| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2004-2007 Cavium Networks |
| * Copyright (C) 2008, 2009 Wind River Systems |
| * written by Ralf Baechle <ralf@linux-mips.org> |
| */ |
| #include <linux/compiler.h> |
| #include <linux/vmalloc.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/console.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/serial.h> |
| #include <linux/smp.h> |
| #include <linux/types.h> |
| #include <linux/string.h> /* for memset */ |
| #include <linux/tty.h> |
| #include <linux/time.h> |
| #include <linux/platform_device.h> |
| #include <linux/serial_core.h> |
| #include <linux/serial_8250.h> |
| #include <linux/of_fdt.h> |
| #include <linux/libfdt.h> |
| #include <linux/kexec.h> |
| |
| #include <asm/processor.h> |
| #include <asm/reboot.h> |
| #include <asm/smp-ops.h> |
| #include <asm/irq_cpu.h> |
| #include <asm/mipsregs.h> |
| #include <asm/bootinfo.h> |
| #include <asm/sections.h> |
| #include <asm/time.h> |
| |
| #include <asm/octeon/octeon.h> |
| #include <asm/octeon/pci-octeon.h> |
| #include <asm/octeon/cvmx-mio-defs.h> |
| |
| extern struct plat_smp_ops octeon_smp_ops; |
| |
| #ifdef CONFIG_PCI |
| extern void pci_console_init(const char *arg); |
| #endif |
| |
| static unsigned long long MAX_MEMORY = 512ull << 20; |
| |
| struct octeon_boot_descriptor *octeon_boot_desc_ptr; |
| |
| struct cvmx_bootinfo *octeon_bootinfo; |
| EXPORT_SYMBOL(octeon_bootinfo); |
| |
| static unsigned long long RESERVE_LOW_MEM = 0ull; |
| #ifdef CONFIG_KEXEC |
| #ifdef CONFIG_SMP |
| /* |
| * Wait for relocation code is prepared and send |
| * secondary CPUs to spin until kernel is relocated. |
| */ |
| static void octeon_kexec_smp_down(void *ignored) |
| { |
| int cpu = smp_processor_id(); |
| |
| local_irq_disable(); |
| set_cpu_online(cpu, false); |
| while (!atomic_read(&kexec_ready_to_reboot)) |
| cpu_relax(); |
| |
| asm volatile ( |
| " sync \n" |
| " synci ($0) \n"); |
| |
| relocated_kexec_smp_wait(NULL); |
| } |
| #endif |
| |
| #define OCTEON_DDR0_BASE (0x0ULL) |
| #define OCTEON_DDR0_SIZE (0x010000000ULL) |
| #define OCTEON_DDR1_BASE (0x410000000ULL) |
| #define OCTEON_DDR1_SIZE (0x010000000ULL) |
| #define OCTEON_DDR2_BASE (0x020000000ULL) |
| #define OCTEON_DDR2_SIZE (0x3e0000000ULL) |
| #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL) |
| |
| static struct kimage *kimage_ptr; |
| |
| static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes) |
| { |
| int64_t addr; |
| struct cvmx_bootmem_desc *bootmem_desc; |
| |
| bootmem_desc = cvmx_bootmem_get_desc(); |
| |
| if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) { |
| mem_size = OCTEON_MAX_PHY_MEM_SIZE; |
| pr_err("Error: requested memory too large," |
| "truncating to maximum size\n"); |
| } |
| |
| bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER; |
| bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER; |
| |
| addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes); |
| bootmem_desc->head_addr = 0; |
| |
| if (mem_size <= OCTEON_DDR0_SIZE) { |
| __cvmx_bootmem_phy_free(addr, |
| mem_size - RESERVE_LOW_MEM - |
| low_reserved_bytes, 0); |
| return; |
| } |
| |
| __cvmx_bootmem_phy_free(addr, |
| OCTEON_DDR0_SIZE - RESERVE_LOW_MEM - |
| low_reserved_bytes, 0); |
| |
| mem_size -= OCTEON_DDR0_SIZE; |
| |
| if (mem_size > OCTEON_DDR1_SIZE) { |
| __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0); |
| __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, |
| mem_size - OCTEON_DDR1_SIZE, 0); |
| } else |
| __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0); |
| } |
| |
| static int octeon_kexec_prepare(struct kimage *image) |
| { |
| int i; |
| char *bootloader = "kexec"; |
| |
| octeon_boot_desc_ptr->argc = 0; |
| for (i = 0; i < image->nr_segments; i++) { |
| if (!strncmp(bootloader, (char *)image->segment[i].buf, |
| strlen(bootloader))) { |
| /* |
| * convert command line string to array |
| * of parameters (as bootloader does). |
| */ |
| int argc = 0, offt; |
| char *str = (char *)image->segment[i].buf; |
| char *ptr = strchr(str, ' '); |
| while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) { |
| *ptr = '\0'; |
| if (ptr[1] != ' ') { |
| offt = (int)(ptr - str + 1); |
| octeon_boot_desc_ptr->argv[argc] = |
