| /******************************************************************************* |
| |
| Intel PRO/1000 Linux driver |
| Copyright(c) 1999 - 2006 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| #include "e1000.h" |
| #include <net/ip6_checksum.h> |
| #include <linux/io.h> |
| #include <linux/prefetch.h> |
| #include <linux/bitops.h> |
| #include <linux/if_vlan.h> |
| |
| char e1000_driver_name[] = "e1000"; |
| static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; |
| #define DRV_VERSION "7.3.21-k8-NAPI" |
| const char e1000_driver_version[] = DRV_VERSION; |
| static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; |
| |
| /* e1000_pci_tbl - PCI Device ID Table |
| * |
| * Last entry must be all 0s |
| * |
| * Macro expands to... |
| * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} |
| */ |
| static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { |
| INTEL_E1000_ETHERNET_DEVICE(0x1000), |
| INTEL_E1000_ETHERNET_DEVICE(0x1001), |
| INTEL_E1000_ETHERNET_DEVICE(0x1004), |
| INTEL_E1000_ETHERNET_DEVICE(0x1008), |
| INTEL_E1000_ETHERNET_DEVICE(0x1009), |
| INTEL_E1000_ETHERNET_DEVICE(0x100C), |
| INTEL_E1000_ETHERNET_DEVICE(0x100D), |
| INTEL_E1000_ETHERNET_DEVICE(0x100E), |
| INTEL_E1000_ETHERNET_DEVICE(0x100F), |
| INTEL_E1000_ETHERNET_DEVICE(0x1010), |
| INTEL_E1000_ETHERNET_DEVICE(0x1011), |
| INTEL_E1000_ETHERNET_DEVICE(0x1012), |
| INTEL_E1000_ETHERNET_DEVICE(0x1013), |
| INTEL_E1000_ETHERNET_DEVICE(0x1014), |
| INTEL_E1000_ETHERNET_DEVICE(0x1015), |
| INTEL_E1000_ETHERNET_DEVICE(0x1016), |
| INTEL_E1000_ETHERNET_DEVICE(0x1017), |
| INTEL_E1000_ETHERNET_DEVICE(0x1018), |
| INTEL_E1000_ETHERNET_DEVICE(0x1019), |
| INTEL_E1000_ETHERNET_DEVICE(0x101A), |
| INTEL_E1000_ETHERNET_DEVICE(0x101D), |
| INTEL_E1000_ETHERNET_DEVICE(0x101E), |
| INTEL_E1000_ETHERNET_DEVICE(0x1026), |
| INTEL_E1000_ETHERNET_DEVICE(0x1027), |
| INTEL_E1000_ETHERNET_DEVICE(0x1028), |
| INTEL_E1000_ETHERNET_DEVICE(0x1075), |
| INTEL_E1000_ETHERNET_DEVICE(0x1076), |
| INTEL_E1000_ETHERNET_DEVICE(0x1077), |
| INTEL_E1000_ETHERNET_DEVICE(0x1078), |
| INTEL_E1000_ETHERNET_DEVICE(0x1079), |
| INTEL_E1000_ETHERNET_DEVICE(0x107A), |
| INTEL_E1000_ETHERNET_DEVICE(0x107B), |
| INTEL_E1000_ETHERNET_DEVICE(0x107C), |
| INTEL_E1000_ETHERNET_DEVICE(0x108A), |
| INTEL_E1000_ETHERNET_DEVICE(0x1099), |
| INTEL_E1000_ETHERNET_DEVICE(0x10B5), |
| INTEL_E1000_ETHERNET_DEVICE(0x2E6E), |
| /* required last entry */ |
| {0,} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
| |
| int e1000_up(struct e1000_adapter *adapter); |
| void e1000_down(struct e1000_adapter *adapter); |
| void e1000_reinit_locked(struct e1000_adapter *adapter); |
| void e1000_reset(struct e1000_adapter *adapter); |
| int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); |
| int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); |
| void e1000_free_all_tx_resources(struct e1000_adapter *adapter); |
| void e1000_free_all_rx_resources(struct e1000_adapter *adapter); |
| static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *txdr); |
| static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rxdr); |
| static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring); |
| static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring); |
| void e1000_update_stats(struct e1000_adapter *adapter); |
| |
| static int e1000_init_module(void); |
| static void e1000_exit_module(void); |
| static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); |
| static void e1000_remove(struct pci_dev *pdev); |
| static int e1000_alloc_queues(struct e1000_adapter *adapter); |
| static int e1000_sw_init(struct e1000_adapter *adapter); |
| static int e1000_open(struct net_device *netdev); |
| static int e1000_close(struct net_device *netdev); |
| static void e1000_configure_tx(struct e1000_adapter *adapter); |
| static void e1000_configure_rx(struct e1000_adapter *adapter); |
| static void e1000_setup_rctl(struct e1000_adapter *adapter); |
| static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); |
| static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); |
| static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring); |
| static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring); |
| static void e1000_set_rx_mode(struct net_device *netdev); |
| static void e1000_update_phy_info_task(struct work_struct *work); |
| static void e1000_watchdog(struct work_struct *work); |
| static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); |
| static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
| struct net_device *netdev); |
| static struct net_device_stats * e1000_get_stats(struct net_device *netdev); |
| static int e1000_change_mtu(struct net_device *netdev, int new_mtu); |
| static int e1000_set_mac(struct net_device *netdev, void *p); |
| static irqreturn_t e1000_intr(int irq, void *data); |
| static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring); |
| static int e1000_clean(struct napi_struct *napi, int budget); |
| static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int *work_done, int work_to_do); |
| static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int *work_done, int work_to_do); |
| static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int cleaned_count); |
| static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int cleaned_count); |
| static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); |
| static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
| int cmd); |
| static void e1000_enter_82542_rst(struct e1000_adapter *adapter); |
| static void e1000_leave_82542_rst(struct e1000_adapter *adapter); |
| static void e1000_tx_timeout(struct net_device *dev); |
| static void e1000_reset_task(struct work_struct *work); |
| static void e1000_smartspeed(struct e1000_adapter *adapter); |
| static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
| struct sk_buff *skb); |
| |
| static bool e1000_vlan_used(struct e1000_adapter *adapter); |
| static void e1000_vlan_mode(struct net_device *netdev, |
| netdev_features_t features); |
| static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, |
| bool filter_on); |
| static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); |
| static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); |
| static void e1000_restore_vlan(struct e1000_adapter *adapter); |
| |
| #ifdef CONFIG_PM |
| static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); |
| static int e1000_resume(struct pci_dev *pdev); |
| #endif |
| static void e1000_shutdown(struct pci_dev *pdev); |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* for netdump / net console */ |
| static void e1000_netpoll (struct net_device *netdev); |
| #endif |
| |
| #define COPYBREAK_DEFAULT 256 |
| static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; |
| module_param(copybreak, uint, 0644); |
| MODULE_PARM_DESC(copybreak, |
| "Maximum size of packet that is copied to a new buffer on receive"); |
| |
| static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state); |
| static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); |
| static void e1000_io_resume(struct pci_dev *pdev); |
| |
| static const struct pci_error_handlers e1000_err_handler = { |
| .error_detected = e1000_io_error_detected, |
| .slot_reset = e1000_io_slot_reset, |
| .resume = e1000_io_resume, |
| }; |
| |
| static struct pci_driver e1000_driver = { |
| .name = e1000_driver_name, |
| .id_table = e1000_pci_tbl, |
| .probe = e1000_probe, |
| .remove = e1000_remove, |
| #ifdef CONFIG_PM |
| /* Power Management Hooks */ |
| .suspend = e1000_suspend, |
| .resume = e1000_resume, |
| #endif |
| .shutdown = e1000_shutdown, |
| .err_handler = &e1000_err_handler |
| }; |
| |
| MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
| MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) |
| static int debug = -1; |
| module_param(debug, int, 0); |
| MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
| |
| /** |
| * e1000_get_hw_dev - return device |
| * used by hardware layer to print debugging information |
| * |
| **/ |
| struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) |
| { |
| struct e1000_adapter *adapter = hw->back; |
| return adapter->netdev; |
| } |
| |
| /** |
| * e1000_init_module - Driver Registration Routine |
| * |
| * e1000_init_module is the first routine called when the driver is |
| * loaded. All it does is register with the PCI subsystem. |
| **/ |
| static int __init e1000_init_module(void) |
| { |
| int ret; |
| pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); |
| |
| pr_info("%s\n", e1000_copyright); |
| |
| ret = pci_register_driver(&e1000_driver); |
| if (copybreak != COPYBREAK_DEFAULT) { |
| if (copybreak == 0) |
| pr_info("copybreak disabled\n"); |
| else |
| pr_info("copybreak enabled for " |
| "packets <= %u bytes\n", copybreak); |
| } |
| return ret; |
| } |
| |
| module_init(e1000_init_module); |
| |
| /** |
| * e1000_exit_module - Driver Exit Cleanup Routine |
| * |
| * e1000_exit_module is called just before the driver is removed |
| * from memory. |
| **/ |
| static void __exit e1000_exit_module(void) |
| { |
| pci_unregister_driver(&e1000_driver); |
| } |
| |
| module_exit(e1000_exit_module); |
| |
| static int e1000_request_irq(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| irq_handler_t handler = e1000_intr; |
| int irq_flags = IRQF_SHARED; |
| int err; |
| |
| err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, |
| netdev); |
| if (err) { |
| e_err(probe, "Unable to allocate interrupt Error: %d\n", err); |
| } |
| |
| return err; |
| } |
| |
| static void e1000_free_irq(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| |
| free_irq(adapter->pdev->irq, netdev); |
| } |
| |
| /** |
| * e1000_irq_disable - Mask off interrupt generation on the NIC |
| * @adapter: board private structure |
| **/ |
| static void e1000_irq_disable(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| ew32(IMC, ~0); |
| E1000_WRITE_FLUSH(); |
| synchronize_irq(adapter->pdev->irq); |
| } |
| |
| /** |
| * e1000_irq_enable - Enable default interrupt generation settings |
| * @adapter: board private structure |
| **/ |
| static void e1000_irq_enable(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| ew32(IMS, IMS_ENABLE_MASK); |
| E1000_WRITE_FLUSH(); |
| } |
| |
| static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| u16 vid = hw->mng_cookie.vlan_id; |
| u16 old_vid = adapter->mng_vlan_id; |
| |
| if (!e1000_vlan_used(adapter)) |
| return; |
| |
| if (!test_bit(vid, adapter->active_vlans)) { |
| if (hw->mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { |
| e1000_vlan_rx_add_vid(netdev, vid); |
| adapter->mng_vlan_id = vid; |
| } else { |
| adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| } |
| if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && |
| (vid != old_vid) && |
| !test_bit(old_vid, adapter->active_vlans)) |
| e1000_vlan_rx_kill_vid(netdev, old_vid); |
| } else { |
| adapter->mng_vlan_id = vid; |
| } |
| } |
| |
| static void e1000_init_manageability(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (adapter->en_mng_pt) { |
| u32 manc = er32(MANC); |
| |
| /* disable hardware interception of ARP */ |
| manc &= ~(E1000_MANC_ARP_EN); |
| |
| ew32(MANC, manc); |
| } |
| } |
| |
| static void e1000_release_manageability(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (adapter->en_mng_pt) { |
| u32 manc = er32(MANC); |
| |
| /* re-enable hardware interception of ARP */ |
| manc |= E1000_MANC_ARP_EN; |
| |
| ew32(MANC, manc); |
| } |
| } |
| |
| /** |
| * e1000_configure - configure the hardware for RX and TX |
| * @adapter = private board structure |
| **/ |
| static void e1000_configure(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| int i; |
| |
| e1000_set_rx_mode(netdev); |
| |
| e1000_restore_vlan(adapter); |
| e1000_init_manageability(adapter); |
| |
| e1000_configure_tx(adapter); |
| e1000_setup_rctl(adapter); |
| e1000_configure_rx(adapter); |
| /* call E1000_DESC_UNUSED which always leaves |
| * at least 1 descriptor unused to make sure |
| * next_to_use != next_to_clean |
| */ |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| struct e1000_rx_ring *ring = &adapter->rx_ring[i]; |
| adapter->alloc_rx_buf(adapter, ring, |
| E1000_DESC_UNUSED(ring)); |
| } |
| } |
| |
| int e1000_up(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* hardware has been reset, we need to reload some things */ |
| e1000_configure(adapter); |
| |
| clear_bit(__E1000_DOWN, &adapter->flags); |
| |
| napi_enable(&adapter->napi); |
| |
| e1000_irq_enable(adapter); |
| |
| netif_wake_queue(adapter->netdev); |
| |
| /* fire a link change interrupt to start the watchdog */ |
| ew32(ICS, E1000_ICS_LSC); |
| return 0; |
| } |
| |
| /** |
| * e1000_power_up_phy - restore link in case the phy was powered down |
| * @adapter: address of board private structure |
| * |
| * The phy may be powered down to save power and turn off link when the |
| * driver is unloaded and wake on lan is not enabled (among others) |
| * *** this routine MUST be followed by a call to e1000_reset *** |
| **/ |
| void e1000_power_up_phy(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u16 mii_reg = 0; |
| |
| /* Just clear the power down bit to wake the phy back up */ |
| if (hw->media_type == e1000_media_type_copper) { |
| /* according to the manual, the phy will retain its |
| * settings across a power-down/up cycle |
| */ |
| e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
| mii_reg &= ~MII_CR_POWER_DOWN; |
| e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
| } |
| } |
| |
| static void e1000_power_down_phy(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* Power down the PHY so no link is implied when interface is down * |
| * The PHY cannot be powered down if any of the following is true * |
| * (a) WoL is enabled |
| * (b) AMT is active |
| * (c) SoL/IDER session is active |
| */ |
| if (!adapter->wol && hw->mac_type >= e1000_82540 && |
| hw->media_type == e1000_media_type_copper) { |
| u16 mii_reg = 0; |
| |
| switch (hw->mac_type) { |
| case e1000_82540: |
| case e1000_82545: |
| case e1000_82545_rev_3: |
| case e1000_82546: |
| case e1000_ce4100: |
| case e1000_82546_rev_3: |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| case e1000_82547: |
| case e1000_82547_rev_2: |
| if (er32(MANC) & E1000_MANC_SMBUS_EN) |
| goto out; |
| break; |
| default: |
| goto out; |
| } |
| e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
| mii_reg |= MII_CR_POWER_DOWN; |
| e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
| msleep(1); |
| } |
| out: |
| return; |
| } |
| |
| static void e1000_down_and_stop(struct e1000_adapter *adapter) |
| { |
| set_bit(__E1000_DOWN, &adapter->flags); |
| |
| /* Only kill reset task if adapter is not resetting */ |
| if (!test_bit(__E1000_RESETTING, &adapter->flags)) |
| cancel_work_sync(&adapter->reset_task); |
| |
| cancel_delayed_work_sync(&adapter->watchdog_task); |
| cancel_delayed_work_sync(&adapter->phy_info_task); |
| cancel_delayed_work_sync(&adapter->fifo_stall_task); |
| } |
| |
| void e1000_down(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| u32 rctl, tctl; |
| |
| |
| /* disable receives in the hardware */ |
| rctl = er32(RCTL); |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| /* flush and sleep below */ |
| |
| netif_tx_disable(netdev); |
| |
| /* disable transmits in the hardware */ |
| tctl = er32(TCTL); |
| tctl &= ~E1000_TCTL_EN; |
| ew32(TCTL, tctl); |
| /* flush both disables and wait for them to finish */ |
| E1000_WRITE_FLUSH(); |
| msleep(10); |
| |
| napi_disable(&adapter->napi); |
| |
| e1000_irq_disable(adapter); |
| |
| /* Setting DOWN must be after irq_disable to prevent |
| * a screaming interrupt. Setting DOWN also prevents |
| * tasks from rescheduling. |
| */ |
| e1000_down_and_stop(adapter); |
| |
| adapter->link_speed = 0; |
| adapter->link_duplex = 0; |
| netif_carrier_off(netdev); |
| |
| e1000_reset(adapter); |
| e1000_clean_all_tx_rings(adapter); |
| e1000_clean_all_rx_rings(adapter); |
| } |
| |
| static void e1000_reinit_safe(struct e1000_adapter *adapter) |
| { |
| while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
| msleep(1); |
| mutex_lock(&adapter->mutex); |
| e1000_down(adapter); |
| e1000_up(adapter); |
| mutex_unlock(&adapter->mutex); |
| clear_bit(__E1000_RESETTING, &adapter->flags); |
| } |
| |
| void e1000_reinit_locked(struct e1000_adapter *adapter) |
| { |
| /* if rtnl_lock is not held the call path is bogus */ |
| ASSERT_RTNL(); |
| WARN_ON(in_interrupt()); |
| while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
| msleep(1); |
| e1000_down(adapter); |
| e1000_up(adapter); |
| clear_bit(__E1000_RESETTING, &adapter->flags); |
| } |
| |
| void e1000_reset(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 pba = 0, tx_space, min_tx_space, min_rx_space; |
| bool legacy_pba_adjust = false; |
| u16 hwm; |
| |
| /* Repartition Pba for greater than 9k mtu |
| * To take effect CTRL.RST is required. |
| */ |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| case e1000_82544: |
| case e1000_82540: |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| legacy_pba_adjust = true; |
| pba = E1000_PBA_48K; |
| break; |
| case e1000_82545: |
| case e1000_82545_rev_3: |
| case e1000_82546: |
| case e1000_ce4100: |
| case e1000_82546_rev_3: |
| pba = E1000_PBA_48K; |
| break; |
| case e1000_82547: |
| case e1000_82547_rev_2: |
| legacy_pba_adjust = true; |
| pba = E1000_PBA_30K; |
| break; |
| case e1000_undefined: |
| case e1000_num_macs: |
| break; |
| } |
| |
| if (legacy_pba_adjust) { |
| if (hw->max_frame_size > E1000_RXBUFFER_8192) |
| pba -= 8; /* allocate more FIFO for Tx */ |
| |
| if (hw->mac_type == e1000_82547) { |
| adapter->tx_fifo_head = 0; |
| adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; |
| adapter->tx_fifo_size = |
| (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; |
| atomic_set(&adapter->tx_fifo_stall, 0); |
| } |
| } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { |
| /* adjust PBA for jumbo frames */ |
| ew32(PBA, pba); |
| |
| /* To maintain wire speed transmits, the Tx FIFO should be |
| * large enough to accommodate two full transmit packets, |
| * rounded up to the next 1KB and expressed in KB. Likewise, |
| * the Rx FIFO should be large enough to accommodate at least |
| * one full receive packet and is similarly rounded up and |
| * expressed in KB. |
| */ |
| pba = er32(PBA); |
