| config ARM |
| bool |
| default y |
| select HAVE_AOUT |
| select HAVE_IDE |
| select HAVE_MEMBLOCK |
| select RTC_LIB |
| select SYS_SUPPORTS_APM_EMULATION |
| select GENERIC_ATOMIC64 if (!CPU_32v6K || !AEABI) |
| select HAVE_OPROFILE if (HAVE_PERF_EVENTS) |
| select HAVE_ARCH_KGDB |
| select HAVE_KPROBES if (!XIP_KERNEL && !THUMB2_KERNEL) |
| select HAVE_KRETPROBES if (HAVE_KPROBES) |
| select HAVE_FUNCTION_TRACER if (!XIP_KERNEL) |
| select HAVE_FTRACE_MCOUNT_RECORD if (!XIP_KERNEL) |
| select HAVE_DYNAMIC_FTRACE if (!XIP_KERNEL) |
| select HAVE_FUNCTION_GRAPH_TRACER if (!THUMB2_KERNEL) |
| select HAVE_GENERIC_DMA_COHERENT |
| select HAVE_KERNEL_GZIP |
| select HAVE_KERNEL_LZO |
| select HAVE_KERNEL_LZMA |
| select HAVE_IRQ_WORK |
| select HAVE_PERF_EVENTS |
| select PERF_USE_VMALLOC |
| select HAVE_REGS_AND_STACK_ACCESS_API |
| select HAVE_HW_BREAKPOINT if (PERF_EVENTS && (CPU_V6 || CPU_V7)) |
| select HAVE_C_RECORDMCOUNT |
| help |
| The ARM series is a line of low-power-consumption RISC chip designs |
| licensed by ARM Ltd and targeted at embedded applications and |
| handhelds such as the Compaq IPAQ. ARM-based PCs are no longer |
| manufactured, but legacy ARM-based PC hardware remains popular in |
| Europe. There is an ARM Linux project with a web page at |
| <http://www.arm.linux.org.uk/>. |
| |
| config HAVE_PWM |
| bool |
| |
| config SYS_SUPPORTS_APM_EMULATION |
| bool |
| |
| config HAVE_SCHED_CLOCK |
| bool |
| |
| config GENERIC_GPIO |
| bool |
| |
| config ARCH_USES_GETTIMEOFFSET |
| bool |
| default n |
| |
| config GENERIC_CLOCKEVENTS |
| bool |
| |
| config GENERIC_CLOCKEVENTS_BROADCAST |
| bool |
| depends on GENERIC_CLOCKEVENTS |
| default y if SMP |
| |
| config HAVE_TCM |
| bool |
| select GENERIC_ALLOCATOR |
| |
| config HAVE_PROC_CPU |
| bool |
| |
| config NO_IOPORT |
| bool |
| |
| config EISA |
| bool |
| ---help--- |
| The Extended Industry Standard Architecture (EISA) bus was |
| developed as an open alternative to the IBM MicroChannel bus. |
| |
| The EISA bus provided some of the features of the IBM MicroChannel |
| bus while maintaining backward compatibility with cards made for |
| the older ISA bus. The EISA bus saw limited use between 1988 and |
| 1995 when it was made obsolete by the PCI bus. |
| |
| Say Y here if you are building a kernel for an EISA-based machine. |
| |
| Otherwise, say N. |
| |
| config SBUS |
| bool |
| |
| config MCA |
| bool |
| help |
| MicroChannel Architecture is found in some IBM PS/2 machines and |
| laptops. It is a bus system similar to PCI or ISA. See |
| <file:Documentation/mca.txt> (and especially the web page given |
| there) before attempting to build an MCA bus kernel. |
| |
| config GENERIC_HARDIRQS |
| bool |
| default y |
| |
| config STACKTRACE_SUPPORT |
| bool |
| default y |
| |
| config HAVE_LATENCYTOP_SUPPORT |
| bool |
| depends on !SMP |
| default y |
| |
| config LOCKDEP_SUPPORT |
| bool |
| default y |
| |
| config TRACE_IRQFLAGS_SUPPORT |
| bool |
| default y |
| |
| config HARDIRQS_SW_RESEND |
| bool |
| default y |
| |
| config GENERIC_IRQ_PROBE |
| bool |
| default y |
| |
| config GENERIC_LOCKBREAK |
| bool |
| default y |
| depends on SMP && PREEMPT |
| |
| config RWSEM_GENERIC_SPINLOCK |
| bool |
| default y |
| |
| config RWSEM_XCHGADD_ALGORITHM |
| bool |
| |
| config ARCH_HAS_ILOG2_U32 |
| bool |
| |
| config ARCH_HAS_ILOG2_U64 |
| bool |
| |
| config ARCH_HAS_CPUFREQ |
| bool |
| help |
| Internal node to signify that the ARCH has CPUFREQ support |
| and that the relevant menu configurations are displayed for |
| it. |
| |
| config ARCH_HAS_CPU_IDLE_WAIT |
| def_bool y |
| |
| config GENERIC_HWEIGHT |
| bool |
| default y |
| |
| config GENERIC_CALIBRATE_DELAY |
| bool |
| default y |
| |
| config ARCH_MAY_HAVE_PC_FDC |
| bool |
| |
| config ZONE_DMA |
| bool |
| |
| config NEED_DMA_MAP_STATE |
| def_bool y |
| |
| config GENERIC_ISA_DMA |
| bool |
| |
| config FIQ |
| bool |
| |
| config ARCH_MTD_XIP |
| bool |
| |
| config GENERIC_HARDIRQS_NO__DO_IRQ |
| def_bool y |
| |
| config ARM_L1_CACHE_SHIFT_6 |
| bool |
| help |
| Setting ARM L1 cache line size to 64 Bytes. |
| |
| config VECTORS_BASE |
| hex |
| default 0xffff0000 if MMU || CPU_HIGH_VECTOR |
| default DRAM_BASE if REMAP_VECTORS_TO_RAM |
| default 0x00000000 |
| help |
| The base address of exception vectors. |
| |
| source "init/Kconfig" |
| |
| source "kernel/Kconfig.freezer" |
| |
| menu "System Type" |
| |
| config MMU |
| bool "MMU-based Paged Memory Management Support" |
| default y |
| help |
| Select if you want MMU-based virtualised addressing space |
| support by paged memory management. If unsure, say 'Y'. |
| |
| # |
| # The "ARM system type" choice list is ordered alphabetically by option |
| # text. Please add new entries in the option alphabetic order. |
| # |
| choice |
| prompt "ARM system type" |
| default ARCH_VERSATILE |
| |
| config ARCH_AAEC2000 |
| bool "Agilent AAEC-2000 based" |
| select CPU_ARM920T |
| select ARM_AMBA |
| select HAVE_CLK |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| This enables support for systems based on the Agilent AAEC-2000 |
| |
| config ARCH_INTEGRATOR |
| bool "ARM Ltd. Integrator family" |
| select ARM_AMBA |
| select ARCH_HAS_CPUFREQ |
| select COMMON_CLKDEV |
| select ICST |
| select GENERIC_CLOCKEVENTS |
| select PLAT_VERSATILE |
| help |
| Support for ARM's Integrator platform. |
| |
| config ARCH_REALVIEW |
| bool "ARM Ltd. RealView family" |
| select ARM_AMBA |
| select COMMON_CLKDEV |
| select HAVE_SCHED_CLOCK |
| select ICST |
| select GENERIC_CLOCKEVENTS |
| select ARCH_WANT_OPTIONAL_GPIOLIB |
| select PLAT_VERSATILE |
| select ARM_TIMER_SP804 |
| select GPIO_PL061 if GPIOLIB |
| help |
| This enables support for ARM Ltd RealView boards. |
| |
| config ARCH_VERSATILE |
| bool "ARM Ltd. Versatile family" |
| select ARM_AMBA |
| select ARM_VIC |
| select COMMON_CLKDEV |
| select HAVE_SCHED_CLOCK |
| select ICST |
| select GENERIC_CLOCKEVENTS |
| select ARCH_WANT_OPTIONAL_GPIOLIB |
| select PLAT_VERSATILE |
| select ARM_TIMER_SP804 |
| help |
| This enables support for ARM Ltd Versatile board. |
| |
| config ARCH_VEXPRESS |
| bool "ARM Ltd. Versatile Express family" |
| select ARCH_WANT_OPTIONAL_GPIOLIB |
| select ARM_AMBA |
| select ARM_TIMER_SP804 |
| select COMMON_CLKDEV |
| select GENERIC_CLOCKEVENTS |
| select HAVE_CLK |
| select HAVE_SCHED_CLOCK |
| select ICST |
| select PLAT_VERSATILE |
| help |
| This enables support for the ARM Ltd Versatile Express boards. |
| |
| config ARCH_AT91 |
| bool "Atmel AT91" |
| select ARCH_REQUIRE_GPIOLIB |
| select HAVE_CLK |
| help |
| This enables support for systems based on the Atmel AT91RM9200, |
| AT91SAM9 and AT91CAP9 processors. |
| |
| config ARCH_BCMRING |
| bool "Broadcom BCMRING" |
| depends on MMU |
| select CPU_V6 |
| select ARM_AMBA |
| select COMMON_CLKDEV |
| select GENERIC_CLOCKEVENTS |
| select ARCH_WANT_OPTIONAL_GPIOLIB |
| help |
| Support for Broadcom's BCMRing platform. |
| |
| config ARCH_CLPS711X |
| bool "Cirrus Logic CLPS711x/EP721x-based" |
| select CPU_ARM720T |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| Support for Cirrus Logic 711x/721x based boards. |
| |
| config ARCH_CNS3XXX |
| bool "Cavium Networks CNS3XXX family" |
| select CPU_V6 |
