getter = sun4i_get_pll5_factors, |
| }; |
| |
| static const struct factors_data sun4i_pll5_data __initconst = { |
| .enable = 31, |
| .table = &sun4i_pll5_config, |
| .getter = sun4i_get_pll5_factors, |
| .name = "pll5", |
| }; |
| |
| static const struct factors_data sun4i_pll6_data __initconst = { |
| .enable = 31, |
| .table = &sun4i_pll5_config, |
| .getter = sun4i_get_pll5_factors, |
| .name = "pll6", |
| }; |
| |
| static const struct factors_data sun6i_a31_pll6_data __initconst = { |
| .enable = 31, |
| .table = &sun6i_a31_pll6_config, |
| .getter = sun6i_a31_get_pll6_factors, |
| .name = "pll6x2", |
| }; |
| |
| static const struct factors_data sun5i_a13_ahb_data __initconst = { |
| .mux = 6, |
| .muxmask = BIT(1) | BIT(0), |
| .table = &sun5i_a13_ahb_config, |
| .getter = sun5i_a13_get_ahb_factors, |
| }; |
| |
| static const struct factors_data sun4i_apb1_data __initconst = { |
| .mux = 24, |
| .muxmask = BIT(1) | BIT(0), |
| .table = &sun4i_apb1_config, |
| .getter = sun4i_get_apb1_factors, |
| }; |
| |
| static const struct factors_data sun7i_a20_out_data __initconst = { |
| .enable = 31, |
| .mux = 24, |
| .muxmask = BIT(1) | BIT(0), |
| .table = &sun7i_a20_out_config, |
| .getter = sun7i_a20_get_out_factors, |
| }; |
| |
| static struct clk * __init sunxi_factors_clk_setup(struct device_node *node, |
| const struct factors_data *data) |
| { |
| void __iomem *reg; |
| |
| reg = of_iomap(node, 0); |
| if (!reg) { |
| pr_err("Could not get registers for factors-clk: %s\n", |
| node->name); |
| return NULL; |
| } |
| |
| return sunxi_factors_register(node, data, &clk_lock, reg); |
| } |
| |
| |
| |
| /** |
| * sunxi_mux_clk_setup() - Setup function for muxes |
| */ |
| |
| #define SUNXI_MUX_GATE_WIDTH 2 |
| |
| struct mux_data { |
| u8 shift; |
| }; |
| |
| static const struct mux_data sun4i_cpu_mux_data __initconst = { |
| .shift = 16, |
| }; |
| |
| static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = { |
| .shift = 12, |
| }; |
| |
| static void __init sunxi_mux_clk_setup(struct device_node *node, |
| struct mux_data *data) |
| { |
| struct clk *clk; |
| const char *clk_name = node->name; |
| const char *parents[SUNXI_MAX_PARENTS]; |
| void __iomem *reg; |
| int i; |
| |
| reg = of_iomap(node, 0); |
| |
| i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS); |
| of_property_read_string(node, "clock-output-names", &clk_name); |
| |
| clk = clk_register_mux(NULL, clk_name, parents, i, |
| CLK_SET_RATE_PARENT, reg, |
| data->shift, SUNXI_MUX_GATE_WIDTH, |
| 0, &clk_lock); |
| |
| if (clk) { |
| of_clk_add_provider(node, of_clk_src_simple_get, clk); |
| clk_register_clkdev(clk, clk_name, NULL); |
| } |
| } |
| |
| |
| |
| /** |
| * sunxi_divider_clk_setup() - Setup function for simple divider clocks |
| */ |
| |
| struct div_data { |
| u8 shift; |
| u8 pow; |
| u8 width; |
| const struct clk_div_table *table; |
| }; |
| |
| static const struct div_data sun4i_axi_data __initconst = { |
| .shift = 0, |
| .pow = 0, |
| .width = 2, |
| }; |
| |
| static const struct clk_div_table sun8i_a23_axi_table[] __initconst = { |
| { .val = 0, .div = 1 }, |
| { .val = 1, .div = 2 }, |
| { .val = 2, .div = 3 }, |
| { .val = 3, .div = 4 }, |
| { .val = 4, .div = 4 }, |
| { .val = 5, .div = 4 }, |
| { .val = 6, .div = 4 }, |
| { .val = 7, .div = 4 }, |
| { } /* sentinel */ |
| }; |
| |
| static const struct div_data sun8i_a23_axi_data __initconst = { |
| .width = 3, |
| .table = sun8i_a23_axi_table, |
| }; |
| |
| static const struct div_data sun4i_ahb_data __initconst = { |
| .shift = 4, |
| .pow = 1, |
| .width = 2, |
| }; |
| |
| static const struct clk_div_table sun4i_apb0_table[] __initconst = { |
