| /* |
| * fs/f2fs/checkpoint.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/fs.h> |
| #include <linux/bio.h> |
| #include <linux/mpage.h> |
| #include <linux/writeback.h> |
| #include <linux/blkdev.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/pagevec.h> |
| #include <linux/swap.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| #include "segment.h" |
| |
| static struct kmem_cache *orphan_entry_slab; |
| static struct kmem_cache *inode_entry_slab; |
| |
| /* |
| * We guarantee no failure on the returned page. |
| */ |
| struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) |
| { |
| struct address_space *mapping = sbi->meta_inode->i_mapping; |
| struct page *page = NULL; |
| repeat: |
| page = grab_cache_page(mapping, index); |
| if (!page) { |
| cond_resched(); |
| goto repeat; |
| } |
| |
| /* We wait writeback only inside grab_meta_page() */ |
| wait_on_page_writeback(page); |
| SetPageUptodate(page); |
| return page; |
| } |
| |
| /* |
| * We guarantee no failure on the returned page. |
| */ |
| struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) |
| { |
| struct address_space *mapping = sbi->meta_inode->i_mapping; |
| struct page *page; |
| repeat: |
| page = grab_cache_page(mapping, index); |
| if (!page) { |
| cond_resched(); |
| goto repeat; |
| } |
| if (f2fs_readpage(sbi, page, index, READ_SYNC)) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| mark_page_accessed(page); |
| |
| /* We do not allow returning an errorneous page */ |
| return page; |
| } |
| |
| static int f2fs_write_meta_page(struct page *page, |
| struct writeback_control *wbc) |
| { |
| struct inode *inode = page->mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); |
| int err; |
| |
| wait_on_page_writeback(page); |
| |
| err = write_meta_page(sbi, page, wbc); |
| if (err) { |
| wbc->pages_skipped++; |
| set_page_dirty(page); |
| } |
| |
| dec_page_count(sbi, F2FS_DIRTY_META); |
| |
| /* In this case, we should not unlock this page */ |
| if (err != AOP_WRITEPAGE_ACTIVATE) |
| unlock_page(page); |
| return err; |
| } |
| |
| static int f2fs_write_meta_pages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); |
| struct block_device *bdev = sbi->sb->s_bdev; |
| long written; |
| |
| if (wbc->for_kupdate) |
| return 0; |
| |
| if (get_pages(sbi, F2FS_DIRTY_META) == 0) |
| return 0; |
| |
| /* if mounting is failed, skip writing node pages */ |
| mutex_lock(&sbi->cp_mutex); |
| written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev)); |
| mutex_unlock(&sbi->cp_mutex); |
| wbc->nr_to_write -= written; |
| return 0; |
| } |
| |
| long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, |
| long nr_to_write) |
| { |
| struct address_space *mapping = sbi->meta_inode->i_mapping; |
| pgoff_t index = 0, end = LONG_MAX; |
| struct pagevec pvec; |
| long nwritten = 0; |
| struct writeback_control wbc = { |
| .for_reclaim = 0, |
| }; |
| |
| pagevec_init(&pvec, 0); |
| |
| while (index <= end) { |
| int i, nr_pages; |
| nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, |
| PAGECACHE_TAG_DIRTY, |
| min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); |
| if (nr_pages == 0) |
| break; |
| |
| for (i = 0; i < nr_pages; i++) { |
| struct page *page = pvec.pages[i]; |
| lock_page(page); |
| BUG_ON(page->mapping != mapping); |
| BUG_ON(!PageDirty(page)); |
| clear_page_dirty_for_io(page); |
| f2fs_write_meta_page(page, &wbc); |
| if (nwritten++ >= nr_to_write) |
| break; |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| } |
| |
| if (nwritten) |
| f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX); |
| |
| return nwritten; |
| } |
| |
| static int f2fs_set_meta_page_dirty(struct page *page) |
