| /* |
| * Driver for NAND MLC Controller in LPC32xx |
| * |
| * Author: Roland Stigge <stigge@antcom.de> |
| * |
| * Copyright © 2011 WORK Microwave GmbH |
| * Copyright © 2011, 2012 Roland Stigge |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * |
| * NAND Flash Controller Operation: |
| * - Read: Auto Decode |
| * - Write: Auto Encode |
| * - Tested Page Sizes: 2048, 4096 |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/delay.h> |
| #include <linux/completion.h> |
| #include <linux/interrupt.h> |
| #include <linux/of.h> |
| #include <linux/of_mtd.h> |
| #include <linux/of_gpio.h> |
| #include <linux/mtd/lpc32xx_mlc.h> |
| #include <linux/io.h> |
| #include <linux/mm.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/mtd/nand_ecc.h> |
| |
| #define DRV_NAME "lpc32xx_mlc" |
| |
| /********************************************************************** |
| * MLC NAND controller register offsets |
| **********************************************************************/ |
| |
| #define MLC_BUFF(x) (x + 0x00000) |
| #define MLC_DATA(x) (x + 0x08000) |
| #define MLC_CMD(x) (x + 0x10000) |
| #define MLC_ADDR(x) (x + 0x10004) |
| #define MLC_ECC_ENC_REG(x) (x + 0x10008) |
| #define MLC_ECC_DEC_REG(x) (x + 0x1000C) |
| #define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010) |
| #define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014) |
| #define MLC_RPR(x) (x + 0x10018) |
| #define MLC_WPR(x) (x + 0x1001C) |
| #define MLC_RUBP(x) (x + 0x10020) |
| #define MLC_ROBP(x) (x + 0x10024) |
| #define MLC_SW_WP_ADD_LOW(x) (x + 0x10028) |
| #define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C) |
| #define MLC_ICR(x) (x + 0x10030) |
| #define MLC_TIME_REG(x) (x + 0x10034) |
| #define MLC_IRQ_MR(x) (x + 0x10038) |
| #define MLC_IRQ_SR(x) (x + 0x1003C) |
| #define MLC_LOCK_PR(x) (x + 0x10044) |
| #define MLC_ISR(x) (x + 0x10048) |
| #define MLC_CEH(x) (x + 0x1004C) |
| |
| /********************************************************************** |
| * MLC_CMD bit definitions |
| **********************************************************************/ |
| #define MLCCMD_RESET 0xFF |
| |
| /********************************************************************** |
| * MLC_ICR bit definitions |
| **********************************************************************/ |
| #define MLCICR_WPROT (1 << 3) |
| #define MLCICR_LARGEBLOCK (1 << 2) |
| #define MLCICR_LONGADDR (1 << 1) |
| #define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */ |
| |
| /********************************************************************** |
| * MLC_TIME_REG bit definitions |
| **********************************************************************/ |
| #define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24) |
| #define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19) |
| #define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16) |
| #define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12) |
| #define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8) |
| #define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4) |
| #define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0) |
| |
| /********************************************************************** |
| * MLC_IRQ_MR and MLC_IRQ_SR bit definitions |
| **********************************************************************/ |
| #define MLCIRQ_NAND_READY (1 << 5) |
| #define MLCIRQ_CONTROLLER_READY (1 << 4) |
| #define MLCIRQ_DECODE_FAILURE (1 << 3) |
| #define MLCIRQ_DECODE_ERROR (1 << 2) |
| #define MLCIRQ_ECC_READY (1 << 1) |
| #define MLCIRQ_WRPROT_FAULT (1 << 0) |
| |
| /********************************************************************** |
| * MLC_LOCK_PR bit definitions |
| **********************************************************************/ |
