hwmon: (dme1737) Add support for the SMSC SCH5027

Add support for the SCH5027. The differences to the DME1737 are:
- No support for programmable temp offsets
- In auto mode, PWM outputs stay on min value if temp goes below low threshold
  and can't be programmed to fully turn off
- Different voltage scaling
- No VID input

Signed-off-by: Juerg Haefliger <juergh@gmail.com>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
diff --git a/Documentation/hwmon/dme1737 b/Documentation/hwmon/dme1737
index b1fe009..001d2e7 100644
--- a/Documentation/hwmon/dme1737
+++ b/Documentation/hwmon/dme1737
@@ -10,6 +10,10 @@
     Prefix: 'sch311x'
     Addresses scanned: none, address read from Super-I/O config space
     Datasheet: http://www.nuhorizons.com/FeaturedProducts/Volume1/SMSC/311x.pdf
+  * SMSC SCH5027
+    Prefix: 'sch5027'
+    Addresses scanned: I2C 0x2c, 0x2d, 0x2e
+    Datasheet: Provided by SMSC upon request and under NDA
 
 Authors:
     Juerg Haefliger <juergh@gmail.com>
@@ -27,33 +31,31 @@
 			following boards:
 			- VIA EPIA SN18000
 
-Note that there is no need to use this parameter if the driver loads without
-complaining. The driver will say so if it is necessary.
-
 
 Description
 -----------
 
 This driver implements support for the hardware monitoring capabilities of the
-SMSC DME1737 and Asus A8000 (which are the same) and SMSC SCH311x Super-I/O
-chips. These chips feature monitoring of 3 temp sensors temp[1-3] (2 remote
-diodes and 1 internal), 7 voltages in[0-6] (6 external and 1 internal) and up
-to 6 fan speeds fan[1-6]. Additionally, the chips implement up to 5 PWM
-outputs pwm[1-3,5-6] for controlling fan speeds both manually and
+SMSC DME1737 and Asus A8000 (which are the same), SMSC SCH5027, and SMSC
+SCH311x Super-I/O chips. These chips feature monitoring of 3 temp sensors
+temp[1-3] (2 remote diodes and 1 internal), 7 voltages in[0-6] (6 external and
+1 internal) and up to 6 fan speeds fan[1-6]. Additionally, the chips implement
+up to 5 PWM outputs pwm[1-3,5-6] for controlling fan speeds both manually and
 automatically.
 
-For the DME1737 and A8000, fan[1-2] and pwm[1-2] are always present. Fan[3-6]
-and pwm[3,5-6] are optional features and their availability depends on the
-configuration of the chip. The driver will detect which features are present
-during initialization and create the sysfs attributes accordingly.
+For the DME1737, A8000 and SCH5027, fan[1-2] and pwm[1-2] are always present.
+Fan[3-6] and pwm[3,5-6] are optional features and their availability depends on
+the configuration of the chip. The driver will detect which features are
+present during initialization and create the sysfs attributes accordingly.
 
 For the SCH311x, fan[1-3] and pwm[1-3] are always present and fan[4-6] and
 pwm[5-6] don't exist.
 
-The hardware monitoring features of the DME1737 and A8000 are only accessible
-via SMBus, while the SCH311x only provides access via the ISA bus. The driver
-will therefore register itself as an I2C client driver if it detects a DME1737
-or A8000 and as a platform driver if it detects a SCH311x chip.
+The hardware monitoring features of the DME1737, A8000, and SCH5027 are only
+accessible via SMBus, while the SCH311x only provides access via the ISA bus.
+The driver will therefore register itself as an I2C client driver if it detects
+a DME1737, A8000, or SCH5027 and as a platform driver if it detects a SCH311x
+chip.
 
 
 Voltage Monitoring
@@ -64,6 +66,7 @@
 millivolts and don't need scaling. The voltage inputs are mapped as follows
 (the last column indicates the input ranges):
 
+DME1737, A8000:
 	in0: +5VTR	(+5V standby)		0V - 6.64V
 	in1: Vccp	(processor core)	0V - 3V
 	in2: VCC	(internal +3.3V)	0V - 4.38V
@@ -72,6 +75,24 @@
 	in5: VTR	(+3.3V standby)		0V - 4.38V
 	in6: Vbat	(+3.0V)			0V - 4.38V
 
+SCH311x:
+	in0: +2.5V				0V - 6.64V
+	in1: Vccp	(processor core)	0V - 2V
+	in2: VCC	(internal +3.3V)	0V - 4.38V
+	in3: +5V				0V - 6.64V
+	in4: +12V				0V - 16V
+	in5: VTR	(+3.3V standby)		0V - 4.38V
+	in6: Vbat	(+3.0V)			0V - 4.38V
+
+SCH5027:
+	in0: +5VTR	(+5V standby)		0V - 6.64V
+	in1: Vccp	(processor core)	0V - 3V
+	in2: VCC	(internal +3.3V)	0V - 4.38V
+	in3: V2_IN				0V - 1.5V
+	in4: V1_IN				0V - 1.5V
+	in5: VTR	(+3.3V standby)		0V - 4.38V
+	in6: Vbat	(+3.0V)			0V - 4.38V
+
 Each voltage input has associated min and max limits which trigger an alarm
 when crossed.