| /* upper 16 bits has Tx packet buffer allocation size in KB */ |
| tx_space = pba >> 16; |
| /* lower 16 bits has Rx packet buffer allocation size in KB */ |
| pba &= 0xffff; |
| /* the Tx fifo also stores 16 bytes of information about the Tx |
| * but don't include ethernet FCS because hardware appends it |
| */ |
| min_tx_space = (hw->max_frame_size + |
| sizeof(struct e1000_tx_desc) - |
| ETH_FCS_LEN) * 2; |
| min_tx_space = ALIGN(min_tx_space, 1024); |
| min_tx_space >>= 10; |
| /* software strips receive CRC, so leave room for it */ |
| min_rx_space = hw->max_frame_size; |
| min_rx_space = ALIGN(min_rx_space, 1024); |
| min_rx_space >>= 10; |
| |
| /* If current Tx allocation is less than the min Tx FIFO size, |
| * and the min Tx FIFO size is less than the current Rx FIFO |
| * allocation, take space away from current Rx allocation |
| */ |
| if (tx_space < min_tx_space && |
| ((min_tx_space - tx_space) < pba)) { |
| pba = pba - (min_tx_space - tx_space); |
| |
| /* PCI/PCIx hardware has PBA alignment constraints */ |
| switch (hw->mac_type) { |
| case e1000_82545 ... e1000_82546_rev_3: |
| pba &= ~(E1000_PBA_8K - 1); |
| break; |
| default: |
| break; |
| } |
| |
| /* if short on Rx space, Rx wins and must trump Tx |
| * adjustment or use Early Receive if available |
| */ |
| if (pba < min_rx_space) |
| pba = min_rx_space; |
| } |
| } |
| |
| ew32(PBA, pba); |
| |
| /* flow control settings: |
| * The high water mark must be low enough to fit one full frame |
| * (or the size used for early receive) above it in the Rx FIFO. |
| * Set it to the lower of: |
| * - 90% of the Rx FIFO size, and |
| * - the full Rx FIFO size minus the early receive size (for parts |
| * with ERT support assuming ERT set to E1000_ERT_2048), or |
| * - the full Rx FIFO size minus one full frame |
| */ |
| hwm = min(((pba << 10) * 9 / 10), |
| ((pba << 10) - hw->max_frame_size)); |
| |
| hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ |
| hw->fc_low_water = hw->fc_high_water - 8; |
| hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
| hw->fc_send_xon = 1; |
| hw->fc = hw->original_fc; |
| |
| /* Allow time for pending master requests to run */ |
| e1000_reset_hw(hw); |
| if (hw->mac_type >= e1000_82544) |
| ew32(WUC, 0); |
| |
| if (e1000_init_hw(hw)) |
| e_dev_err("Hardware Error\n"); |
| e1000_update_mng_vlan(adapter); |
| |
| /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ |
| if (hw->mac_type >= e1000_82544 && |
| hw->autoneg == 1 && |
| hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
| u32 ctrl = er32(CTRL); |
| /* clear phy power management bit if we are in gig only mode, |
| * which if enabled will attempt negotiation to 100Mb, which |
| * can cause a loss of link at power off or driver unload |
| */ |
| ctrl &= ~E1000_CTRL_SWDPIN3; |
| ew32(CTRL, ctrl); |
| } |
| |
| /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
| ew32(VET, ETHERNET_IEEE_VLAN_TYPE); |
| |
| e1000_reset_adaptive(hw); |
| e1000_phy_get_info(hw, &adapter->phy_info); |
| |
| e1000_release_manageability(adapter); |
| } |
| |
| /* Dump the eeprom for users having checksum issues */ |
| static void e1000_dump_eeprom(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct ethtool_eeprom eeprom; |
| const struct ethtool_ops *ops = netdev->ethtool_ops; |
| u8 *data; |
| int i; |
| u16 csum_old, csum_new = 0; |
| |
| eeprom.len = ops->get_eeprom_len(netdev); |
| eeprom.offset = 0; |
| |
| data = kmalloc(eeprom.len, GFP_KERNEL); |
| if (!data) |
| return; |
| |
| ops->get_eeprom(netdev, &eeprom, data); |
| |
| csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + |
| (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); |
| for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) |
| csum_new += data[i] + (data[i + 1] << 8); |
| csum_new = EEPROM_SUM - csum_new; |
| |
| pr_err("/*********************/\n"); |
| pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); |
| pr_err("Calculated : 0x%04x\n", csum_new); |
| |
| pr_err("Offset Values\n"); |
| pr_err("======== ======\n"); |
| print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); |
| |
| pr_err("Include this output when contacting your support provider.\n"); |
| pr_err("This is not a software error! Something bad happened to\n"); |
| pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); |
| pr_err("result in further problems, possibly loss of data,\n"); |
| pr_err("corruption or system hangs!\n"); |
| pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); |
| pr_err("which is invalid and requires you to set the proper MAC\n"); |
| pr_err("address manually before continuing to enable this network\n"); |
| pr_err("device. Please inspect the EEPROM dump and report the\n"); |
| pr_err("issue to your hardware vendor or Intel Customer Support.\n"); |
| pr_err("/*********************/\n"); |
| |
| kfree(data); |
| } |
| |
| /** |
| * e1000_is_need_ioport - determine if an adapter needs ioport resources or not |
| * @pdev: PCI device information struct |
| * |
| * Return true if an adapter needs ioport resources |
| **/ |
| static int e1000_is_need_ioport(struct pci_dev *pdev) |
| { |
| switch (pdev->device) { |
| case E1000_DEV_ID_82540EM: |
| case E1000_DEV_ID_82540EM_LOM: |
| case E1000_DEV_ID_82540EP: |
| case E1000_DEV_ID_82540EP_LOM: |
| case E1000_DEV_ID_82540EP_LP: |
| case E1000_DEV_ID_82541EI: |
| case E1000_DEV_ID_82541EI_MOBILE: |
| case E1000_DEV_ID_82541ER: |
| case E1000_DEV_ID_82541ER_LOM: |
| case E1000_DEV_ID_82541GI: |
| case E1000_DEV_ID_82541GI_LF: |
| case E1000_DEV_ID_82541GI_MOBILE: |
| case E1000_DEV_ID_82544EI_COPPER: |
| case E1000_DEV_ID_82544EI_FIBER: |
| case E1000_DEV_ID_82544GC_COPPER: |
| case E1000_DEV_ID_82544GC_LOM: |
| case E1000_DEV_ID_82545EM_COPPER: |
| case E1000_DEV_ID_82545EM_FIBER: |
| case E1000_DEV_ID_82546EB_COPPER: |
| case E1000_DEV_ID_82546EB_FIBER: |
| case E1000_DEV_ID_82546EB_QUAD_COPPER: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static netdev_features_t e1000_fix_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| /* Since there is no support for separate Rx/Tx vlan accel |
| * enable/disable make sure Tx flag is always in same state as Rx. |
| */ |
| if (features & NETIF_F_HW_VLAN_RX) |
| features |= NETIF_F_HW_VLAN_TX; |
| else |
| features &= ~NETIF_F_HW_VLAN_TX; |
| |
| return features; |
| } |
| |
| static int e1000_set_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| netdev_features_t changed = features ^ netdev->features; |
| |
| if (changed & NETIF_F_HW_VLAN_RX) |
| e1000_vlan_mode(netdev, features); |
| |
| if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) |
| return 0; |
| |
| netdev->features = features; |
| adapter->rx_csum = !!(features & NETIF_F_RXCSUM); |
| |
| if (netif_running(netdev)) |
| e1000_reinit_locked(adapter); |
| else |
| e1000_reset(adapter); |
| |
| return 0; |
| } |
| |
| static const struct net_device_ops e1000_netdev_ops = { |
| .ndo_open = e1000_open, |
| .ndo_stop = e1000_close, |
| .ndo_start_xmit = e1000_xmit_frame, |
| .ndo_get_stats = e1000_get_stats, |
| .ndo_set_rx_mode = e1000_set_rx_mode, |
| .ndo_set_mac_address = e1000_set_mac, |
| .ndo_tx_timeout = e1000_tx_timeout, |
| .ndo_change_mtu = e1000_change_mtu, |
| .ndo_do_ioctl = e1000_ioctl, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, |
| .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = e1000_netpoll, |
| #endif |
| .ndo_fix_features = e1000_fix_features, |
| .ndo_set_features = e1000_set_features, |
| }; |
| |
| /** |
| * e1000_init_hw_struct - initialize members of hw struct |
| * @adapter: board private struct |
| * @hw: structure used by e1000_hw.c |
| * |
| * Factors out initialization of the e1000_hw struct to its own function |
| * that can be called very early at init (just after struct allocation). |
| * Fields are initialized based on PCI device information and |
| * OS network device settings (MTU size). |
| * Returns negative error codes if MAC type setup fails. |
| */ |
| static int e1000_init_hw_struct(struct e1000_adapter *adapter, |
| struct e1000_hw *hw) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| |
| /* PCI config space info */ |
| hw->vendor_id = pdev->vendor; |
| hw->device_id = pdev->device; |
| hw->subsystem_vendor_id = pdev->subsystem_vendor; |
| hw->subsystem_id = pdev->subsystem_device; |
| hw->revision_id = pdev->revision; |
| |
| pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); |
| |
| hw->max_frame_size = adapter->netdev->mtu + |
| ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
| hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; |
| |
| /* identify the MAC */ |
| if (e1000_set_mac_type(hw)) { |
| e_err(probe, "Unknown MAC Type\n"); |
| return -EIO; |
| } |
| |
| switch (hw->mac_type) { |
| default: |
| break; |
| case e1000_82541: |
| case e1000_82547: |
| case e1000_82541_rev_2: |
| case e1000_82547_rev_2: |
| hw->phy_init_script = 1; |
| break; |
| } |
| |
| e1000_set_media_type(hw); |
| e1000_get_bus_info(hw); |
| |
| hw->wait_autoneg_complete = false; |
| hw->tbi_compatibility_en = true; |
| hw->adaptive_ifs = true; |
| |
| /* Copper options */ |
| |
| if (hw->media_type == e1000_media_type_copper) { |
| hw->mdix = AUTO_ALL_MODES; |
| hw->disable_polarity_correction = false; |
| hw->master_slave = E1000_MASTER_SLAVE; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_probe - Device Initialization Routine |
| * @pdev: PCI device information struct |
| * @ent: entry in e1000_pci_tbl |
| * |
| * Returns 0 on success, negative on failure |
| * |
| * e1000_probe initializes an adapter identified by a pci_dev structure. |
| * The OS initialization, configuring of the adapter private structure, |
| * and a hardware reset occur. |
| **/ |
| static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct net_device *netdev; |
| struct e1000_adapter *adapter; |
| struct e1000_hw *hw; |
| |
| static int cards_found = 0; |
| static int global_quad_port_a = 0; /* global ksp3 port a indication */ |
| int i, err, pci_using_dac; |
| u16 eeprom_data = 0; |
| u16 tmp = 0; |
| u16 eeprom_apme_mask = E1000_EEPROM_APME; |
| int bars, need_ioport; |
| |
| /* do not allocate ioport bars when not needed */ |
| need_ioport = e1000_is_need_ioport(pdev); |
| if (need_ioport) { |
| bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); |
| err = pci_enable_device(pdev); |
| } else { |
| bars = pci_select_bars(pdev, IORESOURCE_MEM); |
| err = pci_enable_device_mem(pdev); |
| } |
| if (err) |
| return err; |
| |
| err = pci_request_selected_regions(pdev, bars, e1000_driver_name); |
| if (err) |
| goto err_pci_reg; |
| |
| pci_set_master(pdev); |
| err = pci_save_state(pdev); |
| if (err) |
| goto err_alloc_etherdev; |
| |
| err = -ENOMEM; |
| netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
| if (!netdev) |
| goto err_alloc_etherdev; |
| |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| |
| pci_set_drvdata(pdev, netdev); |
| adapter = netdev_priv(netdev); |
| adapter->netdev = netdev; |
| adapter->pdev = pdev; |
| adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); |
| adapter->bars = bars; |
| adapter->need_ioport = need_ioport; |
| |
| hw = &adapter->hw; |
| hw->back = adapter; |
| |
| err = -EIO; |
| hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); |
| if (!hw->hw_addr) |
| goto err_ioremap; |
| |
| if (adapter->need_ioport) { |
| for (i = BAR_1; i <= BAR_5; i++) { |
| if (pci_resource_len(pdev, i) == 0) |
| continue; |
| if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { |
| hw->io_base = pci_resource_start(pdev, i); |
| break; |
| } |
| } |
| } |
| |
| /* make ready for any if (hw->...) below */ |
| err = e1000_init_hw_struct(adapter, hw); |
| if (err) |
| goto err_sw_init; |
| |
| /* there is a workaround being applied below that limits |
| * 64-bit DMA addresses to 64-bit hardware. There are some |
| * 32-bit adapters that Tx hang when given 64-bit DMA addresses |
| */ |
| pci_using_dac = 0; |
| if ((hw->bus_type == e1000_bus_type_pcix) && |
| !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { |
| /* according to DMA-API-HOWTO, coherent calls will always |
| * succeed if the set call did |
| */ |
| dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); |
| pci_using_dac = 1; |
| } else { |
| err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); |
| if (err) { |
| pr_err("No usable DMA config, aborting\n"); |
| goto err_dma; |
| } |
| dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); |
| } |
| |
| netdev->netdev_ops = &e1000_netdev_ops; |
| e1000_set_ethtool_ops(netdev); |
| netdev->watchdog_timeo = 5 * HZ; |
| netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); |
| |
| strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
| |
| adapter->bd_number = cards_found; |
| |
| /* setup the private structure */ |
| |
| err = e1000_sw_init(adapter); |
| if (err) |
| goto err_sw_init; |
| |
| err = -EIO; |
| if (hw->mac_type == e1000_ce4100) { |
| hw->ce4100_gbe_mdio_base_virt = |
| ioremap(pci_resource_start(pdev, BAR_1), |
| pci_resource_len(pdev, BAR_1)); |
| |
| if (!hw->ce4100_gbe_mdio_base_virt) |
| goto err_mdio_ioremap; |
| } |
| |
| if (hw->mac_type >= e1000_82543) { |
| netdev->hw_features = NETIF_F_SG | |
| NETIF_F_HW_CSUM | |
| NETIF_F_HW_VLAN_RX; |
| netdev->features = NETIF_F_HW_VLAN_TX | |
| NETIF_F_HW_VLAN_FILTER; |
| } |
| |
| if ((hw->mac_type >= e1000_82544) && |
| (hw->mac_type != e1000_82547)) |
| netdev->hw_features |= NETIF_F_TSO; |
| |
| netdev->priv_flags |= IFF_SUPP_NOFCS; |
| |
| netdev->features |= netdev->hw_features; |
| netdev->hw_features |= (NETIF_F_RXCSUM | |
| NETIF_F_RXALL | |
| NETIF_F_RXFCS); |
| |
| if (pci_using_dac) { |
| netdev->features |= NETIF_F_HIGHDMA; |
| netdev->vlan_features |= NETIF_F_HIGHDMA; |
| } |
| |
| netdev->vlan_features |= (NETIF_F_TSO | |
| NETIF_F_HW_CSUM | |
| NETIF_F_SG); |
| |
| netdev->priv_flags |= IFF_UNICAST_FLT; |
| |
| adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); |
| |
| /* initialize eeprom parameters */ |
| if (e1000_init_eeprom_params(hw)) { |
| e_err(probe, "EEPROM initialization failed\n"); |
| goto err_eeprom; |
| } |
| |
| /* before reading the EEPROM, reset the controller to |
| * put the device in a known good starting state |
| */ |
| |
| e1000_reset_hw(hw); |
| |
| /* make sure the EEPROM is good */ |
| if (e1000_validate_eeprom_checksum(hw) < 0) { |
| e_err(probe, "The EEPROM Checksum Is Not Valid\n"); |
| e1000_dump_eeprom(adapter); |
| /* set MAC address to all zeroes to invalidate and temporary |
| * disable this device for the user. This blocks regular |
| * traffic while still permitting ethtool ioctls from reaching |
| * the hardware as well as allowing the user to run the |
| * interface after manually setting a hw addr using |
| * `ip set address` |
| */ |
| memset(hw->mac_addr, 0, netdev->addr_len); |
| } else { |
| /* copy the MAC address out of the EEPROM */ |
| if (e1000_read_mac_addr(hw)) |
| e_err(probe, "EEPROM Read Error\n"); |
| } |
| /* don't block initalization here due to bad MAC address */ |
| memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); |
| |
| if (!is_valid_ether_addr(netdev->dev_addr)) |
| e_err(probe, "Invalid MAC Address\n"); |
| |
| |
| INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); |
| INIT_DELAYED_WORK(&adapter->fifo_stall_task, |
| e1000_82547_tx_fifo_stall_task); |
| INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); |
| INIT_WORK(&adapter->reset_task, e1000_reset_task); |
| |
| e1000_check_options(adapter); |
| |
| /* Initial Wake on LAN setting |
| * If APM wake is enabled in the EEPROM, |
| * enable the ACPI Magic Packet filter |
| */ |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| break; |
| case e1000_82544: |
| e1000_read_eeprom(hw, |
| EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
| eeprom_apme_mask = E1000_EEPROM_82544_APM; |
| break; |
| case e1000_82546: |
| case e1000_82546_rev_3: |
| if (er32(STATUS) & E1000_STATUS_FUNC_1){ |
| e1000_read_eeprom(hw, |
| EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
| break; |
| } |
| /* Fall Through */ |
| default: |
| e1000_read_eeprom(hw, |
| EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
| break; |
| } |
| if (eeprom_data & eeprom_apme_mask) |
| adapter->eeprom_wol |= E1000_WUFC_MAG; |
| |
| /* now that we have the eeprom settings, apply the special cases |
| * where the eeprom may be wrong or the board simply won't support |
| * wake on lan on a particular port |
| */ |
| switch (pdev->device) { |
| case E1000_DEV_ID_82546GB_PCIE: |
| adapter->eeprom_wol = 0; |
| break; |
| case E1000_DEV_ID_82546EB_FIBER: |
| case E1000_DEV_ID_82546GB_FIBER: |
| /* Wake events only supported on port A for dual fiber |
| * regardless of eeprom setting |
| */ |
| if (er32(STATUS) & E1000_STATUS_FUNC_1) |
| adapter->eeprom_wol = 0; |
| break; |
| case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
| /* if quad port adapter, disable WoL on all but port A */ |
| if (global_quad_port_a != 0) |
| adapter->eeprom_wol = 0; |
| else |
| adapter->quad_port_a = true; |
| /* Reset for multiple quad port adapters */ |
| if (++global_quad_port_a == 4) |
| global_quad_port_a = 0; |
| break; |
| } |
| |
| /* initialize the wol settings based on the eeprom settings */ |
| adapter->wol = adapter->eeprom_wol; |
| device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
| |
| /* Auto detect PHY address */ |
| if (hw->mac_type == e1000_ce4100) { |
| for (i = 0; i < 32; i++) { |
| hw->phy_addr = i; |
| e1000_read_phy_reg(hw, PHY_ID2, &tmp); |
| if (tmp == 0 || tmp == 0xFF) { |
| if (i == 31) |
| goto err_eeprom; |
| continue; |
| } else |
| break; |
| } |
| } |
| |
| /* reset the hardware with the new settings */ |
| e1000_reset(adapter); |
| |
| strcpy(netdev->name, "eth%d"); |
| err = register_netdev(netdev); |
| if (err) |
| goto err_register; |
| |
| e1000_vlan_filter_on_off(adapter, false); |
| |
| /* print bus type/speed/width info */ |
| e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", |
| ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), |
| ((hw->bus_speed == e1000_bus_speed_133) ? 133 : |
| (hw->bus_speed == e1000_bus_speed_120) ? 120 : |
| (hw->bus_speed == e1000_bus_speed_100) ? 100 : |
| (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), |
| ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), |
| netdev->dev_addr); |
| |
| /* carrier off reporting is important to ethtool even BEFORE open */ |
| netif_carrier_off(netdev); |
| |
| e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); |
