qlge: New Qlogic 10Gb Ethernet Driver.

Signed-off-by: Ron Mercer <ron.mercer@qlogic.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
diff --git a/Documentation/networking/LICENSE.qlge b/Documentation/networking/LICENSE.qlge
new file mode 100644
index 0000000..123b6ed
--- /dev/null
+++ b/Documentation/networking/LICENSE.qlge
@@ -0,0 +1,46 @@
+Copyright (c)  2003-2008 QLogic Corporation
+QLogic Linux Networking HBA Driver
+
+This program includes a device driver for Linux 2.6 that may be
+distributed with QLogic hardware specific firmware binary file.
+You may modify and redistribute the device driver code under the
+GNU General Public License as published by the Free Software
+Foundation (version 2 or a later version).
+
+You may redistribute the hardware specific firmware binary file
+under the following terms:
+
+	1. Redistribution of source code (only if applicable),
+	   must retain the above copyright notice, this list of
+	   conditions and the following disclaimer.
+
+	2. Redistribution in binary form must reproduce the above
+	   copyright notice, this list of conditions and the
+	   following disclaimer in the documentation and/or other
+	   materials provided with the distribution.
+
+	3. The name of QLogic Corporation may not be used to
+	   endorse or promote products derived from this software
+	   without specific prior written permission
+
+REGARDLESS OF WHAT LICENSING MECHANISM IS USED OR APPLICABLE,
+THIS PROGRAM IS PROVIDED BY QLOGIC CORPORATION "AS IS'' AND ANY
+EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
+BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
+TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+USER ACKNOWLEDGES AND AGREES THAT USE OF THIS PROGRAM WILL NOT
+CREATE OR GIVE GROUNDS FOR A LICENSE BY IMPLICATION, ESTOPPEL, OR
+OTHERWISE IN ANY INTELLECTUAL PROPERTY RIGHTS (PATENT, COPYRIGHT,
+TRADE SECRET, MASK WORK, OR OTHER PROPRIETARY RIGHT) EMBODIED IN
+ANY OTHER QLOGIC HARDWARE OR SOFTWARE EITHER SOLELY OR IN
+COMBINATION WITH THIS PROGRAM.
+
diff --git a/MAINTAINERS b/MAINTAINERS
index c8203d7..106684e 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -3396,6 +3396,13 @@
 L:	netdev@vger.kernel.org
 S:	Supported
 
+QLOGIC QLGE 10Gb ETHERNET DRIVER
+P:	Ron Mercer
+M:	linux-driver@qlogic.com
+M:	ron.mercer@qlogic.com
+L:	netdev@vger.kernel.org
+S:	Supported
+
 QNX4 FILESYSTEM
 P:	Anders Larsen
 M:	al@alarsen.net
diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig
index 069755a..69c81da 100644
--- a/drivers/net/Kconfig
+++ b/drivers/net/Kconfig
@@ -2526,6 +2526,15 @@
 	  To compile this driver as a module, choose M here: the module
 	  will be called bnx2x.  This is recommended.
 
+config QLGE
+	tristate "QLogic QLGE 10Gb Ethernet Driver Support"
+	depends on PCI
+	help
+	  This driver supports QLogic ISP8XXX 10Gb Ethernet cards.
+
+	  To compile this driver as a module, choose M here: the module
+	  will be called qlge.
+
 source "drivers/net/sfc/Kconfig"
 
 endif # NETDEV_10000
diff --git a/drivers/net/Makefile b/drivers/net/Makefile
index 016e23f..fa2510b 100644
--- a/drivers/net/Makefile
+++ b/drivers/net/Makefile
@@ -131,6 +131,7 @@
 obj-$(CONFIG_TSI108_ETH) += tsi108_eth.o
 obj-$(CONFIG_MV643XX_ETH) += mv643xx_eth.o
 obj-$(CONFIG_QLA3XXX) += qla3xxx.o
+obj-$(CONFIG_QLGE) += qlge/
 
