mtd: Flex-OneNAND support

Add support for Samsung Flex-OneNAND devices.

Flex-OneNAND combines SLC and MLC technologies into a single device.
SLC area provides increased reliability and speed, suitable for storing
code such as bootloader, kernel and root file system.  MLC area
provides high density and is suitable for storing user data.

SLC and MLC regions can be configured through kernel parameter.

[akpm@linux-foundation.org: export flexoand_region and onenand_addr]
Signed-off-by: Rohit Hagargundgi <h.rohit@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Vishak G <vishak.g@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c
index 2346857..8d4c9c2 100644
--- a/drivers/mtd/onenand/onenand_base.c
+++ b/drivers/mtd/onenand/onenand_base.c
@@ -9,6 +9,10 @@
  *	auto-placement support, read-while load support, various fixes
  *	Copyright (C) Nokia Corporation, 2007
  *
+ *	Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
+ *	Flex-OneNAND support
+ *	Copyright (C) Samsung Electronics, 2008
+ *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
  * published by the Free Software Foundation.
@@ -27,6 +31,30 @@
 
 #include <asm/io.h>
 
+/* Default Flex-OneNAND boundary and lock respectively */
+static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
+
+/**
+ *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
+ *  For now, we expose only 64 out of 80 ecc bytes
+ */
+static struct nand_ecclayout onenand_oob_128 = {
+	.eccbytes	= 64,
+	.eccpos		= {
+		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
+		102, 103, 104, 105
+		},
+	.oobfree	= {
+		{2, 4}, {18, 4}, {34, 4}, {50, 4},
+		{66, 4}, {82, 4}, {98, 4}, {114, 4}
+	}
+};
+
 /**
  * onenand_oob_64 - oob info for large (2KB) page
  */
@@ -65,6 +93,14 @@
 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
 };
 
 /**
@@ -171,6 +207,70 @@
 }
 
 /**
+ * flexonenand_block- For given address return block number
+ * @param this         - OneNAND device structure
+ * @param addr		- Address for which block number is needed
+ */
+static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
+{
+	unsigned boundary, blk, die = 0;
+
+	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
+		die = 1;
+		addr -= this->diesize[0];
+	}
+
+	boundary = this->boundary[die];
+
+	blk = addr >> (this->erase_shift - 1);
+	if (blk > boundary)
+		blk = (blk + boundary + 1) >> 1;
+
+	blk += die ? this->density_mask : 0;
+	return blk;
+}
+
+inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
+{
+	if (!FLEXONENAND(this))
+		return addr >> this->erase_shift;
+	return flexonenand_block(this, addr);
+}
+
+/**
+ * flexonenand_addr - Return address of the block
+ * @this:		OneNAND device structure
+ * @block:		Block number on Flex-OneNAND
+ *
+ * Return address of the block
+ */
+static loff_t flexonenand_addr(struct onenand_chip *this, int block)
+{
+	loff_t ofs = 0;
+	int die = 0, boundary;
+
+	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
+		block -= this->density_mask;
+		die = 1;
+		ofs = this->diesize[0];
+	}
+
+	boundary = this->boundary[die];
+	ofs += (loff_t)block << (this->erase_shift - 1);
+	if (block > (boundary + 1))
+		ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
+	return ofs;
+}
+
+loff_t onenand_addr(struct onenand_chip *this, int block)
+{
+	if (!FLEXONENAND(this))
+		return (loff_t)block << this->erase_shift;
+	return flexonenand_addr(this, block);
+}
+EXPORT_SYMBOL(onenand_addr);
+
+/**
  * onenand_get_density - [DEFAULT] Get OneNAND density
  * @param dev_id	OneNAND device ID
  *
@@ -183,6 +283,22 @@
 }
 
 /**
+ * flexonenand_region - [Flex-OneNAND] Return erase region of addr
+ * @param mtd		MTD device structure
+ * @param addr		address whose erase region needs to be identified
+ */
+int flexonenand_region(struct mtd_info *mtd, loff_t addr)
+{
+	int i;
+
+	for (i = 0; i < mtd->numeraseregions; i++)
+		if (addr < mtd->eraseregions[i].offset)
+			break;
+	return i - 1;
+}
+EXPORT_SYMBOL(flexonenand_region);
+
+/**
  * onenand_command - [DEFAULT] Send command to OneNAND device
  * @param mtd		MTD device structure
  * @param cmd		the command to be sent
@@ -207,16 +323,28 @@
 		page = -1;
 		break;
 
-	case ONENAND_CMD_ERASE:
-	case ONENAND_CMD_BUFFERRAM:
-	case ONENAND_CMD_OTP_ACCESS:
-		block = (int) (addr >> this->erase_shift);
+	case FLEXONENAND_CMD_PI_ACCESS:
+		/* addr contains die index */
+		block = addr * this->density_mask;
 		page = -1;
 		break;
 
