[CRYPTO] lrw: Liskov Rivest Wagner, a tweakable narrow block cipher mode

Main module, this implements the Liskov Rivest Wagner block cipher mode
in the new blockcipher API. The implementation is based on ecb.c.

The LRW-32-AES specification I used can be found at:
http://grouper.ieee.org/groups/1619/email/pdf00017.pdf

It implements the optimization specified as optional in the
specification, and in addition it uses optimized multiplication
routines from gf128mul.c.

Since gf128mul.[ch] is not tested on bigendian, this cipher mode
may currently fail badly on bigendian machines.

Signed-off-by: Rik Snel <rsnel@cube.dyndns.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
diff --git a/crypto/Kconfig b/crypto/Kconfig
index f941ffb..92ba249 100644
--- a/crypto/Kconfig
+++ b/crypto/Kconfig
@@ -168,6 +168,19 @@
 	  CBC: Cipher Block Chaining mode
 	  This block cipher algorithm is required for IPSec.
 
+config CRYPTO_LRW
+	tristate "LRW support (EXPERIMENTAL)"
+	depends on EXPERIMENTAL
+	select CRYPTO_BLKCIPHER
+	select CRYPTO_MANAGER
+	select CRYPTO_GF128MUL
+	help
+	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
+	  narrow block cipher mode for dm-crypt.  Use it with cipher
+	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
+	  The first 128, 192 or 256 bits in the key are used for AES and the
+	  rest is used to tie each cipher block to its logical position.
+
 config CRYPTO_DES
 	tristate "DES and Triple DES EDE cipher algorithms"
 	select CRYPTO_ALGAPI
diff --git a/crypto/Makefile b/crypto/Makefile
index 0ab9ff0..60e3d24f 100644
--- a/crypto/Makefile
+++ b/crypto/Makefile
@@ -27,6 +27,7 @@
 obj-$(CONFIG_CRYPTO_GF128MUL) += gf128mul.o
 obj-$(CONFIG_CRYPTO_ECB) += ecb.o
 obj-$(CONFIG_CRYPTO_CBC) += cbc.o
+obj-$(CONFIG_CRYPTO_LRW) += lrw.o
 obj-$(CONFIG_CRYPTO_DES) += des.o
 obj-$(CONFIG_CRYPTO_BLOWFISH) += blowfish.o
 obj-$(CONFIG_CRYPTO_TWOFISH) += twofish.o
diff --git a/crypto/lrw.c b/crypto/lrw.c
new file mode 100644
index 0000000..5d04315
--- /dev/null
+++ b/crypto/lrw.c
@@ -0,0 +1,301 @@
+/* LRW: as defined by Cyril Guyot in
+ *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
+ *
+ * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
+ *
+ * Based om ecb.c
+ * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the Free
+ * Software Foundation; either version 2 of the License, or (at your option)
+ * any later version.
+ */
+/* This implementation is checked against the test vectors in the above
+ * document and by a test vector provided by Ken Buchanan at
+ * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
+ *
+ * The test vectors are included in the testing module tcrypt.[ch] */
+#include <crypto/algapi.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/scatterlist.h>
+#include <linux/slab.h>
+
+#include <crypto/b128ops.h>
+#include <crypto/gf128mul.h>
+
+struct priv {
+	struct crypto_cipher *child;
+	/* optimizes multiplying a random (non incrementing, as at the
+	 * start of a new sector) value with key2, we could also have
+	 * used 4k optimization tables or no optimization at all. In the
+	 * latter case we would have to store key2 here */
+	struct gf128mul_64k *table;
+	/* stores:
+	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