| image->segment[i].mem + offt; |
| argc++; |
| } |
| ptr = strchr(ptr + 1, ' '); |
| } |
| octeon_boot_desc_ptr->argc = argc; |
| break; |
| } |
| } |
| |
| /* |
| * Information about segments will be needed during pre-boot memory |
| * initialization. |
| */ |
| kimage_ptr = image; |
| return 0; |
| } |
| |
| static void octeon_generic_shutdown(void) |
| { |
| int i; |
| #ifdef CONFIG_SMP |
| int cpu; |
| #endif |
| struct cvmx_bootmem_desc *bootmem_desc; |
| void *named_block_array_ptr; |
| |
| bootmem_desc = cvmx_bootmem_get_desc(); |
| named_block_array_ptr = |
| cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr); |
| |
| #ifdef CONFIG_SMP |
| /* disable watchdogs */ |
| for_each_online_cpu(cpu) |
| cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); |
| #else |
| cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); |
| #endif |
| if (kimage_ptr != kexec_crash_image) { |
| memset(named_block_array_ptr, |
| 0x0, |
| CVMX_BOOTMEM_NUM_NAMED_BLOCKS * |
| sizeof(struct cvmx_bootmem_named_block_desc)); |
| /* |
| * Mark all memory (except low 0x100000 bytes) as free. |
| * It is the same thing that bootloader does. |
| */ |
| kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL, |
| 0x100000); |
| /* |
| * Allocate all segments to avoid their corruption during boot. |
| */ |
| for (i = 0; i < kimage_ptr->nr_segments; i++) |
| cvmx_bootmem_alloc_address( |
| kimage_ptr->segment[i].memsz + 2*PAGE_SIZE, |
| kimage_ptr->segment[i].mem - PAGE_SIZE, |
| PAGE_SIZE); |
| } else { |
| /* |
| * Do not mark all memory as free. Free only named sections |
| * leaving the rest of memory unchanged. |
| */ |
| struct cvmx_bootmem_named_block_desc *ptr = |
| (struct cvmx_bootmem_named_block_desc *) |
| named_block_array_ptr; |
| |
| for (i = 0; i < bootmem_desc->named_block_num_blocks; i++) |
| if (ptr[i].size) |
| cvmx_bootmem_free_named(ptr[i].name); |
| } |
| kexec_args[2] = 1UL; /* running on octeon_main_processor */ |
| kexec_args[3] = (unsigned long)octeon_boot_desc_ptr; |
| #ifdef CONFIG_SMP |
| secondary_kexec_args[2] = 0UL; /* running on secondary cpu */ |
| secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr; |
| #endif |
| } |
| |
| static void octeon_shutdown(void) |
| { |
| octeon_generic_shutdown(); |
| #ifdef CONFIG_SMP |
| smp_call_function(octeon_kexec_smp_down, NULL, 0); |
| smp_wmb(); |
| while (num_online_cpus() > 1) { |
| cpu_relax(); |
| mdelay(1); |
| } |
| #endif |
| } |
| |
| static void octeon_crash_shutdown(struct pt_regs *regs) |
| { |
| octeon_generic_shutdown(); |
| default_machine_crash_shutdown(regs); |
| } |
| |
| #endif /* CONFIG_KEXEC */ |
| |
| #ifdef CONFIG_CAVIUM_RESERVE32 |
| uint64_t octeon_reserve32_memory; |
| EXPORT_SYMBOL(octeon_reserve32_memory); |
| #endif |
| |
| #ifdef CONFIG_KEXEC |
| /* crashkernel cmdline parameter is parsed _after_ memory setup |
| * we also parse it here (workaround for EHB5200) */ |
| static uint64_t crashk_size, crashk_base; |
| #endif |
| |
| static int octeon_uart; |
| |
| extern asmlinkage void handle_int(void); |
| |
| /** |
| * Return non zero if we are currently running in the Octeon simulator |
| * |
| * Returns |
| */ |
| int octeon_is_simulation(void) |
| { |
| return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM; |
| } |
| EXPORT_SYMBOL(octeon_is_simulation); |
| |
| /** |
| * Return true if Octeon is in PCI Host mode. This means |
| * Linux can control the PCI bus. |
| * |
| * Returns Non zero if Octeon in host mode. |
| */ |
| int octeon_is_pci_host(void) |
| { |
| #ifdef CONFIG_PCI |
| return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /** |
| * Get the clock rate of Octeon |
| * |
| * Returns Clock rate in HZ |
| */ |
| uint64_t octeon_get_clock_rate(void) |
| { |
| struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get(); |
| |
| return sysinfo->cpu_clock_hz; |
| } |
| EXPORT_SYMBOL(octeon_get_clock_rate); |
| |
| static u64 octeon_io_clock_rate; |
| |
| u64 octeon_get_io_clock_rate(void) |
| { |
| return octeon_io_clock_rate; |
| } |
| EXPORT_SYMBOL(octeon_get_io_clock_rate); |
| |
| |
| /** |
| * Write to the LCD display connected to the bootbus. This display |
| * exists on most Cavium evaluation boards. If it doesn't exist, then |