+	case ONENAND_CMD_ERASE:
+	case ONENAND_CMD_BUFFERRAM:
+	case ONENAND_CMD_OTP_ACCESS:
+		block = onenand_block(this, addr);
+		page = -1;
+		break;
+
+	case FLEXONENAND_CMD_READ_PI:
+		cmd = ONENAND_CMD_READ;
+		block = addr * this->density_mask;
+		page = 0;
+		break;
+
 	default:
-		block = (int) (addr >> this->erase_shift);
-		page = (int) (addr >> this->page_shift);
+		block = onenand_block(this, addr);
+		page = (int) (addr - onenand_addr(this, block)) >> this->page_shift;
 
 		if (ONENAND_IS_2PLANE(this)) {
 			/* Make the even block number */
@@ -236,7 +364,7 @@
 		value = onenand_bufferram_address(this, block);
 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 
-		if (ONENAND_IS_2PLANE(this))
+		if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this))
 			/* It is always BufferRAM0 */
 			ONENAND_SET_BUFFERRAM0(this);
 		else
@@ -258,13 +386,18 @@
 
 	if (page != -1) {
 		/* Now we use page size operation */
-		int sectors = 4, count = 4;
+		int sectors = 0, count = 0;
 		int dataram;
 
 		switch (cmd) {
+		case FLEXONENAND_CMD_RECOVER_LSB:
 		case ONENAND_CMD_READ:
 		case ONENAND_CMD_READOOB:
-			dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
+			if (ONENAND_IS_MLC(this))
+				/* It is always BufferRAM0 */
+				dataram = ONENAND_SET_BUFFERRAM0(this);
+			else
+				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
 			break;
 
 		default:
@@ -293,6 +426,30 @@
 }
 
 /**
+ * onenand_read_ecc - return ecc status
+ * @param this		onenand chip structure
+ */
+static inline int onenand_read_ecc(struct onenand_chip *this)
+{
+	int ecc, i, result = 0;
+
+	if (!FLEXONENAND(this))
+		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
+
+	for (i = 0; i < 4; i++) {
+		ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i);
+		if (likely(!ecc))
+			continue;
+		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
+			return ONENAND_ECC_2BIT_ALL;
+		else
+			result = ONENAND_ECC_1BIT_ALL;
+	}
+
+	return result;
+}
+
+/**
  * onenand_wait - [DEFAULT] wait until the command is done
  * @param mtd		MTD device structure
  * @param state		state to select the max. timeout value
@@ -331,14 +488,14 @@
 	 * power off recovery (POR) test, it should read ECC status first
 	 */
 	if (interrupt & ONENAND_INT_READ) {
-		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
+		int ecc = onenand_read_ecc(this);
 		if (ecc) {
 			if (ecc & ONENAND_ECC_2BIT_ALL) {
 				printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
 				mtd->ecc_stats.failed++;
 				return -EBADMSG;
 			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
-				printk(KERN_INFO "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
+				printk(KERN_DEBUG "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
 				mtd->ecc_stats.corrected++;
 			}
 		}
@@ -656,7 +813,7 @@
 
 	if (found && ONENAND_IS_DDP(this)) {
 		/* Select DataRAM for DDP */
-		int block = (int) (addr >> this->erase_shift);
+		int block = onenand_block(this, addr);
 		int value = onenand_bufferram_address(this, block);
 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 	}
@@ -816,6 +973,149 @@
 }
 