| { .val = 0, .div = 2 }, |
| { .val = 1, .div = 2 }, |
| { .val = 2, .div = 4 }, |
| { .val = 3, .div = 8 }, |
| { } /* sentinel */ |
| }; |
| |
| static const struct div_data sun4i_apb0_data __initconst = { |
| .shift = 8, |
| .pow = 1, |
| .width = 2, |
| .table = sun4i_apb0_table, |
| }; |
| |
| static void __init sunxi_divider_clk_setup(struct device_node *node, |
| struct div_data *data) |
| { |
| struct clk *clk; |
| const char *clk_name = node->name; |
| const char *clk_parent; |
| void __iomem *reg; |
| |
| reg = of_iomap(node, 0); |
| |
| clk_parent = of_clk_get_parent_name(node, 0); |
| |
| of_property_read_string(node, "clock-output-names", &clk_name); |
| |
| clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0, |
| reg, data->shift, data->width, |
| data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0, |
| data->table, &clk_lock); |
| if (clk) { |
| of_clk_add_provider(node, of_clk_src_simple_get, clk); |
| clk_register_clkdev(clk, clk_name, NULL); |
| } |
| } |
| |
| |
| |
| /** |
| * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks |
| */ |
| |
| #define SUNXI_GATES_MAX_SIZE 64 |
| |
| struct gates_data { |
| DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE); |
| }; |
| |
| /** |
| * sunxi_divs_clk_setup() helper data |
| */ |
| |
| #define SUNXI_DIVS_MAX_QTY 4 |
| #define SUNXI_DIVISOR_WIDTH 2 |
| |
| struct divs_data { |
| const struct factors_data *factors; /* data for the factor clock */ |
| int ndivs; /* number of outputs */ |
| /* |
| * List of outputs. Refer to the diagram for sunxi_divs_clk_setup(): |
| * self or base factor clock refers to the output from the pll |
| * itself. The remaining refer to fixed or configurable divider |
| * outputs. |
| */ |
| struct { |
| u8 self; /* is it the base factor clock? (only one) */ |
| u8 fixed; /* is it a fixed divisor? if not... */ |
| struct clk_div_table *table; /* is it a table based divisor? */ |
| u8 shift; /* otherwise it's a normal divisor with this shift */ |
| u8 pow; /* is it power-of-two based? */ |
| u8 gate; /* is it independently gateable? */ |
| } div[SUNXI_DIVS_MAX_QTY]; |
| }; |
| |
| static struct clk_div_table pll6_sata_tbl[] = { |
| { .val = 0, .div = 6, }, |
| { .val = 1, .div = 12, }, |
| { .val = 2, .div = 18, }, |
| { .val = 3, .div = 24, }, |
| { } /* sentinel */ |
| }; |
| |
| static const struct divs_data pll5_divs_data __initconst = { |
| .factors = &sun4i_pll5_data, |
| .ndivs = 2, |
| .div = { |
| { .shift = 0, .pow = 0, }, /* M, DDR */ |
| { .shift = 16, .pow = 1, }, /* P, other */ |
| /* No output for the base factor clock */ |
| } |
| }; |
| |
| static const struct divs_data pll6_divs_data __initconst = { |
| .factors = &sun4i_pll6_data, |
| .ndivs = 4, |
| .div = { |
| { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */ |
| { .fixed = 2 }, /* P, other */ |
| { .self = 1 }, /* base factor clock, 2x */ |
| { .fixed = 4 }, /* pll6 / 4, used as ahb input */ |
| } |
| }; |
| |
| static const struct divs_data sun6i_a31_pll6_divs_data __initconst = { |
| .factors = &sun6i_a31_pll6_data, |
| .ndivs = 2, |
| .div = { |
| { .fixed = 2 }, /* normal output */ |
| { .self = 1 }, /* base factor clock, 2x */ |
| } |
| }; |
| |
| /** |
| * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks |
| * |
| * These clocks look something like this |
| * ________________________ |
| * | ___divisor 1---|----> to consumer |
| * parent >--| pll___/___divisor 2---|----> to consumer |
| * | \_______________|____> to consumer |
| * |________________________| |
| */ |
| |
| static void __init sunxi_divs_clk_setup(struct device_node *node, |
| struct divs_data *data) |