| |
| cards_found++; |
| return 0; |
| |
| err_register: |
| err_eeprom: |
| e1000_phy_hw_reset(hw); |
| |
| if (hw->flash_address) |
| iounmap(hw->flash_address); |
| kfree(adapter->tx_ring); |
| kfree(adapter->rx_ring); |
| err_dma: |
| err_sw_init: |
| err_mdio_ioremap: |
| iounmap(hw->ce4100_gbe_mdio_base_virt); |
| iounmap(hw->hw_addr); |
| err_ioremap: |
| free_netdev(netdev); |
| err_alloc_etherdev: |
| pci_release_selected_regions(pdev, bars); |
| err_pci_reg: |
| pci_disable_device(pdev); |
| return err; |
| } |
| |
| /** |
| * e1000_remove - Device Removal Routine |
| * @pdev: PCI device information struct |
| * |
| * e1000_remove is called by the PCI subsystem to alert the driver |
| * that it should release a PCI device. The could be caused by a |
| * Hot-Plug event, or because the driver is going to be removed from |
| * memory. |
| **/ |
| static void e1000_remove(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| e1000_down_and_stop(adapter); |
| e1000_release_manageability(adapter); |
| |
| unregister_netdev(netdev); |
| |
| e1000_phy_hw_reset(hw); |
| |
| kfree(adapter->tx_ring); |
| kfree(adapter->rx_ring); |
| |
| if (hw->mac_type == e1000_ce4100) |
| iounmap(hw->ce4100_gbe_mdio_base_virt); |
| iounmap(hw->hw_addr); |
| if (hw->flash_address) |
| iounmap(hw->flash_address); |
| pci_release_selected_regions(pdev, adapter->bars); |
| |
| free_netdev(netdev); |
| |
| pci_disable_device(pdev); |
| } |
| |
| /** |
| * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
| * @adapter: board private structure to initialize |
| * |
| * e1000_sw_init initializes the Adapter private data structure. |
| * e1000_init_hw_struct MUST be called before this function |
| **/ |
| static int e1000_sw_init(struct e1000_adapter *adapter) |
| { |
| adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
| |
| adapter->num_tx_queues = 1; |
| adapter->num_rx_queues = 1; |
| |
| if (e1000_alloc_queues(adapter)) { |
| e_err(probe, "Unable to allocate memory for queues\n"); |
| return -ENOMEM; |
| } |
| |
| /* Explicitly disable IRQ since the NIC can be in any state. */ |
| e1000_irq_disable(adapter); |
| |
| spin_lock_init(&adapter->stats_lock); |
| mutex_init(&adapter->mutex); |
| |
| set_bit(__E1000_DOWN, &adapter->flags); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_alloc_queues - Allocate memory for all rings |
| * @adapter: board private structure to initialize |
| * |
| * We allocate one ring per queue at run-time since we don't know the |
| * number of queues at compile-time. |
| **/ |
| static int e1000_alloc_queues(struct e1000_adapter *adapter) |
| { |
| adapter->tx_ring = kcalloc(adapter->num_tx_queues, |
| sizeof(struct e1000_tx_ring), GFP_KERNEL); |
| if (!adapter->tx_ring) |
| return -ENOMEM; |
| |
| adapter->rx_ring = kcalloc(adapter->num_rx_queues, |
| sizeof(struct e1000_rx_ring), GFP_KERNEL); |
| if (!adapter->rx_ring) { |
| kfree(adapter->tx_ring); |
| return -ENOMEM; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_open - Called when a network interface is made active |
| * @netdev: network interface device structure |
| * |
| * Returns 0 on success, negative value on failure |
| * |
| * The open entry point is called when a network interface is made |
| * active by the system (IFF_UP). At this point all resources needed |
| * for transmit and receive operations are allocated, the interrupt |
| * handler is registered with the OS, the watchdog task is started, |
| * and the stack is notified that the interface is ready. |
| **/ |
| static int e1000_open(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int err; |
| |
| /* disallow open during test */ |
| if (test_bit(__E1000_TESTING, &adapter->flags)) |
| return -EBUSY; |
| |
| netif_carrier_off(netdev); |
| |
| /* allocate transmit descriptors */ |
| err = e1000_setup_all_tx_resources(adapter); |
| if (err) |
| goto err_setup_tx; |
| |
| /* allocate receive descriptors */ |
| err = e1000_setup_all_rx_resources(adapter); |
| if (err) |
| goto err_setup_rx; |
| |
| e1000_power_up_phy(adapter); |
| |
| adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| if ((hw->mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { |
| e1000_update_mng_vlan(adapter); |
| } |
| |
| /* before we allocate an interrupt, we must be ready to handle it. |
| * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
| * as soon as we call pci_request_irq, so we have to setup our |
| * clean_rx handler before we do so. |
| */ |
| e1000_configure(adapter); |
| |
| err = e1000_request_irq(adapter); |
| if (err) |
| goto err_req_irq; |
| |
| /* From here on the code is the same as e1000_up() */ |
| clear_bit(__E1000_DOWN, &adapter->flags); |
| |
| napi_enable(&adapter->napi); |
| |
| e1000_irq_enable(adapter); |
| |
| netif_start_queue(netdev); |
| |
| /* fire a link status change interrupt to start the watchdog */ |
| ew32(ICS, E1000_ICS_LSC); |
| |
| return E1000_SUCCESS; |
| |
| err_req_irq: |
| e1000_power_down_phy(adapter); |
| e1000_free_all_rx_resources(adapter); |
| err_setup_rx: |
| e1000_free_all_tx_resources(adapter); |
| err_setup_tx: |
| e1000_reset(adapter); |
| |
| return err; |
| } |
| |
| /** |
| * e1000_close - Disables a network interface |
| * @netdev: network interface device structure |
| * |
| * Returns 0, this is not allowed to fail |
| * |
| * The close entry point is called when an interface is de-activated |
| * by the OS. The hardware is still under the drivers control, but |
| * needs to be disabled. A global MAC reset is issued to stop the |
| * hardware, and all transmit and receive resources are freed. |
| **/ |
| static int e1000_close(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
| e1000_down(adapter); |
| e1000_power_down_phy(adapter); |
| e1000_free_irq(adapter); |
| |
| e1000_free_all_tx_resources(adapter); |
| e1000_free_all_rx_resources(adapter); |
| |
| /* kill manageability vlan ID if supported, but not if a vlan with |
| * the same ID is registered on the host OS (let 8021q kill it) |
| */ |
| if ((hw->mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
| !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { |
| e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary |
| * @adapter: address of board private structure |
| * @start: address of beginning of memory |
| * @len: length of memory |
| **/ |
| static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, |
| unsigned long len) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| unsigned long begin = (unsigned long)start; |
| unsigned long end = begin + len; |
| |
| /* First rev 82545 and 82546 need to not allow any memory |
| * write location to cross 64k boundary due to errata 23 |
| */ |
| if (hw->mac_type == e1000_82545 || |
| hw->mac_type == e1000_ce4100 || |
| hw->mac_type == e1000_82546) { |
| return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * e1000_setup_tx_resources - allocate Tx resources (Descriptors) |
| * @adapter: board private structure |
| * @txdr: tx descriptor ring (for a specific queue) to setup |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *txdr) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| int size; |
| |
| size = sizeof(struct e1000_buffer) * txdr->count; |
| txdr->buffer_info = vzalloc(size); |
| if (!txdr->buffer_info) |
| return -ENOMEM; |
| |
| /* round up to nearest 4K */ |
| |
| txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
| txdr->size = ALIGN(txdr->size, 4096); |
| |
| txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, |
| GFP_KERNEL); |
| if (!txdr->desc) { |
| setup_tx_desc_die: |
| vfree(txdr->buffer_info); |
| e_err(probe, "Unable to allocate memory for the Tx descriptor " |
| "ring\n"); |
| return -ENOMEM; |
| } |
| |
| /* Fix for errata 23, can't cross 64kB boundary */ |
| if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
| void *olddesc = txdr->desc; |
| dma_addr_t olddma = txdr->dma; |
| e_err(tx_err, "txdr align check failed: %u bytes at %p\n", |
| txdr->size, txdr->desc); |
| /* Try again, without freeing the previous */ |
| txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, |
| &txdr->dma, GFP_KERNEL); |
| /* Failed allocation, critical failure */ |
| if (!txdr->desc) { |
| dma_free_coherent(&pdev->dev, txdr->size, olddesc, |
| olddma); |
| goto setup_tx_desc_die; |
| } |
| |
| if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
| /* give up */ |
| dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, |
| txdr->dma); |
| dma_free_coherent(&pdev->dev, txdr->size, olddesc, |
| olddma); |
| e_err(probe, "Unable to allocate aligned memory " |
| "for the transmit descriptor ring\n"); |
| vfree(txdr->buffer_info); |
| return -ENOMEM; |
| } else { |
| /* Free old allocation, new allocation was successful */ |
| dma_free_coherent(&pdev->dev, txdr->size, olddesc, |
| olddma); |
| } |
| } |
| memset(txdr->desc, 0, txdr->size); |
| |
| txdr->next_to_use = 0; |
| txdr->next_to_clean = 0; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_setup_all_tx_resources - wrapper to allocate Tx resources |
| * (Descriptors) for all queues |
| * @adapter: board private structure |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) |
| { |
| int i, err = 0; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); |
| if (err) { |
| e_err(probe, "Allocation for Tx Queue %u failed\n", i); |
| for (i-- ; i >= 0; i--) |
| e1000_free_tx_resources(adapter, |
| &adapter->tx_ring[i]); |
| break; |
| } |
| } |
| |
| return err; |
| } |
| |
| /** |
| * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Tx unit of the MAC after a reset. |
| **/ |
| static void e1000_configure_tx(struct e1000_adapter *adapter) |
| { |
| u64 tdba; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tdlen, tctl, tipg; |
| u32 ipgr1, ipgr2; |
| |
| /* Setup the HW Tx Head and Tail descriptor pointers */ |
| |
| switch (adapter->num_tx_queues) { |
| case 1: |
| default: |
| tdba = adapter->tx_ring[0].dma; |
| tdlen = adapter->tx_ring[0].count * |
| sizeof(struct e1000_tx_desc); |
| ew32(TDLEN, tdlen); |
| ew32(TDBAH, (tdba >> 32)); |
| ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); |
| ew32(TDT, 0); |
| ew32(TDH, 0); |
| adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? |
| E1000_TDH : E1000_82542_TDH); |
| adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? |
| E1000_TDT : E1000_82542_TDT); |
| break; |
| } |
| |
| /* Set the default values for the Tx Inter Packet Gap timer */ |
| if ((hw->media_type == e1000_media_type_fiber || |
| hw->media_type == e1000_media_type_internal_serdes)) |
| tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
| else |
| tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| tipg = DEFAULT_82542_TIPG_IPGT; |
| ipgr1 = DEFAULT_82542_TIPG_IPGR1; |
| ipgr2 = DEFAULT_82542_TIPG_IPGR2; |
| break; |
| default: |
| ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
| ipgr2 = DEFAULT_82543_TIPG_IPGR2; |
| break; |
| } |
| tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
| tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
| ew32(TIPG, tipg); |
| |
| /* Set the Tx Interrupt Delay register */ |
| |
| ew32(TIDV, adapter->tx_int_delay); |
| if (hw->mac_type >= e1000_82540) |
| ew32(TADV, adapter->tx_abs_int_delay); |
| |
| /* Program the Transmit Control Register */ |
| |
| tctl = er32(TCTL); |
| tctl &= ~E1000_TCTL_CT; |
| tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
| (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
| |
| e1000_config_collision_dist(hw); |
| |
| /* Setup Transmit Descriptor Settings for eop descriptor */ |
| adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
| |
| /* only set IDE if we are delaying interrupts using the timers */ |
| if (adapter->tx_int_delay) |
| adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
| |
| if (hw->mac_type < e1000_82543) |
| adapter->txd_cmd |= E1000_TXD_CMD_RPS; |
| else |
| adapter->txd_cmd |= E1000_TXD_CMD_RS; |
| |
| /* Cache if we're 82544 running in PCI-X because we'll |
| * need this to apply a workaround later in the send path. |
| */ |
| if (hw->mac_type == e1000_82544 && |
| hw->bus_type == e1000_bus_type_pcix) |
| adapter->pcix_82544 = true; |
| |
| ew32(TCTL, tctl); |
| |
| } |
| |
| /** |
| * e1000_setup_rx_resources - allocate Rx resources (Descriptors) |
| * @adapter: board private structure |
| * @rxdr: rx descriptor ring (for a specific queue) to setup |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rxdr) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| int size, desc_len; |
| |
| size = sizeof(struct e1000_buffer) * rxdr->count; |
| rxdr->buffer_info = vzalloc(size); |
| if (!rxdr->buffer_info) |
| return -ENOMEM; |
| |
| desc_len = sizeof(struct e1000_rx_desc); |
| |
| /* Round up to nearest 4K */ |
| |
| rxdr->size = rxdr->count * desc_len; |
| rxdr->size = ALIGN(rxdr->size, 4096); |
| |
| rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, |
| GFP_KERNEL); |
| |
| if (!rxdr->desc) { |
| e_err(probe, "Unable to allocate memory for the Rx descriptor " |
| "ring\n"); |
| setup_rx_desc_die: |
| vfree(rxdr->buffer_info); |
| return -ENOMEM; |
| } |
| |
| /* Fix for errata 23, can't cross 64kB boundary */ |
| if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
| void *olddesc = rxdr->desc; |
| dma_addr_t olddma = rxdr->dma; |
| e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", |
| rxdr->size, rxdr->desc); |
| /* Try again, without freeing the previous */ |
| rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, |
| &rxdr->dma, GFP_KERNEL); |
| /* Failed allocation, critical failure */ |
| if (!rxdr->desc) { |
| dma_free_coherent(&pdev->dev, rxdr->size, olddesc, |
| olddma); |
| e_err(probe, "Unable to allocate memory for the Rx " |
| "descriptor ring\n"); |
| goto setup_rx_desc_die; |
| } |
| |
| if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
| /* give up */ |
| dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, |
| rxdr->dma); |
| dma_free_coherent(&pdev->dev, rxdr->size, olddesc, |
| olddma); |
| e_err(probe, "Unable to allocate aligned memory for " |
| "the Rx descriptor ring\n"); |
| goto setup_rx_desc_die; |
| } else { |
| /* Free old allocation, new allocation was successful */ |
| dma_free_coherent(&pdev->dev, rxdr->size, olddesc, |
| olddma); |
| } |
| } |
| memset(rxdr->desc, 0, rxdr->size); |
| |
| rxdr->next_to_clean = 0; |
| rxdr->next_to_use = 0; |
| rxdr->rx_skb_top = NULL; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_setup_all_rx_resources - wrapper to allocate Rx resources |
| * (Descriptors) for all queues |
| * @adapter: board private structure |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) |
| { |
| int i, err = 0; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); |
| if (err) { |
| e_err(probe, "Allocation for Rx Queue %u failed\n", i); |
| for (i-- ; i >= 0; i--) |
| e1000_free_rx_resources(adapter, |
| &adapter->rx_ring[i]); |
| break; |
| } |
| } |
| |
| return err; |
| } |
| |
| /** |
| * e1000_setup_rctl - configure the receive control registers |
| * @adapter: Board private structure |
| **/ |
| static void e1000_setup_rctl(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl; |
| |
| rctl = er32(RCTL); |
| |
| rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| |
| rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | |
| E1000_RCTL_RDMTS_HALF | |
| (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); |
| |
| if (hw->tbi_compatibility_on == 1) |
| rctl |= E1000_RCTL_SBP; |
| else |
| rctl &= ~E1000_RCTL_SBP; |
| |
| if (adapter->netdev->mtu <= ETH_DATA_LEN) |
| rctl &= ~E1000_RCTL_LPE; |
| else |
| rctl |= E1000_RCTL_LPE; |
| |
| /* Setup buffer sizes */ |
| rctl &= ~E1000_RCTL_SZ_4096; |
| rctl |= E1000_RCTL_BSEX; |
| switch (adapter->rx_buffer_len) { |
| case E1000_RXBUFFER_2048: |
| default: |
| rctl |= E1000_RCTL_SZ_2048; |
| rctl &= ~E1000_RCTL_BSEX; |
| break; |
| case E1000_RXBUFFER_4096: |
| rctl |= E1000_RCTL_SZ_4096; |
| break; |
| case E1000_RXBUFFER_8192: |
| rctl |= E1000_RCTL_SZ_8192; |
| break; |
| case E1000_RXBUFFER_16384: |
| rctl |= E1000_RCTL_SZ_16384; |
| break; |
| } |
| |
| /* This is useful for sniffing bad packets. */ |
| if (adapter->netdev->features & NETIF_F_RXALL) { |
| /* UPE and MPE will be handled by normal PROMISC logic |
| * in e1000e_set_rx_mode |
| */ |
| rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ |
| E1000_RCTL_BAM | /* RX All Bcast Pkts */ |
| E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ |
| |
| rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ |
| E1000_RCTL_DPF | /* Allow filtered pause */ |
| E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ |
| /* Do not mess with E1000_CTRL_VME, it affects transmit as well, |
| * and that breaks VLANs. |
| */ |
| } |
| |
| ew32(RCTL, rctl); |
| } |
| |
| /** |
| * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Rx unit of the MAC after a reset. |
| **/ |
| static void e1000_configure_rx(struct e1000_adapter *adapter) |
| { |
| u64 rdba; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rdlen, rctl, rxcsum; |
| |
| if (adapter->netdev->mtu > ETH_DATA_LEN) { |
| rdlen = adapter->rx_ring[0].count * |
| sizeof(struct e1000_rx_desc); |
| adapter->clean_rx = e1000_clean_jumbo_rx_irq; |
| adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; |
| } else { |
| rdlen = adapter->rx_ring[0].count * |
| sizeof(struct e1000_rx_desc); |
| adapter->clean_rx = e1000_clean_rx_irq; |
| adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
| } |
| |
| /* disable receives while setting up the descriptors */ |
| rctl = er32(RCTL); |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| |
| /* set the Receive Delay Timer Register */ |
| ew32(RDTR, adapter->rx_int_delay); |
| |
| if (hw->mac_type >= e1000_82540) { |
| ew32(RADV, adapter->rx_abs_int_delay); |
| if (adapter->itr_setting != 0) |
| ew32(ITR, 1000000000 / (adapter->itr * 256)); |
| } |
| |
| /* Setup the HW Rx Head and Tail Descriptor Pointers and |
| * the Base and Length of the Rx Descriptor Ring |
| */ |
| switch (adapter->num_rx_queues) { |
| case 1: |
| default: |
| rdba = adapter->rx_ring[0].dma; |
| ew32(RDLEN, rdlen); |
| ew32(RDBAH, (rdba >> 32)); |
| ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); |
| ew32(RDT, 0); |
| ew32(RDH, 0); |
| adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? |
| E1000_RDH : E1000_82542_RDH); |
| adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? |
| E1000_RDT : E1000_82542_RDT); |
| break; |
| } |
| |
| /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