 /**
+ * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
+ * @param mtd		MTD device structure
+ * @param addr		address to recover
+ * @param status	return value from onenand_wait / onenand_bbt_wait
+ *
+ * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
+ * lower page address and MSB page has higher page address in paired pages.
+ * If power off occurs during MSB page program, the paired LSB page data can
+ * become corrupt. LSB page recovery read is a way to read LSB page though page
+ * data are corrupted. When uncorrectable error occurs as a result of LSB page
+ * read after power up, issue LSB page recovery read.
+ */
+static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
+{
+	struct onenand_chip *this = mtd->priv;
+	int i;
+
+	/* Recovery is only for Flex-OneNAND */
+	if (!FLEXONENAND(this))
+		return status;
+
+	/* check if we failed due to uncorrectable error */
+	if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
+		return status;
+
+	/* check if address lies in MLC region */
+	i = flexonenand_region(mtd, addr);
+	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
+		return status;
+
+	/* We are attempting to reread, so decrement stats.failed
+	 * which was incremented by onenand_wait due to read failure
+	 */
+	printk(KERN_INFO "onenand_recover_lsb: Attempting to recover from uncorrectable read\n");
+	mtd->ecc_stats.failed--;
+
+	/* Issue the LSB page recovery command */
+	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
+	return this->wait(mtd, FL_READING);
+}
+
+/**
+ * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
+ * @param mtd		MTD device structure
+ * @param from		offset to read from
+ * @param ops:		oob operation description structure
+ *
+ * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
+ * So, read-while-load is not present.
+ */
+static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
+				struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct mtd_ecc_stats stats;
+	size_t len = ops->len;
+	size_t ooblen = ops->ooblen;
+	u_char *buf = ops->datbuf;
+	u_char *oobbuf = ops->oobbuf;
+	int read = 0, column, thislen;
+	int oobread = 0, oobcolumn, thisooblen, oobsize;
+	int ret = 0;
+	int writesize = this->writesize;
+
+	DEBUG(MTD_DEBUG_LEVEL3, "onenand_mlc_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+	if (ops->mode == MTD_OOB_AUTO)
+		oobsize = this->ecclayout->oobavail;
+	else
+		oobsize = mtd->oobsize;
+
+	oobcolumn = from & (mtd->oobsize - 1);
+
+	/* Do not allow reads past end of device */
+	if (from + len > mtd->size) {
+		printk(KERN_ERR "onenand_mlc_read_ops_nolock: Attempt read beyond end of device\n");
+		ops->retlen = 0;
+		ops->oobretlen = 0;
+		return -EINVAL;
+	}
+
+	stats = mtd->ecc_stats;
+
+	while (read < len) {
+		cond_resched();
+
+		thislen = min_t(int, writesize, len - read);
+
+		column = from & (writesize - 1);
+		if (column + thislen > writesize)
+			thislen = writesize - column;
+
+		if (!onenand_check_bufferram(mtd, from)) {
+			this->command(mtd, ONENAND_CMD_READ, from, writesize);
+
+			ret = this->wait(mtd, FL_READING);
+			if (unlikely(ret))
+				ret = onenand_recover_lsb(mtd, from, ret);
+			onenand_update_bufferram(mtd, from, !ret);
+			if (ret == -EBADMSG)
+				ret = 0;
+		}
+
+		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
+		if (oobbuf) {
+			thisooblen = oobsize - oobcolumn;
+			thisooblen = min_t(int, thisooblen, ooblen - oobread);
+
+			if (ops->mode == MTD_OOB_AUTO)
+				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
+			else
+				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
+			oobread += thisooblen;
+			oobbuf += thisooblen;
+			oobcolumn = 0;
+		}
+
+		read += thislen;
+		if (read == len)
+			break;
+
+		from += thislen;
+		buf += thislen;
+	}
+
+	/*
+	 * Return success, if no ECC failures, else -EBADMSG
+	 * fs driver will take care of that, because
+	 * retlen == desired len and result == -EBADMSG
+	 */
+	ops->retlen = read;
+	ops->oobretlen = oobread;
+
+	if (ret)
+		return ret;
+
+	if (mtd->ecc_stats.failed - stats.failed)
+		return -EBADMSG;
+
+	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
+}
+
+/**
  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
  * @param mtd		MTD device structure
  * @param from		offset to read from
@@ -962,7 +1262,7 @@
 	size_t len = ops->ooblen;
 	mtd_oob_mode_t mode = ops->mode;
 	u_char *buf = ops->oobbuf;
-	int ret = 0;
+	int ret = 0, readcmd;
 
 	from += ops->ooboffs;
 
@@ -993,17 +1293,22 @@
 
 	stats = mtd->ecc_stats;
 
+	readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
 	while (read < len) {
 		cond_resched();
 
 		thislen = oobsize - column;
 		thislen = min_t(int, thislen, len);
 
-		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
+		this->command(mtd, readcmd, from, mtd->oobsize);
 
 		onenand_update_bufferram(mtd, from, 0);
 
 		ret = this->wait(mtd, FL_READING);
+		if (unlikely(ret))
+			ret = onenand_recover_lsb(mtd, from, ret);
+
 		if (ret && ret != -EBADMSG) {
 			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
 			break;
@@ -1053,6 +1358,7 @@
 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
 	size_t *retlen, u_char *buf)
 {
+	struct onenand_chip *this = mtd->priv;
 	struct mtd_oob_ops ops = {
 		.len	= len,
 		.ooblen	= 0,
@@ -1062,7 +1368,9 @@
 	int ret;
 
 	onenand_get_device(mtd, FL_READING);
-	ret = onenand_read_ops_nolock(mtd, from, &ops);
+	ret = ONENAND_IS_MLC(this) ?
+		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
+		onenand_read_ops_nolock(mtd, from, &ops);
 	onenand_release_device(mtd);
 
 	*retlen = ops.retlen;
@@ -1080,6 +1388,7 @@
 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
 			    struct mtd_oob_ops *ops)
 {
+	struct onenand_chip *this = mtd->priv;
 	int ret;
 
 	switch (ops->mode) {
@@ -1094,7 +1403,9 @@
 
 	onenand_get_device(mtd, FL_READING);
 	if (ops->datbuf)
-		ret = onenand_read_ops_nolock(mtd, from, ops);
+		ret = ONENAND_IS_MLC(this) ?
+			onenand_mlc_read_ops_nolock(mtd, from, ops) :
+			onenand_read_ops_nolock(mtd, from, ops);
 	else
 		ret = onenand_read_oob_nolock(mtd, from, ops);
 	onenand_release_device(mtd);
@@ -1128,11 +1439,11 @@
 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
 