| * this function doesn't do anything. |
| * |
| * @s: String to write |
| */ |
| void octeon_write_lcd(const char *s) |
| { |
| if (octeon_bootinfo->led_display_base_addr) { |
| void __iomem *lcd_address = |
| ioremap_nocache(octeon_bootinfo->led_display_base_addr, |
| 8); |
| int i; |
| for (i = 0; i < 8; i++, s++) { |
| if (*s) |
| iowrite8(*s, lcd_address + i); |
| else |
| iowrite8(' ', lcd_address + i); |
| } |
| iounmap(lcd_address); |
| } |
| } |
| |
| /** |
| * Return the console uart passed by the bootloader |
| * |
| * Returns uart (0 or 1) |
| */ |
| int octeon_get_boot_uart(void) |
| { |
| int uart; |
| #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL |
| uart = 1; |
| #else |
| uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ? |
| 1 : 0; |
| #endif |
| return uart; |
| } |
| |
| /** |
| * Get the coremask Linux was booted on. |
| * |
| * Returns Core mask |
| */ |
| int octeon_get_boot_coremask(void) |
| { |
| return octeon_boot_desc_ptr->core_mask; |
| } |
| |
| /** |
| * Check the hardware BIST results for a CPU |
| */ |
| void octeon_check_cpu_bist(void) |
| { |
| const int coreid = cvmx_get_core_num(); |
| unsigned long long mask; |
| unsigned long long bist_val; |
| |
| /* Check BIST results for COP0 registers */ |
| mask = 0x1f00000000ull; |
| bist_val = read_octeon_c0_icacheerr(); |
| if (bist_val & mask) |
| pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n", |
| coreid, bist_val); |
| |
| bist_val = read_octeon_c0_dcacheerr(); |
| if (bist_val & 1) |
| pr_err("Core%d L1 Dcache parity error: " |
| "CacheErr(dcache) = 0x%llx\n", |
| coreid, bist_val); |
| |
| mask = 0xfc00000000000000ull; |
| bist_val = read_c0_cvmmemctl(); |
| if (bist_val & mask) |
| pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n", |
| coreid, bist_val); |
| |
| write_octeon_c0_dcacheerr(0); |
| } |
| |
| /** |
| * Reboot Octeon |
| * |
| * @command: Command to pass to the bootloader. Currently ignored. |
| */ |
| static void octeon_restart(char *command) |
| { |
| /* Disable all watchdogs before soft reset. They don't get cleared */ |
| #ifdef CONFIG_SMP |
| int cpu; |
| for_each_online_cpu(cpu) |
| cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); |
| #else |
| cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); |
| #endif |
| |
| mb(); |
| while (1) |
| cvmx_write_csr(CVMX_CIU_SOFT_RST, 1); |
| } |
| |
| |
| /** |
| * Permanently stop a core. |
| * |
| * @arg: Ignored. |
| */ |
| static void octeon_kill_core(void *arg) |
| { |
| if (octeon_is_simulation()) |
| /* A break instruction causes the simulator stop a core */ |
| asm volatile ("break" ::: "memory"); |
| |
| local_irq_disable(); |
| /* Disable watchdog on this core. */ |
| cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); |
| /* Spin in a low power mode. */ |
| while (true) |
| asm volatile ("wait" ::: "memory"); |
| } |
| |
| |
| /** |
| * Halt the system |
| */ |
| static void octeon_halt(void) |
| { |
| smp_call_function(octeon_kill_core, NULL, 0); |
| |
| switch (octeon_bootinfo->board_type) { |
| case CVMX_BOARD_TYPE_NAO38: |
| /* Driving a 1 to GPIO 12 shuts off this board */ |
| cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1); |
| cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000); |
| break; |
| default: |
| octeon_write_lcd("PowerOff"); |
| break; |
| } |
| |
| octeon_kill_core(NULL); |
| } |
| |
| static char __read_mostly octeon_system_type[80]; |
| |
| static int __init init_octeon_system_type(void) |
| { |
| snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)", |
| cvmx_board_type_to_string(octeon_bootinfo->board_type), |
| octeon_model_get_string(read_c0_prid())); |
| |
| return 0; |
| } |
| early_initcall(init_octeon_system_type); |
| |
| /** |
| * Return a string representing the system type |
| * |
| * Returns |
| */ |
| const char *octeon_board_type_string(void) |
| { |
| return octeon_system_type; |
| } |
| |
| const char *get_system_type(void) |
| __attribute__ ((alias("octeon_board_type_string"))); |
| |
| void octeon_user_io_init(void) |
| { |
| union octeon_cvmemctl cvmmemctl; |
| union cvmx_iob_fau_timeout fau_timeout; |
| union cvmx_pow_nw_tim nm_tim; |
| |
| /* Get the current settings for CP0_CVMMEMCTL_REG */ |