| if (hw->mac_type >= e1000_82543) { |
| rxcsum = er32(RXCSUM); |
| if (adapter->rx_csum) |
| rxcsum |= E1000_RXCSUM_TUOFL; |
| else |
| /* don't need to clear IPPCSE as it defaults to 0 */ |
| rxcsum &= ~E1000_RXCSUM_TUOFL; |
| ew32(RXCSUM, rxcsum); |
| } |
| |
| /* Enable Receives */ |
| ew32(RCTL, rctl | E1000_RCTL_EN); |
| } |
| |
| /** |
| * e1000_free_tx_resources - Free Tx Resources per Queue |
| * @adapter: board private structure |
| * @tx_ring: Tx descriptor ring for a specific queue |
| * |
| * Free all transmit software resources |
| **/ |
| static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| |
| e1000_clean_tx_ring(adapter, tx_ring); |
| |
| vfree(tx_ring->buffer_info); |
| tx_ring->buffer_info = NULL; |
| |
| dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
| tx_ring->dma); |
| |
| tx_ring->desc = NULL; |
| } |
| |
| /** |
| * e1000_free_all_tx_resources - Free Tx Resources for All Queues |
| * @adapter: board private structure |
| * |
| * Free all transmit software resources |
| **/ |
| void e1000_free_all_tx_resources(struct e1000_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); |
| } |
| |
| static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, |
| struct e1000_buffer *buffer_info) |
| { |
| if (buffer_info->dma) { |
| if (buffer_info->mapped_as_page) |
| dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, |
| buffer_info->length, DMA_TO_DEVICE); |
| else |
| dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, |
| buffer_info->length, |
| DMA_TO_DEVICE); |
| buffer_info->dma = 0; |
| } |
| if (buffer_info->skb) { |
| dev_kfree_skb_any(buffer_info->skb); |
| buffer_info->skb = NULL; |
| } |
| buffer_info->time_stamp = 0; |
| /* buffer_info must be completely set up in the transmit path */ |
| } |
| |
| /** |
| * e1000_clean_tx_ring - Free Tx Buffers |
| * @adapter: board private structure |
| * @tx_ring: ring to be cleaned |
| **/ |
| static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_buffer *buffer_info; |
| unsigned long size; |
| unsigned int i; |
| |
| /* Free all the Tx ring sk_buffs */ |
| |
| for (i = 0; i < tx_ring->count; i++) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
| } |
| |
| netdev_reset_queue(adapter->netdev); |
| size = sizeof(struct e1000_buffer) * tx_ring->count; |
| memset(tx_ring->buffer_info, 0, size); |
| |
| /* Zero out the descriptor ring */ |
| |
| memset(tx_ring->desc, 0, tx_ring->size); |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| tx_ring->last_tx_tso = false; |
| |
| writel(0, hw->hw_addr + tx_ring->tdh); |
| writel(0, hw->hw_addr + tx_ring->tdt); |
| } |
| |
| /** |
| * e1000_clean_all_tx_rings - Free Tx Buffers for all queues |
| * @adapter: board private structure |
| **/ |
| static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); |
| } |
| |
| /** |
| * e1000_free_rx_resources - Free Rx Resources |
| * @adapter: board private structure |
| * @rx_ring: ring to clean the resources from |
| * |
| * Free all receive software resources |
| **/ |
| static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| |
| e1000_clean_rx_ring(adapter, rx_ring); |
| |
| vfree(rx_ring->buffer_info); |
| rx_ring->buffer_info = NULL; |
| |
| dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
| rx_ring->dma); |
| |
| rx_ring->desc = NULL; |
| } |
| |
| /** |
| * e1000_free_all_rx_resources - Free Rx Resources for All Queues |
| * @adapter: board private structure |
| * |
| * Free all receive software resources |
| **/ |
| void e1000_free_all_rx_resources(struct e1000_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); |
| } |
| |
| /** |
| * e1000_clean_rx_ring - Free Rx Buffers per Queue |
| * @adapter: board private structure |
| * @rx_ring: ring to free buffers from |
| **/ |
| static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_buffer *buffer_info; |
| struct pci_dev *pdev = adapter->pdev; |
| unsigned long size; |
| unsigned int i; |
| |
| /* Free all the Rx ring sk_buffs */ |
| for (i = 0; i < rx_ring->count; i++) { |
| buffer_info = &rx_ring->buffer_info[i]; |
| if (buffer_info->dma && |
| adapter->clean_rx == e1000_clean_rx_irq) { |
| dma_unmap_single(&pdev->dev, buffer_info->dma, |
| buffer_info->length, |
| DMA_FROM_DEVICE); |
| } else if (buffer_info->dma && |
| adapter->clean_rx == e1000_clean_jumbo_rx_irq) { |
| dma_unmap_page(&pdev->dev, buffer_info->dma, |
| buffer_info->length, |
| DMA_FROM_DEVICE); |
| } |
| |
| buffer_info->dma = 0; |
| if (buffer_info->page) { |
| put_page(buffer_info->page); |
| buffer_info->page = NULL; |
| } |
| if (buffer_info->skb) { |
| dev_kfree_skb(buffer_info->skb); |
| buffer_info->skb = NULL; |
| } |
| } |
| |
| /* there also may be some cached data from a chained receive */ |
| if (rx_ring->rx_skb_top) { |
| dev_kfree_skb(rx_ring->rx_skb_top); |
| rx_ring->rx_skb_top = NULL; |
| } |
| |
| size = sizeof(struct e1000_buffer) * rx_ring->count; |
| memset(rx_ring->buffer_info, 0, size); |
| |
| /* Zero out the descriptor ring */ |
| memset(rx_ring->desc, 0, rx_ring->size); |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| |
| writel(0, hw->hw_addr + rx_ring->rdh); |
| writel(0, hw->hw_addr + rx_ring->rdt); |
| } |
| |
| /** |
| * e1000_clean_all_rx_rings - Free Rx Buffers for all queues |
| * @adapter: board private structure |
| **/ |
| static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); |
| } |
| |
| /* The 82542 2.0 (revision 2) needs to have the receive unit in reset |
| * and memory write and invalidate disabled for certain operations |
| */ |
| static void e1000_enter_82542_rst(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| u32 rctl; |
| |
| e1000_pci_clear_mwi(hw); |
| |
| rctl = er32(RCTL); |
| rctl |= E1000_RCTL_RST; |
| ew32(RCTL, rctl); |
| E1000_WRITE_FLUSH(); |
| mdelay(5); |
| |
| if (netif_running(netdev)) |
| e1000_clean_all_rx_rings(adapter); |
| } |
| |
| static void e1000_leave_82542_rst(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| u32 rctl; |
| |
| rctl = er32(RCTL); |
| rctl &= ~E1000_RCTL_RST; |
| ew32(RCTL, rctl); |
| E1000_WRITE_FLUSH(); |
| mdelay(5); |
| |
| if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
| e1000_pci_set_mwi(hw); |
| |
| if (netif_running(netdev)) { |
| /* No need to loop, because 82542 supports only 1 queue */ |
| struct e1000_rx_ring *ring = &adapter->rx_ring[0]; |
| e1000_configure_rx(adapter); |
| adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); |
| } |
| } |
| |
| /** |
| * e1000_set_mac - Change the Ethernet Address of the NIC |
| * @netdev: network interface device structure |
| * @p: pointer to an address structure |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| static int e1000_set_mac(struct net_device *netdev, void *p) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| /* 82542 2.0 needs to be in reset to write receive address registers */ |
| |
| if (hw->mac_type == e1000_82542_rev2_0) |
| e1000_enter_82542_rst(adapter); |
| |
| memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
| memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); |
| |
| e1000_rar_set(hw, hw->mac_addr, 0); |
| |
| if (hw->mac_type == e1000_82542_rev2_0) |
| e1000_leave_82542_rst(adapter); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set |
| * @netdev: network interface device structure |
| * |
| * The set_rx_mode entry point is called whenever the unicast or multicast |
| * address lists or the network interface flags are updated. This routine is |
| * responsible for configuring the hardware for proper unicast, multicast, |
| * promiscuous mode, and all-multi behavior. |
| **/ |
| static void e1000_set_rx_mode(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct netdev_hw_addr *ha; |
| bool use_uc = false; |
| u32 rctl; |
| u32 hash_value; |
| int i, rar_entries = E1000_RAR_ENTRIES; |
| int mta_reg_count = E1000_NUM_MTA_REGISTERS; |
| u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); |
| |
| if (!mcarray) |
| return; |
| |
| /* Check for Promiscuous and All Multicast modes */ |
| |
| rctl = er32(RCTL); |
| |
| if (netdev->flags & IFF_PROMISC) { |
| rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
| rctl &= ~E1000_RCTL_VFE; |
| } else { |
| if (netdev->flags & IFF_ALLMULTI) |
| rctl |= E1000_RCTL_MPE; |
| else |
| rctl &= ~E1000_RCTL_MPE; |
| /* Enable VLAN filter if there is a VLAN */ |
| if (e1000_vlan_used(adapter)) |
| rctl |= E1000_RCTL_VFE; |
| } |
| |
| if (netdev_uc_count(netdev) > rar_entries - 1) { |
| rctl |= E1000_RCTL_UPE; |
| } else if (!(netdev->flags & IFF_PROMISC)) { |
| rctl &= ~E1000_RCTL_UPE; |
| use_uc = true; |
| } |
| |
| ew32(RCTL, rctl); |
| |
| /* 82542 2.0 needs to be in reset to write receive address registers */ |
| |
| if (hw->mac_type == e1000_82542_rev2_0) |
| e1000_enter_82542_rst(adapter); |
| |
| /* load the first 14 addresses into the exact filters 1-14. Unicast |
| * addresses take precedence to avoid disabling unicast filtering |
| * when possible. |
| * |
| * RAR 0 is used for the station MAC address |
| * if there are not 14 addresses, go ahead and clear the filters |
| */ |
| i = 1; |
| if (use_uc) |
| netdev_for_each_uc_addr(ha, netdev) { |
| if (i == rar_entries) |
| break; |
| e1000_rar_set(hw, ha->addr, i++); |
| } |
| |
| netdev_for_each_mc_addr(ha, netdev) { |
| if (i == rar_entries) { |
| /* load any remaining addresses into the hash table */ |
| u32 hash_reg, hash_bit, mta; |
| hash_value = e1000_hash_mc_addr(hw, ha->addr); |
| hash_reg = (hash_value >> 5) & 0x7F; |
| hash_bit = hash_value & 0x1F; |
| mta = (1 << hash_bit); |
| mcarray[hash_reg] |= mta; |
| } else { |
| e1000_rar_set(hw, ha->addr, i++); |
| } |
| } |
| |
| for (; i < rar_entries; i++) { |
| E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); |
| E1000_WRITE_FLUSH(); |
| E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); |
| E1000_WRITE_FLUSH(); |
| } |
| |
| /* write the hash table completely, write from bottom to avoid |
| * both stupid write combining chipsets, and flushing each write |
| */ |
| for (i = mta_reg_count - 1; i >= 0 ; i--) { |
| /* If we are on an 82544 has an errata where writing odd |
| * offsets overwrites the previous even offset, but writing |
| * backwards over the range solves the issue by always |
| * writing the odd offset first |
| */ |
| E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); |
| } |
| E1000_WRITE_FLUSH(); |
| |
| if (hw->mac_type == e1000_82542_rev2_0) |
| e1000_leave_82542_rst(adapter); |
| |
| kfree(mcarray); |
| } |
| |
| /** |
| * e1000_update_phy_info_task - get phy info |
| * @work: work struct contained inside adapter struct |
| * |
| * Need to wait a few seconds after link up to get diagnostic information from |
| * the phy |
| */ |
| static void e1000_update_phy_info_task(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = container_of(work, |
| struct e1000_adapter, |
| phy_info_task.work); |
| if (test_bit(__E1000_DOWN, &adapter->flags)) |
| return; |
| mutex_lock(&adapter->mutex); |
| e1000_phy_get_info(&adapter->hw, &adapter->phy_info); |
| mutex_unlock(&adapter->mutex); |
| } |
| |
| /** |
| * e1000_82547_tx_fifo_stall_task - task to complete work |
| * @work: work struct contained inside adapter struct |
| **/ |
| static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = container_of(work, |
| struct e1000_adapter, |
| fifo_stall_task.work); |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| u32 tctl; |
| |
| if (test_bit(__E1000_DOWN, &adapter->flags)) |
| return; |
| mutex_lock(&adapter->mutex); |
| if (atomic_read(&adapter->tx_fifo_stall)) { |
| if ((er32(TDT) == er32(TDH)) && |
| (er32(TDFT) == er32(TDFH)) && |
| (er32(TDFTS) == er32(TDFHS))) { |
| tctl = er32(TCTL); |
| ew32(TCTL, tctl & ~E1000_TCTL_EN); |
| ew32(TDFT, adapter->tx_head_addr); |
| ew32(TDFH, adapter->tx_head_addr); |
| ew32(TDFTS, adapter->tx_head_addr); |
| ew32(TDFHS, adapter->tx_head_addr); |
| ew32(TCTL, tctl); |
| E1000_WRITE_FLUSH(); |
| |
| adapter->tx_fifo_head = 0; |
| atomic_set(&adapter->tx_fifo_stall, 0); |
| netif_wake_queue(netdev); |
| } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { |
| schedule_delayed_work(&adapter->fifo_stall_task, 1); |
| } |
| } |
| mutex_unlock(&adapter->mutex); |
| } |
| |
| bool e1000_has_link(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| bool link_active = false; |
| |
| /* get_link_status is set on LSC (link status) interrupt or rx |
| * sequence error interrupt (except on intel ce4100). |
| * get_link_status will stay false until the |
| * e1000_check_for_link establishes link for copper adapters |
| * ONLY |
| */ |
| switch (hw->media_type) { |
| case e1000_media_type_copper: |
| if (hw->mac_type == e1000_ce4100) |
| hw->get_link_status = 1; |
| if (hw->get_link_status) { |
| e1000_check_for_link(hw); |
| link_active = !hw->get_link_status; |
| } else { |
| link_active = true; |
| } |
| break; |
| case e1000_media_type_fiber: |
| e1000_check_for_link(hw); |
| link_active = !!(er32(STATUS) & E1000_STATUS_LU); |
| break; |
| case e1000_media_type_internal_serdes: |
| e1000_check_for_link(hw); |
| link_active = hw->serdes_has_link; |
| break; |
| default: |
| break; |
| } |
| |
| return link_active; |
| } |
| |
| /** |
| * e1000_watchdog - work function |
| * @work: work struct contained inside adapter struct |
| **/ |
| static void e1000_watchdog(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = container_of(work, |
| struct e1000_adapter, |
| watchdog_task.work); |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_tx_ring *txdr = adapter->tx_ring; |
| u32 link, tctl; |
| |
| if (test_bit(__E1000_DOWN, &adapter->flags)) |
| return; |
| |
| mutex_lock(&adapter->mutex); |
| link = e1000_has_link(adapter); |
| if ((netif_carrier_ok(netdev)) && link) |
| goto link_up; |
| |
| if (link) { |
| if (!netif_carrier_ok(netdev)) { |
| u32 ctrl; |
| bool txb2b = true; |
| /* update snapshot of PHY registers on LSC */ |
| e1000_get_speed_and_duplex(hw, |
| &adapter->link_speed, |
| &adapter->link_duplex); |
| |
| ctrl = er32(CTRL); |
| pr_info("%s NIC Link is Up %d Mbps %s, " |
| "Flow Control: %s\n", |
| netdev->name, |
| adapter->link_speed, |
| adapter->link_duplex == FULL_DUPLEX ? |
| "Full Duplex" : "Half Duplex", |
| ((ctrl & E1000_CTRL_TFCE) && (ctrl & |
| E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & |
| E1000_CTRL_RFCE) ? "RX" : ((ctrl & |
| E1000_CTRL_TFCE) ? "TX" : "None"))); |
| |
| /* adjust timeout factor according to speed/duplex */ |
| adapter->tx_timeout_factor = 1; |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| txb2b = false; |
| adapter->tx_timeout_factor = 16; |
| break; |
| case SPEED_100: |
| txb2b = false; |
| /* maybe add some timeout factor ? */ |
| break; |
| } |
| |
| /* enable transmits in the hardware */ |
| tctl = er32(TCTL); |
| tctl |= E1000_TCTL_EN; |
| ew32(TCTL, tctl); |
| |
| netif_carrier_on(netdev); |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| schedule_delayed_work(&adapter->phy_info_task, |
| 2 * HZ); |
| adapter->smartspeed = 0; |
| } |
| } else { |
| if (netif_carrier_ok(netdev)) { |
| adapter->link_speed = 0; |
| adapter->link_duplex = 0; |
| pr_info("%s NIC Link is Down\n", |
| netdev->name); |
| netif_carrier_off(netdev); |
| |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| schedule_delayed_work(&adapter->phy_info_task, |
| 2 * HZ); |
| } |
| |
| e1000_smartspeed(adapter); |
| } |
| |
| link_up: |
| e1000_update_stats(adapter); |
| |
| hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
| adapter->tpt_old = adapter->stats.tpt; |
| hw->collision_delta = adapter->stats.colc - adapter->colc_old; |
| adapter->colc_old = adapter->stats.colc; |
| |
| adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; |
| adapter->gorcl_old = adapter->stats.gorcl; |
| adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; |
| adapter->gotcl_old = adapter->stats.gotcl; |
| |
| e1000_update_adaptive(hw); |
| |
| if (!netif_carrier_ok(netdev)) { |
| if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { |
| /* We've lost link, so the controller stops DMA, |
| * but we've got queued Tx work that's never going |
| * to get done, so reset controller to flush Tx. |
| * (Do the reset outside of interrupt context). |
| */ |
| adapter->tx_timeout_count++; |
| schedule_work(&adapter->reset_task); |
| /* exit immediately since reset is imminent */ |
| goto unlock; |
| } |
| } |
| |
| /* Simple mode for Interrupt Throttle Rate (ITR) */ |
| if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { |
| /* Symmetric Tx/Rx gets a reduced ITR=2000; |
| * Total asymmetrical Tx or Rx gets ITR=8000; |
| * everyone else is between 2000-8000. |
| */ |
| u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; |
| u32 dif = (adapter->gotcl > adapter->gorcl ? |
| adapter->gotcl - adapter->gorcl : |
| adapter->gorcl - adapter->gotcl) / 10000; |
| u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; |
| |
| ew32(ITR, 1000000000 / (itr * 256)); |
| } |
| |
| /* Cause software interrupt to ensure rx ring is cleaned */ |
| ew32(ICS, E1000_ICS_RXDMT0); |
| |
| /* Force detection of hung controller every watchdog period */ |
| adapter->detect_tx_hung = true; |
| |
| /* Reschedule the task */ |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); |
| |
| unlock: |
| mutex_unlock(&adapter->mutex); |
| } |
| |
| enum latency_range { |
| lowest_latency = 0, |
| low_latency = 1, |
| bulk_latency = 2, |
| latency_invalid = 255 |
| }; |
| |
| /** |
| * e1000_update_itr - update the dynamic ITR value based on statistics |
| * @adapter: pointer to adapter |
| * @itr_setting: current adapter->itr |
| * @packets: the number of packets during this measurement interval |
| * @bytes: the number of bytes during this measurement interval |
| * |
| * Stores a new ITR value based on packets and byte |
| * counts during the last interrupt. The advantage of per interrupt |
| * computation is faster updates and more accurate ITR for the current |
| * traffic pattern. Constants in this function were computed |
| * based on theoretical maximum wire speed and thresholds were set based |
| * on testing data as well as attempting to minimize response time |
| * while increasing bulk throughput. |
| * this functionality is controlled by the InterruptThrottleRate module |
| * parameter (see e1000_param.c) |
| **/ |
| static unsigned int e1000_update_itr(struct e1000_adapter *adapter, |
| u16 itr_setting, int packets, int bytes) |
| { |