| #define MLCLOCKPR_MAGIC 0xA25E |
| |
| /********************************************************************** |
| * MLC_ISR bit definitions |
| **********************************************************************/ |
| #define MLCISR_DECODER_FAILURE (1 << 6) |
| #define MLCISR_ERRORS ((1 << 4) | (1 << 5)) |
| #define MLCISR_ERRORS_DETECTED (1 << 3) |
| #define MLCISR_ECC_READY (1 << 2) |
| #define MLCISR_CONTROLLER_READY (1 << 1) |
| #define MLCISR_NAND_READY (1 << 0) |
| |
| /********************************************************************** |
| * MLC_CEH bit definitions |
| **********************************************************************/ |
| #define MLCCEH_NORMAL (1 << 0) |
| |
| struct lpc32xx_nand_cfg_mlc { |
| uint32_t tcea_delay; |
| uint32_t busy_delay; |
| uint32_t nand_ta; |
| uint32_t rd_high; |
| uint32_t rd_low; |
| uint32_t wr_high; |
| uint32_t wr_low; |
| int wp_gpio; |
| struct mtd_partition *parts; |
| unsigned num_parts; |
| }; |
| |
| static struct nand_ecclayout lpc32xx_nand_oob = { |
| .eccbytes = 40, |
| .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }, |
| .oobfree = { |
| { .offset = 0, |
| .length = 6, }, |
| { .offset = 16, |
| .length = 6, }, |
| { .offset = 32, |
| .length = 6, }, |
| { .offset = 48, |
| .length = 6, }, |
| }, |
| }; |
| |
| static struct nand_bbt_descr lpc32xx_nand_bbt = { |
| .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | |
| NAND_BBT_WRITE, |
| .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 }, |
| }; |
| |
| static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = { |
| .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | |
| NAND_BBT_WRITE, |
| .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 }, |
| }; |
| |
| struct lpc32xx_nand_host { |
| struct nand_chip nand_chip; |
| struct lpc32xx_mlc_platform_data *pdata; |
| struct clk *clk; |
| struct mtd_info mtd; |
| void __iomem *io_base; |
| int irq; |
| struct lpc32xx_nand_cfg_mlc *ncfg; |
| struct completion comp_nand; |
| struct completion comp_controller; |
| uint32_t llptr; |
| /* |
| * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer |
| */ |
| dma_addr_t oob_buf_phy; |
| /* |
| * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer |
| */ |
| uint8_t *oob_buf; |
| /* Physical address of DMA base address */ |
| dma_addr_t io_base_phy; |
| |
| struct completion comp_dma; |
| struct dma_chan *dma_chan; |
| struct dma_slave_config dma_slave_config; |
| struct scatterlist sgl; |
| uint8_t *dma_buf; |
| uint8_t *dummy_buf; |
| int mlcsubpages; /* number of 512bytes-subpages */ |
| }; |
| |
| /* |
| * Activate/Deactivate DMA Operation: |
| * |
| * Using the PL080 DMA Controller for transferring the 512 byte subpages |
| * instead of doing readl() / writel() in a loop slows it down significantly. |
| * Measurements via getnstimeofday() upon 512 byte subpage reads reveal: |
| * |
| * - readl() of 128 x 32 bits in a loop: ~20us |
| * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us |
| * - DMA read of 512 bytes (32 bit, no bursts): ~100us |
| * |
| * This applies to the transfer itself. In the DMA case: only the |
| * wait_for_completion() (DMA setup _not_ included). |
| * |
| * Note that the 512 bytes subpage transfer is done directly from/to a |
| * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a |
| * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND |
| * controller transferring data between its internal buffer to/from the NAND |
| * chip.) |
| * |
| * Therefore, using the PL080 DMA is disabled by default, for now. |
| * |
| */ |
| static int use_dma; |
| |
| static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) |
| { |
| uint32_t clkrate, tmp; |
| |
| /* Reset MLC controller */ |
| writel(MLCCMD_RESET, MLC_CMD(host->io_base)); |
| udelay(1000); |
| |