 	if (interrupt & ONENAND_INT_READ) {
-		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
+		int ecc = onenand_read_ecc(this);
 		if (ecc & ONENAND_ECC_2BIT_ALL) {
 			printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
 				", controller error 0x%04x\n", ecc, ctrl);
-			return ONENAND_BBT_READ_ERROR;
+			return ONENAND_BBT_READ_ECC_ERROR;
 		}
 	} else {
 		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
@@ -1163,7 +1474,7 @@
 {
 	struct onenand_chip *this = mtd->priv;
 	int read = 0, thislen, column;
-	int ret = 0;
+	int ret = 0, readcmd;
 	size_t len = ops->ooblen;
 	u_char *buf = ops->oobbuf;
 
@@ -1183,17 +1494,22 @@
 
 	column = from & (mtd->oobsize - 1);
 
+	readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
 	while (read < len) {
 		cond_resched();
 
 		thislen = mtd->oobsize - column;
 		thislen = min_t(int, thislen, len);
 
-		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
+		this->command(mtd, readcmd, from, mtd->oobsize);
 
 		onenand_update_bufferram(mtd, from, 0);
 
 		ret = onenand_bbt_wait(mtd, FL_READING);
+		if (unlikely(ret))
+			ret = onenand_recover_lsb(mtd, from, ret);
+
 		if (ret)
 			break;
 
@@ -1230,9 +1546,11 @@
 {
 	struct onenand_chip *this = mtd->priv;
 	u_char *oob_buf = this->oob_buf;
-	int status, i;
+	int status, i, readcmd;
 
-	this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
+	readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+	this->command(mtd, readcmd, to, mtd->oobsize);
 	onenand_update_bufferram(mtd, to, 0);
 	status = this->wait(mtd, FL_READING);
 	if (status)
@@ -1633,7 +1951,7 @@
 {
 	struct onenand_chip *this = mtd->priv;
 	int column, ret = 0, oobsize;
-	int written = 0;
+	int written = 0, oobcmd;
 	u_char *oobbuf;
 	size_t len = ops->ooblen;
 	const u_char *buf = ops->oobbuf;
@@ -1675,6 +1993,8 @@
 
 	oobbuf = this->oob_buf;
 
+	oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
+
 	/* Loop until all data write */
 	while (written < len) {
 		int thislen = min_t(int, oobsize, len - written);
@@ -1692,7 +2012,14 @@
 			memcpy(oobbuf + column, buf, thislen);
 		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
 
-		this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
+		if (ONENAND_IS_MLC(this)) {
+			/* Set main area of DataRAM to 0xff*/
+			memset(this->page_buf, 0xff, mtd->writesize);
+			this->write_bufferram(mtd, ONENAND_DATARAM,
+					 this->page_buf, 0, mtd->writesize);
+		}
+
+		this->command(mtd, oobcmd, to, mtd->oobsize);
 
 		onenand_update_bufferram(mtd, to, 0);
 		if (ONENAND_IS_2PLANE(this)) {
@@ -1815,41 +2142,57 @@
 {
 	struct onenand_chip *this = mtd->priv;
 	unsigned int block_size;
-	loff_t addr;
-	int len;
-	int ret = 0;
+	loff_t addr = instr->addr;
+	loff_t len = instr->len;
+	int ret = 0, i;
+	struct mtd_erase_region_info *region = NULL;
+	loff_t region_end = 0;
 
 	DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%012llx, len = %llu\n", (unsigned long long) instr->addr, (unsigned long long) instr->len);
 
-	block_size = (1 << this->erase_shift);
-
-	/* Start address must align on block boundary */
-	if (unlikely(instr->addr & (block_size - 1))) {
-		printk(KERN_ERR "onenand_erase: Unaligned address\n");
+	/* Do not allow erase past end of device */
+	if (unlikely((len + addr) > mtd->size)) {
+		printk(KERN_ERR "onenand_erase: Erase past end of device\n");
 		return -EINVAL;
 	}
 
+	if (FLEXONENAND(this)) {
+		/* Find the eraseregion of this address */
+		i = flexonenand_region(mtd, addr);
+		region = &mtd->eraseregions[i];
+
+		block_size = region->erasesize;
+		region_end = region->offset + region->erasesize * region->numblocks;
+
+		/* Start address within region must align on block boundary.
+		 * Erase region's start offset is always block start address.
+		 */
+		if (unlikely((addr - region->offset) & (block_size - 1))) {
+			printk(KERN_ERR "onenand_erase: Unaligned address\n");
+			return -EINVAL;
+		}
+	} else {
+		block_size = 1 << this->erase_shift;
+
+		/* Start address must align on block boundary */
+		if (unlikely(addr & (block_size - 1))) {
+			printk(KERN_ERR "onenand_erase: Unaligned address\n");
+			return -EINVAL;
+		}
+	}
+
 	/* Length must align on block boundary */
-	if (unlikely(instr->len & (block_size - 1))) {
+	if (unlikely(len & (block_size - 1))) {
 		printk(KERN_ERR "onenand_erase: Length not block aligned\n");
 		return -EINVAL;
 	}
 