+	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
+	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
+	 * needed for optimized multiplication of incrementing values
+	 * with key2 */
+	be128 mulinc[128];
+};
+
+static inline void setbit128_bbe(void *b, int bit)
+{
+	__set_bit(bit ^ 0x78, b);
+}
+
+static int setkey(struct crypto_tfm *parent, const u8 *key,
+		  unsigned int keylen)
+{
+	struct priv *ctx = crypto_tfm_ctx(parent);
+	struct crypto_cipher *child = ctx->child;
+	int err, i;
+	be128 tmp = { 0 };
+	int bsize = crypto_cipher_blocksize(child);
+
+	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
+	crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
+				       CRYPTO_TFM_REQ_MASK);
+	if ((err = crypto_cipher_setkey(child, key, keylen - bsize)))
+		return err;
+	crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
+				     CRYPTO_TFM_RES_MASK);
+
+	if (ctx->table)
+		gf128mul_free_64k(ctx->table);
+
+	/* initialize multiplication table for Key2 */
+	ctx->table = gf128mul_init_64k_bbe((be128 *)(key + keylen - bsize));
+	if (!ctx->table)
+		return -ENOMEM;
+
+	/* initialize optimization table */
+	for (i = 0; i < 128; i++) {
+		setbit128_bbe(&tmp, i);
+		ctx->mulinc[i] = tmp;
+		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
+	}
+
+	return 0;
+}
+
+struct sinfo {
+	be128 t;
+	struct crypto_tfm *tfm;
+	void (*fn)(struct crypto_tfm *, u8 *, const u8 *);
+};
+
+static inline void inc(be128 *iv)
+{
+	if (!(iv->b = cpu_to_be64(be64_to_cpu(iv->b) + 1)))
+		iv->a = cpu_to_be64(be64_to_cpu(iv->a) + 1);
+}
+
+static inline void round(struct sinfo *s, void *dst, const void *src)
+{
+	be128_xor(dst, &s->t, src);		/* PP <- T xor P */
+	s->fn(s->tfm, dst, dst);		/* CC <- E(Key2,PP) */
+	be128_xor(dst, dst, &s->t);		/* C <- T xor CC */
+}
+
+/* this returns the number of consequative 1 bits starting
+ * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
+static inline int get_index128(be128 *block)
+{
+	int x;
+	__be32 *p = (__be32 *) block;
+
+	for (p += 3, x = 0; x < 128; p--, x += 32) {
+		u32 val = be32_to_cpup(p);
+
+		if (!~val)
+			continue;
+
+		return x + ffz(val);
+	}
+
+	return x;
+}
+
+static int crypt(struct blkcipher_desc *d,
+		 struct blkcipher_walk *w, struct priv *ctx,
+		 void (*fn)(struct crypto_tfm *, u8 *, const u8 *))
+{
+	int err;
+	unsigned int avail;
+	const int bs = crypto_cipher_blocksize(ctx->child);
+	struct sinfo s = {
+		.tfm = crypto_cipher_tfm(ctx->child),
+		.fn = fn
+	};
+	be128 *iv;
+	u8 *wsrc;
+	u8 *wdst;
+
+	err = blkcipher_walk_virt(d, w);
+	if (!(avail = w->nbytes))
+		return err;
+
+	wsrc = w->src.virt.addr;
+	wdst = w->dst.virt.addr;
+
+	/* calculate first value of T */
+	iv = (be128 *)w->iv;
+	s.t = *iv;
+
+	/* T <- I*Key2 */
+	gf128mul_64k_bbe(&s.t, ctx->table);
+
+	goto first;
+
+	for (;;) {
+		do {
+			/* T <- I*Key2, using the optimization
+			 * discussed in the specification */
+			be128_xor(&s.t, &s.t, &ctx->mulinc[get_index128(iv)]);
+			inc(iv);
+
+first:
+			round(&s, wdst, wsrc);
+
+			wsrc += bs;
+			wdst += bs;
+		} while ((avail -= bs) >= bs);
+
+		err = blkcipher_walk_done(d, w, avail);
+		if (!(avail = w->nbytes))
+			break;
+
+		wsrc = w->src.virt.addr;
+		wdst = w->dst.virt.addr;
+	}
+
+	return err;
+}
+