| /* Get base clock for MLC block */ |
| clkrate = clk_get_rate(host->clk); |
| if (clkrate == 0) |
| clkrate = 104000000; |
| |
| /* Unlock MLC_ICR |
| * (among others, will be locked again automatically) */ |
| writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); |
| |
| /* Configure MLC Controller: Large Block, 5 Byte Address */ |
| tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR; |
| writel(tmp, MLC_ICR(host->io_base)); |
| |
| /* Unlock MLC_TIME_REG |
| * (among others, will be locked again automatically) */ |
| writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); |
| |
| /* Compute clock setup values, see LPC and NAND manual */ |
| tmp = 0; |
| tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1); |
| tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1); |
| tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1); |
| tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1); |
| tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low); |
| tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1); |
| tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low); |
| writel(tmp, MLC_TIME_REG(host->io_base)); |
| |
| /* Enable IRQ for CONTROLLER_READY and NAND_READY */ |
| writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY, |
| MLC_IRQ_MR(host->io_base)); |
| |
| /* Normal nCE operation: nCE controlled by controller */ |
| writel(MLCCEH_NORMAL, MLC_CEH(host->io_base)); |
| } |
| |
| /* |
| * Hardware specific access to control lines |
| */ |
| static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, |
| unsigned int ctrl) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct lpc32xx_nand_host *host = nand_chip->priv; |
| |
| if (cmd != NAND_CMD_NONE) { |
| if (ctrl & NAND_CLE) |
| writel(cmd, MLC_CMD(host->io_base)); |
| else |
| writel(cmd, MLC_ADDR(host->io_base)); |
| } |
| } |
| |
| /* |
| * Read Device Ready (NAND device _and_ controller ready) |
| */ |
| static int lpc32xx_nand_device_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct lpc32xx_nand_host *host = nand_chip->priv; |
| |
| if ((readb(MLC_ISR(host->io_base)) & |
| (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) == |
| (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host) |
| { |
| uint8_t sr; |
| |
| /* Clear interrupt flag by reading status */ |
| sr = readb(MLC_IRQ_SR(host->io_base)); |
| if (sr & MLCIRQ_NAND_READY) |
| complete(&host->comp_nand); |
| if (sr & MLCIRQ_CONTROLLER_READY) |
| complete(&host->comp_controller); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip) |
| { |
| struct lpc32xx_nand_host *host = chip->priv; |
| |
| if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY) |
| goto exit; |
| |
| wait_for_completion(&host->comp_nand); |
| |
| while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) { |
| /* Seems to be delayed sometimes by controller */ |
| dev_dbg(&mtd->dev, "Warning: NAND not ready.\n"); |
| cpu_relax(); |
| } |
| |
| exit: |
| return NAND_STATUS_READY; |
| } |
| |
| static int lpc32xx_waitfunc_controller(struct mtd_info *mtd, |
| struct nand_chip *chip) |
| { |
| struct lpc32xx_nand_host *host = chip->priv; |
| |
| if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY) |
| goto exit; |
| |
| wait_for_completion(&host->comp_controller); |
| |
| while (!(readb(MLC_ISR(host->io_base)) & |
| MLCISR_CONTROLLER_READY)) { |
| dev_dbg(&mtd->dev, "Warning: Controller not ready.\n"); |
| cpu_relax(); |
| } |
| |
| exit: |
| return NAND_STATUS_READY; |
| } |
| |
| static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) |
| { |
| lpc32xx_waitfunc_nand(mtd, chip); |
| lpc32xx_waitfunc_controller(mtd, chip); |
| |
| return NAND_STATUS_READY; |
| } |
| |
| /* |
| * Enable NAND write protect |
| */ |
| static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) |
| { |