| unsigned int retval = itr_setting; |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (unlikely(hw->mac_type < e1000_82540)) |
| goto update_itr_done; |
| |
| if (packets == 0) |
| goto update_itr_done; |
| |
| switch (itr_setting) { |
| case lowest_latency: |
| /* jumbo frames get bulk treatment*/ |
| if (bytes/packets > 8000) |
| retval = bulk_latency; |
| else if ((packets < 5) && (bytes > 512)) |
| retval = low_latency; |
| break; |
| case low_latency: /* 50 usec aka 20000 ints/s */ |
| if (bytes > 10000) { |
| /* jumbo frames need bulk latency setting */ |
| if (bytes/packets > 8000) |
| retval = bulk_latency; |
| else if ((packets < 10) || ((bytes/packets) > 1200)) |
| retval = bulk_latency; |
| else if ((packets > 35)) |
| retval = lowest_latency; |
| } else if (bytes/packets > 2000) |
| retval = bulk_latency; |
| else if (packets <= 2 && bytes < 512) |
| retval = lowest_latency; |
| break; |
| case bulk_latency: /* 250 usec aka 4000 ints/s */ |
| if (bytes > 25000) { |
| if (packets > 35) |
| retval = low_latency; |
| } else if (bytes < 6000) { |
| retval = low_latency; |
| } |
| break; |
| } |
| |
| update_itr_done: |
| return retval; |
| } |
| |
| static void e1000_set_itr(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u16 current_itr; |
| u32 new_itr = adapter->itr; |
| |
| if (unlikely(hw->mac_type < e1000_82540)) |
| return; |
| |
| /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
| if (unlikely(adapter->link_speed != SPEED_1000)) { |
| current_itr = 0; |
| new_itr = 4000; |
| goto set_itr_now; |
| } |
| |
| adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, |
| adapter->total_tx_packets, |
| adapter->total_tx_bytes); |
| /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
| if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
| adapter->tx_itr = low_latency; |
| |
| adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, |
| adapter->total_rx_packets, |
| adapter->total_rx_bytes); |
| /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
| if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
| adapter->rx_itr = low_latency; |
| |
| current_itr = max(adapter->rx_itr, adapter->tx_itr); |
| |
| switch (current_itr) { |
| /* counts and packets in update_itr are dependent on these numbers */ |
| case lowest_latency: |
| new_itr = 70000; |
| break; |
| case low_latency: |
| new_itr = 20000; /* aka hwitr = ~200 */ |
| break; |
| case bulk_latency: |
| new_itr = 4000; |
| break; |
| default: |
| break; |
| } |
| |
| set_itr_now: |
| if (new_itr != adapter->itr) { |
| /* this attempts to bias the interrupt rate towards Bulk |
| * by adding intermediate steps when interrupt rate is |
| * increasing |
| */ |
| new_itr = new_itr > adapter->itr ? |
| min(adapter->itr + (new_itr >> 2), new_itr) : |
| new_itr; |
| adapter->itr = new_itr; |
| ew32(ITR, 1000000000 / (new_itr * 256)); |
| } |
| } |
| |
| #define E1000_TX_FLAGS_CSUM 0x00000001 |
| #define E1000_TX_FLAGS_VLAN 0x00000002 |
| #define E1000_TX_FLAGS_TSO 0x00000004 |
| #define E1000_TX_FLAGS_IPV4 0x00000008 |
| #define E1000_TX_FLAGS_NO_FCS 0x00000010 |
| #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
| #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
| |
| static int e1000_tso(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
| { |
| struct e1000_context_desc *context_desc; |
| struct e1000_buffer *buffer_info; |
| unsigned int i; |
| u32 cmd_length = 0; |
| u16 ipcse = 0, tucse, mss; |
| u8 ipcss, ipcso, tucss, tucso, hdr_len; |
| int err; |
| |
| if (skb_is_gso(skb)) { |
| if (skb_header_cloned(skb)) { |
| err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
| if (err) |
| return err; |
| } |
| |
| hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| mss = skb_shinfo(skb)->gso_size; |
| if (skb->protocol == htons(ETH_P_IP)) { |
| struct iphdr *iph = ip_hdr(skb); |
| iph->tot_len = 0; |
| iph->check = 0; |
| tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
| iph->daddr, 0, |
| IPPROTO_TCP, |
| 0); |
| cmd_length = E1000_TXD_CMD_IP; |
| ipcse = skb_transport_offset(skb) - 1; |
| } else if (skb->protocol == htons(ETH_P_IPV6)) { |
| ipv6_hdr(skb)->payload_len = 0; |
| tcp_hdr(skb)->check = |
| ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
| &ipv6_hdr(skb)->daddr, |
| 0, IPPROTO_TCP, 0); |
| ipcse = 0; |
| } |
| ipcss = skb_network_offset(skb); |
| ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
| tucss = skb_transport_offset(skb); |
| tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
| tucse = 0; |
| |
| cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
| E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
| |
| i = tx_ring->next_to_use; |
| context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
| buffer_info = &tx_ring->buffer_info[i]; |
| |
| context_desc->lower_setup.ip_fields.ipcss = ipcss; |
| context_desc->lower_setup.ip_fields.ipcso = ipcso; |
| context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
| context_desc->upper_setup.tcp_fields.tucss = tucss; |
| context_desc->upper_setup.tcp_fields.tucso = tucso; |
| context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
| context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
| context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
| context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
| |
| buffer_info->time_stamp = jiffies; |
| buffer_info->next_to_watch = i; |
| |
| if (++i == tx_ring->count) i = 0; |
| tx_ring->next_to_use = i; |
| |
| return true; |
| } |
| return false; |
| } |
| |
| static bool e1000_tx_csum(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
| { |
| struct e1000_context_desc *context_desc; |
| struct e1000_buffer *buffer_info; |
| unsigned int i; |
| u8 css; |
| u32 cmd_len = E1000_TXD_CMD_DEXT; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return false; |
| |
| switch (skb->protocol) { |
| case cpu_to_be16(ETH_P_IP): |
| if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
| cmd_len |= E1000_TXD_CMD_TCP; |
| break; |
| case cpu_to_be16(ETH_P_IPV6): |
| /* XXX not handling all IPV6 headers */ |
| if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
| cmd_len |= E1000_TXD_CMD_TCP; |
| break; |
| default: |
| if (unlikely(net_ratelimit())) |
| e_warn(drv, "checksum_partial proto=%x!\n", |
| skb->protocol); |
| break; |
| } |
| |
| css = skb_checksum_start_offset(skb); |
| |
| i = tx_ring->next_to_use; |
| buffer_info = &tx_ring->buffer_info[i]; |
| context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
| |
| context_desc->lower_setup.ip_config = 0; |
| context_desc->upper_setup.tcp_fields.tucss = css; |
| context_desc->upper_setup.tcp_fields.tucso = |
| css + skb->csum_offset; |
| context_desc->upper_setup.tcp_fields.tucse = 0; |
| context_desc->tcp_seg_setup.data = 0; |
| context_desc->cmd_and_length = cpu_to_le32(cmd_len); |
| |
| buffer_info->time_stamp = jiffies; |
| buffer_info->next_to_watch = i; |
| |
| if (unlikely(++i == tx_ring->count)) i = 0; |
| tx_ring->next_to_use = i; |
| |
| return true; |
| } |
| |
| #define E1000_MAX_TXD_PWR 12 |
| #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) |
| |
| static int e1000_tx_map(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring, |
| struct sk_buff *skb, unsigned int first, |
| unsigned int max_per_txd, unsigned int nr_frags, |
| unsigned int mss) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_buffer *buffer_info; |
| unsigned int len = skb_headlen(skb); |
| unsigned int offset = 0, size, count = 0, i; |
| unsigned int f, bytecount, segs; |
| |
| i = tx_ring->next_to_use; |
| |
| while (len) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| size = min(len, max_per_txd); |
| /* Workaround for Controller erratum -- |
| * descriptor for non-tso packet in a linear SKB that follows a |
| * tso gets written back prematurely before the data is fully |
| * DMA'd to the controller |
| */ |
| if (!skb->data_len && tx_ring->last_tx_tso && |
| !skb_is_gso(skb)) { |
| tx_ring->last_tx_tso = false; |
| size -= 4; |
| } |
| |
| /* Workaround for premature desc write-backs |
| * in TSO mode. Append 4-byte sentinel desc |
| */ |
| if (unlikely(mss && !nr_frags && size == len && size > 8)) |
| size -= 4; |
| /* work-around for errata 10 and it applies |
| * to all controllers in PCI-X mode |
| * The fix is to make sure that the first descriptor of a |
| * packet is smaller than 2048 - 16 - 16 (or 2016) bytes |
| */ |
| if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
| (size > 2015) && count == 0)) |
| size = 2015; |
| |
| /* Workaround for potential 82544 hang in PCI-X. Avoid |
| * terminating buffers within evenly-aligned dwords. |
| */ |
| if (unlikely(adapter->pcix_82544 && |
| !((unsigned long)(skb->data + offset + size - 1) & 4) && |
| size > 4)) |
| size -= 4; |
| |
| buffer_info->length = size; |
| /* set time_stamp *before* dma to help avoid a possible race */ |
| buffer_info->time_stamp = jiffies; |
| buffer_info->mapped_as_page = false; |
| buffer_info->dma = dma_map_single(&pdev->dev, |
| skb->data + offset, |
| size, DMA_TO_DEVICE); |
| if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
| goto dma_error; |
| buffer_info->next_to_watch = i; |
| |
| len -= size; |
| offset += size; |
| count++; |
| if (len) { |
| i++; |
| if (unlikely(i == tx_ring->count)) |
| i = 0; |
| } |
| } |
| |
| for (f = 0; f < nr_frags; f++) { |
| const struct skb_frag_struct *frag; |
| |
| frag = &skb_shinfo(skb)->frags[f]; |
| len = skb_frag_size(frag); |
| offset = 0; |
| |
| while (len) { |
| unsigned long bufend; |
| i++; |
| if (unlikely(i == tx_ring->count)) |
| i = 0; |
| |
| buffer_info = &tx_ring->buffer_info[i]; |
| size = min(len, max_per_txd); |
| /* Workaround for premature desc write-backs |
| * in TSO mode. Append 4-byte sentinel desc |
| */ |
| if (unlikely(mss && f == (nr_frags-1) && |
| size == len && size > 8)) |
| size -= 4; |
| /* Workaround for potential 82544 hang in PCI-X. |
| * Avoid terminating buffers within evenly-aligned |
| * dwords. |
| */ |
| bufend = (unsigned long) |
| page_to_phys(skb_frag_page(frag)); |
| bufend += offset + size - 1; |
| if (unlikely(adapter->pcix_82544 && |
| !(bufend & 4) && |
| size > 4)) |
| size -= 4; |
| |
| buffer_info->length = size; |
| buffer_info->time_stamp = jiffies; |
| buffer_info->mapped_as_page = true; |
| buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, |
| offset, size, DMA_TO_DEVICE); |
| if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
| goto dma_error; |
| buffer_info->next_to_watch = i; |
| |
| len -= size; |
| offset += size; |
| count++; |
| } |
| } |
| |
| segs = skb_shinfo(skb)->gso_segs ?: 1; |
| /* multiply data chunks by size of headers */ |
| bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; |
| |
| tx_ring->buffer_info[i].skb = skb; |
| tx_ring->buffer_info[i].segs = segs; |
| tx_ring->buffer_info[i].bytecount = bytecount; |
| tx_ring->buffer_info[first].next_to_watch = i; |
| |
| return count; |
| |
| dma_error: |
| dev_err(&pdev->dev, "TX DMA map failed\n"); |
| buffer_info->dma = 0; |
| if (count) |
| count--; |
| |
| while (count--) { |
| if (i==0) |
| i += tx_ring->count; |
| i--; |
| buffer_info = &tx_ring->buffer_info[i]; |
| e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
| } |
| |
| return 0; |
| } |
| |
| static void e1000_tx_queue(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring, int tx_flags, |
| int count) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_tx_desc *tx_desc = NULL; |
| struct e1000_buffer *buffer_info; |
| u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
| unsigned int i; |
| |
| if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { |
| txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
| E1000_TXD_CMD_TSE; |
| txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
| |
| if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) |
| txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
| } |
| |
| if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { |
| txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
| txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
| } |
| |
| if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { |
| txd_lower |= E1000_TXD_CMD_VLE; |
| txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
| } |
| |
| if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) |
| txd_lower &= ~(E1000_TXD_CMD_IFCS); |
| |
| i = tx_ring->next_to_use; |
| |
| while (count--) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| tx_desc = E1000_TX_DESC(*tx_ring, i); |
| tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
| tx_desc->lower.data = |
| cpu_to_le32(txd_lower | buffer_info->length); |
| tx_desc->upper.data = cpu_to_le32(txd_upper); |
| if (unlikely(++i == tx_ring->count)) i = 0; |
| } |
| |
| tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
| |
| /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ |
| if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) |
| tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| |
| tx_ring->next_to_use = i; |
| writel(i, hw->hw_addr + tx_ring->tdt); |
| /* we need this if more than one processor can write to our tail |
| * at a time, it synchronizes IO on IA64/Altix systems |
| */ |
| mmiowb(); |
| } |
| |
| /* 82547 workaround to avoid controller hang in half-duplex environment. |
| * The workaround is to avoid queuing a large packet that would span |
| * the internal Tx FIFO ring boundary by notifying the stack to resend |
| * the packet at a later time. This gives the Tx FIFO an opportunity to |
| * flush all packets. When that occurs, we reset the Tx FIFO pointers |
| * to the beginning of the Tx FIFO. |
| */ |
| |
| #define E1000_FIFO_HDR 0x10 |
| #define E1000_82547_PAD_LEN 0x3E0 |
| |
| static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
| struct sk_buff *skb) |
| { |
| u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; |
| u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; |
| |
| skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); |
| |
| if (adapter->link_duplex != HALF_DUPLEX) |
| goto no_fifo_stall_required; |
| |
| if (atomic_read(&adapter->tx_fifo_stall)) |
| return 1; |
| |
| if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { |
| atomic_set(&adapter->tx_fifo_stall, 1); |
| return 1; |
| } |
| |
| no_fifo_stall_required: |
| adapter->tx_fifo_head += skb_fifo_len; |
| if (adapter->tx_fifo_head >= adapter->tx_fifo_size) |
| adapter->tx_fifo_head -= adapter->tx_fifo_size; |
| return 0; |
| } |
| |
| static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_tx_ring *tx_ring = adapter->tx_ring; |
| |
| netif_stop_queue(netdev); |
| /* Herbert's original patch had: |
| * smp_mb__after_netif_stop_queue(); |
| * but since that doesn't exist yet, just open code it. |
| */ |
| smp_mb(); |
| |
| /* We need to check again in a case another CPU has just |
| * made room available. |
| */ |
| if (likely(E1000_DESC_UNUSED(tx_ring) < size)) |
| return -EBUSY; |
| |
| /* A reprieve! */ |
| netif_start_queue(netdev); |
| ++adapter->restart_queue; |
| return 0; |
| } |
| |
| static int e1000_maybe_stop_tx(struct net_device *netdev, |
| struct e1000_tx_ring *tx_ring, int size) |
| { |
| if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) |
| return 0; |
| return __e1000_maybe_stop_tx(netdev, size); |
| } |
| |
| #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
| static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
| struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_tx_ring *tx_ring; |
| unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; |
| unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
| unsigned int tx_flags = 0; |
| unsigned int len = skb_headlen(skb); |
| unsigned int nr_frags; |
| unsigned int mss; |
| int count = 0; |
| int tso; |
| unsigned int f; |
| |
| /* This goes back to the question of how to logically map a Tx queue |
| * to a flow. Right now, performance is impacted slightly negatively |
| * if using multiple Tx queues. If the stack breaks away from a |
| * single qdisc implementation, we can look at this again. |
| */ |
| tx_ring = adapter->tx_ring; |
| |
| if (unlikely(skb->len <= 0)) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, |
| * packets may get corrupted during padding by HW. |
| * To WA this issue, pad all small packets manually. |
| */ |
| if (skb->len < ETH_ZLEN) { |
| if (skb_pad(skb, ETH_ZLEN - skb->len)) |
| return NETDEV_TX_OK; |
| skb->len = ETH_ZLEN; |
| skb_set_tail_pointer(skb, ETH_ZLEN); |
| } |
| |
| mss = skb_shinfo(skb)->gso_size; |
| /* The controller does a simple calculation to |
| * make sure there is enough room in the FIFO before |
| * initiating the DMA for each buffer. The calc is: |
| * 4 = ceil(buffer len/mss). To make sure we don't |
| * overrun the FIFO, adjust the max buffer len if mss |
| * drops. |
| */ |
| if (mss) { |
| u8 hdr_len; |
| max_per_txd = min(mss << 2, max_per_txd); |
| max_txd_pwr = fls(max_per_txd) - 1; |
| |
| hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| if (skb->data_len && hdr_len == len) { |
| switch (hw->mac_type) { |
| unsigned int pull_size; |
| case e1000_82544: |
| /* Make sure we have room to chop off 4 bytes, |
| * and that the end alignment will work out to |
| * this hardware's requirements |
| * NOTE: this is a TSO only workaround |
| * if end byte alignment not correct move us |
| * into the next dword |
| */ |
| if ((unsigned long)(skb_tail_pointer(skb) - 1) |
| & 4) |
| break; |
| /* fall through */ |
| pull_size = min((unsigned int)4, skb->data_len); |
| if (!__pskb_pull_tail(skb, pull_size)) { |
| e_err(drv, "__pskb_pull_tail " |
| "failed.\n"); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| len = skb_headlen(skb); |
| break; |
| default: |
| /* do nothing */ |
| break; |
| } |
| } |
| } |
| |
| /* reserve a descriptor for the offload context */ |
| if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
| count++; |
| count++; |
| |
| /* Controller Erratum workaround */ |
| if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) |
| count++; |
| |
| count += TXD_USE_COUNT(len, max_txd_pwr); |
| |
| if (adapter->pcix_82544) |
| count++; |
| |
| /* work-around for errata 10 and it applies to all controllers |
| * in PCI-X mode, so add one more descriptor to the count |
| */ |
| if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
| (len > 2015))) |
| count++; |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| for (f = 0; f < nr_frags; f++) |
| count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), |
| max_txd_pwr); |