| select GENERIC_CLOCKEVENTS |
| select ARM_GIC |
| select PCI_DOMAINS if PCI |
| help |
| Support for Cavium Networks CNS3XXX platform. |
| |
| config ARCH_GEMINI |
| bool "Cortina Systems Gemini" |
| select CPU_FA526 |
| select ARCH_REQUIRE_GPIOLIB |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| Support for the Cortina Systems Gemini family SoCs |
| |
| config ARCH_EBSA110 |
| bool "EBSA-110" |
| select CPU_SA110 |
| select ISA |
| select NO_IOPORT |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| This is an evaluation board for the StrongARM processor available |
| from Digital. It has limited hardware on-board, including an |
| Ethernet interface, two PCMCIA sockets, two serial ports and a |
| parallel port. |
| |
| config ARCH_EP93XX |
| bool "EP93xx-based" |
| select CPU_ARM920T |
| select ARM_AMBA |
| select ARM_VIC |
| select COMMON_CLKDEV |
| select ARCH_REQUIRE_GPIOLIB |
| select ARCH_HAS_HOLES_MEMORYMODEL |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| This enables support for the Cirrus EP93xx series of CPUs. |
| |
| config ARCH_FOOTBRIDGE |
| bool "FootBridge" |
| select CPU_SA110 |
| select FOOTBRIDGE |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| Support for systems based on the DC21285 companion chip |
| ("FootBridge"), such as the Simtec CATS and the Rebel NetWinder. |
| |
| config ARCH_MXC |
| bool "Freescale MXC/iMX-based" |
| select GENERIC_CLOCKEVENTS |
| select ARCH_REQUIRE_GPIOLIB |
| select COMMON_CLKDEV |
| help |
| Support for Freescale MXC/iMX-based family of processors |
| |
| config ARCH_STMP3XXX |
| bool "Freescale STMP3xxx" |
| select CPU_ARM926T |
| select COMMON_CLKDEV |
| select ARCH_REQUIRE_GPIOLIB |
| select GENERIC_CLOCKEVENTS |
| select USB_ARCH_HAS_EHCI |
| help |
| Support for systems based on the Freescale 3xxx CPUs. |
| |
| config ARCH_NETX |
| bool "Hilscher NetX based" |
| select CPU_ARM926T |
| select ARM_VIC |
| select GENERIC_CLOCKEVENTS |
| help |
| This enables support for systems based on the Hilscher NetX Soc |
| |
| config ARCH_H720X |
| bool "Hynix HMS720x-based" |
| select CPU_ARM720T |
| select ISA_DMA_API |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| This enables support for systems based on the Hynix HMS720x |
| |
| config ARCH_IOP13XX |
| bool "IOP13xx-based" |
| depends on MMU |
| select CPU_XSC3 |
| select PLAT_IOP |
| select PCI |
| select ARCH_SUPPORTS_MSI |
| select VMSPLIT_1G |
| help |
| Support for Intel's IOP13XX (XScale) family of processors. |
| |
| config ARCH_IOP32X |
| bool "IOP32x-based" |
| depends on MMU |
| select CPU_XSCALE |
| select PLAT_IOP |
| select PCI |
| select ARCH_REQUIRE_GPIOLIB |
| help |
| Support for Intel's 80219 and IOP32X (XScale) family of |
| processors. |
| |
| config ARCH_IOP33X |
| bool "IOP33x-based" |
| depends on MMU |
| select CPU_XSCALE |
| select PLAT_IOP |
| select PCI |
| select ARCH_REQUIRE_GPIOLIB |
| help |
| Support for Intel's IOP33X (XScale) family of processors. |
| |
| config ARCH_IXP23XX |
| bool "IXP23XX-based" |
| depends on MMU |
| select CPU_XSC3 |
| select PCI |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| Support for Intel's IXP23xx (XScale) family of processors. |
| |
| config ARCH_IXP2000 |
| bool "IXP2400/2800-based" |
| depends on MMU |
| select CPU_XSCALE |
| select PCI |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| Support for Intel's IXP2400/2800 (XScale) family of processors. |
| |
| config ARCH_IXP4XX |
| bool "IXP4xx-based" |
| depends on MMU |
| select CPU_XSCALE |
| select GENERIC_GPIO |
| select GENERIC_CLOCKEVENTS |
| select HAVE_SCHED_CLOCK |
| select DMABOUNCE if PCI |
| help |
| Support for Intel's IXP4XX (XScale) family of processors. |
| |
| config ARCH_DOVE |
| bool "Marvell Dove" |
| select PCI |
| select ARCH_REQUIRE_GPIOLIB |
| select GENERIC_CLOCKEVENTS |
| select PLAT_ORION |
| help |
| Support for the Marvell Dove SoC 88AP510 |
| |
| config ARCH_KIRKWOOD |
| bool "Marvell Kirkwood" |
| select CPU_FEROCEON |
| select PCI |
| select ARCH_REQUIRE_GPIOLIB |
| select GENERIC_CLOCKEVENTS |
| select PLAT_ORION |
| help |
| Support for the following Marvell Kirkwood series SoCs: |
| 88F6180, 88F6192 and 88F6281. |
| |
| config ARCH_LOKI |
| bool "Marvell Loki (88RC8480)" |
| select CPU_FEROCEON |
| select GENERIC_CLOCKEVENTS |
| select PLAT_ORION |
| help |
| Support for the Marvell Loki (88RC8480) SoC. |
| |
| config ARCH_LPC32XX |
| bool "NXP LPC32XX" |
| select CPU_ARM926T |
| select ARCH_REQUIRE_GPIOLIB |
| select HAVE_IDE |
| select ARM_AMBA |
| select USB_ARCH_HAS_OHCI |
| select COMMON_CLKDEV |
| select GENERIC_TIME |
| select GENERIC_CLOCKEVENTS |
| help |
| Support for the NXP LPC32XX family of processors |
| |
| config ARCH_MV78XX0 |
| bool "Marvell MV78xx0" |
| select CPU_FEROCEON |
| select PCI |
| select ARCH_REQUIRE_GPIOLIB |
| select GENERIC_CLOCKEVENTS |
| select PLAT_ORION |
| help |
| Support for the following Marvell MV78xx0 series SoCs: |
| MV781x0, MV782x0. |
| |
| config ARCH_ORION5X |
| bool "Marvell Orion" |
| depends on MMU |
| select CPU_FEROCEON |
| select PCI |
| select ARCH_REQUIRE_GPIOLIB |
| select GENERIC_CLOCKEVENTS |
| select PLAT_ORION |
| help |
| Support for the following Marvell Orion 5x series SoCs: |
| Orion-1 (5181), Orion-VoIP (5181L), Orion-NAS (5182), |
| Orion-2 (5281), Orion-1-90 (6183). |
| |
| config ARCH_MMP |
| bool "Marvell PXA168/910/MMP2" |
| depends on MMU |
| select ARCH_REQUIRE_GPIOLIB |
| select COMMON_CLKDEV |
| select GENERIC_CLOCKEVENTS |
| select HAVE_SCHED_CLOCK |
| select TICK_ONESHOT |
| select PLAT_PXA |
| select SPARSE_IRQ |
| help |
| Support for Marvell's PXA168/PXA910(MMP) and MMP2 processor line. |
| |
| config ARCH_KS8695 |
| bool "Micrel/Kendin KS8695" |
| select CPU_ARM922T |
| select ARCH_REQUIRE_GPIOLIB |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| Support for Micrel/Kendin KS8695 "Centaur" (ARM922T) based |
| System-on-Chip devices. |
| |
| config ARCH_NS9XXX |
| bool "NetSilicon NS9xxx" |
| select CPU_ARM926T |
| select GENERIC_GPIO |
| select GENERIC_CLOCKEVENTS |
| select HAVE_CLK |
| help |
| Say Y here if you intend to run this kernel on a NetSilicon NS9xxx |
| System. |
| |
| <http://www.digi.com/products/microprocessors/index.jsp> |
| |
| config ARCH_W90X900 |
| bool "Nuvoton W90X900 CPU" |
| select CPU_ARM926T |
| select ARCH_REQUIRE_GPIOLIB |
| select COMMON_CLKDEV |
| select GENERIC_CLOCKEVENTS |
| help |
| Support for Nuvoton (Winbond logic dept.) ARM9 processor, |
| At present, the w90x900 has been renamed nuc900, regarding |
| the ARM series product line, you can login the following |
| link address to know more. |
| |
| <http://www.nuvoton.com/hq/enu/ProductAndSales/ProductLines/ |
| ConsumerElectronicsIC/ARMMicrocontroller/ARMMicrocontroller> |
| |
| config ARCH_NUC93X |
| bool "Nuvoton NUC93X CPU" |
| select CPU_ARM926T |
| select COMMON_CLKDEV |
| help |
| Support for Nuvoton (Winbond logic dept.) NUC93X MCU,The NUC93X is a |
| low-power and high performance MPEG-4/JPEG multimedia controller chip. |
| |
| config ARCH_TEGRA |
| bool "NVIDIA Tegra" |
| select GENERIC_TIME |
| select GENERIC_CLOCKEVENTS |
| select GENERIC_GPIO |
| select HAVE_CLK |
| select HAVE_SCHED_CLOCK |
| select COMMON_CLKDEV |
| select ARCH_HAS_BARRIERS if CACHE_L2X0 |