| if (gpio_is_valid(host->ncfg->wp_gpio)) |
| gpio_set_value(host->ncfg->wp_gpio, 0); |
| } |
| |
| /* |
| * Disable NAND write protect |
| */ |
| static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) |
| { |
| if (gpio_is_valid(host->ncfg->wp_gpio)) |
| gpio_set_value(host->ncfg->wp_gpio, 1); |
| } |
| |
| static void lpc32xx_dma_complete_func(void *completion) |
| { |
| complete(completion); |
| } |
| |
| static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len, |
| enum dma_transfer_direction dir) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct lpc32xx_nand_host *host = chip->priv; |
| struct dma_async_tx_descriptor *desc; |
| int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; |
| int res; |
| |
| sg_init_one(&host->sgl, mem, len); |
| |
| res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, |
| DMA_BIDIRECTIONAL); |
| if (res != 1) { |
| dev_err(mtd->dev.parent, "Failed to map sg list\n"); |
| return -ENXIO; |
| } |
| desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, |
| flags); |
| if (!desc) { |
| dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); |
| goto out1; |
| } |
| |
| init_completion(&host->comp_dma); |
| desc->callback = lpc32xx_dma_complete_func; |
| desc->callback_param = &host->comp_dma; |
| |
| dmaengine_submit(desc); |
| dma_async_issue_pending(host->dma_chan); |
| |
| wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000)); |
| |
| dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, |
| DMA_BIDIRECTIONAL); |
| return 0; |
| out1: |
| dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, |
| DMA_BIDIRECTIONAL); |
| return -ENXIO; |
| } |
| |
| static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| struct lpc32xx_nand_host *host = chip->priv; |
| int i, j; |
| uint8_t *oobbuf = chip->oob_poi; |
| uint32_t mlc_isr; |
| int res; |
| uint8_t *dma_buf; |
| bool dma_mapped; |
| |
| if ((void *)buf <= high_memory) { |
| dma_buf = buf; |
| dma_mapped = true; |
| } else { |
| dma_buf = host->dma_buf; |
| dma_mapped = false; |
| } |
| |
| /* Writing Command and Address */ |
| chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| |
| /* For all sub-pages */ |
| for (i = 0; i < host->mlcsubpages; i++) { |
| /* Start Auto Decode Command */ |
| writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base)); |
| |
| /* Wait for Controller Ready */ |
| lpc32xx_waitfunc_controller(mtd, chip); |
| |
| /* Check ECC Error status */ |
| mlc_isr = readl(MLC_ISR(host->io_base)); |
| if (mlc_isr & MLCISR_DECODER_FAILURE) { |
| mtd->ecc_stats.failed++; |
| dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__); |
| } else if (mlc_isr & MLCISR_ERRORS_DETECTED) { |
| mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1; |
| } |
| |
| /* Read 512 + 16 Bytes */ |
| if (use_dma) { |
| res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, |
| DMA_DEV_TO_MEM); |
| if (res) |
| return res; |
| } else { |
| for (j = 0; j < (512 >> 2); j++) { |
| *((uint32_t *)(buf)) = |
| readl(MLC_BUFF(host->io_base)); |
| buf += 4; |
| } |
| } |
| for (j = 0; j < (16 >> 2); j++) { |
| *((uint32_t *)(oobbuf)) = |
| readl(MLC_BUFF(host->io_base)); |
| oobbuf += 4; |
| } |
| } |
| |
| if (use_dma && !dma_mapped) |
| memcpy(buf, dma_buf, mtd->writesize); |
| |
| return 0; |
| } |
| |
| static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf, int oob_required) |
| { |
| struct lpc32xx_nand_host *host = chip->priv; |
| const uint8_t *oobbuf = chip->oob_poi; |
| uint8_t *dma_buf = (uint8_t *)buf; |
| int res; |
| int i, j; |
| |
| if (use_dma && (void *)buf >= high_memory) { |
| dma_buf = host->dma_buf; |
| memcpy(dma_buf, buf, mtd->writesize); |
| } |
| |
| for (i = 0; i < host->mlcsubpages; i++) { |
| /* Start Encode */ |
| writeb(0x00, MLC_ECC_ENC_REG(host->io_base)); |
| |