| if (adapter->pcix_82544) |
| count += nr_frags; |
| |
| /* need: count + 2 desc gap to keep tail from touching |
| * head, otherwise try next time |
| */ |
| if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) |
| return NETDEV_TX_BUSY; |
| |
| if (unlikely((hw->mac_type == e1000_82547) && |
| (e1000_82547_fifo_workaround(adapter, skb)))) { |
| netif_stop_queue(netdev); |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| schedule_delayed_work(&adapter->fifo_stall_task, 1); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (vlan_tx_tag_present(skb)) { |
| tx_flags |= E1000_TX_FLAGS_VLAN; |
| tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
| } |
| |
| first = tx_ring->next_to_use; |
| |
| tso = e1000_tso(adapter, tx_ring, skb); |
| if (tso < 0) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| if (likely(tso)) { |
| if (likely(hw->mac_type != e1000_82544)) |
| tx_ring->last_tx_tso = true; |
| tx_flags |= E1000_TX_FLAGS_TSO; |
| } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) |
| tx_flags |= E1000_TX_FLAGS_CSUM; |
| |
| if (likely(skb->protocol == htons(ETH_P_IP))) |
| tx_flags |= E1000_TX_FLAGS_IPV4; |
| |
| if (unlikely(skb->no_fcs)) |
| tx_flags |= E1000_TX_FLAGS_NO_FCS; |
| |
| count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, |
| nr_frags, mss); |
| |
| if (count) { |
| netdev_sent_queue(netdev, skb->len); |
| skb_tx_timestamp(skb); |
| |
| e1000_tx_queue(adapter, tx_ring, tx_flags, count); |
| /* Make sure there is space in the ring for the next send. */ |
| e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); |
| |
| } else { |
| dev_kfree_skb_any(skb); |
| tx_ring->buffer_info[first].time_stamp = 0; |
| tx_ring->next_to_use = first; |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| #define NUM_REGS 38 /* 1 based count */ |
| static void e1000_regdump(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 regs[NUM_REGS]; |
| u32 *regs_buff = regs; |
| int i = 0; |
| |
| static const char * const reg_name[] = { |
| "CTRL", "STATUS", |
| "RCTL", "RDLEN", "RDH", "RDT", "RDTR", |
| "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", |
| "TIDV", "TXDCTL", "TADV", "TARC0", |
| "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", |
| "TXDCTL1", "TARC1", |
| "CTRL_EXT", "ERT", "RDBAL", "RDBAH", |
| "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", |
| "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" |
| }; |
| |
| regs_buff[0] = er32(CTRL); |
| regs_buff[1] = er32(STATUS); |
| |
| regs_buff[2] = er32(RCTL); |
| regs_buff[3] = er32(RDLEN); |
| regs_buff[4] = er32(RDH); |
| regs_buff[5] = er32(RDT); |
| regs_buff[6] = er32(RDTR); |
| |
| regs_buff[7] = er32(TCTL); |
| regs_buff[8] = er32(TDBAL); |
| regs_buff[9] = er32(TDBAH); |
| regs_buff[10] = er32(TDLEN); |
| regs_buff[11] = er32(TDH); |
| regs_buff[12] = er32(TDT); |
| regs_buff[13] = er32(TIDV); |
| regs_buff[14] = er32(TXDCTL); |
| regs_buff[15] = er32(TADV); |
| regs_buff[16] = er32(TARC0); |
| |
| regs_buff[17] = er32(TDBAL1); |
| regs_buff[18] = er32(TDBAH1); |
| regs_buff[19] = er32(TDLEN1); |
| regs_buff[20] = er32(TDH1); |
| regs_buff[21] = er32(TDT1); |
| regs_buff[22] = er32(TXDCTL1); |
| regs_buff[23] = er32(TARC1); |
| regs_buff[24] = er32(CTRL_EXT); |
| regs_buff[25] = er32(ERT); |
| regs_buff[26] = er32(RDBAL0); |
| regs_buff[27] = er32(RDBAH0); |
| regs_buff[28] = er32(TDFH); |
| regs_buff[29] = er32(TDFT); |
| regs_buff[30] = er32(TDFHS); |
| regs_buff[31] = er32(TDFTS); |
| regs_buff[32] = er32(TDFPC); |
| regs_buff[33] = er32(RDFH); |
| regs_buff[34] = er32(RDFT); |
| regs_buff[35] = er32(RDFHS); |
| regs_buff[36] = er32(RDFTS); |
| regs_buff[37] = er32(RDFPC); |
| |
| pr_info("Register dump\n"); |
| for (i = 0; i < NUM_REGS; i++) |
| pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); |
| } |
| |
| /* |
| * e1000_dump: Print registers, tx ring and rx ring |
| */ |
| static void e1000_dump(struct e1000_adapter *adapter) |
| { |
| /* this code doesn't handle multiple rings */ |
| struct e1000_tx_ring *tx_ring = adapter->tx_ring; |
| struct e1000_rx_ring *rx_ring = adapter->rx_ring; |
| int i; |
| |
| if (!netif_msg_hw(adapter)) |
| return; |
| |
| /* Print Registers */ |
| e1000_regdump(adapter); |
| |
| /* transmit dump */ |
| pr_info("TX Desc ring0 dump\n"); |
| |
| /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) |
| * |
| * Legacy Transmit Descriptor |
| * +--------------------------------------------------------------+ |
| * 0 | Buffer Address [63:0] (Reserved on Write Back) | |
| * +--------------------------------------------------------------+ |
| * 8 | Special | CSS | Status | CMD | CSO | Length | |
| * +--------------------------------------------------------------+ |
| * 63 48 47 36 35 32 31 24 23 16 15 0 |
| * |
| * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload |
| * 63 48 47 40 39 32 31 16 15 8 7 0 |
| * +----------------------------------------------------------------+ |
| * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | |
| * +----------------------------------------------------------------+ |
| * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | |
| * +----------------------------------------------------------------+ |
| * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 |
| * |
| * Extended Data Descriptor (DTYP=0x1) |
| * +----------------------------------------------------------------+ |
| * 0 | Buffer Address [63:0] | |
| * +----------------------------------------------------------------+ |
| * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | |
| * +----------------------------------------------------------------+ |
| * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 |
| */ |
| pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); |
| pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); |
| |
| if (!netif_msg_tx_done(adapter)) |
| goto rx_ring_summary; |
| |
| for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { |
| struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); |
| struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i]; |
| struct my_u { __le64 a; __le64 b; }; |
| struct my_u *u = (struct my_u *)tx_desc; |
| const char *type; |
| |
| if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) |
| type = "NTC/U"; |
| else if (i == tx_ring->next_to_use) |
| type = "NTU"; |
| else if (i == tx_ring->next_to_clean) |
| type = "NTC"; |
| else |
| type = ""; |
| |
| pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", |
| ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, |
| le64_to_cpu(u->a), le64_to_cpu(u->b), |
| (u64)buffer_info->dma, buffer_info->length, |
| buffer_info->next_to_watch, |
| (u64)buffer_info->time_stamp, buffer_info->skb, type); |
| } |
| |
| rx_ring_summary: |
| /* receive dump */ |
| pr_info("\nRX Desc ring dump\n"); |
| |
| /* Legacy Receive Descriptor Format |
| * |
| * +-----------------------------------------------------+ |
| * | Buffer Address [63:0] | |
| * +-----------------------------------------------------+ |
| * | VLAN Tag | Errors | Status 0 | Packet csum | Length | |
| * +-----------------------------------------------------+ |
| * 63 48 47 40 39 32 31 16 15 0 |
| */ |
| pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); |
| |
| if (!netif_msg_rx_status(adapter)) |
| goto exit; |
| |
| for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { |
| struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); |
| struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i]; |
| struct my_u { __le64 a; __le64 b; }; |
| struct my_u *u = (struct my_u *)rx_desc; |
| const char *type; |
| |
| if (i == rx_ring->next_to_use) |
| type = "NTU"; |
| else if (i == rx_ring->next_to_clean) |
| type = "NTC"; |
| else |
| type = ""; |
| |
| pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", |
| i, le64_to_cpu(u->a), le64_to_cpu(u->b), |
| (u64)buffer_info->dma, buffer_info->skb, type); |
| } /* for */ |
| |
| /* dump the descriptor caches */ |
| /* rx */ |
| pr_info("Rx descriptor cache in 64bit format\n"); |
| for (i = 0x6000; i <= 0x63FF ; i += 0x10) { |
| pr_info("R%04X: %08X|%08X %08X|%08X\n", |
| i, |
| readl(adapter->hw.hw_addr + i+4), |
| readl(adapter->hw.hw_addr + i), |
| readl(adapter->hw.hw_addr + i+12), |
| readl(adapter->hw.hw_addr + i+8)); |
| } |
| /* tx */ |
| pr_info("Tx descriptor cache in 64bit format\n"); |
| for (i = 0x7000; i <= 0x73FF ; i += 0x10) { |
| pr_info("T%04X: %08X|%08X %08X|%08X\n", |
| i, |
| readl(adapter->hw.hw_addr + i+4), |
| readl(adapter->hw.hw_addr + i), |
| readl(adapter->hw.hw_addr + i+12), |
| readl(adapter->hw.hw_addr + i+8)); |
| } |
| exit: |
| return; |
| } |
| |
| /** |
| * e1000_tx_timeout - Respond to a Tx Hang |
| * @netdev: network interface device structure |
| **/ |
| static void e1000_tx_timeout(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| /* Do the reset outside of interrupt context */ |
| adapter->tx_timeout_count++; |
| schedule_work(&adapter->reset_task); |
| } |
| |
| static void e1000_reset_task(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = |
| container_of(work, struct e1000_adapter, reset_task); |
| |
| if (test_bit(__E1000_DOWN, &adapter->flags)) |
| return; |
| e_err(drv, "Reset adapter\n"); |
| e1000_reinit_safe(adapter); |
| } |
| |
| /** |
| * e1000_get_stats - Get System Network Statistics |
| * @netdev: network interface device structure |
| * |
| * Returns the address of the device statistics structure. |
| * The statistics are actually updated from the watchdog. |
| **/ |
| static struct net_device_stats *e1000_get_stats(struct net_device *netdev) |
| { |
| /* only return the current stats */ |
| return &netdev->stats; |
| } |
| |
| /** |
| * e1000_change_mtu - Change the Maximum Transfer Unit |
| * @netdev: network interface device structure |
| * @new_mtu: new value for maximum frame size |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
| |
| if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || |
| (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
| e_err(probe, "Invalid MTU setting\n"); |
| return -EINVAL; |
| } |
| |
| /* Adapter-specific max frame size limits. */ |
| switch (hw->mac_type) { |
| case e1000_undefined ... e1000_82542_rev2_1: |
| if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { |
| e_err(probe, "Jumbo Frames not supported.\n"); |
| return -EINVAL; |
| } |
| break; |
| default: |
| /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ |
| break; |
| } |
| |
| while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
| msleep(1); |
| /* e1000_down has a dependency on max_frame_size */ |
| hw->max_frame_size = max_frame; |
| if (netif_running(netdev)) |
| e1000_down(adapter); |
| |
| /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
| * means we reserve 2 more, this pushes us to allocate from the next |
| * larger slab size. |
| * i.e. RXBUFFER_2048 --> size-4096 slab |
| * however with the new *_jumbo_rx* routines, jumbo receives will use |
| * fragmented skbs |
| */ |
| |
| if (max_frame <= E1000_RXBUFFER_2048) |
| adapter->rx_buffer_len = E1000_RXBUFFER_2048; |
| else |
| #if (PAGE_SIZE >= E1000_RXBUFFER_16384) |
| adapter->rx_buffer_len = E1000_RXBUFFER_16384; |
| #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) |
| adapter->rx_buffer_len = PAGE_SIZE; |
| #endif |
| |
| /* adjust allocation if LPE protects us, and we aren't using SBP */ |
| if (!hw->tbi_compatibility_on && |
| ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || |
| (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) |
| adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
| |
| pr_info("%s changing MTU from %d to %d\n", |
| netdev->name, netdev->mtu, new_mtu); |
| netdev->mtu = new_mtu; |
| |
| if (netif_running(netdev)) |
| e1000_up(adapter); |
| else |
| e1000_reset(adapter); |
| |
| clear_bit(__E1000_RESETTING, &adapter->flags); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_update_stats - Update the board statistics counters |
| * @adapter: board private structure |
| **/ |
| void e1000_update_stats(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| struct pci_dev *pdev = adapter->pdev; |
| unsigned long flags; |
| u16 phy_tmp; |
| |
| #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF |
| |
| /* Prevent stats update while adapter is being reset, or if the pci |
| * connection is down. |
| */ |
| if (adapter->link_speed == 0) |
| return; |
| if (pci_channel_offline(pdev)) |
| return; |
| |
| spin_lock_irqsave(&adapter->stats_lock, flags); |
| |
| /* these counters are modified from e1000_tbi_adjust_stats, |
| * called from the interrupt context, so they must only |
| * be written while holding adapter->stats_lock |
| */ |
| |
| adapter->stats.crcerrs += er32(CRCERRS); |
| adapter->stats.gprc += er32(GPRC); |
| adapter->stats.gorcl += er32(GORCL); |
| adapter->stats.gorch += er32(GORCH); |
| adapter->stats.bprc += er32(BPRC); |
| adapter->stats.mprc += er32(MPRC); |
| adapter->stats.roc += er32(ROC); |
| |
| adapter->stats.prc64 += er32(PRC64); |
| adapter->stats.prc127 += er32(PRC127); |
| adapter->stats.prc255 += er32(PRC255); |
| adapter->stats.prc511 += er32(PRC511); |
| adapter->stats.prc1023 += er32(PRC1023); |
| adapter->stats.prc1522 += er32(PRC1522); |
| |
| adapter->stats.symerrs += er32(SYMERRS); |
| adapter->stats.mpc += er32(MPC); |
| adapter->stats.scc += er32(SCC); |
| adapter->stats.ecol += er32(ECOL); |
| adapter->stats.mcc += er32(MCC); |
| adapter->stats.latecol += er32(LATECOL); |
| adapter->stats.dc += er32(DC); |
| adapter->stats.sec += er32(SEC); |
| adapter->stats.rlec += er32(RLEC); |
| adapter->stats.xonrxc += er32(XONRXC); |
| adapter->stats.xontxc += er32(XONTXC); |
| adapter->stats.xoffrxc += er32(XOFFRXC); |
| adapter->stats.xofftxc += er32(XOFFTXC); |
| adapter->stats.fcruc += er32(FCRUC); |
| adapter->stats.gptc += er32(GPTC); |
| adapter->stats.gotcl += er32(GOTCL); |
| adapter->stats.gotch += er32(GOTCH); |
| adapter->stats.rnbc += er32(RNBC); |
| adapter->stats.ruc += er32(RUC); |
| adapter->stats.rfc += er32(RFC); |
| adapter->stats.rjc += er32(RJC); |
| adapter->stats.torl += er32(TORL); |
| adapter->stats.torh += er32(TORH); |
| adapter->stats.totl += er32(TOTL); |
| adapter->stats.toth += er32(TOTH); |
| adapter->stats.tpr += er32(TPR); |
| |
| adapter->stats.ptc64 += er32(PTC64); |
| adapter->stats.ptc127 += er32(PTC127); |
| adapter->stats.ptc255 += er32(PTC255); |
| adapter->stats.ptc511 += er32(PTC511); |
| adapter->stats.ptc1023 += er32(PTC1023); |
| adapter->stats.ptc1522 += er32(PTC1522); |
| |
| adapter->stats.mptc += er32(MPTC); |
| adapter->stats.bptc += er32(BPTC); |
| |
| /* used for adaptive IFS */ |
| |
| hw->tx_packet_delta = er32(TPT); |
| adapter->stats.tpt += hw->tx_packet_delta; |
| hw->collision_delta = er32(COLC); |
| adapter->stats.colc += hw->collision_delta; |
| |
| if (hw->mac_type >= e1000_82543) { |
| adapter->stats.algnerrc += er32(ALGNERRC); |
| adapter->stats.rxerrc += er32(RXERRC); |
| adapter->stats.tncrs += er32(TNCRS); |
| adapter->stats.cexterr += er32(CEXTERR); |
| adapter->stats.tsctc += er32(TSCTC); |
| adapter->stats.tsctfc += er32(TSCTFC); |
| } |
| |
| /* Fill out the OS statistics structure */ |
| netdev->stats.multicast = adapter->stats.mprc; |
| netdev->stats.collisions = adapter->stats.colc; |
| |
| /* Rx Errors */ |
| |
| /* RLEC on some newer hardware can be incorrect so build |
| * our own version based on RUC and ROC |
| */ |
| netdev->stats.rx_errors = adapter->stats.rxerrc + |
| adapter->stats.crcerrs + adapter->stats.algnerrc + |
| adapter->stats.ruc + adapter->stats.roc + |
| adapter->stats.cexterr; |
| adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; |
| netdev->stats.rx_length_errors = adapter->stats.rlerrc; |
| netdev->stats.rx_crc_errors = adapter->stats.crcerrs; |
| netdev->stats.rx_frame_errors = adapter->stats.algnerrc; |
| netdev->stats.rx_missed_errors = adapter->stats.mpc; |
| |
| /* Tx Errors */ |
| adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; |
| netdev->stats.tx_errors = adapter->stats.txerrc; |
| netdev->stats.tx_aborted_errors = adapter->stats.ecol; |
| netdev->stats.tx_window_errors = adapter->stats.latecol; |
| netdev->stats.tx_carrier_errors = adapter->stats.tncrs; |
| if (hw->bad_tx_carr_stats_fd && |
| adapter->link_duplex == FULL_DUPLEX) { |
| netdev->stats.tx_carrier_errors = 0; |
| adapter->stats.tncrs = 0; |
| } |
| |
| /* Tx Dropped needs to be maintained elsewhere */ |
| |
| /* Phy Stats */ |
| if (hw->media_type == e1000_media_type_copper) { |
| if ((adapter->link_speed == SPEED_1000) && |
| (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { |
| phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; |
| adapter->phy_stats.idle_errors += phy_tmp; |
| } |
| |
| if ((hw->mac_type <= e1000_82546) && |
| (hw->phy_type == e1000_phy_m88) && |
| !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) |
| adapter->phy_stats.receive_errors += phy_tmp; |
| } |
| |
| /* Management Stats */ |
| if (hw->has_smbus) { |
| adapter->stats.mgptc += er32(MGTPTC); |
| adapter->stats.mgprc += er32(MGTPRC); |
| adapter->stats.mgpdc += er32(MGTPDC); |
| } |
| |
| spin_unlock_irqrestore(&adapter->stats_lock, flags); |
| } |
| |
| /** |
| * e1000_intr - Interrupt Handler |
| * @irq: interrupt number |
| * @data: pointer to a network interface device structure |
| **/ |
| static irqreturn_t e1000_intr(int irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 icr = er32(ICR); |
| |
| if (unlikely((!icr))) |
| return IRQ_NONE; /* Not our interrupt */ |
| |
| /* we might have caused the interrupt, but the above |
| * read cleared it, and just in case the driver is |
| * down there is nothing to do so return handled |
| */ |
| if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) |
| return IRQ_HANDLED; |
| |
| if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { |
| hw->get_link_status = 1; |
| /* guard against interrupt when we're going down */ |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| schedule_delayed_work(&adapter->watchdog_task, 1); |
| } |
| |
| /* disable interrupts, without the synchronize_irq bit */ |
| ew32(IMC, ~0); |
| E1000_WRITE_FLUSH(); |
| |
| if (likely(napi_schedule_prep(&adapter->napi))) { |
| adapter->total_tx_bytes = 0; |
| adapter->total_tx_packets = 0; |
| adapter->total_rx_bytes = 0; |
| adapter->total_rx_packets = 0; |
| __napi_schedule(&adapter->napi); |
| } else { |
| /* this really should not happen! if it does it is basically a |