| { |
| struct clk_onecell_data *clk_data; |
| const char *parent; |
| const char *clk_name; |
| struct clk **clks, *pclk; |
| struct clk_hw *gate_hw, *rate_hw; |
| const struct clk_ops *rate_ops; |
| struct clk_gate *gate = NULL; |
| struct clk_fixed_factor *fix_factor; |
| struct clk_divider *divider; |
| void __iomem *reg; |
| int ndivs = SUNXI_DIVS_MAX_QTY, i = 0; |
| int flags, clkflags; |
| |
| /* if number of children known, use it */ |
| if (data->ndivs) |
| ndivs = data->ndivs; |
| |
| /* Set up factor clock that we will be dividing */ |
| pclk = sunxi_factors_clk_setup(node, data->factors); |
| parent = __clk_get_name(pclk); |
| |
| reg = of_iomap(node, 0); |
| |
| clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL); |
| if (!clk_data) |
| return; |
| |
| clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL); |
| if (!clks) |
| goto free_clkdata; |
| |
| clk_data->clks = clks; |
| |
| /* It's not a good idea to have automatic reparenting changing |
| * our RAM clock! */ |
| clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT; |
| |
| for (i = 0; i < ndivs; i++) { |
| if (of_property_read_string_index(node, "clock-output-names", |
| i, &clk_name) != 0) |
| break; |
| |
| /* If this is the base factor clock, only update clks */ |
| if (data->div[i].self) { |
| clk_data->clks[i] = pclk; |
| continue; |
| } |
| |
| gate_hw = NULL; |
| rate_hw = NULL; |
| rate_ops = NULL; |
| |
| /* If this leaf clock can be gated, create a gate */ |
| if (data->div[i].gate) { |
| gate = kzalloc(sizeof(*gate), GFP_KERNEL); |
| if (!gate) |
| goto free_clks; |
| |
| gate->reg = reg; |
| gate->bit_idx = data->div[i].gate; |
| gate->lock = &clk_lock; |
| |
| gate_hw = &gate->hw; |
| } |
| |
| /* Leaves can be fixed or configurable divisors */ |
| if (data->div[i].fixed) { |
| fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL); |
| if (!fix_factor) |
| goto free_gate; |
| |
| fix_factor->mult = 1; |
| fix_factor->div = data->div[i].fixed; |
| |
| rate_hw = &fix_factor->hw; |
| rate_ops = &clk_fixed_factor_ops; |
| } else { |
| divider = kzalloc(sizeof(*divider), GFP_KERNEL); |
| if (!divider) |
| goto free_gate; |
| |
| flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0; |
| |
| divider->reg = reg; |
| divider->shift = data->div[i].shift; |
| divider->width = SUNXI_DIVISOR_WIDTH; |
| divider->flags = flags; |
| divider->lock = &clk_lock; |
| divider->table = data->div[i].table; |
| |
| rate_hw = ÷r->hw; |
| rate_ops = &clk_divider_ops; |
| } |
| |
| /* Wrap the (potential) gate and the divisor on a composite |
| * clock to unify them */ |
| clks[i] = clk_register_composite(NULL, clk_name, &parent, 1, |
| NULL, NULL, |
| rate_hw, rate_ops, |
| gate_hw, &clk_gate_ops, |
| clkflags); |
| |
| WARN_ON(IS_ERR(clk_data->clks[i])); |
| clk_register_clkdev(clks[i], clk_name, NULL); |
| } |
| |
| /* Adjust to the real max */ |
| clk_data->clk_num = i; |
| |
| of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); |
| |
| return; |
| |
| free_gate: |
| kfree(gate); |
| free_clks: |
| kfree(clks); |
| free_clkdata: |
| kfree(clk_data); |
| } |
| |
| |
| |
| /* Matches for factors clocks */ |
| static const struct of_device_id clk_factors_match[] __initconst = { |
| {.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,}, |
| {.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,}, |
| {.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,}, |
| {.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,}, |
| {.compatible = "allwinner,sun5i-a13-ahb-clk", .data = &sun5i_a13_ahb_data,}, |
| {.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,}, |
| {.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,}, |