-	/* Do not allow erase past end of device */
-	if (unlikely((instr->len + instr->addr) > mtd->size)) {
-		printk(KERN_ERR "onenand_erase: Erase past end of device\n");
-		return -EINVAL;
-	}
-
 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
 
 	/* Grab the lock and see if the device is available */
 	onenand_get_device(mtd, FL_ERASING);
 
 	/* Loop throught the pages */
-	len = instr->len;
-	addr = instr->addr;
-
 	instr->state = MTD_ERASING;
 
 	while (len) {
@@ -1869,7 +2212,8 @@
 		ret = this->wait(mtd, FL_ERASING);
 		/* Check, if it is write protected */
 		if (ret) {
-			printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
+			printk(KERN_ERR "onenand_erase: Failed erase, block %d\n",
+						 onenand_block(this, addr));
 			instr->state = MTD_ERASE_FAILED;
 			instr->fail_addr = addr;
 			goto erase_exit;
@@ -1877,6 +2221,22 @@
 
 		len -= block_size;
 		addr += block_size;
+
+		if (addr == region_end) {
+			if (!len)
+				break;
+			region++;
+
+			block_size = region->erasesize;
+			region_end = region->offset + region->erasesize * region->numblocks;
+
+			if (len & (block_size - 1)) {
+				/* FIXME: This should be handled at MTD partitioning level. */
+				printk(KERN_ERR "onenand_erase: Unaligned address\n");
+				goto erase_exit;
+			}
+		}
+
 	}
 
 	instr->state = MTD_ERASE_DONE;
@@ -1955,13 +2315,17 @@
 	int block;
 
 	/* Get block number */
-	block = ((int) ofs) >> bbm->bbt_erase_shift;
+	block = onenand_block(this, ofs);
         if (bbm->bbt)
                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
 
         /* We write two bytes, so we dont have to mess with 16 bit access */
         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
-        return onenand_write_oob_nolock(mtd, ofs, &ops);
+	/* FIXME : What to do when marking SLC block in partition
+	 * 	   with MLC erasesize? For now, it is not advisable to
+	 *	   create partitions containing both SLC and MLC regions.
+	 */
+	return onenand_write_oob_nolock(mtd, ofs, &ops);
 }
 
 /**
@@ -2005,8 +2369,8 @@
 	int start, end, block, value, status;
 	int wp_status_mask;
 
-	start = ofs >> this->erase_shift;
-	end = len >> this->erase_shift;
+	start = onenand_block(this, ofs);
+	end = onenand_block(this, ofs + len) - 1;
 
 	if (cmd == ONENAND_CMD_LOCK)
 		wp_status_mask = ONENAND_WP_LS;
@@ -2018,7 +2382,7 @@
 		/* Set start block address */
 		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
 		/* Set end block address */
-		this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
+		this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
 		/* Write lock command */
 		this->command(mtd, cmd, 0, 0);
 
@@ -2039,7 +2403,7 @@
 	}
 
 	/* Block lock scheme */
-	for (block = start; block < start + end; block++) {
+	for (block = start; block < end + 1; block++) {
 		/* Set block address */
 		value = onenand_block_address(this, block);
 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
@@ -2147,7 +2511,7 @@
 {
 	struct onenand_chip *this = mtd->priv;
 	loff_t ofs = 0;
-	size_t len = this->chipsize;
+	loff_t len = mtd->size;
 
 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
 		/* Set start block address */
@@ -2168,7 +2532,7 @@
 			return;
 
 		/* Workaround for all block unlock in DDP */
-		if (ONENAND_IS_DDP(this)) {
+		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
 			/* All blocks on another chip */
 			ofs = this->chipsize >> 1;
 			len = this->chipsize >> 1;
@@ -2210,7 +2574,9 @@
 	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
 	this->wait(mtd, FL_OTPING);
 
-	ret = onenand_read_ops_nolock(mtd, from, &ops);
+	ret = ONENAND_IS_MLC(this) ?
+		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
+		onenand_read_ops_nolock(mtd, from, &ops);
 
 	/* Exit OTP access mode */
 	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
@@ -2277,21 +2643,32 @@
 		size_t *retlen, u_char *buf)
 {
 	struct onenand_chip *this = mtd->priv;
-	struct mtd_oob_ops ops = {
-		.mode = MTD_OOB_PLACE,
-		.ooblen = len,
-		.oobbuf = buf,
-		.ooboffs = 0,
-	};
+	struct mtd_oob_ops ops;
 	int ret;
 
 	/* Enter OTP access mode */
 	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
 	this->wait(mtd, FL_OTPING);
 