| * bug, but not a hard error, so enable ints and continue |
| */ |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| e1000_irq_enable(adapter); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * e1000_clean - NAPI Rx polling callback |
| * @adapter: board private structure |
| **/ |
| static int e1000_clean(struct napi_struct *napi, int budget) |
| { |
| struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, |
| napi); |
| int tx_clean_complete = 0, work_done = 0; |
| |
| tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); |
| |
| adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); |
| |
| if (!tx_clean_complete) |
| work_done = budget; |
| |
| /* If budget not fully consumed, exit the polling mode */ |
| if (work_done < budget) { |
| if (likely(adapter->itr_setting & 3)) |
| e1000_set_itr(adapter); |
| napi_complete(napi); |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| e1000_irq_enable(adapter); |
| } |
| |
| return work_done; |
| } |
| |
| /** |
| * e1000_clean_tx_irq - Reclaim resources after transmit completes |
| * @adapter: board private structure |
| **/ |
| static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_tx_desc *tx_desc, *eop_desc; |
| struct e1000_buffer *buffer_info; |
| unsigned int i, eop; |
| unsigned int count = 0; |
| unsigned int total_tx_bytes=0, total_tx_packets=0; |
| unsigned int bytes_compl = 0, pkts_compl = 0; |
| |
| i = tx_ring->next_to_clean; |
| eop = tx_ring->buffer_info[i].next_to_watch; |
| eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| |
| while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && |
| (count < tx_ring->count)) { |
| bool cleaned = false; |
| rmb(); /* read buffer_info after eop_desc */ |
| for ( ; !cleaned; count++) { |
| tx_desc = E1000_TX_DESC(*tx_ring, i); |
| buffer_info = &tx_ring->buffer_info[i]; |
| cleaned = (i == eop); |
| |
| if (cleaned) { |
| total_tx_packets += buffer_info->segs; |
| total_tx_bytes += buffer_info->bytecount; |
| if (buffer_info->skb) { |
| bytes_compl += buffer_info->skb->len; |
| pkts_compl++; |
| } |
| |
| } |
| e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
| tx_desc->upper.data = 0; |
| |
| if (unlikely(++i == tx_ring->count)) i = 0; |
| } |
| |
| eop = tx_ring->buffer_info[i].next_to_watch; |
| eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| } |
| |
| tx_ring->next_to_clean = i; |
| |
| netdev_completed_queue(netdev, pkts_compl, bytes_compl); |
| |
| #define TX_WAKE_THRESHOLD 32 |
| if (unlikely(count && netif_carrier_ok(netdev) && |
| E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { |
| /* Make sure that anybody stopping the queue after this |
| * sees the new next_to_clean. |
| */ |
| smp_mb(); |
| |
| if (netif_queue_stopped(netdev) && |
| !(test_bit(__E1000_DOWN, &adapter->flags))) { |
| netif_wake_queue(netdev); |
| ++adapter->restart_queue; |
| } |
| } |
| |
| if (adapter->detect_tx_hung) { |
| /* Detect a transmit hang in hardware, this serializes the |
| * check with the clearing of time_stamp and movement of i |
| */ |
| adapter->detect_tx_hung = false; |
| if (tx_ring->buffer_info[eop].time_stamp && |
| time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + |
| (adapter->tx_timeout_factor * HZ)) && |
| !(er32(STATUS) & E1000_STATUS_TXOFF)) { |
| |
| /* detected Tx unit hang */ |
| e_err(drv, "Detected Tx Unit Hang\n" |
| " Tx Queue <%lu>\n" |
| " TDH <%x>\n" |
| " TDT <%x>\n" |
| " next_to_use <%x>\n" |
| " next_to_clean <%x>\n" |
| "buffer_info[next_to_clean]\n" |
| " time_stamp <%lx>\n" |
| " next_to_watch <%x>\n" |
| " jiffies <%lx>\n" |
| " next_to_watch.status <%x>\n", |
| (unsigned long)((tx_ring - adapter->tx_ring) / |
| sizeof(struct e1000_tx_ring)), |
| readl(hw->hw_addr + tx_ring->tdh), |
| readl(hw->hw_addr + tx_ring->tdt), |
| tx_ring->next_to_use, |
| tx_ring->next_to_clean, |
| tx_ring->buffer_info[eop].time_stamp, |
| eop, |
| jiffies, |
| eop_desc->upper.fields.status); |
| e1000_dump(adapter); |
| netif_stop_queue(netdev); |
| } |
| } |
| adapter->total_tx_bytes += total_tx_bytes; |
| adapter->total_tx_packets += total_tx_packets; |
| netdev->stats.tx_bytes += total_tx_bytes; |
| netdev->stats.tx_packets += total_tx_packets; |
| return count < tx_ring->count; |
| } |
| |
| /** |
| * e1000_rx_checksum - Receive Checksum Offload for 82543 |
| * @adapter: board private structure |
| * @status_err: receive descriptor status and error fields |
| * @csum: receive descriptor csum field |
| * @sk_buff: socket buffer with received data |
| **/ |
| static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
| u32 csum, struct sk_buff *skb) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u16 status = (u16)status_err; |
| u8 errors = (u8)(status_err >> 24); |
| |
| skb_checksum_none_assert(skb); |
| |
| /* 82543 or newer only */ |
| if (unlikely(hw->mac_type < e1000_82543)) return; |
| /* Ignore Checksum bit is set */ |
| if (unlikely(status & E1000_RXD_STAT_IXSM)) return; |
| /* TCP/UDP checksum error bit is set */ |
| if (unlikely(errors & E1000_RXD_ERR_TCPE)) { |
| /* let the stack verify checksum errors */ |
| adapter->hw_csum_err++; |
| return; |
| } |
| /* TCP/UDP Checksum has not been calculated */ |
| if (!(status & E1000_RXD_STAT_TCPCS)) |
| return; |
| |
| /* It must be a TCP or UDP packet with a valid checksum */ |
| if (likely(status & E1000_RXD_STAT_TCPCS)) { |
| /* TCP checksum is good */ |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| adapter->hw_csum_good++; |
| } |
| |
| /** |
| * e1000_consume_page - helper function |
| **/ |
| static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, |
| u16 length) |
| { |
| bi->page = NULL; |
| skb->len += length; |
| skb->data_len += length; |
| skb->truesize += PAGE_SIZE; |
| } |
| |
| /** |
| * e1000_receive_skb - helper function to handle rx indications |
| * @adapter: board private structure |
| * @status: descriptor status field as written by hardware |
| * @vlan: descriptor vlan field as written by hardware (no le/be conversion) |
| * @skb: pointer to sk_buff to be indicated to stack |
| */ |
| static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, |
| __le16 vlan, struct sk_buff *skb) |
| { |
| skb->protocol = eth_type_trans(skb, adapter->netdev); |
| |
| if (status & E1000_RXD_STAT_VP) { |
| u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; |
| |
| __vlan_hwaccel_put_tag(skb, vid); |
| } |
| napi_gro_receive(&adapter->napi, skb); |
| } |
| |
| /** |
| * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy |
| * @adapter: board private structure |
| * @rx_ring: ring to clean |
| * @work_done: amount of napi work completed this call |
| * @work_to_do: max amount of work allowed for this call to do |
| * |
| * the return value indicates whether actual cleaning was done, there |
| * is no guarantee that everything was cleaned |
| */ |
| static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int *work_done, int work_to_do) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_rx_desc *rx_desc, *next_rxd; |
| struct e1000_buffer *buffer_info, *next_buffer; |
| unsigned long irq_flags; |
| u32 length; |
| unsigned int i; |
| int cleaned_count = 0; |
| bool cleaned = false; |
| unsigned int total_rx_bytes=0, total_rx_packets=0; |
| |
| i = rx_ring->next_to_clean; |
| rx_desc = E1000_RX_DESC(*rx_ring, i); |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (rx_desc->status & E1000_RXD_STAT_DD) { |
| struct sk_buff *skb; |
| u8 status; |
| |
| if (*work_done >= work_to_do) |
| break; |
| (*work_done)++; |
| rmb(); /* read descriptor and rx_buffer_info after status DD */ |
| |
| status = rx_desc->status; |
| skb = buffer_info->skb; |
| buffer_info->skb = NULL; |
| |
| if (++i == rx_ring->count) i = 0; |
| next_rxd = E1000_RX_DESC(*rx_ring, i); |
| prefetch(next_rxd); |
| |
| next_buffer = &rx_ring->buffer_info[i]; |
| |
| cleaned = true; |
| cleaned_count++; |
| dma_unmap_page(&pdev->dev, buffer_info->dma, |
| buffer_info->length, DMA_FROM_DEVICE); |
| buffer_info->dma = 0; |
| |
| length = le16_to_cpu(rx_desc->length); |
| |
| /* errors is only valid for DD + EOP descriptors */ |
| if (unlikely((status & E1000_RXD_STAT_EOP) && |
| (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { |
| u8 *mapped; |
| u8 last_byte; |
| |
| mapped = page_address(buffer_info->page); |
| last_byte = *(mapped + length - 1); |
| if (TBI_ACCEPT(hw, status, rx_desc->errors, length, |
| last_byte)) { |
| spin_lock_irqsave(&adapter->stats_lock, |
| irq_flags); |
| e1000_tbi_adjust_stats(hw, &adapter->stats, |
| length, mapped); |
| spin_unlock_irqrestore(&adapter->stats_lock, |
| irq_flags); |
| length--; |
| } else { |
| if (netdev->features & NETIF_F_RXALL) |
| goto process_skb; |
| /* recycle both page and skb */ |
| buffer_info->skb = skb; |
| /* an error means any chain goes out the window |
| * too |
| */ |
| if (rx_ring->rx_skb_top) |
| dev_kfree_skb(rx_ring->rx_skb_top); |
| rx_ring->rx_skb_top = NULL; |
| goto next_desc; |
| } |
| } |
| |
| #define rxtop rx_ring->rx_skb_top |
| process_skb: |
| if (!(status & E1000_RXD_STAT_EOP)) { |
| /* this descriptor is only the beginning (or middle) */ |
| if (!rxtop) { |
| /* this is the beginning of a chain */ |
| rxtop = skb; |
| skb_fill_page_desc(rxtop, 0, buffer_info->page, |
| 0, length); |
| } else { |
| /* this is the middle of a chain */ |
| skb_fill_page_desc(rxtop, |
| skb_shinfo(rxtop)->nr_frags, |
| buffer_info->page, 0, length); |
| /* re-use the skb, only consumed the page */ |
| buffer_info->skb = skb; |
| } |
| e1000_consume_page(buffer_info, rxtop, length); |
| goto next_desc; |
| } else { |
| if (rxtop) { |
| /* end of the chain */ |
| skb_fill_page_desc(rxtop, |
| skb_shinfo(rxtop)->nr_frags, |
| buffer_info->page, 0, length); |
| /* re-use the current skb, we only consumed the |
| * page |
| */ |
| buffer_info->skb = skb; |
| skb = rxtop; |
| rxtop = NULL; |
| e1000_consume_page(buffer_info, skb, length); |
| } else { |
| /* no chain, got EOP, this buf is the packet |
| * copybreak to save the put_page/alloc_page |
| */ |
| if (length <= copybreak && |
| skb_tailroom(skb) >= length) { |
| u8 *vaddr; |
| vaddr = kmap_atomic(buffer_info->page); |
| memcpy(skb_tail_pointer(skb), vaddr, |
| length); |
| kunmap_atomic(vaddr); |
| /* re-use the page, so don't erase |
| * buffer_info->page |
| */ |
| skb_put(skb, length); |
| } else { |
| skb_fill_page_desc(skb, 0, |
| buffer_info->page, 0, |
| length); |
| e1000_consume_page(buffer_info, skb, |
| length); |
| } |
| } |
| } |
| |
| /* Receive Checksum Offload XXX recompute due to CRC strip? */ |
| e1000_rx_checksum(adapter, |
| (u32)(status) | |
| ((u32)(rx_desc->errors) << 24), |
| le16_to_cpu(rx_desc->csum), skb); |
| |
| total_rx_bytes += (skb->len - 4); /* don't count FCS */ |
| if (likely(!(netdev->features & NETIF_F_RXFCS))) |
| pskb_trim(skb, skb->len - 4); |
| total_rx_packets++; |
| |
| /* eth type trans needs skb->data to point to something */ |
| if (!pskb_may_pull(skb, ETH_HLEN)) { |
| e_err(drv, "pskb_may_pull failed.\n"); |
| dev_kfree_skb(skb); |
| goto next_desc; |
| } |
| |
| e1000_receive_skb(adapter, status, rx_desc->special, skb); |
| |
| next_desc: |
| rx_desc->status = 0; |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
| adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| /* use prefetched values */ |
| rx_desc = next_rxd; |
| buffer_info = next_buffer; |
| } |
| rx_ring->next_to_clean = i; |
| |
| cleaned_count = E1000_DESC_UNUSED(rx_ring); |
| if (cleaned_count) |
| adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
| |
| adapter->total_rx_packets += total_rx_packets; |
| adapter->total_rx_bytes += total_rx_bytes; |
| netdev->stats.rx_bytes += total_rx_bytes; |
| netdev->stats.rx_packets += total_rx_packets; |
| return cleaned; |
| } |
| |
| /* this should improve performance for small packets with large amounts |
| * of reassembly being done in the stack |
| */ |
| static void e1000_check_copybreak(struct net_device *netdev, |
| struct e1000_buffer *buffer_info, |
| u32 length, struct sk_buff **skb) |
| { |
| struct sk_buff *new_skb; |
| |
| if (length > copybreak) |
| return; |
| |
| new_skb = netdev_alloc_skb_ip_align(netdev, length); |
| if (!new_skb) |
| return; |
| |
| skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN, |
| (*skb)->data - NET_IP_ALIGN, |
| length + NET_IP_ALIGN); |
| /* save the skb in buffer_info as good */ |
| buffer_info->skb = *skb; |
| *skb = new_skb; |
| } |
| |
| /** |
| * e1000_clean_rx_irq - Send received data up the network stack; legacy |
| * @adapter: board private structure |
| * @rx_ring: ring to clean |
| * @work_done: amount of napi work completed this call |
| * @work_to_do: max amount of work allowed for this call to do |
| */ |
| static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int *work_done, int work_to_do) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_rx_desc *rx_desc, *next_rxd; |
| struct e1000_buffer *buffer_info, *next_buffer; |
| unsigned long flags; |
| u32 length; |
| unsigned int i; |
| int cleaned_count = 0; |
| bool cleaned = false; |
| unsigned int total_rx_bytes=0, total_rx_packets=0; |
| |
| i = rx_ring->next_to_clean; |
| rx_desc = E1000_RX_DESC(*rx_ring, i); |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (rx_desc->status & E1000_RXD_STAT_DD) { |
| struct sk_buff *skb; |
| u8 status; |
| |
| if (*work_done >= work_to_do) |
| break; |
| (*work_done)++; |
| rmb(); /* read descriptor and rx_buffer_info after status DD */ |
| |
| status = rx_desc->status; |
| skb = buffer_info->skb; |
| buffer_info->skb = NULL; |
| |
| prefetch(skb->data - NET_IP_ALIGN); |
| |
| if (++i == rx_ring->count) i = 0; |
| next_rxd = E1000_RX_DESC(*rx_ring, i); |
| prefetch(next_rxd); |
| |
| next_buffer = &rx_ring->buffer_info[i]; |
| |
| cleaned = true; |
| cleaned_count++; |
| dma_unmap_single(&pdev->dev, buffer_info->dma, |
| buffer_info->length, DMA_FROM_DEVICE); |
| buffer_info->dma = 0; |
| |
| length = le16_to_cpu(rx_desc->length); |
| /* !EOP means multiple descriptors were used to store a single |
| * packet, if thats the case we need to toss it. In fact, we |
| * to toss every packet with the EOP bit clear and the next |
| * frame that _does_ have the EOP bit set, as it is by |
| * definition only a frame fragment |
| */ |
| if (unlikely(!(status & E1000_RXD_STAT_EOP))) |
| adapter->discarding = true; |
| |
| if (adapter->discarding) { |
| /* All receives must fit into a single buffer */ |
| e_dbg("Receive packet consumed multiple buffers\n"); |
| /* recycle */ |
| buffer_info->skb = skb; |
| if (status & E1000_RXD_STAT_EOP) |
| adapter->discarding = false; |
| goto next_desc; |
| } |
| |
| if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { |
| u8 last_byte = *(skb->data + length - 1); |
| if (TBI_ACCEPT(hw, status, rx_desc->errors, length, |
| last_byte)) { |
| spin_lock_irqsave(&adapter->stats_lock, flags); |
| e1000_tbi_adjust_stats(hw, &adapter->stats, |
| length, skb->data); |
| spin_unlock_irqrestore(&adapter->stats_lock, |
| flags); |
| length--; |
| } else { |
| if (netdev->features & NETIF_F_RXALL) |
| goto process_skb; |
| /* recycle */ |
| buffer_info->skb = skb; |
| goto next_desc; |
| } |
| } |
| |
| process_skb: |
| total_rx_bytes += (length - 4); /* don't count FCS */ |
| total_rx_packets++; |
| |
| if (likely(!(netdev->features & NETIF_F_RXFCS))) |
| /* adjust length to remove Ethernet CRC, this must be |
| * done after the TBI_ACCEPT workaround above |
| */ |
| length -= 4; |
| |
| e1000_check_copybreak(netdev, buffer_info, length, &skb); |
| |
| skb_put(skb, length); |
| |
| /* Receive Checksum Offload */ |
| e1000_rx_checksum(adapter, |
| (u32)(status) | |
| ((u32)(rx_desc->errors) << 24), |
| le16_to_cpu(rx_desc->csum), skb); |
| |
| e1000_receive_skb(adapter, status, rx_desc->special, skb); |
| |
| next_desc: |
| rx_desc->status = 0; |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
| adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| /* use prefetched values */ |
| rx_desc = next_rxd; |
| buffer_info = next_buffer; |
| } |
| rx_ring->next_to_clean = i; |
| |
| cleaned_count = E1000_DESC_UNUSED(rx_ring); |
| if (cleaned_count) |
| adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
| |
| adapter->total_rx_packets += total_rx_packets; |
| adapter->total_rx_bytes += total_rx_bytes; |
| netdev->stats.rx_bytes += total_rx_bytes; |
| netdev->stats.rx_packets += total_rx_packets; |
| return cleaned; |
| } |
| |
| /** |
| * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers |
| * @adapter: address of board private structure |
| * @rx_ring: pointer to receive ring structure |
| * @cleaned_count: number of buffers to allocate this pass |
| **/ |
| static void |
| e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, int cleaned_count) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_rx_desc *rx_desc; |
| struct e1000_buffer *buffer_info; |
| struct sk_buff *skb; |
| unsigned int i; |
| unsigned int bufsz = 256 - 16 /*for skb_reserve */ ; |
| |
| i = rx_ring->next_to_use; |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (cleaned_count--) { |
| skb = buffer_info->skb; |
| if (skb) { |
| skb_trim(skb, 0); |
| goto check_page; |
| } |
| |
| skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
| if (unlikely(!skb)) { |
| /* Better luck next round */ |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| |
| buffer_info->skb = skb; |
| buffer_info->length = adapter->rx_buffer_len; |
| check_page: |
| /* allocate a new page if necessary */ |
| if (!buffer_info->page) { |
| buffer_info->page = alloc_page(GFP_ATOMIC); |
| if (unlikely(!buffer_info->page)) { |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| } |
| |
| if (!buffer_info->dma) { |
| buffer_info->dma = dma_map_page(&pdev->dev, |
| buffer_info->page, 0, |
| buffer_info->length, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
| put_page(buffer_info->page); |
| dev_kfree_skb(skb); |
| buffer_info->page = NULL; |
| buffer_info->skb = NULL; |
| buffer_info->dma = 0; |
| adapter->alloc_rx_buff_failed++; |
| break; /* while !buffer_info->skb */ |
| } |
| } |
| |
| rx_desc = E1000_RX_DESC(*rx_ring, i); |
| rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
| |
| if (unlikely(++i == rx_ring->count)) |
| i = 0; |
| buffer_info = &rx_ring->buffer_info[i]; |
| } |
| |
| if (likely(rx_ring->next_to_use != i)) { |
| rx_ring->next_to_use = i; |
| if (unlikely(i-- == 0)) |
| i = (rx_ring->count - 1); |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| writel(i, adapter->hw.hw_addr + rx_ring->rdt); |