| /* Write 512 + 6 Bytes to Buffer */ |
| if (use_dma) { |
| res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, |
| DMA_MEM_TO_DEV); |
| if (res) |
| return res; |
| } else { |
| for (j = 0; j < (512 >> 2); j++) { |
| writel(*((uint32_t *)(buf)), |
| MLC_BUFF(host->io_base)); |
| buf += 4; |
| } |
| } |
| writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base)); |
| oobbuf += 4; |
| writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base)); |
| oobbuf += 12; |
| |
| /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */ |
| writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base)); |
| |
| /* Wait for Controller Ready */ |
| lpc32xx_waitfunc_controller(mtd, chip); |
| } |
| return 0; |
| } |
| |
| static int lpc32xx_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint32_t offset, int data_len, const uint8_t *buf, |
| int oob_required, int page, int cached, int raw) |
| { |
| int res; |
| |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); |
| res = lpc32xx_write_page_lowlevel(mtd, chip, buf, oob_required); |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| lpc32xx_waitfunc(mtd, chip); |
| |
| return res; |
| } |
| |
| static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| struct lpc32xx_nand_host *host = chip->priv; |
| |
| /* Read whole page - necessary with MLC controller! */ |
| lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page); |
| |
| return 0; |
| } |
| |
| static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */ |
| return 0; |
| } |
| |
| /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */ |
| static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode) |
| { |
| /* Always enabled! */ |
| } |
| |
| static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host) |
| { |
| struct mtd_info *mtd = &host->mtd; |
| dma_cap_mask_t mask; |
| |
| if (!host->pdata || !host->pdata->dma_filter) { |
| dev_err(mtd->dev.parent, "no DMA platform data\n"); |
| return -ENOENT; |
| } |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, |
| "nand-mlc"); |
| if (!host->dma_chan) { |
| dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); |
| return -EBUSY; |
| } |
| |
| /* |
| * Set direction to a sensible value even if the dmaengine driver |
| * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x |
| * driver criticizes it as "alien transfer direction". |
| */ |
| host->dma_slave_config.direction = DMA_DEV_TO_MEM; |
| host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| host->dma_slave_config.src_maxburst = 128; |
| host->dma_slave_config.dst_maxburst = 128; |
| /* DMA controller does flow control: */ |
| host->dma_slave_config.device_fc = false; |
| host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy); |
| host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy); |
| if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { |
| dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); |
| goto out1; |
| } |
| |
| return 0; |
| out1: |
| dma_release_channel(host->dma_chan); |
| return -ENXIO; |
| } |
| |
| static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev) |
| { |
| struct lpc32xx_nand_cfg_mlc *ncfg; |
| struct device_node *np = dev->of_node; |
| |
| ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); |
| if (!ncfg) { |
| dev_err(dev, "could not allocate memory for platform data\n"); |
| return NULL; |
| } |
| |
| of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay); |
| of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay); |
| of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta); |
| of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high); |
| of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low); |
| of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high); |
| of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low); |