| cvmmemctl.u64 = read_c0_cvmmemctl(); |
| /* R/W If set, marked write-buffer entries time out the same |
| * as as other entries; if clear, marked write-buffer entries |
| * use the maximum timeout. */ |
| cvmmemctl.s.dismarkwblongto = 1; |
| /* R/W If set, a merged store does not clear the write-buffer |
| * entry timeout state. */ |
| cvmmemctl.s.dismrgclrwbto = 0; |
| /* R/W Two bits that are the MSBs of the resultant CVMSEG LM |
| * word location for an IOBDMA. The other 8 bits come from the |
| * SCRADDR field of the IOBDMA. */ |
| cvmmemctl.s.iobdmascrmsb = 0; |
| /* R/W If set, SYNCWS and SYNCS only order marked stores; if |
| * clear, SYNCWS and SYNCS only order unmarked |
| * stores. SYNCWSMARKED has no effect when DISSYNCWS is |
| * set. */ |
| cvmmemctl.s.syncwsmarked = 0; |
| /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */ |
| cvmmemctl.s.dissyncws = 0; |
| /* R/W If set, no stall happens on write buffer full. */ |
| if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2)) |
| cvmmemctl.s.diswbfst = 1; |
| else |
| cvmmemctl.s.diswbfst = 0; |
| /* R/W If set (and SX set), supervisor-level loads/stores can |
| * use XKPHYS addresses with <48>==0 */ |
| cvmmemctl.s.xkmemenas = 0; |
| |
| /* R/W If set (and UX set), user-level loads/stores can use |
| * XKPHYS addresses with VA<48>==0 */ |
| cvmmemctl.s.xkmemenau = 0; |
| |
| /* R/W If set (and SX set), supervisor-level loads/stores can |
| * use XKPHYS addresses with VA<48>==1 */ |
| cvmmemctl.s.xkioenas = 0; |
| |
| /* R/W If set (and UX set), user-level loads/stores can use |
| * XKPHYS addresses with VA<48>==1 */ |
| cvmmemctl.s.xkioenau = 0; |
| |
| /* R/W If set, all stores act as SYNCW (NOMERGE must be set |
| * when this is set) RW, reset to 0. */ |
| cvmmemctl.s.allsyncw = 0; |
| |
| /* R/W If set, no stores merge, and all stores reach the |
| * coherent bus in order. */ |
| cvmmemctl.s.nomerge = 0; |
| /* R/W Selects the bit in the counter used for DID time-outs 0 |
| * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is |
| * between 1x and 2x this interval. For example, with |
| * DIDTTO=3, expiration interval is between 16K and 32K. */ |
| cvmmemctl.s.didtto = 0; |
| /* R/W If set, the (mem) CSR clock never turns off. */ |
| cvmmemctl.s.csrckalwys = 0; |
| /* R/W If set, mclk never turns off. */ |
| cvmmemctl.s.mclkalwys = 0; |
| /* R/W Selects the bit in the counter used for write buffer |
| * flush time-outs (WBFLT+11) is the bit position in an |
| * internal counter used to determine expiration. The write |
| * buffer expires between 1x and 2x this interval. For |
| * example, with WBFLT = 0, a write buffer expires between 2K |
| * and 4K cycles after the write buffer entry is allocated. */ |
| cvmmemctl.s.wbfltime = 0; |
| /* R/W If set, do not put Istream in the L2 cache. */ |
| cvmmemctl.s.istrnol2 = 0; |
| |
| /* |
| * R/W The write buffer threshold. As per erratum Core-14752 |
| * for CN63XX, a sc/scd might fail if the write buffer is |
| * full. Lowering WBTHRESH greatly lowers the chances of the |
| * write buffer ever being full and triggering the erratum. |
| */ |
| if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) |
| cvmmemctl.s.wbthresh = 4; |
| else |
| cvmmemctl.s.wbthresh = 10; |
| |
| /* R/W If set, CVMSEG is available for loads/stores in |
| * kernel/debug mode. */ |
| #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 |
| cvmmemctl.s.cvmsegenak = 1; |
| #else |
| cvmmemctl.s.cvmsegenak = 0; |
| #endif |
| /* R/W If set, CVMSEG is available for loads/stores in |
| * supervisor mode. */ |
| cvmmemctl.s.cvmsegenas = 0; |
| /* R/W If set, CVMSEG is available for loads/stores in user |
| * mode. */ |
| cvmmemctl.s.cvmsegenau = 0; |
| /* R/W Size of local memory in cache blocks, 54 (6912 bytes) |
| * is max legal value. */ |
| cvmmemctl.s.lmemsz = CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE; |
| |
| write_c0_cvmmemctl(cvmmemctl.u64); |
| |
| if (smp_processor_id() == 0) |
| pr_notice("CVMSEG size: %d cache lines (%d bytes)\n", |
| CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE, |
| CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128); |
| |
| /* Set a default for the hardware timeouts */ |
| fau_timeout.u64 = 0; |