+static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
+		   struct scatterlist *src, unsigned int nbytes)
+{
+	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
+	struct blkcipher_walk w;
+
+	blkcipher_walk_init(&w, dst, src, nbytes);
+	return crypt(desc, &w, ctx,
+		     crypto_cipher_alg(ctx->child)->cia_encrypt);
+}
+
+static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
+		   struct scatterlist *src, unsigned int nbytes)
+{
+	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
+	struct blkcipher_walk w;
+
+	blkcipher_walk_init(&w, dst, src, nbytes);
+	return crypt(desc, &w, ctx,
+		     crypto_cipher_alg(ctx->child)->cia_decrypt);
+}
+
+static int init_tfm(struct crypto_tfm *tfm)
+{
+	struct crypto_instance *inst = (void *)tfm->__crt_alg;
+	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
+	struct priv *ctx = crypto_tfm_ctx(tfm);
+	u32 *flags = &tfm->crt_flags;
+
+	tfm = crypto_spawn_tfm(spawn);
+	if (IS_ERR(tfm))
+		return PTR_ERR(tfm);
+
+	if (crypto_tfm_alg_blocksize(tfm) != 16) {
+		*flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
+		return -EINVAL;
+	}
+
+	ctx->child = crypto_cipher_cast(tfm);
+	return 0;
+}
+
+static void exit_tfm(struct crypto_tfm *tfm)
+{
+	struct priv *ctx = crypto_tfm_ctx(tfm);
+	if (ctx->table)
+		gf128mul_free_64k(ctx->table);
+	crypto_free_cipher(ctx->child);
+}
+
+static struct crypto_instance *alloc(void *param, unsigned int len)
+{
+	struct crypto_instance *inst;
+	struct crypto_alg *alg;
+
+	alg = crypto_get_attr_alg(param, len, CRYPTO_ALG_TYPE_CIPHER,
+				  CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
+	if (IS_ERR(alg))
+		return ERR_PTR(PTR_ERR(alg));
+
+	inst = crypto_alloc_instance("lrw", alg);
+	if (IS_ERR(inst))
+		goto out_put_alg;
+
+	inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
+	inst->alg.cra_priority = alg->cra_priority;
+	inst->alg.cra_blocksize = alg->cra_blocksize;
+
+	if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7;
+	else inst->alg.cra_alignmask = alg->cra_alignmask;
+	inst->alg.cra_type = &crypto_blkcipher_type;
+
+	if (!(alg->cra_blocksize % 4))
+		inst->alg.cra_alignmask |= 3;
+	inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize;
+	inst->alg.cra_blkcipher.min_keysize =
+		alg->cra_cipher.cia_min_keysize + alg->cra_blocksize;
+	inst->alg.cra_blkcipher.max_keysize =
+		alg->cra_cipher.cia_max_keysize + alg->cra_blocksize;
+
+	inst->alg.cra_ctxsize = sizeof(struct priv);
+
+	inst->alg.cra_init = init_tfm;
+	inst->alg.cra_exit = exit_tfm;
+
+	inst->alg.cra_blkcipher.setkey = setkey;
+	inst->alg.cra_blkcipher.encrypt = encrypt;
+	inst->alg.cra_blkcipher.decrypt = decrypt;
+
+out_put_alg:
+	crypto_mod_put(alg);
+	return inst;
+}
+
+static void free(struct crypto_instance *inst)
+{
+	crypto_drop_spawn(crypto_instance_ctx(inst));
+	kfree(inst);
+}
+
+static struct crypto_template crypto_tmpl = {
+	.name = "lrw",
+	.alloc = alloc,
+	.free = free,
+	.module = THIS_MODULE,
+};
+
+static int __init crypto_module_init(void)
+{
+	return crypto_register_template(&crypto_tmpl);
+}
+
+static void __exit crypto_module_exit(void)
+{
+	crypto_unregister_template(&crypto_tmpl);
+}
+
+module_init(crypto_module_init);
+module_exit(crypto_module_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("LRW block cipher mode");