-	ret = onenand_write_oob_nolock(mtd, from, &ops);
-
-	*retlen = ops.oobretlen;
+	if (FLEXONENAND(this)) {
+		/*
+		 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
+		 * main area of page 49.
+		 */
+		ops.len = mtd->writesize;
+		ops.ooblen = 0;
+		ops.datbuf = buf;
+		ops.oobbuf = NULL;
+		ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
+		*retlen = ops.retlen;
+	} else {
+		ops.mode = MTD_OOB_PLACE;
+		ops.ooblen = len;
+		ops.oobbuf = buf;
+		ops.ooboffs = 0;
+		ret = onenand_write_oob_nolock(mtd, from, &ops);
+		*retlen = ops.oobretlen;
+	}
 
 	/* Exit OTP access mode */
 	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
@@ -2475,27 +2852,34 @@
 			size_t len)
 {
 	struct onenand_chip *this = mtd->priv;
-	u_char *oob_buf = this->oob_buf;
+	u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
 	size_t retlen;
 	int ret;
 
-	memset(oob_buf, 0xff, mtd->oobsize);
+	memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
+						 : mtd->oobsize);
 	/*
 	 * Note: OTP lock operation
 	 *       OTP block : 0xXXFC
 	 *       1st block : 0xXXF3 (If chip support)
 	 *       Both      : 0xXXF0 (If chip support)
 	 */
-	oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
+	if (FLEXONENAND(this))
+		buf[FLEXONENAND_OTP_LOCK_OFFSET] = 0xFC;
+	else
+		buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
 
 	/*
 	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
 	 * We write 16 bytes spare area instead of 2 bytes.
+	 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
+	 * main area of page 49.
 	 */
-	from = 0;
-	len = 16;
 
-	ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
+	from = 0;
+	len = FLEXONENAND(this) ? mtd->writesize : 16;
+
+	ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
 
 	return ret ? : retlen;
 }
@@ -2542,6 +2926,14 @@
 		break;
 	}
 
+	if (ONENAND_IS_MLC(this))
+		this->options &= ~ONENAND_HAS_2PLANE;
+
+	if (FLEXONENAND(this)) {
+		this->options &= ~ONENAND_HAS_CONT_LOCK;
+		this->options |= ONENAND_HAS_UNLOCK_ALL;
+	}
+
 	if (this->options & ONENAND_HAS_CONT_LOCK)
 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
@@ -2559,14 +2951,16 @@
  */
 static void onenand_print_device_info(int device, int version)
 {
-        int vcc, demuxed, ddp, density;
+	int vcc, demuxed, ddp, density, flexonenand;
 
         vcc = device & ONENAND_DEVICE_VCC_MASK;
         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
         ddp = device & ONENAND_DEVICE_IS_DDP;
         density = onenand_get_density(device);
-        printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
-                demuxed ? "" : "Muxed ",
+	flexonenand = device & DEVICE_IS_FLEXONENAND;
+	printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
+		demuxed ? "" : "Muxed ",
+		flexonenand ? "Flex-" : "",
                 ddp ? "(DDP)" : "",
                 (16 << density),
                 vcc ? "2.65/3.3" : "1.8",
@@ -2606,6 +3000,280 @@
 }
 