| fau_timeout.s.tout_val = 0xfff; |
| /* Disable tagwait FAU timeout */ |
| fau_timeout.s.tout_enb = 0; |
| cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64); |
| |
| nm_tim.u64 = 0; |
| /* 4096 cycles */ |
| nm_tim.s.nw_tim = 3; |
| cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64); |
| |
| write_octeon_c0_icacheerr(0); |
| write_c0_derraddr1(0); |
| } |
| |
| /** |
| * Early entry point for arch setup |
| */ |
| void __init prom_init(void) |
| { |
| struct cvmx_sysinfo *sysinfo; |
| const char *arg; |
| char *p; |
| int i; |
| int argc; |
| #ifdef CONFIG_CAVIUM_RESERVE32 |
| int64_t addr = -1; |
| #endif |
| /* |
| * The bootloader passes a pointer to the boot descriptor in |
| * $a3, this is available as fw_arg3. |
| */ |
| octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3; |
| octeon_bootinfo = |
| cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr); |
| cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr)); |
| |
| sysinfo = cvmx_sysinfo_get(); |
| memset(sysinfo, 0, sizeof(*sysinfo)); |
| sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20; |
| sysinfo->phy_mem_desc_ptr = |
| cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr); |
| sysinfo->core_mask = octeon_bootinfo->core_mask; |
| sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr; |
| sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz; |
| sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2; |
| sysinfo->board_type = octeon_bootinfo->board_type; |
| sysinfo->board_rev_major = octeon_bootinfo->board_rev_major; |
| sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor; |
| memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base, |
| sizeof(sysinfo->mac_addr_base)); |
| sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count; |
| memcpy(sysinfo->board_serial_number, |
| octeon_bootinfo->board_serial_number, |
| sizeof(sysinfo->board_serial_number)); |
| sysinfo->compact_flash_common_base_addr = |
| octeon_bootinfo->compact_flash_common_base_addr; |
| sysinfo->compact_flash_attribute_base_addr = |
| octeon_bootinfo->compact_flash_attribute_base_addr; |
| sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr; |
| sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz; |
| sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags; |
| |
| if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { |
| /* I/O clock runs at a different rate than the CPU. */ |
| union cvmx_mio_rst_boot rst_boot; |
| rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT); |
| octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul; |
| } else { |
| octeon_io_clock_rate = sysinfo->cpu_clock_hz; |
| } |
| |
| /* |
| * Only enable the LED controller if we're running on a CN38XX, CN58XX, |
| * or CN56XX. The CN30XX and CN31XX don't have an LED controller. |
| */ |
| if (!octeon_is_simulation() && |
| octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) { |
| cvmx_write_csr(CVMX_LED_EN, 0); |
| cvmx_write_csr(CVMX_LED_PRT, 0); |
| cvmx_write_csr(CVMX_LED_DBG, 0); |
| cvmx_write_csr(CVMX_LED_PRT_FMT, 0); |
| cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32); |
| cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32); |
| cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0); |
| cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0); |
| cvmx_write_csr(CVMX_LED_EN, 1); |
| } |
| #ifdef CONFIG_CAVIUM_RESERVE32 |
| /* |
| * We need to temporarily allocate all memory in the reserve32 |
| * region. This makes sure the kernel doesn't allocate this |
| * memory when it is getting memory from the |
| * bootloader. Later, after the memory allocations are |
| * complete, the reserve32 will be freed. |
| * |
| * Allocate memory for RESERVED32 aligned on 2MB boundary. This |
| * is in case we later use hugetlb entries with it. |
| */ |
| addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20, |
| 0, 0, 2 << 20, |
| "CAVIUM_RESERVE32", 0); |
| if (addr < 0) |
| pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n"); |
| else |
| octeon_reserve32_memory = addr; |
| #endif |
| |
| #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2 |
| if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) { |
| pr_info("Skipping L2 locking due to reduced L2 cache size\n"); |