| select ARCH_HAS_CPUFREQ |
| help |
| This enables support for NVIDIA Tegra based systems (Tegra APX, |
| Tegra 6xx and Tegra 2 series). |
| |
| config ARCH_PNX4008 |
| bool "Philips Nexperia PNX4008 Mobile" |
| select CPU_ARM926T |
| select COMMON_CLKDEV |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| This enables support for Philips PNX4008 mobile platform. |
| |
| config ARCH_PXA |
| bool "PXA2xx/PXA3xx-based" |
| depends on MMU |
| select ARCH_MTD_XIP |
| select ARCH_HAS_CPUFREQ |
| select COMMON_CLKDEV |
| select ARCH_REQUIRE_GPIOLIB |
| select GENERIC_CLOCKEVENTS |
| select HAVE_SCHED_CLOCK |
| select TICK_ONESHOT |
| select PLAT_PXA |
| select SPARSE_IRQ |
| help |
| Support for Intel/Marvell's PXA2xx/PXA3xx processor line. |
| |
| config ARCH_MSM |
| bool "Qualcomm MSM" |
| select HAVE_CLK |
| select GENERIC_CLOCKEVENTS |
| select ARCH_REQUIRE_GPIOLIB |
| help |
| Support for Qualcomm MSM/QSD based systems. This runs on the |
| apps processor of the MSM/QSD and depends on a shared memory |
| interface to the modem processor which runs the baseband |
| stack and controls some vital subsystems |
| (clock and power control, etc). |
| |
| config ARCH_SHMOBILE |
| bool "Renesas SH-Mobile" |
| help |
| Support for Renesas's SH-Mobile ARM platforms |
| |
| config ARCH_RPC |
| bool "RiscPC" |
| select ARCH_ACORN |
| select FIQ |
| select TIMER_ACORN |
| select ARCH_MAY_HAVE_PC_FDC |
| select HAVE_PATA_PLATFORM |
| select ISA_DMA_API |
| select NO_IOPORT |
| select ARCH_SPARSEMEM_ENABLE |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| On the Acorn Risc-PC, Linux can support the internal IDE disk and |
| CD-ROM interface, serial and parallel port, and the floppy drive. |
| |
| config ARCH_SA1100 |
| bool "SA1100-based" |
| select CPU_SA1100 |
| select ISA |
| select ARCH_SPARSEMEM_ENABLE |
| select ARCH_MTD_XIP |
| select ARCH_HAS_CPUFREQ |
| select CPU_FREQ |
| select GENERIC_CLOCKEVENTS |
| select HAVE_CLK |
| select HAVE_SCHED_CLOCK |
| select TICK_ONESHOT |
| select ARCH_REQUIRE_GPIOLIB |
| help |
| Support for StrongARM 11x0 based boards. |
| |
| config ARCH_S3C2410 |
| bool "Samsung S3C2410, S3C2412, S3C2413, S3C2416, S3C2440, S3C2442, S3C2443, S3C2450" |
| select GENERIC_GPIO |
| select ARCH_HAS_CPUFREQ |
| select HAVE_CLK |
| select ARCH_USES_GETTIMEOFFSET |
| select HAVE_S3C2410_I2C if I2C |
| help |
| Samsung S3C2410X CPU based systems, such as the Simtec Electronics |
| BAST (<http://www.simtec.co.uk/products/EB110ITX/>), the IPAQ 1940 or |
| the Samsung SMDK2410 development board (and derivatives). |
| |
| Note, the S3C2416 and the S3C2450 are so close that they even share |
| the same SoC ID code. This means that there is no seperate machine |
| directory (no arch/arm/mach-s3c2450) as the S3C2416 was first. |
| |
| config ARCH_S3C64XX |
| bool "Samsung S3C64XX" |
| select PLAT_SAMSUNG |
| select CPU_V6 |
| select ARM_VIC |
| select HAVE_CLK |
| select NO_IOPORT |
| select ARCH_USES_GETTIMEOFFSET |
| select ARCH_HAS_CPUFREQ |
| select ARCH_REQUIRE_GPIOLIB |
| select SAMSUNG_CLKSRC |
| select SAMSUNG_IRQ_VIC_TIMER |
| select SAMSUNG_IRQ_UART |
| select S3C_GPIO_TRACK |
| select S3C_GPIO_PULL_UPDOWN |
| select S3C_GPIO_CFG_S3C24XX |
| select S3C_GPIO_CFG_S3C64XX |
| select S3C_DEV_NAND |
| select USB_ARCH_HAS_OHCI |
| select SAMSUNG_GPIOLIB_4BIT |
| select HAVE_S3C2410_I2C if I2C |
| select HAVE_S3C2410_WATCHDOG if WATCHDOG |
| help |
| Samsung S3C64XX series based systems |
| |
| config ARCH_S5P64X0 |
| bool "Samsung S5P6440 S5P6450" |
| select CPU_V6 |
| select GENERIC_GPIO |
| select HAVE_CLK |
| select HAVE_S3C2410_WATCHDOG if WATCHDOG |
| select ARCH_USES_GETTIMEOFFSET |
| select HAVE_S3C2410_I2C if I2C |
| select HAVE_S3C_RTC if RTC_CLASS |
| help |
| Samsung S5P64X0 CPU based systems, such as the Samsung SMDK6440, |
| SMDK6450. |
| |
| config ARCH_S5P6442 |
| bool "Samsung S5P6442" |
| select CPU_V6 |
| select GENERIC_GPIO |
| select HAVE_CLK |
| select ARCH_USES_GETTIMEOFFSET |
| select HAVE_S3C2410_WATCHDOG if WATCHDOG |
| help |
| Samsung S5P6442 CPU based systems |
| |
| config ARCH_S5PC100 |
| bool "Samsung S5PC100" |
| select GENERIC_GPIO |
| select HAVE_CLK |
| select CPU_V7 |
| select ARM_L1_CACHE_SHIFT_6 |
| select ARCH_USES_GETTIMEOFFSET |
| select HAVE_S3C2410_I2C if I2C |
| select HAVE_S3C_RTC if RTC_CLASS |
| select HAVE_S3C2410_WATCHDOG if WATCHDOG |
| help |
| Samsung S5PC100 series based systems |
| |
| config ARCH_S5PV210 |
| bool "Samsung S5PV210/S5PC110" |
| select CPU_V7 |
| select ARCH_SPARSEMEM_ENABLE |
| select GENERIC_GPIO |
| select HAVE_CLK |
| select ARM_L1_CACHE_SHIFT_6 |
| select ARCH_HAS_CPUFREQ |
| select ARCH_USES_GETTIMEOFFSET |
| select HAVE_S3C2410_I2C if I2C |
| select HAVE_S3C_RTC if RTC_CLASS |
| select HAVE_S3C2410_WATCHDOG if WATCHDOG |
| help |
| Samsung S5PV210/S5PC110 series based systems |
| |
| config ARCH_S5PV310 |
| bool "Samsung S5PV310/S5PC210" |
| select CPU_V7 |
| select ARCH_SPARSEMEM_ENABLE |
| select GENERIC_GPIO |
| select HAVE_CLK |
| select GENERIC_CLOCKEVENTS |
| select HAVE_S3C_RTC if RTC_CLASS |
| select HAVE_S3C2410_I2C if I2C |
| select HAVE_S3C2410_WATCHDOG if WATCHDOG |
| help |
| Samsung S5PV310 series based systems |
| |
| config ARCH_SHARK |
| bool "Shark" |
| select CPU_SA110 |
| select ISA |
| select ISA_DMA |
| select ZONE_DMA |
| select PCI |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| Support for the StrongARM based Digital DNARD machine, also known |
| as "Shark" (<http://www.shark-linux.de/shark.html>). |
| |
| config ARCH_TCC_926 |
| bool "Telechips TCC ARM926-based systems" |
| select CPU_ARM926T |
| select HAVE_CLK |
| select COMMON_CLKDEV |
| select GENERIC_CLOCKEVENTS |
| help |
| Support for Telechips TCC ARM926-based systems. |
| |
| config ARCH_LH7A40X |
| bool "Sharp LH7A40X" |
| select CPU_ARM922T |
| select ARCH_SPARSEMEM_ENABLE if !LH7A40X_CONTIGMEM |
| select ARCH_USES_GETTIMEOFFSET |
| help |
| Say Y here for systems based on one of the Sharp LH7A40X |
| System on a Chip processors. These CPUs include an ARM922T |
| core with a wide array of integrated devices for |
| hand-held and low-power applications. |
| |
| config ARCH_U300 |
| bool "ST-Ericsson U300 Series" |
| depends on MMU |
| select CPU_ARM926T |
| select HAVE_SCHED_CLOCK |
| select HAVE_TCM |
| select ARM_AMBA |
| select ARM_VIC |
| select GENERIC_CLOCKEVENTS |
| select COMMON_CLKDEV |
| select GENERIC_GPIO |
| help |
| Support for ST-Ericsson U300 series mobile platforms. |
| |
| config ARCH_U8500 |
| bool "ST-Ericsson U8500 Series" |
| select CPU_V7 |
| select ARM_AMBA |
| select GENERIC_CLOCKEVENTS |
| select COMMON_CLKDEV |
| select ARCH_REQUIRE_GPIOLIB |
| help |
| Support for ST-Ericsson's Ux500 architecture |
| |
| config ARCH_NOMADIK |
| bool "STMicroelectronics Nomadik" |
| select ARM_AMBA |
| select ARM_VIC |
| select CPU_ARM926T |
| select COMMON_CLKDEV |
| select GENERIC_CLOCKEVENTS |
| select ARCH_REQUIRE_GPIOLIB |
| help |
| Support for the Nomadik platform by ST-Ericsson |
| |
| config ARCH_DAVINCI |
| bool "TI DaVinci" |
| select GENERIC_CLOCKEVENTS |
| select ARCH_REQUIRE_GPIOLIB |
| select ZONE_DMA |
| select HAVE_IDE |
| select COMMON_CLKDEV |
| select GENERIC_ALLOCATOR |
| select ARCH_HAS_HOLES_MEMORYMODEL |
| help |
| Support for TI's DaVinci platform. |