 /**
+* flexonenand_get_boundary	- Reads the SLC boundary
+* @param onenand_info		- onenand info structure
+**/
+static int flexonenand_get_boundary(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned die, bdry;
+	int ret, syscfg, locked;
+
+	/* Disable ECC */
+	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
+
+	for (die = 0; die < this->dies; die++) {
+		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
+		this->wait(mtd, FL_SYNCING);
+
+		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
+		ret = this->wait(mtd, FL_READING);
+
+		bdry = this->read_word(this->base + ONENAND_DATARAM);
+		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
+			locked = 0;
+		else
+			locked = 1;
+		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
+
+		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+		ret = this->wait(mtd, FL_RESETING);
+
+		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
+		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
+	}
+
+	/* Enable ECC */
+	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+	return 0;
+}
+
+/**
+ * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
+ * 			  boundary[], diesize[], mtd->size, mtd->erasesize
+ * @param mtd		- MTD device structure
+ */
+static void flexonenand_get_size(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int die, i, eraseshift, density;
+	int blksperdie, maxbdry;
+	loff_t ofs;
+
+	density = onenand_get_density(this->device_id);
+	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
+	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
+	maxbdry = blksperdie - 1;
+	eraseshift = this->erase_shift - 1;
+
+	mtd->numeraseregions = this->dies << 1;
+
+	/* This fills up the device boundary */
+	flexonenand_get_boundary(mtd);
+	die = ofs = 0;
+	i = -1;
+	for (; die < this->dies; die++) {
+		if (!die || this->boundary[die-1] != maxbdry) {
+			i++;
+			mtd->eraseregions[i].offset = ofs;
+			mtd->eraseregions[i].erasesize = 1 << eraseshift;
+			mtd->eraseregions[i].numblocks =
+							this->boundary[die] + 1;
+			ofs += mtd->eraseregions[i].numblocks << eraseshift;
+			eraseshift++;
+		} else {
+			mtd->numeraseregions -= 1;
+			mtd->eraseregions[i].numblocks +=
+							this->boundary[die] + 1;
+			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
+		}
+		if (this->boundary[die] != maxbdry) {
+			i++;
+			mtd->eraseregions[i].offset = ofs;
+			mtd->eraseregions[i].erasesize = 1 << eraseshift;
+			mtd->eraseregions[i].numblocks = maxbdry ^
+							 this->boundary[die];
+			ofs += mtd->eraseregions[i].numblocks << eraseshift;
+			eraseshift--;
+		} else
+			mtd->numeraseregions -= 1;
+	}
+
+	/* Expose MLC erase size except when all blocks are SLC */
+	mtd->erasesize = 1 << this->erase_shift;
+	if (mtd->numeraseregions == 1)
+		mtd->erasesize >>= 1;
+
+	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
+	for (i = 0; i < mtd->numeraseregions; i++)
+		printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
+			" numblocks: %04u]\n",
+			(unsigned int) mtd->eraseregions[i].offset,
+			mtd->eraseregions[i].erasesize,
+			mtd->eraseregions[i].numblocks);
+
+	for (die = 0, mtd->size = 0; die < this->dies; die++) {
+		this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
+		this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
+						 << (this->erase_shift - 1);
+		mtd->size += this->diesize[die];
+	}
+}
+
+/**
+ * flexonenand_check_blocks_erased - Check if blocks are erased
+ * @param mtd_info	- mtd info structure
+ * @param start		- first erase block to check
+ * @param end		- last erase block to check
+ *
+ * Converting an unerased block from MLC to SLC
+ * causes byte values to change. Since both data and its ECC
+ * have changed, reads on the block give uncorrectable error.
+ * This might lead to the block being detected as bad.
+ *
+ * Avoid this by ensuring that the block to be converted is
+ * erased.
+ */
+static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
+{
+	struct onenand_chip *this = mtd->priv;
+	int i, ret;
+	int block;
+	struct mtd_oob_ops ops = {
+		.mode = MTD_OOB_PLACE,
+		.ooboffs = 0,
+		.ooblen	= mtd->oobsize,
+		.datbuf	= NULL,
+		.oobbuf	= this->oob_buf,
+	};
+	loff_t addr;
+
+	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
+
+	for (block = start; block <= end; block++) {
+		addr = flexonenand_addr(this, block);
+		if (onenand_block_isbad_nolock(mtd, addr, 0))
+			continue;
+
+		/*
+		 * Since main area write results in ECC write to spare,
+		 * it is sufficient to check only ECC bytes for change.
+		 */
+		ret = onenand_read_oob_nolock(mtd, addr, &ops);
+		if (ret)
+			return ret;
+
+		for (i = 0; i < mtd->oobsize; i++)
+			if (this->oob_buf[i] != 0xff)
+				break;
+
+		if (i != mtd->oobsize) {
+			printk(KERN_WARNING "Block %d not erased.\n", block);
+			return 1;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * flexonenand_set_boundary	- Writes the SLC boundary
+ * @param mtd			- mtd info structure
+ */
+int flexonenand_set_boundary(struct mtd_info *mtd, int die,
+				    int boundary, int lock)
+{
+	struct onenand_chip *this = mtd->priv;
+	int ret, density, blksperdie, old, new, thisboundary;
+	loff_t addr;
+
+	/* Change only once for SDP Flex-OneNAND */
+	if (die && (!ONENAND_IS_DDP(this)))
+		return 0;
+
+	/* boundary value of -1 indicates no required change */
+	if (boundary < 0 || boundary == this->boundary[die])
+		return 0;
+
+	density = onenand_get_density(this->device_id);
+	blksperdie = ((16 << density) << 20) >> this->erase_shift;
+	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
+
+	if (boundary >= blksperdie) {
+		printk(KERN_ERR "flexonenand_set_boundary: Invalid boundary value. "
+				"Boundary not changed.\n");
+		return -EINVAL;
+	}
+
+	/* Check if converting blocks are erased */
+	old = this->boundary[die] + (die * this->density_mask);
+	new = boundary + (die * this->density_mask);
+	ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
+	if (ret) {
+		printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
+		return ret;
+	}
+
+	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
+	this->wait(mtd, FL_SYNCING);
+
+	/* Check is boundary is locked */
+	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
+	ret = this->wait(mtd, FL_READING);
+
+	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
+	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
+		printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
+		ret = 1;
+		goto out;
+	}
+
+	printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
+			die, boundary, lock ? "(Locked)" : "(Unlocked)");
+
+	addr = die ? this->diesize[0] : 0;
+
+	boundary &= FLEXONENAND_PI_MASK;
+	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
+
+	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
+	ret = this->wait(mtd, FL_ERASING);
+	if (ret) {
+		printk(KERN_ERR "flexonenand_set_boundary: Failed PI erase for Die %d\n", die);
+		goto out;
+	}
+
+	this->write_word(boundary, this->base + ONENAND_DATARAM);
+	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
+	ret = this->wait(mtd, FL_WRITING);
+	if (ret) {
+		printk(KERN_ERR "flexonenand_set_boundary: Failed PI write for Die %d\n", die);
+		goto out;
+	}
+
+	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
+	ret = this->wait(mtd, FL_WRITING);
+out:
+	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
+	this->wait(mtd, FL_RESETING);
+	if (!ret)
+		/* Recalculate device size on boundary change*/
+		flexonenand_get_size(mtd);
+
+	return ret;
+}
+
+/**
+ * flexonenand_setup - 	capture Flex-OneNAND boundary and lock
+ * 			values  passed as kernel parameters
+ * @param s	kernel parameter string
+ */
+static int flexonenand_setup(char *s)
+{
+	int ints[5], i;
+
+	s = get_options(s, 5, ints);
+
+	for (i = 0; i < ints[0]; i++)
+		flex_bdry[i] = ints[i + 1];
+
+	return 1;
+}
+
+__setup("onenand.bdry=", flexonenand_setup);
+
+/**
  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
  * @param mtd		MTD device structure
  *
@@ -2647,6 +3315,7 @@
 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
+	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
 