| } else { |
| uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000; |
| #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB |
| /* TLB refill */ |
| cvmx_l2c_lock_mem_region(ebase, 0x100); |
| #endif |
| #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION |
| /* General exception */ |
| cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80); |
| #endif |
| #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT |
| /* Interrupt handler */ |
| cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80); |
| #endif |
| #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT |
| cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100); |
| cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80); |
| #endif |
| #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY |
| cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480); |
| #endif |
| } |
| #endif |
| |
| octeon_check_cpu_bist(); |
| |
| octeon_uart = octeon_get_boot_uart(); |
| |
| #ifdef CONFIG_SMP |
| octeon_write_lcd("LinuxSMP"); |
| #else |
| octeon_write_lcd("Linux"); |
| #endif |
| |
| octeon_setup_delays(); |
| |
| /* |
| * BIST should always be enabled when doing a soft reset. L2 |
| * Cache locking for instance is not cleared unless BIST is |
| * enabled. Unfortunately due to a chip errata G-200 for |
| * Cn38XX and CN31XX, BIST msut be disabled on these parts. |
| */ |
| if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || |
| OCTEON_IS_MODEL(OCTEON_CN31XX)) |
| cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0); |
| else |
| cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1); |
| |
| /* Default to 64MB in the simulator to speed things up */ |
| if (octeon_is_simulation()) |
| MAX_MEMORY = 64ull << 20; |
| |
| arg = strstr(arcs_cmdline, "mem="); |
| if (arg) { |
| MAX_MEMORY = memparse(arg + 4, &p); |
| if (MAX_MEMORY == 0) |
| MAX_MEMORY = 32ull << 30; |
| if (*p == '@') |
| RESERVE_LOW_MEM = memparse(p + 1, &p); |
| } |
| |
| arcs_cmdline[0] = 0; |
| argc = octeon_boot_desc_ptr->argc; |
| for (i = 0; i < argc; i++) { |
| const char *arg = |
| cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]); |
| if ((strncmp(arg, "MEM=", 4) == 0) || |
| (strncmp(arg, "mem=", 4) == 0)) { |
| MAX_MEMORY = memparse(arg + 4, &p); |
| if (MAX_MEMORY == 0) |
| MAX_MEMORY = 32ull << 30; |
| if (*p == '@') |
| RESERVE_LOW_MEM = memparse(p + 1, &p); |
| #ifdef CONFIG_KEXEC |
| } else if (strncmp(arg, "crashkernel=", 12) == 0) { |
| crashk_size = memparse(arg+12, &p); |
| if (*p == '@') |
| crashk_base = memparse(p+1, &p); |
| strcat(arcs_cmdline, " "); |
| strcat(arcs_cmdline, arg); |
| /* |
| * To do: switch parsing to new style, something like: |
| * parse_crashkernel(arg, sysinfo->system_dram_size, |
| * &crashk_size, &crashk_base); |
| */ |
| #endif |
| } else if (strlen(arcs_cmdline) + strlen(arg) + 1 < |
| sizeof(arcs_cmdline) - 1) { |
| strcat(arcs_cmdline, " "); |
| strcat(arcs_cmdline, arg); |
| } |
| } |
| |
| if (strstr(arcs_cmdline, "console=") == NULL) { |
| #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL |
| strcat(arcs_cmdline, " console=ttyS0,115200"); |
| #else |
| if (octeon_uart == 1) |
| strcat(arcs_cmdline, " console=ttyS1,115200"); |
| else |
| strcat(arcs_cmdline, " console=ttyS0,115200"); |
| #endif |
| } |
| |
| if (octeon_is_simulation()) { |
| /* |
| * The simulator uses a mtdram device pre filled with |
| * the filesystem. Also specify the calibration delay |
| * to avoid calculating it every time. |
| */ |
| strcat(arcs_cmdline, " rw root=1f00 slram=root,0x40000000,+1073741824"); |
| } |
| |
| mips_hpt_frequency = octeon_get_clock_rate(); |
| |
| octeon_init_cvmcount(); |
| |
| _machine_restart = octeon_restart; |
| _machine_halt = octeon_halt; |
| |
| #ifdef CONFIG_KEXEC |
| _machine_kexec_shutdown = octeon_shutdown; |
| _machine_crash_shutdown = octeon_crash_shutdown; |
| _machine_kexec_prepare = octeon_kexec_prepare; |
| #endif |
| |
| octeon_user_io_init(); |
| register_smp_ops(&octeon_smp_ops); |
| } |
| |
| /* Exclude a single page from the regions obtained in plat_mem_setup. */ |
| #ifndef CONFIG_CRASH_DUMP |
| static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size) |
| { |