| |
| config ARCH_OMAP |
| bool "TI OMAP" |
| select HAVE_CLK |
| select ARCH_REQUIRE_GPIOLIB |
| select ARCH_HAS_CPUFREQ |
| select GENERIC_CLOCKEVENTS |
| select HAVE_SCHED_CLOCK |
| select ARCH_HAS_HOLES_MEMORYMODEL |
| help |
| Support for TI's OMAP platform (OMAP1/2/3/4). |
| |
| config PLAT_SPEAR |
| bool "ST SPEAr" |
| select ARM_AMBA |
| select ARCH_REQUIRE_GPIOLIB |
| select COMMON_CLKDEV |
| select GENERIC_CLOCKEVENTS |
| select HAVE_CLK |
| help |
| Support for ST's SPEAr platform (SPEAr3xx, SPEAr6xx and SPEAr13xx). |
| |
| endchoice |
| |
| # |
| # This is sorted alphabetically by mach-* pathname. However, plat-* |
| # Kconfigs may be included either alphabetically (according to the |
| # plat- suffix) or along side the corresponding mach-* source. |
| # |
| source "arch/arm/mach-aaec2000/Kconfig" |
| |
| source "arch/arm/mach-at91/Kconfig" |
| |
| source "arch/arm/mach-bcmring/Kconfig" |
| |
| source "arch/arm/mach-clps711x/Kconfig" |
| |
| source "arch/arm/mach-cns3xxx/Kconfig" |
| |
| source "arch/arm/mach-davinci/Kconfig" |
| |
| source "arch/arm/mach-dove/Kconfig" |
| |
| source "arch/arm/mach-ep93xx/Kconfig" |
| |
| source "arch/arm/mach-footbridge/Kconfig" |
| |
| source "arch/arm/mach-gemini/Kconfig" |
| |
| source "arch/arm/mach-h720x/Kconfig" |
| |
| source "arch/arm/mach-integrator/Kconfig" |
| |
| source "arch/arm/mach-iop32x/Kconfig" |
| |
| source "arch/arm/mach-iop33x/Kconfig" |
| |
| source "arch/arm/mach-iop13xx/Kconfig" |
| |
| source "arch/arm/mach-ixp4xx/Kconfig" |
| |
| source "arch/arm/mach-ixp2000/Kconfig" |
| |
| source "arch/arm/mach-ixp23xx/Kconfig" |
| |
| source "arch/arm/mach-kirkwood/Kconfig" |
| |
| source "arch/arm/mach-ks8695/Kconfig" |
| |
| source "arch/arm/mach-lh7a40x/Kconfig" |
| |
| source "arch/arm/mach-loki/Kconfig" |
| |
| source "arch/arm/mach-lpc32xx/Kconfig" |
| |
| source "arch/arm/mach-msm/Kconfig" |
| |
| source "arch/arm/mach-mv78xx0/Kconfig" |
| |
| source "arch/arm/plat-mxc/Kconfig" |
| |
| source "arch/arm/mach-netx/Kconfig" |
| |
| source "arch/arm/mach-nomadik/Kconfig" |
| source "arch/arm/plat-nomadik/Kconfig" |
| |
| source "arch/arm/mach-ns9xxx/Kconfig" |
| |
| source "arch/arm/mach-nuc93x/Kconfig" |
| |
| source "arch/arm/plat-omap/Kconfig" |
| |
| source "arch/arm/mach-omap1/Kconfig" |
| |
| source "arch/arm/mach-omap2/Kconfig" |
| |
| source "arch/arm/mach-orion5x/Kconfig" |
| |
| source "arch/arm/mach-pxa/Kconfig" |
| source "arch/arm/plat-pxa/Kconfig" |
| |
| source "arch/arm/mach-mmp/Kconfig" |
| |
| source "arch/arm/mach-realview/Kconfig" |
| |
| source "arch/arm/mach-sa1100/Kconfig" |
| |
| source "arch/arm/plat-samsung/Kconfig" |
| source "arch/arm/plat-s3c24xx/Kconfig" |
| source "arch/arm/plat-s5p/Kconfig" |
| |
| source "arch/arm/plat-spear/Kconfig" |
| |
| source "arch/arm/plat-tcc/Kconfig" |
| |
| if ARCH_S3C2410 |
| source "arch/arm/mach-s3c2400/Kconfig" |
| source "arch/arm/mach-s3c2410/Kconfig" |
| source "arch/arm/mach-s3c2412/Kconfig" |
| source "arch/arm/mach-s3c2416/Kconfig" |
| source "arch/arm/mach-s3c2440/Kconfig" |
| source "arch/arm/mach-s3c2443/Kconfig" |
| endif |
| |
| if ARCH_S3C64XX |
| source "arch/arm/mach-s3c64xx/Kconfig" |
| endif |
| |
| source "arch/arm/mach-s5p64x0/Kconfig" |
| |
| source "arch/arm/mach-s5p6442/Kconfig" |
| |
| source "arch/arm/mach-s5pc100/Kconfig" |
| |
| source "arch/arm/mach-s5pv210/Kconfig" |
| |
| source "arch/arm/mach-s5pv310/Kconfig" |
| |
| source "arch/arm/mach-shmobile/Kconfig" |
| |
| source "arch/arm/plat-stmp3xxx/Kconfig" |
| |
| source "arch/arm/mach-tegra/Kconfig" |
| |
| source "arch/arm/mach-u300/Kconfig" |
| |
| source "arch/arm/mach-ux500/Kconfig" |
| |
| source "arch/arm/mach-versatile/Kconfig" |
| |
| source "arch/arm/mach-vexpress/Kconfig" |
| |
| source "arch/arm/mach-w90x900/Kconfig" |
| |
| # Definitions to make life easier |
| config ARCH_ACORN |
| bool |
| |
| config PLAT_IOP |
| bool |
| select GENERIC_CLOCKEVENTS |
| select HAVE_SCHED_CLOCK |
| |
| config PLAT_ORION |
| bool |
| select HAVE_SCHED_CLOCK |
| |
| config PLAT_PXA |
| bool |
| |
| config PLAT_VERSATILE |
| bool |
| |
| config ARM_TIMER_SP804 |
| bool |
| |
| source arch/arm/mm/Kconfig |
| |
| config IWMMXT |
| bool "Enable iWMMXt support" |
| depends on CPU_XSCALE || CPU_XSC3 || CPU_MOHAWK |
| default y if PXA27x || PXA3xx || ARCH_MMP |
| help |
| Enable support for iWMMXt context switching at run time if |
| running on a CPU that supports it. |
| |
| # bool 'Use XScale PMU as timer source' CONFIG_XSCALE_PMU_TIMER |
| config XSCALE_PMU |
| bool |
| depends on CPU_XSCALE && !XSCALE_PMU_TIMER |
| default y |
| |
| config CPU_HAS_PMU |
| depends on (CPU_V6 || CPU_V7 || XSCALE_PMU) && \ |
| (!ARCH_OMAP3 || OMAP3_EMU) |
| default y |
| bool |
| |
| if !MMU |
| source "arch/arm/Kconfig-nommu" |
| endif |
| |
| config ARM_ERRATA_411920 |
| bool "ARM errata: Invalidation of the Instruction Cache operation can fail" |
| depends on CPU_V6 |
| help |
| Invalidation of the Instruction Cache operation can |
| fail. This erratum is present in 1136 (before r1p4), 1156 and 1176. |
| It does not affect the MPCore. This option enables the ARM Ltd. |
| recommended workaround. |
| |
| config ARM_ERRATA_430973 |
| bool "ARM errata: Stale prediction on replaced interworking branch" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for the 430973 Cortex-A8 |
| (r1p0..r1p2) erratum. If a code sequence containing an ARM/Thumb |
| interworking branch is replaced with another code sequence at the |
| same virtual address, whether due to self-modifying code or virtual |
| to physical address re-mapping, Cortex-A8 does not recover from the |
| stale interworking branch prediction. This results in Cortex-A8 |
| executing the new code sequence in the incorrect ARM or Thumb state. |
| The workaround enables the BTB/BTAC operations by setting ACTLR.IBE |
| and also flushes the branch target cache at every context switch. |
| Note that setting specific bits in the ACTLR register may not be |
| available in non-secure mode. |
| |
| config ARM_ERRATA_458693 |
| bool "ARM errata: Processor deadlock when a false hazard is created" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for the 458693 Cortex-A8 (r2p0) |
| erratum. For very specific sequences of memory operations, it is |
| possible for a hazard condition intended for a cache line to instead |
| be incorrectly associated with a different cache line. This false |
| hazard might then cause a processor deadlock. The workaround enables |
| the L1 caching of the NEON accesses and disables the PLD instruction |
| in the ACTLR register. Note that setting specific bits in the ACTLR |
| register may not be available in non-secure mode. |
| |
| config ARM_ERRATA_460075 |
| bool "ARM errata: Data written to the L2 cache can be overwritten with stale data" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for the 460075 Cortex-A8 (r2p0) |
| erratum. Any asynchronous access to the L2 cache may encounter a |
| situation in which recent store transactions to the L2 cache are lost |
| and overwritten with stale memory contents from external memory. The |
| workaround disables the write-allocate mode for the L2 cache via the |
| ACTLR register. Note that setting specific bits in the ACTLR register |