| |
| if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta || |
| !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high || |
| !ncfg->wr_low) { |
| dev_err(dev, "chip parameters not specified correctly\n"); |
| return NULL; |
| } |
| |
| ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); |
| |
| return ncfg; |
| } |
| |
| /* |
| * Probe for NAND controller |
| */ |
| static int lpc32xx_nand_probe(struct platform_device *pdev) |
| { |
| struct lpc32xx_nand_host *host; |
| struct mtd_info *mtd; |
| struct nand_chip *nand_chip; |
| struct resource *rc; |
| int res; |
| struct mtd_part_parser_data ppdata = {}; |
| |
| /* Allocate memory for the device structure (and zero it) */ |
| host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); |
| if (!host) { |
| dev_err(&pdev->dev, "failed to allocate device structure.\n"); |
| return -ENOMEM; |
| } |
| |
| rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| host->io_base = devm_ioremap_resource(&pdev->dev, rc); |
| if (IS_ERR(host->io_base)) |
| return PTR_ERR(host->io_base); |
| |
| host->io_base_phy = rc->start; |
| |
| mtd = &host->mtd; |
| nand_chip = &host->nand_chip; |
| if (pdev->dev.of_node) |
| host->ncfg = lpc32xx_parse_dt(&pdev->dev); |
| if (!host->ncfg) { |
| dev_err(&pdev->dev, |
| "Missing or bad NAND config from device tree\n"); |
| return -ENOENT; |
| } |
| if (host->ncfg->wp_gpio == -EPROBE_DEFER) |
| return -EPROBE_DEFER; |
| if (gpio_is_valid(host->ncfg->wp_gpio) && |
| gpio_request(host->ncfg->wp_gpio, "NAND WP")) { |
| dev_err(&pdev->dev, "GPIO not available\n"); |
| return -EBUSY; |
| } |
| lpc32xx_wp_disable(host); |
| |
| host->pdata = dev_get_platdata(&pdev->dev); |
| |
| nand_chip->priv = host; /* link the private data structures */ |
| mtd->priv = nand_chip; |
| mtd->owner = THIS_MODULE; |
| mtd->dev.parent = &pdev->dev; |
| |
| /* Get NAND clock */ |
| host->clk = clk_get(&pdev->dev, NULL); |
| if (IS_ERR(host->clk)) { |
| dev_err(&pdev->dev, "Clock initialization failure\n"); |
| res = -ENOENT; |
| goto err_exit1; |
| } |
| clk_enable(host->clk); |
| |
| nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; |
| nand_chip->dev_ready = lpc32xx_nand_device_ready; |
| nand_chip->chip_delay = 25; /* us */ |
| nand_chip->IO_ADDR_R = MLC_DATA(host->io_base); |
| nand_chip->IO_ADDR_W = MLC_DATA(host->io_base); |
| |
| /* Init NAND controller */ |
| lpc32xx_nand_setup(host); |
| |
| platform_set_drvdata(pdev, host); |
| |
| /* Initialize function pointers */ |
| nand_chip->ecc.hwctl = lpc32xx_ecc_enable; |
| nand_chip->ecc.read_page_raw = lpc32xx_read_page; |
| nand_chip->ecc.read_page = lpc32xx_read_page; |
| nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel; |
| nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel; |
| nand_chip->ecc.write_oob = lpc32xx_write_oob; |
| nand_chip->ecc.read_oob = lpc32xx_read_oob; |
| nand_chip->ecc.strength = 4; |
| nand_chip->write_page = lpc32xx_write_page; |
| nand_chip->waitfunc = lpc32xx_waitfunc; |
| |
| nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; |
| nand_chip->bbt_td = &lpc32xx_nand_bbt; |
| nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror; |
| |
| /* bitflip_threshold's default is defined as ecc_strength anyway. |
| * Unfortunately, it is set only later at add_mtd_device(). Meanwhile |
| * being 0, it causes bad block table scanning errors in |
| * nand_scan_tail(), so preparing it here. */ |
| mtd->bitflip_threshold = nand_chip->ecc.strength; |
| |
| if (use_dma) { |
| res = lpc32xx_dma_setup(host); |
| if (res) { |
| res = -EIO; |
| goto err_exit2; |
| } |
| } |
| |
| /* |
| * Scan to find existance of the device and |
| * Get the type of NAND device SMALL block or LARGE block |
| */ |
| if (nand_scan_ident(mtd, 1, NULL)) { |
| res = -ENXIO; |
| goto err_exit3; |
| } |