| if (addr > *mem && addr < *mem + *size) { |
| u64 inc = addr - *mem; |
| add_memory_region(*mem, inc, BOOT_MEM_RAM); |
| *mem += inc; |
| *size -= inc; |
| } |
| |
| if (addr == *mem && *size > PAGE_SIZE) { |
| *mem += PAGE_SIZE; |
| *size -= PAGE_SIZE; |
| } |
| } |
| #endif /* CONFIG_CRASH_DUMP */ |
| |
| void __init plat_mem_setup(void) |
| { |
| uint64_t mem_alloc_size; |
| uint64_t total; |
| uint64_t crashk_end; |
| #ifndef CONFIG_CRASH_DUMP |
| int64_t memory; |
| uint64_t kernel_start; |
| uint64_t kernel_size; |
| #endif |
| |
| total = 0; |
| crashk_end = 0; |
| |
| /* |
| * The Mips memory init uses the first memory location for |
| * some memory vectors. When SPARSEMEM is in use, it doesn't |
| * verify that the size is big enough for the final |
| * vectors. Making the smallest chuck 4MB seems to be enough |
| * to consistently work. |
| */ |
| mem_alloc_size = 4 << 20; |
| if (mem_alloc_size > MAX_MEMORY) |
| mem_alloc_size = MAX_MEMORY; |
| |
| /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */ |
| #ifdef CONFIG_CRASH_DUMP |
| add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM); |
| total += MAX_MEMORY; |
| #else |
| #ifdef CONFIG_KEXEC |
| if (crashk_size > 0) { |
| add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM); |
| crashk_end = crashk_base + crashk_size; |
| } |
| #endif |
| /* |
| * When allocating memory, we want incrementing addresses from |
| * bootmem_alloc so the code in add_memory_region can merge |
| * regions next to each other. |
| */ |
| cvmx_bootmem_lock(); |
| while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX) |
| && (total < MAX_MEMORY)) { |
| memory = cvmx_bootmem_phy_alloc(mem_alloc_size, |
| __pa_symbol(&__init_end), -1, |
| 0x100000, |
| CVMX_BOOTMEM_FLAG_NO_LOCKING); |
| if (memory >= 0) { |
| u64 size = mem_alloc_size; |
| #ifdef CONFIG_KEXEC |
| uint64_t end; |
| #endif |
| |
| /* |
| * exclude a page at the beginning and end of |
| * the 256MB PCIe 'hole' so the kernel will not |
| * try to allocate multi-page buffers that |
| * span the discontinuity. |
| */ |
| memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE, |
| &memory, &size); |
| memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE + |
| CVMX_PCIE_BAR1_PHYS_SIZE, |
| &memory, &size); |
| #ifdef CONFIG_KEXEC |
| end = memory + mem_alloc_size; |
| |
| /* |
| * This function automatically merges address regions |
| * next to each other if they are received in |
| * incrementing order |
| */ |
| if (memory < crashk_base && end > crashk_end) { |
| /* region is fully in */ |
| add_memory_region(memory, |
| crashk_base - memory, |
| BOOT_MEM_RAM); |
| total += crashk_base - memory; |
| add_memory_region(crashk_end, |
| end - crashk_end, |
| BOOT_MEM_RAM); |
| total += end - crashk_end; |
| continue; |
| } |
| |
| if (memory >= crashk_base && end <= crashk_end) |
| /* |
| * Entire memory region is within the new |
| * kernel's memory, ignore it. |
| */ |
| continue; |
| |
| if (memory > crashk_base && memory < crashk_end && |
| end > crashk_end) { |
| /* |
| * Overlap with the beginning of the region, |
| * reserve the beginning. |
| */ |
| mem_alloc_size -= crashk_end - memory; |
| memory = crashk_end; |
| } else if (memory < crashk_base && end > crashk_base && |
| end < crashk_end) |
| /* |
| * Overlap with the beginning of the region, |
| * chop of end. |
| */ |
| mem_alloc_size -= end - crashk_base; |
| #endif |
| add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM); |
| total += mem_alloc_size; |
| /* Recovering mem_alloc_size */ |
| mem_alloc_size = 4 << 20; |
| } else { |
| break; |
| } |
| } |
| cvmx_bootmem_unlock(); |
| /* Add the memory region for the kernel. */ |
| kernel_start = (unsigned long) _text; |
| kernel_size = _end - _text; |
| |
| /* Adjust for physical offset. */ |
| kernel_start &= ~0xffffffff80000000ULL; |
| add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM); |
| #endif /* CONFIG_CRASH_DUMP */ |
| |
| #ifdef CONFIG_CAVIUM_RESERVE32 |
| /* |
| * Now that we've allocated the kernel memory it is safe to |
| * free the reserved region. We free it here so that builtin |
| * drivers can use the memory. |
| */ |
| if (octeon_reserve32_memory) |
| cvmx_bootmem_free_named("CAVIUM_RESERVE32"); |