| may not be available in non-secure mode. |
| |
| config ARM_ERRATA_742230 |
| bool "ARM errata: DMB operation may be faulty" |
| depends on CPU_V7 && SMP |
| help |
| This option enables the workaround for the 742230 Cortex-A9 |
| (r1p0..r2p2) erratum. Under rare circumstances, a DMB instruction |
| between two write operations may not ensure the correct visibility |
| ordering of the two writes. This workaround sets a specific bit in |
| the diagnostic register of the Cortex-A9 which causes the DMB |
| instruction to behave as a DSB, ensuring the correct behaviour of |
| the two writes. |
| |
| config ARM_ERRATA_742231 |
| bool "ARM errata: Incorrect hazard handling in the SCU may lead to data corruption" |
| depends on CPU_V7 && SMP |
| help |
| This option enables the workaround for the 742231 Cortex-A9 |
| (r2p0..r2p2) erratum. Under certain conditions, specific to the |
| Cortex-A9 MPCore micro-architecture, two CPUs working in SMP mode, |
| accessing some data located in the same cache line, may get corrupted |
| data due to bad handling of the address hazard when the line gets |
| replaced from one of the CPUs at the same time as another CPU is |
| accessing it. This workaround sets specific bits in the diagnostic |
| register of the Cortex-A9 which reduces the linefill issuing |
| capabilities of the processor. |
| |
| config PL310_ERRATA_588369 |
| bool "Clean & Invalidate maintenance operations do not invalidate clean lines" |
| depends on CACHE_L2X0 && ARCH_OMAP4 |
| help |
| The PL310 L2 cache controller implements three types of Clean & |
| Invalidate maintenance operations: by Physical Address |
| (offset 0x7F0), by Index/Way (0x7F8) and by Way (0x7FC). |
| They are architecturally defined to behave as the execution of a |
| clean operation followed immediately by an invalidate operation, |
| both performing to the same memory location. This functionality |
| is not correctly implemented in PL310 as clean lines are not |
| invalidated as a result of these operations. Note that this errata |
| uses Texas Instrument's secure monitor api. |
| |
| config ARM_ERRATA_720789 |
| bool "ARM errata: TLBIASIDIS and TLBIMVAIS operations can broadcast a faulty ASID" |
| depends on CPU_V7 && SMP |
| help |
| This option enables the workaround for the 720789 Cortex-A9 (prior to |
| r2p0) erratum. A faulty ASID can be sent to the other CPUs for the |
| broadcasted CP15 TLB maintenance operations TLBIASIDIS and TLBIMVAIS. |
| As a consequence of this erratum, some TLB entries which should be |
| invalidated are not, resulting in an incoherency in the system page |
| tables. The workaround changes the TLB flushing routines to invalidate |
| entries regardless of the ASID. |
| |
| config ARM_ERRATA_743622 |
| bool "ARM errata: Faulty hazard checking in the Store Buffer may lead to data corruption" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for the 743622 Cortex-A9 |
| (r2p0..r2p2) erratum. Under very rare conditions, a faulty |
| optimisation in the Cortex-A9 Store Buffer may lead to data |
| corruption. This workaround sets a specific bit in the diagnostic |
| register of the Cortex-A9 which disables the Store Buffer |
| optimisation, preventing the defect from occurring. This has no |
| visible impact on the overall performance or power consumption of the |
| processor. |
| |
| endmenu |
| |
| source "arch/arm/common/Kconfig" |
| |
| menu "Bus support" |
| |
| config ARM_AMBA |
| bool |
| |
| config ISA |
| bool |
| help |
| Find out whether you have ISA slots on your motherboard. ISA is the |
| name of a bus system, i.e. the way the CPU talks to the other stuff |
| inside your box. Other bus systems are PCI, EISA, MicroChannel |
| (MCA) or VESA. ISA is an older system, now being displaced by PCI; |
| newer boards don't support it. If you have ISA, say Y, otherwise N. |
| |
| # Select ISA DMA controller support |
| config ISA_DMA |
| bool |
| select ISA_DMA_API |
| |
| # Select ISA DMA interface |
| config ISA_DMA_API |
| bool |
| |
| config PCI |
| bool "PCI support" if ARCH_INTEGRATOR_AP || ARCH_VERSATILE_PB || ARCH_IXP4XX || ARCH_KS8695 || MACH_ARMCORE || ARCH_CNS3XXX || SA1100_NANOENGINE |
| help |
| Find out whether you have a PCI motherboard. PCI is the name of a |
| bus system, i.e. the way the CPU talks to the other stuff inside |
| your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or |
| VESA. If you have PCI, say Y, otherwise N. |
| |
| config PCI_DOMAINS |
| bool |
| depends on PCI |
| |
| config PCI_NANOENGINE |
| bool "BSE nanoEngine PCI support" |
| depends on SA1100_NANOENGINE |
| help |
| Enable PCI on the BSE nanoEngine board. |
| |
| config PCI_SYSCALL |
| def_bool PCI |
| |
| # Select the host bridge type |
| config PCI_HOST_VIA82C505 |
| bool |
| depends on PCI && ARCH_SHARK |
| default y |
| |
| config PCI_HOST_ITE8152 |
| bool |
| depends on PCI && MACH_ARMCORE |
| default y |
| select DMABOUNCE |
| |
| source "drivers/pci/Kconfig" |
| |
| source "drivers/pcmcia/Kconfig" |
| |
| endmenu |
| |
| menu "Kernel Features" |
| |
| source "kernel/time/Kconfig" |
| |
| config SMP |
| bool "Symmetric Multi-Processing (EXPERIMENTAL)" |
| depends on EXPERIMENTAL |
| depends on GENERIC_CLOCKEVENTS |
| depends on REALVIEW_EB_ARM11MP || REALVIEW_EB_A9MP || \ |
| MACH_REALVIEW_PB11MP || MACH_REALVIEW_PBX || ARCH_OMAP4 || \ |
| ARCH_S5PV310 || ARCH_TEGRA || ARCH_U8500 || ARCH_VEXPRESS_CA9X4 || \ |
| ARCH_MSM_SCORPIONMP |
| select USE_GENERIC_SMP_HELPERS |
| select HAVE_ARM_SCU if !ARCH_MSM_SCORPIONMP |
| help |
| This enables support for systems with more than one CPU. If you have |
| a system with only one CPU, like most personal computers, say N. If |
| you have a system with more than one CPU, say Y. |
| |
| If you say N here, the kernel will run on single and multiprocessor |
| machines, but will use only one CPU of a multiprocessor machine. If |
| you say Y here, the kernel will run on many, but not all, single |
| processor machines. On a single processor machine, the kernel will |
| run faster if you say N here. |
| |
| See also <file:Documentation/i386/IO-APIC.txt>, |
| <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at |
| <http://tldp.org/HOWTO/SMP-HOWTO.html>. |
| |
| If you don't know what to do here, say N. |
| |
| config SMP_ON_UP |
| bool "Allow booting SMP kernel on uniprocessor systems (EXPERIMENTAL)" |
| depends on EXPERIMENTAL |
| depends on SMP && !XIP && !THUMB2_KERNEL |
| default y |
| help |
| SMP kernels contain instructions which fail on non-SMP processors. |
| Enabling this option allows the kernel to modify itself to make |
| these instructions safe. Disabling it allows about 1K of space |
| savings. |
| |
| If you don't know what to do here, say Y. |
| |
| config HAVE_ARM_SCU |
| bool |
| depends on SMP |
| help |
| This option enables support for the ARM system coherency unit |
| |
| config HAVE_ARM_TWD |
| bool |
| depends on SMP |
| help |
| This options enables support for the ARM timer and watchdog unit |
| |
| choice |
| prompt "Memory split" |
| default VMSPLIT_3G |
| help |
| Select the desired split between kernel and user memory. |
| |
| If you are not absolutely sure what you are doing, leave this |
| option alone! |
| |
| config VMSPLIT_3G |
| bool "3G/1G user/kernel split" |
| config VMSPLIT_2G |
