dmaengine: pxa: add pxa dmaengine driver

This is a new driver for pxa SoCs, which is also compatible with the former
mmp_pdma.

The rationale behind a new driver (as opposed to incremental patching) was :

 - the new driver relies on virt-dma, which obsoletes all the internal
   structures of mmp_pdma (sw_desc, hw_desc, ...), and by consequence all the
   functions

 - mmp_pdma allocates dma coherent descriptors containing not only hardware
   descriptors but linked list information
   The new driver only puts the dma hardware descriptors (ie. 4 u32) into the
   dma pool allocated memory. This changes completely the way descriptors are
   handled

 - the architecture behind the interrupt/tasklet management was rewritten to be
   more conforming to virt-dma

 - the buffers alignment is handled differently
   The former driver assumed that the DMA channel stopped between each
   descriptor. The new one chains descriptors to let the channel running. This
   is a necessary guarantee for real-time high bandwidth usecases such as video
   capture on "old" architectures such as pxa.

 - hot chaining / cold chaining / no chaining
   Whenever possible, submitting a descriptor "hot chains" it to a running
   channel. There is still no guarantee that the descriptor will be issued, as
   the channel might be stopped just before the descriptor is submitted. Yet
   this allows to submit several video buffers, and resubmit a buffer while
   another is under handling.
   As before, dma_async_issue_pending() is the only guarantee to have all the
   buffers issued.
   When an alignment issue is detected (ie. one address in a descriptor is not
   a multiple of 8), if the already running channel is in "aligned mode", the
   channel will stop, and restarted in "misaligned mode" to finished the issued
   list.

 - descriptors reusing
   A submitted, issued and completed descriptor can be reused, ie resubmitted if
   it was prepared with the proper flag (DMA_PREP_ACK).  Only a channel
   resources release will in this case release that buffer.
   This allows a rolling ring of buffers to be reused, where there are several
   thousands of hardware descriptors used (video buffer for example).

Additionally, a set of more casual features is introduced :
 - debugging traces
 - lockless way to know if a descriptor is terminated or not

The driver was tested on zylonite board (pxa3xx) and mioa701 (pxa27x),
with dmatest, pxa_camera and pxamci.

Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
diff --git a/include/linux/dma/pxa-dma.h b/include/linux/dma/pxa-dma.h
new file mode 100644
index 0000000..3edc992
--- /dev/null
+++ b/include/linux/dma/pxa-dma.h
@@ -0,0 +1,27 @@
+#ifndef _PXA_DMA_H_
+#define _PXA_DMA_H_
+
+enum pxad_chan_prio {
+	PXAD_PRIO_HIGHEST = 0,
+	PXAD_PRIO_NORMAL,
+	PXAD_PRIO_LOW,
+	PXAD_PRIO_LOWEST,
+};
+
+struct pxad_param {
+	unsigned int drcmr;
+	enum pxad_chan_prio prio;
+};
+
+struct dma_chan;
+
+#ifdef CONFIG_PXA_DMA
+bool pxad_filter_fn(struct dma_chan *chan, void *param);
+#else
+static inline bool pxad_filter_fn(struct dma_chan *chan, void *param)
+{
+	return false;
+}
+#endif
+
+#endif /* _PXA_DMA_H_ */