| #endif /* CONFIG_CAVIUM_RESERVE32 */ |
| |
| if (total == 0) |
| panic("Unable to allocate memory from " |
| "cvmx_bootmem_phy_alloc"); |
| } |
| |
| /* |
| * Emit one character to the boot UART. Exported for use by the |
| * watchdog timer. |
| */ |
| int prom_putchar(char c) |
| { |
| uint64_t lsrval; |
| |
| /* Spin until there is room */ |
| do { |
| lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart)); |
| } while ((lsrval & 0x20) == 0); |
| |
| /* Write the byte */ |
| cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull); |
| return 1; |
| } |
| EXPORT_SYMBOL(prom_putchar); |
| |
| void prom_free_prom_memory(void) |
| { |
| if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) { |
| /* Check for presence of Core-14449 fix. */ |
| u32 insn; |
| u32 *foo; |
| |
| foo = &insn; |
| |
| asm volatile("# before" : : : "memory"); |
| prefetch(foo); |
| asm volatile( |
| ".set push\n\t" |
| ".set noreorder\n\t" |
| "bal 1f\n\t" |
| "nop\n" |
| "1:\tlw %0,-12($31)\n\t" |
| ".set pop\n\t" |
| : "=r" (insn) : : "$31", "memory"); |
| |
| if ((insn >> 26) != 0x33) |
| panic("No PREF instruction at Core-14449 probe point."); |
| |
| if (((insn >> 16) & 0x1f) != 28) |
| panic("Core-14449 WAR not in place (%04x).\n" |
| "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", insn); |
| } |
| } |
| |
| int octeon_prune_device_tree(void); |
| |
| extern const char __dtb_octeon_3xxx_begin; |
| extern const char __dtb_octeon_68xx_begin; |
| void __init device_tree_init(void) |
| { |
| const void *fdt; |
| bool do_prune; |
| |
| if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) { |
| fdt = phys_to_virt(octeon_bootinfo->fdt_addr); |
| if (fdt_check_header(fdt)) |
| panic("Corrupt Device Tree passed to kernel."); |
| do_prune = false; |
| } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) { |
| fdt = &__dtb_octeon_68xx_begin; |
| do_prune = true; |
| } else { |
| fdt = &__dtb_octeon_3xxx_begin; |
| do_prune = true; |
| } |
| |
| initial_boot_params = (void *)fdt; |
| |
| if (do_prune) { |
| octeon_prune_device_tree(); |
| pr_info("Using internal Device Tree.\n"); |
| } else { |
| pr_info("Using passed Device Tree.\n"); |
| } |
| unflatten_and_copy_device_tree(); |
| } |
| |
| static int __initdata disable_octeon_edac_p; |
| |
| static int __init disable_octeon_edac(char *str) |
| { |
| disable_octeon_edac_p = 1; |
| return 0; |
| } |
| early_param("disable_octeon_edac", disable_octeon_edac); |
| |
| static char *edac_device_names[] = { |
| "octeon_l2c_edac", |
| "octeon_pc_edac", |
| }; |
| |
| static int __init edac_devinit(void) |
| { |
| struct platform_device *dev; |
| int i, err = 0; |
| int num_lmc; |
| char *name; |
| |
| if (disable_octeon_edac_p) |
| return 0; |
| |
| for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) { |
| name = edac_device_names[i]; |
| dev = platform_device_register_simple(name, -1, NULL, 0); |
| if (IS_ERR(dev)) { |
| pr_err("Registation of %s failed!\n", name); |
| err = PTR_ERR(dev); |
| } |
| } |
| |
| num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 : |
| (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1); |
| for (i = 0; i < num_lmc; i++) { |
| dev = platform_device_register_simple("octeon_lmc_edac", |
| i, NULL, 0); |
| if (IS_ERR(dev)) { |
| pr_err("Registation of octeon_lmc_edac %d failed!\n", i); |
| err = PTR_ERR(dev); |
| } |
| } |
| |
| return err; |
| } |
| device_initcall(edac_devinit); |
| |
| static void __initdata *octeon_dummy_iospace; |
| |
| static int __init octeon_no_pci_init(void) |
| { |
| /* |
| * Initially assume there is no PCI. The PCI/PCIe platform code will |
| * later re-initialize these to correct values if they are present. |
| */ |
| octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT); |
| set_io_port_base((unsigned long)octeon_dummy_iospace); |
| ioport_resource.start = MAX_RESOURCE; |
| ioport_resource.end = 0; |
| return 0; |
| } |
| core_initcall(octeon_no_pci_init); |
| |
| static int __init octeon_no_pci_release(void) |
| { |
| /* |
| * Release the allocated memory if a real IO space is there. |
| */ |
| if ((unsigned long)octeon_dummy_iospace != mips_io_port_base) |
| vfree(octeon_dummy_iospace); |
| return 0; |
| } |
| late_initcall(octeon_no_pci_release); |