| bool "2G/2G user/kernel split" |
| config VMSPLIT_1G |
| bool "1G/3G user/kernel split" |
| endchoice |
| |
| config PAGE_OFFSET |
| hex |
| default 0x40000000 if VMSPLIT_1G |
| default 0x80000000 if VMSPLIT_2G |
| default 0xC0000000 |
| |
| config NR_CPUS |
| int "Maximum number of CPUs (2-32)" |
| range 2 32 |
| depends on SMP |
| default "4" |
| |
| config HOTPLUG_CPU |
| bool "Support for hot-pluggable CPUs (EXPERIMENTAL)" |
| depends on SMP && HOTPLUG && EXPERIMENTAL |
| depends on !ARCH_MSM |
| help |
| Say Y here to experiment with turning CPUs off and on. CPUs |
| can be controlled through /sys/devices/system/cpu. |
| |
| config LOCAL_TIMERS |
| bool "Use local timer interrupts" |
| depends on SMP |
| default y |
| select HAVE_ARM_TWD if !ARCH_MSM_SCORPIONMP |
| help |
| Enable support for local timers on SMP platforms, rather then the |
| legacy IPI broadcast method. Local timers allows the system |
| accounting to be spread across the timer interval, preventing a |
| "thundering herd" at every timer tick. |
| |
| source kernel/Kconfig.preempt |
| |
| config HZ |
| int |
| default 200 if ARCH_EBSA110 || ARCH_S3C2410 || ARCH_S5P64X0 || \ |
| ARCH_S5P6442 || ARCH_S5PV210 || ARCH_S5PV310 |
| default OMAP_32K_TIMER_HZ if ARCH_OMAP && OMAP_32K_TIMER |
| default AT91_TIMER_HZ if ARCH_AT91 |
| default SHMOBILE_TIMER_HZ if ARCH_SHMOBILE |
| default 100 |
| |
| config THUMB2_KERNEL |
| bool "Compile the kernel in Thumb-2 mode" |
| depends on CPU_V7 && !CPU_V6 && EXPERIMENTAL |
| select AEABI |
| select ARM_ASM_UNIFIED |
| help |
| By enabling this option, the kernel will be compiled in |
| Thumb-2 mode. A compiler/assembler that understand the unified |
| ARM-Thumb syntax is needed. |
| |
| If unsure, say N. |
| |
| config ARM_ASM_UNIFIED |
| bool |
| |
| config AEABI |
| bool "Use the ARM EABI to compile the kernel" |
| help |
| This option allows for the kernel to be compiled using the latest |
| ARM ABI (aka EABI). This is only useful if you are using a user |
| space environment that is also compiled with EABI. |
| |
| Since there are major incompatibilities between the legacy ABI and |
| EABI, especially with regard to structure member alignment, this |
| option also changes the kernel syscall calling convention to |
| disambiguate both ABIs and allow for backward compatibility support |
| (selected with CONFIG_OABI_COMPAT). |
| |
| To use this you need GCC version 4.0.0 or later. |
| |
| config OABI_COMPAT |
| bool "Allow old ABI binaries to run with this kernel (EXPERIMENTAL)" |
| depends on AEABI && EXPERIMENTAL |
| default y |
| help |
| This option preserves the old syscall interface along with the |
| new (ARM EABI) one. It also provides a compatibility layer to |
| intercept syscalls that have structure arguments which layout |
| in memory differs between the legacy ABI and the new ARM EABI |
| (only for non "thumb" binaries). This option adds a tiny |
| overhead to all syscalls and produces a slightly larger kernel. |
| If you know you'll be using only pure EABI user space then you |
| can say N here. If this option is not selected and you attempt |
| to execute a legacy ABI binary then the result will be |
| UNPREDICTABLE (in fact it can be predicted that it won't work |
| at all). If in doubt say Y. |
| |
| config ARCH_HAS_HOLES_MEMORYMODEL |
| bool |
| |
| config ARCH_SPARSEMEM_ENABLE |
| bool |
| |
| config ARCH_SPARSEMEM_DEFAULT |
| def_bool ARCH_SPARSEMEM_ENABLE |
| |
| config ARCH_SELECT_MEMORY_MODEL |
| def_bool ARCH_SPARSEMEM_ENABLE |
| |
| config HIGHMEM |
| bool "High Memory Support (EXPERIMENTAL)" |
| depends on MMU && EXPERIMENTAL |
| help |
| The address space of ARM processors is only 4 Gigabytes large |
| and it has to accommodate user address space, kernel address |
| space as well as some memory mapped IO. That means that, if you |
| have a large amount of physical memory and/or IO, not all of the |
| memory can be "permanently mapped" by the kernel. The physical |
| memory that is not permanently mapped is called "high memory". |
| |
| Depending on the selected kernel/user memory split, minimum |
| vmalloc space and actual amount of RAM, you may not need this |
| option which should result in a slightly faster kernel. |
| |
| If unsure, say n. |
| |
| config HIGHPTE |
| bool "Allocate 2nd-level pagetables from highmem" |
| depends on HIGHMEM |
| depends on !OUTER_CACHE |
| |
| config HW_PERF_EVENTS |
| bool "Enable hardware performance counter support for perf events" |
| depends on PERF_EVENTS && CPU_HAS_PMU |
| default y |
| help |
| Enable hardware performance counter support for perf events. If |
| disabled, perf events will use software events only. |
| |
| config SPARSE_IRQ |
| def_bool n |
| help |
| This enables support for sparse irqs. This is useful in general |
| as most CPUs have a fairly sparse array of IRQ vectors, which |
| the irq_desc then maps directly on to. Systems with a high |
| number of off-chip IRQs will want to treat this as |
| experimental until they have been independently verified. |
| |
| source "mm/Kconfig" |
| |
| config FORCE_MAX_ZONEORDER |
| int "Maximum zone order" if ARCH_SHMOBILE |
| range 11 64 if ARCH_SHMOBILE |
| default "9" if SA1111 |
| default "11" |
| help |
| The kernel memory allocator divides physically contiguous memory |
| blocks into "zones", where each zone is a power of two number of |
| pages. This option selects the largest power of two that the kernel |
| keeps in the memory allocator. If you need to allocate very large |
| blocks of physically contiguous memory, then you may need to |
| increase this value. |
| |
| This config option is actually maximum order plus one. For example, |
| a value of 11 means that the largest free memory block is 2^10 pages. |
| |
| config LEDS |
| bool "Timer and CPU usage LEDs" |
| depends on ARCH_CDB89712 || ARCH_EBSA110 || \ |
| ARCH_EBSA285 || ARCH_INTEGRATOR || \ |
| ARCH_LUBBOCK || MACH_MAINSTONE || ARCH_NETWINDER || \ |
| ARCH_OMAP || ARCH_P720T || ARCH_PXA_IDP || \ |
| ARCH_SA1100 || ARCH_SHARK || ARCH_VERSATILE || \ |
| ARCH_AT91 || ARCH_DAVINCI || \ |
| ARCH_KS8695 || MACH_RD88F5182 || ARCH_REALVIEW |
| help |
| If you say Y here, the LEDs on your machine will be used |
| to provide useful information about your current system status. |
| |
| If you are compiling a kernel for a NetWinder or EBSA-285, you will |
| be able to select which LEDs are active using the options below. If |
| you are compiling a kernel for the EBSA-110 or the LART however, the |
| red LED will simply flash regularly to indicate that the system is |
| still functional. It is safe to say Y here if you have a CATS |
| system, but the driver will do nothing. |
| |
| config LEDS_TIMER |
| bool "Timer LED" if (!ARCH_CDB89712 && !ARCH_OMAP) || \ |
| OMAP_OSK_MISTRAL || MACH_OMAP_H2 \ |
| || MACH_OMAP_PERSEUS2 |
| depends on LEDS |
| depends on !GENERIC_CLOCKEVENTS |
| default y if ARCH_EBSA110 |
| help |
| If you say Y here, one of the system LEDs (the green one on the |
| NetWinder, the amber one on the EBSA285, or the red one on the LART) |
| will flash regularly to indicate that the system is still |
| operational. This is mainly useful to kernel hackers who are |
| debugging unstable kernels. |
| |
| The LART uses the same LED for both Timer LED and CPU usage LED |