 	/* Check OneNAND device */
 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
@@ -2658,29 +3327,55 @@
 	this->version_id = ver_id;
 
 	density = onenand_get_density(dev_id);
+	if (FLEXONENAND(this)) {
+		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
+		/* Maximum possible erase regions */
+		mtd->numeraseregions = this->dies << 1;
+		mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
+					* (this->dies << 1), GFP_KERNEL);
+		if (!mtd->eraseregions)
+			return -ENOMEM;
+	}
+
+	/*
+	 * For Flex-OneNAND, chipsize represents maximum possible device size.
+	 * mtd->size represents the actual device size.
+	 */
 	this->chipsize = (16 << density) << 20;
-	/* Set density mask. it is used for DDP */
-	if (ONENAND_IS_DDP(this))
-		this->density_mask = (1 << (density + 6));
-	else
-		this->density_mask = 0;
 
 	/* OneNAND page size & block size */
 	/* The data buffer size is equal to page size */
 	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
+	/* We use the full BufferRAM */
+	if (ONENAND_IS_MLC(this))
+		mtd->writesize <<= 1;
+
 	mtd->oobsize = mtd->writesize >> 5;
 	/* Pages per a block are always 64 in OneNAND */
 	mtd->erasesize = mtd->writesize << 6;
+	/*
+	 * Flex-OneNAND SLC area has 64 pages per block.
+	 * Flex-OneNAND MLC area has 128 pages per block.
+	 * Expose MLC erase size to find erase_shift and page_mask.
+	 */
+	if (FLEXONENAND(this))
+		mtd->erasesize <<= 1;
 
 	this->erase_shift = ffs(mtd->erasesize) - 1;
 	this->page_shift = ffs(mtd->writesize) - 1;
 	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
+	/* Set density mask. it is used for DDP */
+	if (ONENAND_IS_DDP(this))
+		this->density_mask = this->chipsize >> (this->erase_shift + 1);
 	/* It's real page size */
 	this->writesize = mtd->writesize;
 
 	/* REVIST: Multichip handling */
 
-	mtd->size = this->chipsize;
+	if (FLEXONENAND(this))
+		flexonenand_get_size(mtd);
+	else
+		mtd->size = this->chipsize;
 
 	/* Check OneNAND features */
 	onenand_check_features(mtd);
@@ -2735,7 +3430,7 @@
  */
 int onenand_scan(struct mtd_info *mtd, int maxchips)
 {
-	int i;
+	int i, ret;
 	struct onenand_chip *this = mtd->priv;
 
 	if (!this->read_word)
@@ -2797,6 +3492,10 @@
 	 * Allow subpage writes up to oobsize.
 	 */
 	switch (mtd->oobsize) {
+	case 128:
+		this->ecclayout = &onenand_oob_128;
+		mtd->subpage_sft = 0;
+		break;
 	case 64:
 		this->ecclayout = &onenand_oob_64;
 		mtd->subpage_sft = 2;
@@ -2862,7 +3561,16 @@
 	/* Unlock whole block */
 	onenand_unlock_all(mtd);
 
-	return this->scan_bbt(mtd);
+	ret = this->scan_bbt(mtd);
+	if ((!FLEXONENAND(this)) || ret)
+		return ret;
+
+	/* Change Flex-OneNAND boundaries if required */
+	for (i = 0; i < MAX_DIES; i++)
+		flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
+						 flex_bdry[(2 * i) + 1]);
+
+	return 0;
 }
 
 /**
@@ -2891,6 +3599,7 @@
 		kfree(this->page_buf);
 	if (this->options & ONENAND_OOBBUF_ALLOC)
 		kfree(this->oob_buf);
+	kfree(mtd->eraseregions);
 }
 
 EXPORT_SYMBOL_GPL(onenand_scan);