| { |
| struct address_space *mapping = page->mapping; |
| struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); |
| |
| SetPageUptodate(page); |
| if (!PageDirty(page)) { |
| __set_page_dirty_nobuffers(page); |
| inc_page_count(sbi, F2FS_DIRTY_META); |
| F2FS_SET_SB_DIRT(sbi); |
| return 1; |
| } |
| return 0; |
| } |
| |
| const struct address_space_operations f2fs_meta_aops = { |
| .writepage = f2fs_write_meta_page, |
| .writepages = f2fs_write_meta_pages, |
| .set_page_dirty = f2fs_set_meta_page_dirty, |
| }; |
| |
| int check_orphan_space(struct f2fs_sb_info *sbi) |
| { |
| unsigned int max_orphans; |
| int err = 0; |
| |
| /* |
| * considering 512 blocks in a segment 5 blocks are needed for cp |
| * and log segment summaries. Remaining blocks are used to keep |
| * orphan entries with the limitation one reserved segment |
| * for cp pack we can have max 1020*507 orphan entries |
| */ |
| max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK; |
| mutex_lock(&sbi->orphan_inode_mutex); |
| if (sbi->n_orphans >= max_orphans) |
| err = -ENOSPC; |
| mutex_unlock(&sbi->orphan_inode_mutex); |
| return err; |
| } |
| |
| void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) |
| { |
| struct list_head *head, *this; |
| struct orphan_inode_entry *new = NULL, *orphan = NULL; |
| |
| mutex_lock(&sbi->orphan_inode_mutex); |
| head = &sbi->orphan_inode_list; |
| list_for_each(this, head) { |
| orphan = list_entry(this, struct orphan_inode_entry, list); |
| if (orphan->ino == ino) |
| goto out; |
| if (orphan->ino > ino) |
| break; |
| orphan = NULL; |
| } |
| retry: |
| new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); |
| if (!new) { |
| cond_resched(); |
| goto retry; |
| } |
| new->ino = ino; |
| |
| /* add new_oentry into list which is sorted by inode number */ |
| if (orphan) { |
| struct orphan_inode_entry *prev; |
| |
| /* get previous entry */ |
| prev = list_entry(orphan->list.prev, typeof(*prev), list); |
| if (&prev->list != head) |
| /* insert new orphan inode entry */ |
| list_add(&new->list, &prev->list); |
| else |
| list_add(&new->list, head); |
| } else { |
| list_add_tail(&new->list, head); |
| } |
| sbi->n_orphans++; |
| out: |
| mutex_unlock(&sbi->orphan_inode_mutex); |
| } |
| |
| void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) |
| { |
| struct list_head *this, *next, *head; |
| struct orphan_inode_entry *orphan; |
| |
| mutex_lock(&sbi->orphan_inode_mutex); |
| head = &sbi->orphan_inode_list; |
| list_for_each_safe(this, next, head) { |
| orphan = list_entry(this, struct orphan_inode_entry, list); |
| if (orphan->ino == ino) { |
| list_del(&orphan->list); |
| kmem_cache_free(orphan_entry_slab, orphan); |
| sbi->n_orphans--; |
| break; |
| } |
| } |
| mutex_unlock(&sbi->orphan_inode_mutex); |
| } |
| |
| static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) |
| { |
| struct inode *inode = f2fs_iget(sbi->sb, ino); |
| BUG_ON(IS_ERR(inode)); |
| clear_nlink(inode); |
| |
| /* truncate all the data during iput */ |
| iput(inode); |
| } |
| |
| int recover_orphan_inodes(struct f2fs_sb_info *sbi) |
| { |
| block_t start_blk, orphan_blkaddr, i, j; |
| |
| if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) |
| return 0; |
| |
| sbi->por_doing = 1; |
| start_blk = __start_cp_addr(sbi) + 1; |
| orphan_blkaddr = __start_sum_addr(sbi) - 1; |
| |
| for (i = 0; i < orphan_blkaddr; i++) { |
| struct page *page = get_meta_page(sbi, start_blk + i); |
| struct f2fs_orphan_block *orphan_blk; |
| |
| orphan_blk = (struct f2fs_orphan_block *)page_address(page); |
| for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { |
| nid_t ino = le32_to_cpu(orphan_blk->ino[j]); |