| } |
| } |
| |
| /** |
| * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
| * @adapter: address of board private structure |
| **/ |
| static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int cleaned_count) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_rx_desc *rx_desc; |
| struct e1000_buffer *buffer_info; |
| struct sk_buff *skb; |
| unsigned int i; |
| unsigned int bufsz = adapter->rx_buffer_len; |
| |
| i = rx_ring->next_to_use; |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (cleaned_count--) { |
| skb = buffer_info->skb; |
| if (skb) { |
| skb_trim(skb, 0); |
| goto map_skb; |
| } |
| |
| skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
| if (unlikely(!skb)) { |
| /* Better luck next round */ |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| |
| /* Fix for errata 23, can't cross 64kB boundary */ |
| if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
| struct sk_buff *oldskb = skb; |
| e_err(rx_err, "skb align check failed: %u bytes at " |
| "%p\n", bufsz, skb->data); |
| /* Try again, without freeing the previous */ |
| skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
| /* Failed allocation, critical failure */ |
| if (!skb) { |
| dev_kfree_skb(oldskb); |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| |
| if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
| /* give up */ |
| dev_kfree_skb(skb); |
| dev_kfree_skb(oldskb); |
| adapter->alloc_rx_buff_failed++; |
| break; /* while !buffer_info->skb */ |
| } |
| |
| /* Use new allocation */ |
| dev_kfree_skb(oldskb); |
| } |
| buffer_info->skb = skb; |
| buffer_info->length = adapter->rx_buffer_len; |
| map_skb: |
| buffer_info->dma = dma_map_single(&pdev->dev, |
| skb->data, |
| buffer_info->length, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
| dev_kfree_skb(skb); |
| buffer_info->skb = NULL; |
| buffer_info->dma = 0; |
| adapter->alloc_rx_buff_failed++; |
| break; /* while !buffer_info->skb */ |
| } |
| |
| /* XXX if it was allocated cleanly it will never map to a |
| * boundary crossing |
| */ |
| |
| /* Fix for errata 23, can't cross 64kB boundary */ |
| if (!e1000_check_64k_bound(adapter, |
| (void *)(unsigned long)buffer_info->dma, |
| adapter->rx_buffer_len)) { |
| e_err(rx_err, "dma align check failed: %u bytes at " |
| "%p\n", adapter->rx_buffer_len, |
| (void *)(unsigned long)buffer_info->dma); |
| dev_kfree_skb(skb); |
| buffer_info->skb = NULL; |
| |
| dma_unmap_single(&pdev->dev, buffer_info->dma, |
| adapter->rx_buffer_len, |
| DMA_FROM_DEVICE); |
| buffer_info->dma = 0; |
| |
| adapter->alloc_rx_buff_failed++; |
| break; /* while !buffer_info->skb */ |
| } |
| rx_desc = E1000_RX_DESC(*rx_ring, i); |
| rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
| |
| if (unlikely(++i == rx_ring->count)) |
| i = 0; |
| buffer_info = &rx_ring->buffer_info[i]; |
| } |
| |
| if (likely(rx_ring->next_to_use != i)) { |
| rx_ring->next_to_use = i; |
| if (unlikely(i-- == 0)) |
| i = (rx_ring->count - 1); |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| writel(i, hw->hw_addr + rx_ring->rdt); |
| } |
| } |
| |
| /** |
| * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. |
| * @adapter: |
| **/ |
| static void e1000_smartspeed(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u16 phy_status; |
| u16 phy_ctrl; |
| |
| if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || |
| !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) |
| return; |
| |
| if (adapter->smartspeed == 0) { |
| /* If Master/Slave config fault is asserted twice, |
| * we assume back-to-back |
| */ |
| e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
| if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
| e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
| if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
| e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
| if (phy_ctrl & CR_1000T_MS_ENABLE) { |
| phy_ctrl &= ~CR_1000T_MS_ENABLE; |
| e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
| phy_ctrl); |
| adapter->smartspeed++; |
| if (!e1000_phy_setup_autoneg(hw) && |
| !e1000_read_phy_reg(hw, PHY_CTRL, |
| &phy_ctrl)) { |
| phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
| MII_CR_RESTART_AUTO_NEG); |
| e1000_write_phy_reg(hw, PHY_CTRL, |
| phy_ctrl); |
| } |
| } |
| return; |
| } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { |
| /* If still no link, perhaps using 2/3 pair cable */ |
| e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
| phy_ctrl |= CR_1000T_MS_ENABLE; |
| e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); |
| if (!e1000_phy_setup_autoneg(hw) && |
| !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { |
| phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
| MII_CR_RESTART_AUTO_NEG); |
| e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); |
| } |
| } |
| /* Restart process after E1000_SMARTSPEED_MAX iterations */ |
| if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) |
| adapter->smartspeed = 0; |
| } |
| |
| /** |
| * e1000_ioctl - |
| * @netdev: |
| * @ifreq: |
| * @cmd: |
| **/ |
| static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| case SIOCGMIIREG: |
| case SIOCSMIIREG: |
| return e1000_mii_ioctl(netdev, ifr, cmd); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| /** |
| * e1000_mii_ioctl - |
| * @netdev: |
| * @ifreq: |
| * @cmd: |
| **/ |
| static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
| int cmd) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct mii_ioctl_data *data = if_mii(ifr); |
| int retval; |
| u16 mii_reg; |
| unsigned long flags; |
| |
| if (hw->media_type != e1000_media_type_copper) |
| return -EOPNOTSUPP; |
| |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| data->phy_id = hw->phy_addr; |
| break; |
| case SIOCGMIIREG: |
| spin_lock_irqsave(&adapter->stats_lock, flags); |
| if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, |
| &data->val_out)) { |
| spin_unlock_irqrestore(&adapter->stats_lock, flags); |
| return -EIO; |
| } |
| spin_unlock_irqrestore(&adapter->stats_lock, flags); |
| break; |
| case SIOCSMIIREG: |
| if (data->reg_num & ~(0x1F)) |
| return -EFAULT; |
| mii_reg = data->val_in; |
| spin_lock_irqsave(&adapter->stats_lock, flags); |
| if (e1000_write_phy_reg(hw, data->reg_num, |
| mii_reg)) { |
| spin_unlock_irqrestore(&adapter->stats_lock, flags); |
| return -EIO; |
| } |
| spin_unlock_irqrestore(&adapter->stats_lock, flags); |
| if (hw->media_type == e1000_media_type_copper) { |
| switch (data->reg_num) { |
| case PHY_CTRL: |
| if (mii_reg & MII_CR_POWER_DOWN) |
| break; |
| if (mii_reg & MII_CR_AUTO_NEG_EN) { |
| hw->autoneg = 1; |
| hw->autoneg_advertised = 0x2F; |
| } else { |
| u32 speed; |
| if (mii_reg & 0x40) |
| speed = SPEED_1000; |
| else if (mii_reg & 0x2000) |
| speed = SPEED_100; |
| else |
| speed = SPEED_10; |
| retval = e1000_set_spd_dplx( |
| adapter, speed, |
| ((mii_reg & 0x100) |
| ? DUPLEX_FULL : |
| DUPLEX_HALF)); |
| if (retval) |
| return retval; |
| } |
| if (netif_running(adapter->netdev)) |
| e1000_reinit_locked(adapter); |
| else |
| e1000_reset(adapter); |
| break; |
| case M88E1000_PHY_SPEC_CTRL: |
| case M88E1000_EXT_PHY_SPEC_CTRL: |
| if (e1000_phy_reset(hw)) |
| return -EIO; |
| break; |
| } |
| } else { |
| switch (data->reg_num) { |
| case PHY_CTRL: |
| if (mii_reg & MII_CR_POWER_DOWN) |
| break; |
| if (netif_running(adapter->netdev)) |
| e1000_reinit_locked(adapter); |
| else |
| e1000_reset(adapter); |
| break; |
| } |
| } |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| void e1000_pci_set_mwi(struct e1000_hw *hw) |
| { |
| struct e1000_adapter *adapter = hw->back; |
| int ret_val = pci_set_mwi(adapter->pdev); |
| |
| if (ret_val) |
| e_err(probe, "Error in setting MWI\n"); |
| } |
| |
| void e1000_pci_clear_mwi(struct e1000_hw *hw) |
| { |
| struct e1000_adapter *adapter = hw->back; |
| |
| pci_clear_mwi(adapter->pdev); |
| } |
| |
| int e1000_pcix_get_mmrbc(struct e1000_hw *hw) |
| { |
| struct e1000_adapter *adapter = hw->back; |
| return pcix_get_mmrbc(adapter->pdev); |
| } |
| |
| void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) |
| { |
| struct e1000_adapter *adapter = hw->back; |
| pcix_set_mmrbc(adapter->pdev, mmrbc); |
| } |
| |
| void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) |
| { |
| outl(value, port); |
| } |
| |
| static bool e1000_vlan_used(struct e1000_adapter *adapter) |
| { |
| u16 vid; |
| |
| for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) |
| return true; |
| return false; |
| } |
| |
| static void __e1000_vlan_mode(struct e1000_adapter *adapter, |
| netdev_features_t features) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl; |
| |
| ctrl = er32(CTRL); |
| if (features & NETIF_F_HW_VLAN_RX) { |
| /* enable VLAN tag insert/strip */ |
| ctrl |= E1000_CTRL_VME; |
| } else { |
| /* disable VLAN tag insert/strip */ |
| ctrl &= ~E1000_CTRL_VME; |
| } |
| ew32(CTRL, ctrl); |
| } |
| static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, |
| bool filter_on) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl; |
| |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| e1000_irq_disable(adapter); |
| |
| __e1000_vlan_mode(adapter, adapter->netdev->features); |
| if (filter_on) { |
| /* enable VLAN receive filtering */ |
| rctl = er32(RCTL); |
| rctl &= ~E1000_RCTL_CFIEN; |
| if (!(adapter->netdev->flags & IFF_PROMISC)) |
| rctl |= E1000_RCTL_VFE; |
| ew32(RCTL, rctl); |
| e1000_update_mng_vlan(adapter); |
| } else { |
| /* disable VLAN receive filtering */ |
| rctl = er32(RCTL); |
| rctl &= ~E1000_RCTL_VFE; |
| ew32(RCTL, rctl); |
| } |
| |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| e1000_irq_enable(adapter); |
| } |
| |
| static void e1000_vlan_mode(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| e1000_irq_disable(adapter); |
| |
| __e1000_vlan_mode(adapter, features); |
| |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| e1000_irq_enable(adapter); |
| } |
| |
| static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vfta, index; |
| |
| if ((hw->mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
| (vid == adapter->mng_vlan_id)) |
| return 0; |
| |
| if (!e1000_vlan_used(adapter)) |
| e1000_vlan_filter_on_off(adapter, true); |
| |
| /* add VID to filter table */ |
| index = (vid >> 5) & 0x7F; |
| vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
| vfta |= (1 << (vid & 0x1F)); |
| e1000_write_vfta(hw, index, vfta); |
| |
| set_bit(vid, adapter->active_vlans); |
| |
| return 0; |
| } |
| |
| static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vfta, index; |
| |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| e1000_irq_disable(adapter); |
| if (!test_bit(__E1000_DOWN, &adapter->flags)) |
| e1000_irq_enable(adapter); |
| |
| /* remove VID from filter table */ |
| index = (vid >> 5) & 0x7F; |
| vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
| vfta &= ~(1 << (vid & 0x1F)); |
| e1000_write_vfta(hw, index, vfta); |
| |
| clear_bit(vid, adapter->active_vlans); |
| |
| if (!e1000_vlan_used(adapter)) |
| e1000_vlan_filter_on_off(adapter, false); |
| |
| return 0; |
| } |
| |
| static void e1000_restore_vlan(struct e1000_adapter *adapter) |
| { |
| u16 vid; |
| |
| if (!e1000_vlan_used(adapter)) |
| return; |
| |
| e1000_vlan_filter_on_off(adapter, true); |
| for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) |
| e1000_vlan_rx_add_vid(adapter->netdev, vid); |
| } |
| |
| int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| hw->autoneg = 0; |
| |
| /* Make sure dplx is at most 1 bit and lsb of speed is not set |
| * for the switch() below to work |
| */ |
| if ((spd & 1) || (dplx & ~1)) |
| goto err_inval; |
| |
| /* Fiber NICs only allow 1000 gbps Full duplex */ |
| if ((hw->media_type == e1000_media_type_fiber) && |
| spd != SPEED_1000 && |
| dplx != DUPLEX_FULL) |
| goto err_inval; |
| |
| switch (spd + dplx) { |
| case SPEED_10 + DUPLEX_HALF: |
| hw->forced_speed_duplex = e1000_10_half; |
| break; |
| case SPEED_10 + DUPLEX_FULL: |
| hw->forced_speed_duplex = e1000_10_full; |
| break; |
| case SPEED_100 + DUPLEX_HALF: |
| hw->forced_speed_duplex = e1000_100_half; |
| break; |
| case SPEED_100 + DUPLEX_FULL: |
| hw->forced_speed_duplex = e1000_100_full; |
| break; |
| case SPEED_1000 + DUPLEX_FULL: |
| hw->autoneg = 1; |
| hw->autoneg_advertised = ADVERTISE_1000_FULL; |
| break; |
| case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
| default: |
| goto err_inval; |
| } |
| |
| /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ |
| hw->mdix = AUTO_ALL_MODES; |
| |
| return 0; |
| |
| err_inval: |
| e_err(probe, "Unsupported Speed/Duplex configuration\n"); |
| return -EINVAL; |
| } |
| |
| static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl, ctrl_ext, rctl, status; |
| u32 wufc = adapter->wol; |
| #ifdef CONFIG_PM |
| int retval = 0; |
| #endif |
| |
| netif_device_detach(netdev); |
| |
| if (netif_running(netdev)) { |
| WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
| e1000_down(adapter); |
| } |
| |
| #ifdef CONFIG_PM |
| retval = pci_save_state(pdev); |
| if (retval) |
| return retval; |
| #endif |
| |
| status = er32(STATUS); |
| if (status & E1000_STATUS_LU) |
| wufc &= ~E1000_WUFC_LNKC; |
| |
| if (wufc) { |
| e1000_setup_rctl(adapter); |
| e1000_set_rx_mode(netdev); |
| |
| rctl = er32(RCTL); |
| |
| /* turn on all-multi mode if wake on multicast is enabled */ |
| if (wufc & E1000_WUFC_MC) |
| rctl |= E1000_RCTL_MPE; |
| |
| /* enable receives in the hardware */ |
| ew32(RCTL, rctl | E1000_RCTL_EN); |
| |
| if (hw->mac_type >= e1000_82540) { |
| ctrl = er32(CTRL); |
| /* advertise wake from D3Cold */ |
| #define E1000_CTRL_ADVD3WUC 0x00100000 |
| /* phy power management enable */ |
| #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
| ctrl |= E1000_CTRL_ADVD3WUC | |
| E1000_CTRL_EN_PHY_PWR_MGMT; |
| ew32(CTRL, ctrl); |
| } |
| |
| if (hw->media_type == e1000_media_type_fiber || |
| hw->media_type == e1000_media_type_internal_serdes) { |
| /* keep the laser running in D3 */ |
| ctrl_ext = er32(CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; |
| ew32(CTRL_EXT, ctrl_ext); |
| } |
| |
| ew32(WUC, E1000_WUC_PME_EN); |
| ew32(WUFC, wufc); |
| } else { |
| ew32(WUC, 0); |
| ew32(WUFC, 0); |
| } |
| |
| e1000_release_manageability(adapter); |
| |
| *enable_wake = !!wufc; |
| |
| /* make sure adapter isn't asleep if manageability is enabled */ |
| if (adapter->en_mng_pt) |
| *enable_wake = true; |
| |
| if (netif_running(netdev)) |
| e1000_free_irq(adapter); |
| |
| pci_disable_device(pdev); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| int retval; |
| bool wake; |
| |
| retval = __e1000_shutdown(pdev, &wake); |
| if (retval) |
| return retval; |
| |
| if (wake) { |
| pci_prepare_to_sleep(pdev); |
| } else { |
| pci_wake_from_d3(pdev, false); |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| |
| return 0; |
| } |
| |
| static int e1000_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 err; |
| |
| pci_set_power_state(pdev, PCI_D0); |
| pci_restore_state(pdev); |
| pci_save_state(pdev); |
| |
| if (adapter->need_ioport) |
| err = pci_enable_device(pdev); |
| else |
| err = pci_enable_device_mem(pdev); |
| if (err) { |
| pr_err("Cannot enable PCI device from suspend\n"); |
| return err; |
| } |
| pci_set_master(pdev); |
| |
| pci_enable_wake(pdev, PCI_D3hot, 0); |
| pci_enable_wake(pdev, PCI_D3cold, 0); |
| |
| if (netif_running(netdev)) { |
| err = e1000_request_irq(adapter); |
| if (err) |
| return err; |
| } |
| |
| e1000_power_up_phy(adapter); |
| e1000_reset(adapter); |
| ew32(WUS, ~0); |
| |
| e1000_init_manageability(adapter); |
| |
| if (netif_running(netdev)) |
| e1000_up(adapter); |
| |
| netif_device_attach(netdev); |
| |
| return 0; |
| } |
| #endif |
| |
| static void e1000_shutdown(struct pci_dev *pdev) |
| { |
| bool wake; |
| |
| __e1000_shutdown(pdev, &wake); |
| |
| if (system_state == SYSTEM_POWER_OFF) { |
| pci_wake_from_d3(pdev, wake); |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* Polling 'interrupt' - used by things like netconsole to send skbs |
| * without having to re-enable interrupts. It's not called while |
| * the interrupt routine is executing. |
| */ |
| static void e1000_netpoll(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| disable_irq(adapter->pdev->irq); |
| e1000_intr(adapter->pdev->irq, netdev); |
| enable_irq(adapter->pdev->irq); |
| } |
| #endif |
| |
| /** |
| * e1000_io_error_detected - called when PCI error is detected |
| * @pdev: Pointer to PCI device |
| * @state: The current pci connection state |
| * |
| * This function is called after a PCI bus error affecting |
| * this device has been detected. |
| */ |
| static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| netif_device_detach(netdev); |
| |
| if (state == pci_channel_io_perm_failure) |
| return PCI_ERS_RESULT_DISCONNECT; |
| |
| if (netif_running(netdev)) |
| e1000_down(adapter); |
| pci_disable_device(pdev); |
| |
| /* Request a slot slot reset. */ |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * e1000_io_slot_reset - called after the pci bus has been reset. |
| * @pdev: Pointer to PCI device |
| * |
| * Restart the card from scratch, as if from a cold-boot. Implementation |
| * resembles the first-half of the e1000_resume routine. |
| */ |
| static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int err; |
| |
| if (adapter->need_ioport) |
| err = pci_enable_device(pdev); |
| else |
| err = pci_enable_device_mem(pdev); |
| if (err) { |
| pr_err("Cannot re-enable PCI device after reset.\n"); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| pci_set_master(pdev); |
| |
| pci_enable_wake(pdev, PCI_D3hot, 0); |
| pci_enable_wake(pdev, PCI_D3cold, 0); |
| |
| e1000_reset(adapter); |
| ew32(WUS, ~0); |
| |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| /** |
| * e1000_io_resume - called when traffic can start flowing again. |
| * @pdev: Pointer to PCI device |
| * |
| * This callback is called when the error recovery driver tells us that |
| * its OK to resume normal operation. Implementation resembles the |
| * second-half of the e1000_resume routine. |
| */ |
| static void e1000_io_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| e1000_init_manageability(adapter); |
| |
| if (netif_running(netdev)) { |
| if (e1000_up(adapter)) { |
| pr_info("can't bring device back up after reset\n"); |
| return; |
| } |
| } |
| |
| netif_device_attach(netdev); |
| } |
| |
| /* e1000_main.c */ |