| functions. You may choose to use both, but the Timer LED function |
| will overrule the CPU usage LED. |
| |
| config LEDS_CPU |
| bool "CPU usage LED" if (!ARCH_CDB89712 && !ARCH_EBSA110 && \ |
| !ARCH_OMAP) \ |
| || OMAP_OSK_MISTRAL || MACH_OMAP_H2 \ |
| || MACH_OMAP_PERSEUS2 |
| depends on LEDS |
| help |
| If you say Y here, the red LED will be used to give a good real |
| time indication of CPU usage, by lighting whenever the idle task |
| is not currently executing. |
| |
| The LART uses the same LED for both Timer LED and CPU usage LED |
| functions. You may choose to use both, but the Timer LED function |
| will overrule the CPU usage LED. |
| |
| config ALIGNMENT_TRAP |
| bool |
| depends on CPU_CP15_MMU |
| default y if !ARCH_EBSA110 |
| select HAVE_PROC_CPU if PROC_FS |
| help |
| ARM processors cannot fetch/store information which is not |
| naturally aligned on the bus, i.e., a 4 byte fetch must start at an |
| address divisible by 4. On 32-bit ARM processors, these non-aligned |
| fetch/store instructions will be emulated in software if you say |
| here, which has a severe performance impact. This is necessary for |
| correct operation of some network protocols. With an IP-only |
| configuration it is safe to say N, otherwise say Y. |
| |
| config UACCESS_WITH_MEMCPY |
| bool "Use kernel mem{cpy,set}() for {copy_to,clear}_user() (EXPERIMENTAL)" |
| depends on MMU && EXPERIMENTAL |
| default y if CPU_FEROCEON |
| help |
| Implement faster copy_to_user and clear_user methods for CPU |
| cores where a 8-word STM instruction give significantly higher |
| memory write throughput than a sequence of individual 32bit stores. |
| |
| A possible side effect is a slight increase in scheduling latency |
| between threads sharing the same address space if they invoke |
| such copy operations with large buffers. |
| |
| However, if the CPU data cache is using a write-allocate mode, |
| this option is unlikely to provide any performance gain. |
| |
| config SECCOMP |
| bool |
| prompt "Enable seccomp to safely compute untrusted bytecode" |
| ---help--- |
| This kernel feature is useful for number crunching applications |
| that may need to compute untrusted bytecode during their |
| execution. By using pipes or other transports made available to |
| the process as file descriptors supporting the read/write |
| syscalls, it's possible to isolate those applications in |
| their own address space using seccomp. Once seccomp is |
| enabled via prctl(PR_SET_SECCOMP), it cannot be disabled |
| and the task is only allowed to execute a few safe syscalls |
| defined by each seccomp mode. |
| |
| config CC_STACKPROTECTOR |
| bool "Enable -fstack-protector buffer overflow detection (EXPERIMENTAL)" |
| help |
| This option turns on the -fstack-protector GCC feature. This |
| feature puts, at the beginning of functions, a canary value on |
| the stack just before the return address, and validates |
| the value just before actually returning. Stack based buffer |
| overflows (that need to overwrite this return address) now also |
| overwrite the canary, which gets detected and the attack is then |
| neutralized via a kernel panic. |
| This feature requires gcc version 4.2 or above. |
| |
| config DEPRECATED_PARAM_STRUCT |
| bool "Provide old way to pass kernel parameters" |
| help |
| This was deprecated in 2001 and announced to live on for 5 years. |
| Some old boot loaders still use this way. |
| |
| endmenu |
| |
| menu "Boot options" |
| |
| # Compressed boot loader in ROM. Yes, we really want to ask about |
| # TEXT and BSS so we preserve their values in the config files. |
| config ZBOOT_ROM_TEXT |
| hex "Compressed ROM boot loader base address" |
| default "0" |
| help |
| The physical address at which the ROM-able zImage is to be |
| placed in the target. Platforms which normally make use of |
| ROM-able zImage formats normally set this to a suitable |
| value in their defconfig file. |
| |
| If ZBOOT_ROM is not enabled, this has no effect. |
| |
| config ZBOOT_ROM_BSS |
| hex "Compressed ROM boot loader BSS address" |
| default "0" |
| help |
| The base address of an area of read/write memory in the target |
| for the ROM-able zImage which must be available while the |
| decompressor is running. It must be large enough to hold the |
| entire decompressed kernel plus an additional 128 KiB. |
| Platforms which normally make use of ROM-able zImage formats |
| normally set this to a suitable value in their defconfig file. |
| |
| If ZBOOT_ROM is not enabled, this has no effect. |
| |
| config ZBOOT_ROM |
| bool "Compressed boot loader in ROM/flash" |
| depends on ZBOOT_ROM_TEXT != ZBOOT_ROM_BSS |
| help |
| Say Y here if you intend to execute your compressed kernel image |
| (zImage) directly from ROM or flash. If unsure, say N. |
| |
| config CMDLINE |
| string "Default kernel command string" |
| default "" |
| help |
| On some architectures (EBSA110 and CATS), there is currently no way |
| for the boot loader to pass arguments to the kernel. For these |
| architectures, you should supply some command-line options at build |
| time by entering them here. As a minimum, you should specify the |
| memory size and the root device (e.g., mem=64M root=/dev/nfs). |
| |
| config CMDLINE_FORCE |
| bool "Always use the default kernel command string" |
| depends on CMDLINE != "" |
| help |
| Always use the default kernel command string, even if the boot |
| loader passes other arguments to the kernel. |
| This is useful if you cannot or don't want to change the |
| command-line options your boot loader passes to the kernel. |
| |
| If unsure, say N. |
| |
| config XIP_KERNEL |
| bool "Kernel Execute-In-Place from ROM" |
| depends on !ZBOOT_ROM |
| help |
| Execute-In-Place allows the kernel to run from non-volatile storage |
| directly addressable by the CPU, such as NOR flash. This saves RAM |
| space since the text section of the kernel is not loaded from flash |
| to RAM. Read-write sections, such as the data section and stack, |
| are still copied to RAM. The XIP kernel is not compressed since |
| it has to run directly from flash, so it will take more space to |
| store it. The flash address used to link the kernel object files, |
| and for storing it, is configuration dependent. Therefore, if you |
| say Y here, you must know the proper physical address where to |
| store the kernel image depending on your own flash memory usage. |
| |
| Also note that the make target becomes "make xipImage" rather than |
| "make zImage" or "make Image". The final kernel binary to put in |
| ROM memory will be arch/arm/boot/xipImage. |
| |
| If unsure, say N. |
| |
| config XIP_PHYS_ADDR |
| hex "XIP Kernel Physical Location" |
| depends on XIP_KERNEL |
| default "0x00080000" |
| help |
| This is the physical address in your flash memory the kernel will |
| be linked for and stored to. This address is dependent on your |
| own flash usage. |
| |
| config KEXEC |
| bool "Kexec system call (EXPERIMENTAL)" |
| depends on EXPERIMENTAL |
| help |
| kexec is a system call that implements the ability to shutdown your |
| current kernel, and to start another kernel. It is like a reboot |
| but it is independent of the system firmware. And like a reboot |