| recover_orphan_inode(sbi, ino); |
| } |
| f2fs_put_page(page, 1); |
| } |
| /* clear Orphan Flag */ |
| clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); |
| sbi->por_doing = 0; |
| return 0; |
| } |
| |
| static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) |
| { |
| struct list_head *head, *this, *next; |
| struct f2fs_orphan_block *orphan_blk = NULL; |
| struct page *page = NULL; |
| unsigned int nentries = 0; |
| unsigned short index = 1; |
| unsigned short orphan_blocks; |
| |
| orphan_blocks = (unsigned short)((sbi->n_orphans + |
| (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); |
| |
| mutex_lock(&sbi->orphan_inode_mutex); |
| head = &sbi->orphan_inode_list; |
| |
| /* loop for each orphan inode entry and write them in Jornal block */ |
| list_for_each_safe(this, next, head) { |
| struct orphan_inode_entry *orphan; |
| |
| orphan = list_entry(this, struct orphan_inode_entry, list); |
| |
| if (nentries == F2FS_ORPHANS_PER_BLOCK) { |
| /* |
| * an orphan block is full of 1020 entries, |
| * then we need to flush current orphan blocks |
| * and bring another one in memory |
| */ |
| orphan_blk->blk_addr = cpu_to_le16(index); |
| orphan_blk->blk_count = cpu_to_le16(orphan_blocks); |
| orphan_blk->entry_count = cpu_to_le32(nentries); |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| index++; |
| start_blk++; |
| nentries = 0; |
| page = NULL; |
| } |
| if (page) |
| goto page_exist; |
| |
| page = grab_meta_page(sbi, start_blk); |
| orphan_blk = (struct f2fs_orphan_block *)page_address(page); |
| memset(orphan_blk, 0, sizeof(*orphan_blk)); |
| page_exist: |
| orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); |
| } |
| if (!page) |
| goto end; |
| |
| orphan_blk->blk_addr = cpu_to_le16(index); |
| orphan_blk->blk_count = cpu_to_le16(orphan_blocks); |
| orphan_blk->entry_count = cpu_to_le32(nentries); |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| end: |
| mutex_unlock(&sbi->orphan_inode_mutex); |
| } |
| |
| static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, |
| block_t cp_addr, unsigned long long *version) |
| { |
| struct page *cp_page_1, *cp_page_2 = NULL; |
| unsigned long blk_size = sbi->blocksize; |
| struct f2fs_checkpoint *cp_block; |
| unsigned long long cur_version = 0, pre_version = 0; |
| unsigned int crc = 0; |
| size_t crc_offset; |
| |
| /* Read the 1st cp block in this CP pack */ |
| cp_page_1 = get_meta_page(sbi, cp_addr); |
| |
| /* get the version number */ |
| cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); |
| crc_offset = le32_to_cpu(cp_block->checksum_offset); |
| if (crc_offset >= blk_size) |
| goto invalid_cp1; |
| |
| crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); |
| if (!f2fs_crc_valid(crc, cp_block, crc_offset)) |
| goto invalid_cp1; |
| |
| pre_version = le64_to_cpu(cp_block->checkpoint_ver); |
| |
| /* Read the 2nd cp block in this CP pack */ |
| cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; |
| cp_page_2 = get_meta_page(sbi, cp_addr); |
| |
| cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); |
| crc_offset = le32_to_cpu(cp_block->checksum_offset); |
| if (crc_offset >= blk_size) |
| goto invalid_cp2; |
| |
| crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); |
| if (!f2fs_crc_valid(crc, cp_block, crc_offset)) |
| goto invalid_cp2; |
| |
| cur_version = le64_to_cpu(cp_block->checkpoint_ver); |
| |
| if (cur_version == pre_version) { |
| *version = cur_version; |
| f2fs_put_page(cp_page_2, 1); |
| return cp_page_1; |
| } |
| invalid_cp2: |
| f2fs_put_page(cp_page_2, 1); |
| invalid_cp1: |
| f2fs_put_page(cp_page_1, 1); |
| return NULL; |
| } |
| |
| int get_valid_checkpoint(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_checkpoint *cp_block; |