| {} |
| }; |
| |
| /* Matches for divider clocks */ |
| static const struct of_device_id clk_div_match[] __initconst = { |
| {.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,}, |
| {.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,}, |
| {.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,}, |
| {.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,}, |
| {} |
| }; |
| |
| /* Matches for divided outputs */ |
| static const struct of_device_id clk_divs_match[] __initconst = { |
| {.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,}, |
| {.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,}, |
| {.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_divs_data,}, |
| {} |
| }; |
| |
| /* Matches for mux clocks */ |
| static const struct of_device_id clk_mux_match[] __initconst = { |
| {.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,}, |
| {.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,}, |
| {} |
| }; |
| |
| |
| static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match, |
| void *function) |
| { |
| struct device_node *np; |
| const struct div_data *data; |
| const struct of_device_id *match; |
| void (*setup_function)(struct device_node *, const void *) = function; |
| |
| for_each_matching_node_and_match(np, clk_match, &match) { |
| data = match->data; |
| setup_function(np, data); |
| } |
| } |
| |
| static void __init sunxi_init_clocks(const char *clocks[], int nclocks) |
| { |
| unsigned int i; |
| |
| /* Register divided output clocks */ |
| of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup); |
| |
| /* Register factor clocks */ |
| of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup); |
| |
| /* Register divider clocks */ |
| of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup); |
| |
| /* Register mux clocks */ |
| of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup); |
| |
| /* Protect the clocks that needs to stay on */ |
| for (i = 0; i < nclocks; i++) { |
| struct clk *clk = clk_get(NULL, clocks[i]); |
| |
| if (!IS_ERR(clk)) |
| clk_prepare_enable(clk); |
| } |
| } |
| |
| static const char *sun4i_a10_critical_clocks[] __initdata = { |
| "pll5_ddr", |
| }; |
| |
| static void __init sun4i_a10_init_clocks(struct device_node *node) |
| { |
| sunxi_init_clocks(sun4i_a10_critical_clocks, |
| ARRAY_SIZE(sun4i_a10_critical_clocks)); |
| } |
| CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks); |
| |
| static const char *sun5i_critical_clocks[] __initdata = { |
| "cpu", |
| "pll5_ddr", |
| }; |
| |
| static void __init sun5i_init_clocks(struct device_node *node) |
| { |
| sunxi_init_clocks(sun5i_critical_clocks, |
| ARRAY_SIZE(sun5i_critical_clocks)); |
| } |
| CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks); |
| CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks); |
| CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks); |
| |
| static const char *sun6i_critical_clocks[] __initdata = { |
| "cpu", |
| }; |
| |
| static void __init sun6i_init_clocks(struct device_node *node) |
| { |
| sunxi_init_clocks(sun6i_critical_clocks, |
| ARRAY_SIZE(sun6i_critical_clocks)); |
| } |
| CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks); |
| CLK_OF_DECLARE(sun6i_a31s_clk_init, "allwinner,sun6i-a31s", sun6i_init_clocks); |
| CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks); |
| CLK_OF_DECLARE(sun8i_a33_clk_init, "allwinner,sun8i-a33", sun6i_init_clocks); |
| |
| static void __init sun9i_init_clocks(struct device_node *node) |
| { |
| sunxi_init_clocks(NULL, 0); |
| } |
| CLK_OF_DECLARE(sun9i_a80_clk_init, "allwinner,sun9i-a80", sun9i_init_clocks); |