| |
| host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); |
| if (!host->dma_buf) { |
| dev_err(&pdev->dev, "Error allocating dma_buf memory\n"); |
| res = -ENOMEM; |
| goto err_exit3; |
| } |
| |
| host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); |
| if (!host->dummy_buf) { |
| dev_err(&pdev->dev, "Error allocating dummy_buf memory\n"); |
| res = -ENOMEM; |
| goto err_exit3; |
| } |
| |
| nand_chip->ecc.mode = NAND_ECC_HW; |
| nand_chip->ecc.size = mtd->writesize; |
| nand_chip->ecc.layout = &lpc32xx_nand_oob; |
| host->mlcsubpages = mtd->writesize / 512; |
| |
| /* initially clear interrupt status */ |
| readb(MLC_IRQ_SR(host->io_base)); |
| |
| init_completion(&host->comp_nand); |
| init_completion(&host->comp_controller); |
| |
| host->irq = platform_get_irq(pdev, 0); |
| if ((host->irq < 0) || (host->irq >= NR_IRQS)) { |
| dev_err(&pdev->dev, "failed to get platform irq\n"); |
| res = -EINVAL; |
| goto err_exit3; |
| } |
| |
| if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq, |
| IRQF_TRIGGER_HIGH, DRV_NAME, host)) { |
| dev_err(&pdev->dev, "Error requesting NAND IRQ\n"); |
| res = -ENXIO; |
| goto err_exit3; |
| } |
| |
| /* |
| * Fills out all the uninitialized function pointers with the defaults |
| * And scans for a bad block table if appropriate. |
| */ |
| if (nand_scan_tail(mtd)) { |
| res = -ENXIO; |
| goto err_exit4; |
| } |
| |
| mtd->name = DRV_NAME; |
| |
| ppdata.of_node = pdev->dev.of_node; |
| res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, |
| host->ncfg->num_parts); |
| if (!res) |
| return res; |
| |
| nand_release(mtd); |
| |
| err_exit4: |
| free_irq(host->irq, host); |
| err_exit3: |
| if (use_dma) |
| dma_release_channel(host->dma_chan); |
| err_exit2: |
| clk_disable(host->clk); |
| clk_put(host->clk); |
| err_exit1: |
| lpc32xx_wp_enable(host); |
| gpio_free(host->ncfg->wp_gpio); |
| |
| return res; |
| } |
| |
| /* |
| * Remove NAND device |
| */ |
| static int lpc32xx_nand_remove(struct platform_device *pdev) |
| { |
| struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); |
| struct mtd_info *mtd = &host->mtd; |
| |
| nand_release(mtd); |
| free_irq(host->irq, host); |
| if (use_dma) |
| dma_release_channel(host->dma_chan); |
| |
| clk_disable(host->clk); |
| clk_put(host->clk); |
| |
| lpc32xx_wp_enable(host); |
| gpio_free(host->ncfg->wp_gpio); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int lpc32xx_nand_resume(struct platform_device *pdev) |
| { |
| struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); |
| |
| /* Re-enable NAND clock */ |
| clk_enable(host->clk); |
| |
| /* Fresh init of NAND controller */ |
| lpc32xx_nand_setup(host); |
| |
| /* Disable write protect */ |
| lpc32xx_wp_disable(host); |
| |
| return 0; |
| } |
| |
| static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) |
| { |
| struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); |
| |
| /* Enable write protect for safety */ |
| lpc32xx_wp_enable(host); |
| |
| /* Disable clock */ |
| clk_disable(host->clk); |
| return 0; |
| } |
| |
| #else |
| #define lpc32xx_nand_resume NULL |
| #define lpc32xx_nand_suspend NULL |
| #endif |
| |
| static const struct of_device_id lpc32xx_nand_match[] = { |
| { .compatible = "nxp,lpc3220-mlc" }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); |
| |
| static struct platform_driver lpc32xx_nand_driver = { |
| .probe = lpc32xx_nand_probe, |
| .remove = lpc32xx_nand_remove, |
| .resume = lpc32xx_nand_resume, |
| .suspend = lpc32xx_nand_suspend, |
| .driver = { |
| .name = DRV_NAME, |
| .owner = THIS_MODULE, |
| .of_match_table = lpc32xx_nand_match, |
| }, |
| }; |
| |
| module_platform_driver(lpc32xx_nand_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); |
| MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller"); |