| struct f2fs_super_block *fsb = sbi->raw_super; |
| struct page *cp1, *cp2, *cur_page; |
| unsigned long blk_size = sbi->blocksize; |
| unsigned long long cp1_version = 0, cp2_version = 0; |
| unsigned long long cp_start_blk_no; |
| |
| sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); |
| if (!sbi->ckpt) |
| return -ENOMEM; |
| /* |
| * Finding out valid cp block involves read both |
| * sets( cp pack1 and cp pack 2) |
| */ |
| cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); |
| cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); |
| |
| /* The second checkpoint pack should start at the next segment */ |
| cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); |
| cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); |
| |
| if (cp1 && cp2) { |
| if (ver_after(cp2_version, cp1_version)) |
| cur_page = cp2; |
| else |
| cur_page = cp1; |
| } else if (cp1) { |
| cur_page = cp1; |
| } else if (cp2) { |
| cur_page = cp2; |
| } else { |
| goto fail_no_cp; |
| } |
| |
| cp_block = (struct f2fs_checkpoint *)page_address(cur_page); |
| memcpy(sbi->ckpt, cp_block, blk_size); |
| |
| f2fs_put_page(cp1, 1); |
| f2fs_put_page(cp2, 1); |
| return 0; |
| |
| fail_no_cp: |
| kfree(sbi->ckpt); |
| return -EINVAL; |
| } |
| |
| void set_dirty_dir_page(struct inode *inode, struct page *page) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); |
| struct list_head *head = &sbi->dir_inode_list; |
| struct dir_inode_entry *new; |
| struct list_head *this; |
| |
| if (!S_ISDIR(inode->i_mode)) |
| return; |
| retry: |
| new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS); |
| if (!new) { |
| cond_resched(); |
| goto retry; |
| } |
| new->inode = inode; |
| INIT_LIST_HEAD(&new->list); |
| |
| spin_lock(&sbi->dir_inode_lock); |
| list_for_each(this, head) { |
| struct dir_inode_entry *entry; |
| entry = list_entry(this, struct dir_inode_entry, list); |
| if (entry->inode == inode) { |
| kmem_cache_free(inode_entry_slab, new); |
| goto out; |
| } |
| } |
| list_add_tail(&new->list, head); |
| sbi->n_dirty_dirs++; |
| |
| BUG_ON(!S_ISDIR(inode->i_mode)); |
| out: |
| inc_page_count(sbi, F2FS_DIRTY_DENTS); |
| inode_inc_dirty_dents(inode); |
| SetPagePrivate(page); |
| |
| spin_unlock(&sbi->dir_inode_lock); |
| } |
| |
| void remove_dirty_dir_inode(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); |
| struct list_head *head = &sbi->dir_inode_list; |
| struct list_head *this; |
| |
| if (!S_ISDIR(inode->i_mode)) |
| return; |
| |
| spin_lock(&sbi->dir_inode_lock); |
| if (atomic_read(&F2FS_I(inode)->dirty_dents)) |
| goto out; |
| |
| list_for_each(this, head) { |
| struct dir_inode_entry *entry; |
| entry = list_entry(this, struct dir_inode_entry, list); |
| if (entry->inode == inode) { |
| list_del(&entry->list); |
| kmem_cache_free(inode_entry_slab, entry); |
| sbi->n_dirty_dirs--; |
| break; |
| } |
| } |
| out: |
| spin_unlock(&sbi->dir_inode_lock); |
| } |
| |
| void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) |
| { |
| struct list_head *head = &sbi->dir_inode_list; |
| struct dir_inode_entry *entry; |
| struct inode *inode; |
| retry: |
| spin_lock(&sbi->dir_inode_lock); |
| if (list_empty(head)) { |
| spin_unlock(&sbi->dir_inode_lock); |
| return; |
| } |
| entry = list_entry(head->next, struct dir_inode_entry, list); |
| inode = igrab(entry->inode); |
| spin_unlock(&sbi->dir_inode_lock); |
| if (inode) { |
| filemap_flush(inode->i_mapping); |
| iput(inode); |
| } else { |
| /* |
| * We should submit bio, since it exists several |
| * wribacking dentry pages in the freeing inode. |
| */ |
| f2fs_submit_bio(sbi, DATA, true); |
| } |
| goto retry; |
| } |