| you can start any kernel with it, not just Linux. |
| |
| It is an ongoing process to be certain the hardware in a machine |
| is properly shutdown, so do not be surprised if this code does not |
| initially work for you. It may help to enable device hotplugging |
| support. |
| |
| config ATAGS_PROC |
| bool "Export atags in procfs" |
| depends on KEXEC |
| default y |
| help |
| Should the atags used to boot the kernel be exported in an "atags" |
| file in procfs. Useful with kexec. |
| |
| config CRASH_DUMP |
| bool "Build kdump crash kernel (EXPERIMENTAL)" |
| depends on EXPERIMENTAL |
| help |
| Generate crash dump after being started by kexec. This should |
| be normally only set in special crash dump kernels which are |
| loaded in the main kernel with kexec-tools into a specially |
| reserved region and then later executed after a crash by |
| kdump/kexec. The crash dump kernel must be compiled to a |
| memory address not used by the main kernel |
| |
| For more details see Documentation/kdump/kdump.txt |
| |
| config AUTO_ZRELADDR |
| bool "Auto calculation of the decompressed kernel image address" |
| depends on !ZBOOT_ROM && !ARCH_U300 |
| help |
| ZRELADDR is the physical address where the decompressed kernel |
| image will be placed. If AUTO_ZRELADDR is selected, the address |
| will be determined at run-time by masking the current IP with |
| 0xf8000000. This assumes the zImage being placed in the first 128MB |
| from start of memory. |
| |
| endmenu |
| |
| menu "CPU Power Management" |
| |
| if ARCH_HAS_CPUFREQ |
| |
| source "drivers/cpufreq/Kconfig" |
| |
| config CPU_FREQ_IMX |
| tristate "CPUfreq driver for i.MX CPUs" |
| depends on ARCH_MXC && CPU_FREQ |
| help |
| This enables the CPUfreq driver for i.MX CPUs. |
| |
| config CPU_FREQ_SA1100 |
| bool |
| |
| config CPU_FREQ_SA1110 |
| bool |
| |
| config CPU_FREQ_INTEGRATOR |
| tristate "CPUfreq driver for ARM Integrator CPUs" |
| depends on ARCH_INTEGRATOR && CPU_FREQ |
| default y |
| help |
| This enables the CPUfreq driver for ARM Integrator CPUs. |
| |
| For details, take a look at <file:Documentation/cpu-freq>. |
| |
| If in doubt, say Y. |
| |
| config CPU_FREQ_PXA |
| bool |
| depends on CPU_FREQ && ARCH_PXA && PXA25x |
| default y |
| select CPU_FREQ_DEFAULT_GOV_USERSPACE |
| |
| config CPU_FREQ_S3C64XX |
| bool "CPUfreq support for Samsung S3C64XX CPUs" |
| depends on CPU_FREQ && CPU_S3C6410 |
| |
| config CPU_FREQ_S3C |
| bool |
| help |
| Internal configuration node for common cpufreq on Samsung SoC |
| |
| config CPU_FREQ_S3C24XX |
| bool "CPUfreq driver for Samsung S3C24XX series CPUs" |
| depends on ARCH_S3C2410 && CPU_FREQ && EXPERIMENTAL |
| select CPU_FREQ_S3C |
| help |
| This enables the CPUfreq driver for the Samsung S3C24XX family |
| of CPUs. |
| |
| For details, take a look at <file:Documentation/cpu-freq>. |
| |
| If in doubt, say N. |
| |
| config CPU_FREQ_S3C24XX_PLL |
| bool "Support CPUfreq changing of PLL frequency" |
| depends on CPU_FREQ_S3C24XX && EXPERIMENTAL |
| help |
| Compile in support for changing the PLL frequency from the |
| S3C24XX series CPUfreq driver. The PLL takes time to settle |
| after a frequency change, so by default it is not enabled. |
| |
| This also means that the PLL tables for the selected CPU(s) will |
| be built which may increase the size of the kernel image. |
| |
| config CPU_FREQ_S3C24XX_DEBUG |
| bool "Debug CPUfreq Samsung driver core" |
| depends on CPU_FREQ_S3C24XX |
| help |
| Enable s3c_freq_dbg for the Samsung S3C CPUfreq core |
| |
| config CPU_FREQ_S3C24XX_IODEBUG |
| bool "Debug CPUfreq Samsung driver IO timing" |
| depends on CPU_FREQ_S3C24XX |
| help |
| Enable s3c_freq_iodbg for the Samsung S3C CPUfreq core |
| |
| config CPU_FREQ_S3C24XX_DEBUGFS |
| bool "Export debugfs for CPUFreq" |
| depends on CPU_FREQ_S3C24XX && DEBUG_FS |
| help |
| Export status information via debugfs. |
| |
| endif |
| |
| source "drivers/cpuidle/Kconfig" |
| |
| endmenu |
| |
| menu "Floating point emulation" |
| |
| comment "At least one emulation must be selected" |
| |
| config FPE_NWFPE |
| bool "NWFPE math emulation" |
| depends on (!AEABI || OABI_COMPAT) && !THUMB2_KERNEL |
| ---help--- |
| Say Y to include the NWFPE floating point emulator in the kernel. |
| This is necessary to run most binaries. Linux does not currently |
| support floating point hardware so you need to say Y here even if |
| your machine has an FPA or floating point co-processor podule. |
| |
| You may say N here if you are going to load the Acorn FPEmulator |
| early in the bootup. |
| |
| config FPE_NWFPE_XP |
| bool "Support extended precision" |
| depends on FPE_NWFPE |
| help |
| Say Y to include 80-bit support in the kernel floating-point |
| emulator. Otherwise, only 32 and 64-bit support is compiled in. |
| Note that gcc does not generate 80-bit operations by default, |
| so in most cases this option only enlarges the size of the |
| floating point emulator without any good reason. |
| |
| You almost surely want to say N here. |
| |
| config FPE_FASTFPE |
| bool "FastFPE math emulation (EXPERIMENTAL)" |
| depends on (!AEABI || OABI_COMPAT) && !CPU_32v3 && EXPERIMENTAL |
| ---help--- |
| Say Y here to include the FAST floating point emulator in the kernel. |
| This is an experimental much faster emulator which now also has full |
| precision for the mantissa. It does not support any exceptions. |
| It is very simple, and approximately 3-6 times faster than NWFPE. |
| |
| It should be sufficient for most programs. It may be not suitable |
| for scientific calculations, but you have to check this for yourself. |
| If you do not feel you need a faster FP emulation you should better |
| choose NWFPE. |
| |
| config VFP |
| bool "VFP-format floating point maths" |
| depends on CPU_V6 || CPU_ARM926T || CPU_V7 || CPU_FEROCEON |
| help |
| Say Y to include VFP support code in the kernel. This is needed |
| if your hardware includes a VFP unit. |
| |
| Please see <file:Documentation/arm/VFP/release-notes.txt> for |
| release notes and additional status information. |
| |
| Say N if your target does not have VFP hardware. |
| |
| config VFPv3 |
| bool |
| depends on VFP |
| default y if CPU_V7 |
| |
| config NEON |
| bool "Advanced SIMD (NEON) Extension support" |
| depends on VFPv3 && CPU_V7 |
| help |
| Say Y to include support code for NEON, the ARMv7 Advanced SIMD |
| Extension. |
| |
| endmenu |
| |
| menu "Userspace binary formats" |
| |
| source "fs/Kconfig.binfmt" |
| |
| config ARTHUR |
| tristate "RISC OS personality" |
| depends on !AEABI |
| help |
| Say Y here to include the kernel code necessary if you want to run |
| Acorn RISC OS/Arthur binaries under Linux. This code is still very |
| experimental; if this sounds frightening, say N and sleep in peace. |
| You can also say M here to compile this support as a module (which |
| will be called arthur). |
| |
| endmenu |
| |
| menu "Power management options" |
| |
| source "kernel/power/Kconfig" |
| |
| config ARCH_SUSPEND_POSSIBLE |
| def_bool y |
| |
| endmenu |
| |
| source "net/Kconfig" |
| |
| source "drivers/Kconfig" |
| |
| source "fs/Kconfig" |
| |
| source "arch/arm/Kconfig.debug" |
| |
| source "security/Kconfig" |
| |
| source "crypto/Kconfig" |
| |
| source "lib/Kconfig" |