| |
| /* |
| * Freeze all the FS-operations for checkpoint. |
| */ |
| void block_operations(struct f2fs_sb_info *sbi) |
| { |
| int t; |
| struct writeback_control wbc = { |
| .sync_mode = WB_SYNC_ALL, |
| .nr_to_write = LONG_MAX, |
| .for_reclaim = 0, |
| }; |
| |
| /* Stop renaming operation */ |
| mutex_lock_op(sbi, RENAME); |
| mutex_lock_op(sbi, DENTRY_OPS); |
| |
| retry_dents: |
| /* write all the dirty dentry pages */ |
| sync_dirty_dir_inodes(sbi); |
| |
| mutex_lock_op(sbi, DATA_WRITE); |
| if (get_pages(sbi, F2FS_DIRTY_DENTS)) { |
| mutex_unlock_op(sbi, DATA_WRITE); |
| goto retry_dents; |
| } |
| |
| /* block all the operations */ |
| for (t = DATA_NEW; t <= NODE_TRUNC; t++) |
| mutex_lock_op(sbi, t); |
| |
| mutex_lock(&sbi->write_inode); |
| |
| /* |
| * POR: we should ensure that there is no dirty node pages |
| * until finishing nat/sit flush. |
| */ |
| retry: |
| sync_node_pages(sbi, 0, &wbc); |
| |
| mutex_lock_op(sbi, NODE_WRITE); |
| |
| if (get_pages(sbi, F2FS_DIRTY_NODES)) { |
| mutex_unlock_op(sbi, NODE_WRITE); |
| goto retry; |
| } |
| mutex_unlock(&sbi->write_inode); |
| } |
| |
| static void unblock_operations(struct f2fs_sb_info *sbi) |
| { |
| int t; |
| for (t = NODE_WRITE; t >= RENAME; t--) |
| mutex_unlock_op(sbi, t); |
| } |
| |
| static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| nid_t last_nid = 0; |
| block_t start_blk; |
| struct page *cp_page; |
| unsigned int data_sum_blocks, orphan_blocks; |
| unsigned int crc32 = 0; |
| void *kaddr; |
| int i; |
| |
| /* Flush all the NAT/SIT pages */ |
| while (get_pages(sbi, F2FS_DIRTY_META)) |
| sync_meta_pages(sbi, META, LONG_MAX); |
| |
| next_free_nid(sbi, &last_nid); |
| |
| /* |
| * modify checkpoint |
| * version number is already updated |
| */ |
| ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); |
| ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); |
| ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); |
| for (i = 0; i < 3; i++) { |
| ckpt->cur_node_segno[i] = |
| cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); |
| ckpt->cur_node_blkoff[i] = |
| cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); |
| ckpt->alloc_type[i + CURSEG_HOT_NODE] = |
| curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); |
| } |
| for (i = 0; i < 3; i++) { |
| ckpt->cur_data_segno[i] = |
| cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); |
| ckpt->cur_data_blkoff[i] = |
| cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); |
| ckpt->alloc_type[i + CURSEG_HOT_DATA] = |
| curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); |
| } |
| |
| ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); |
| ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); |
| ckpt->next_free_nid = cpu_to_le32(last_nid); |
| |
| /* 2 cp + n data seg summary + orphan inode blocks */ |
| data_sum_blocks = npages_for_summary_flush(sbi); |
| if (data_sum_blocks < 3) |
| set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); |
| else |
| clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); |
| |
| orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) |
| / F2FS_ORPHANS_PER_BLOCK; |
| ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); |
| |
| if (is_umount) { |
| set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); |
| ckpt->cp_pack_total_block_count = cpu_to_le32(2 + |
| data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); |
| } else { |
| clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); |
| ckpt->cp_pack_total_block_count = cpu_to_le32(2 + |
| data_sum_blocks + orphan_blocks); |
| } |
| |
| if (sbi->n_orphans) |
| set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); |
| else |
| clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); |
| |
| /* update SIT/NAT bitmap */ |
| get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); |
| get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); |
| |
| crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); |
| *(__le32 *)((unsigned char *)ckpt + |
| le32_to_cpu(ckpt->checksum_offset)) |
| = cpu_to_le32(crc32); |
| |
| start_blk = __start_cp_addr(sbi); |
| |
| /* write out checkpoint buffer at block 0 */ |
| cp_page = grab_meta_page(sbi, start_blk++); |
| kaddr = page_address(cp_page); |
| memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); |
| set_page_dirty(cp_page); |
| f2fs_put_page(cp_page, 1); |
| |
| if (sbi->n_orphans) { |
| write_orphan_inodes(sbi, start_blk); |
| start_blk += orphan_blocks; |
| } |
| |
| write_data_summaries(sbi, start_blk); |
| start_blk += data_sum_blocks; |
| if (is_umount) { |
| write_node_summaries(sbi, start_blk); |
| start_blk += NR_CURSEG_NODE_TYPE; |
| } |
| |
| /* writeout checkpoint block */ |
| cp_page = grab_meta_page(sbi, start_blk); |
| kaddr = page_address(cp_page); |
| memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); |
| set_page_dirty(cp_page); |
| f2fs_put_page(cp_page, 1); |
| |
| /* wait for previous submitted node/meta pages writeback */ |
| while (get_pages(sbi, F2FS_WRITEBACK)) |
| congestion_wait(BLK_RW_ASYNC, HZ / 50); |
| |
| filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX); |
| filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX); |
| |
| /* update user_block_counts */ |
| sbi->last_valid_block_count = sbi->total_valid_block_count; |
| sbi->alloc_valid_block_count = 0; |
| |
| /* Here, we only have one bio having CP pack */ |
| if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) |
| sbi->sb->s_flags |= MS_RDONLY; |
| else |
| sync_meta_pages(sbi, META_FLUSH, LONG_MAX); |
| |
| clear_prefree_segments(sbi); |
| F2FS_RESET_SB_DIRT(sbi); |
| } |
| |
| /* |
| * We guarantee that this checkpoint procedure should not fail. |
| */ |
| void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| unsigned long long ckpt_ver; |
| |
| if (!blocked) { |
| mutex_lock(&sbi->cp_mutex); |
| block_operations(sbi); |
| } |
| |
| f2fs_submit_bio(sbi, DATA, true); |
| f2fs_submit_bio(sbi, NODE, true); |
| f2fs_submit_bio(sbi, META, true); |
| |
| /* |
| * update checkpoint pack index |
| * Increase the version number so that |
| * SIT entries and seg summaries are written at correct place |
| */ |
| ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver); |
| ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); |
| |
| /* write cached NAT/SIT entries to NAT/SIT area */ |
| flush_nat_entries(sbi); |
| flush_sit_entries(sbi); |
| |
| reset_victim_segmap(sbi); |
| |
| /* unlock all the fs_lock[] in do_checkpoint() */ |
| do_checkpoint(sbi, is_umount); |
| |
| unblock_operations(sbi); |
| mutex_unlock(&sbi->cp_mutex); |
| } |
| |
| void init_orphan_info(struct f2fs_sb_info *sbi) |
| { |
| mutex_init(&sbi->orphan_inode_mutex); |
| INIT_LIST_HEAD(&sbi->orphan_inode_list); |
| sbi->n_orphans = 0; |
| } |
| |
| int __init create_checkpoint_caches(void) |
| { |
| orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", |
| sizeof(struct orphan_inode_entry), NULL); |
| if (unlikely(!orphan_entry_slab)) |
| return -ENOMEM; |
| inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", |
| sizeof(struct dir_inode_entry), NULL); |
| if (unlikely(!inode_entry_slab)) { |
| kmem_cache_destroy(orphan_entry_slab); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| void destroy_checkpoint_caches(void) |
| { |
| kmem_cache_destroy(orphan_entry_slab); |
| kmem_cache_destroy(inode_entry_slab); |
| } |