 obj-$(CONFIG_PPP) += ppp_generic.o
 obj-$(CONFIG_PPP_ASYNC) += ppp_async.o
diff --git a/drivers/net/qlge/Makefile b/drivers/net/qlge/Makefile
new file mode 100644
index 0000000..8a19765
--- /dev/null
+++ b/drivers/net/qlge/Makefile
@@ -0,0 +1,7 @@
+#
+# Makefile for the Qlogic 10GbE PCI Express ethernet driver
+#
+
+obj-$(CONFIG_QLGE) += qlge.o
+
+qlge-objs := qlge_main.o qlge_dbg.o qlge_mpi.o qlge_ethtool.o
diff --git a/drivers/net/qlge/qlge.h b/drivers/net/qlge/qlge.h
new file mode 100644
index 0000000..c37ea43
--- /dev/null
+++ b/drivers/net/qlge/qlge.h
@@ -0,0 +1,1593 @@
+/*
+ * QLogic QLA41xx NIC HBA Driver
+ * Copyright (c)  2003-2006 QLogic Corporation
+ *
+ * See LICENSE.qlge for copyright and licensing details.
+ */
+#ifndef _QLGE_H_
+#define _QLGE_H_
+
+#include <linux/pci.h>
+#include <linux/netdevice.h>
+
+/*
+ * General definitions...
+ */
+#define DRV_NAME  	"qlge"
+#define DRV_STRING 	"QLogic 10 Gigabit PCI-E Ethernet Driver "
+#define DRV_VERSION	"v1.00.00-b3"
+
+#define PFX "qlge: "
+#define QPRINTK(qdev, nlevel, klevel, fmt, args...)     \
+       do {       \
+	if (!((qdev)->msg_enable & NETIF_MSG_##nlevel))		\
+		;						\
+	else							\
+		dev_printk(KERN_##klevel, &((qdev)->pdev->dev),	\
+			   "%s: " fmt, __func__, ##args);  \
+       } while (0)
+
+#define QLGE_VENDOR_ID    0x1077
+#define QLGE_DEVICE_ID1    0x8012
+#define QLGE_DEVICE_ID   0x8000
+
+#define MAX_RX_RINGS 128
+#define MAX_TX_RINGS 128
+
+#define NUM_TX_RING_ENTRIES	256
+#define NUM_RX_RING_ENTRIES	256
+
+#define NUM_SMALL_BUFFERS   512
+#define NUM_LARGE_BUFFERS   512
+
+#define SMALL_BUFFER_SIZE 256
+#define LARGE_BUFFER_SIZE	PAGE_SIZE
+#define MAX_SPLIT_SIZE 1023
+#define QLGE_SB_PAD 32
+
+#define DFLT_COALESCE_WAIT 100	/* 100 usec wait for coalescing */
+#define MAX_INTER_FRAME_WAIT 10	/* 10 usec max interframe-wait for coalescing */
+#define DFLT_INTER_FRAME_WAIT (MAX_INTER_FRAME_WAIT/2)
+#define UDELAY_COUNT 3
+#define UDELAY_DELAY 10
+
+
+#define TX_DESC_PER_IOCB 8
+/* The maximum number of frags we handle is based
+ * on PAGE_SIZE...
+ */
+#if (PAGE_SHIFT == 12) || (PAGE_SHIFT == 13)	/* 4k & 8k pages */
+#define TX_DESC_PER_OAL ((MAX_SKB_FRAGS - TX_DESC_PER_IOCB) + 2)
+#elif (PAGE_SHIFT == 16)	/* 64k pages */
+#define TX_DESC_PER_OAL 0
+#endif
+
+#define DB_PAGE_SIZE 4096
+
+/*
+ * Processor Address Register (PROC_ADDR) bit definitions.
+ */
+enum {
+
+	/* Misc. stuff */
+	MAILBOX_COUNT = 16,
+
+	PROC_ADDR_RDY = (1 << 31),
+	PROC_ADDR_R = (1 << 30),
+	PROC_ADDR_ERR = (1 << 29),
+	PROC_ADDR_DA = (1 << 28),
+	PROC_ADDR_FUNC0_MBI = 0x00001180,
+	PROC_ADDR_FUNC0_MBO = (PROC_ADDR_FUNC0_MBI + MAILBOX_COUNT),
+	PROC_ADDR_FUNC0_CTL = 0x000011a1,
+	PROC_ADDR_FUNC2_MBI = 0x00001280,
+	PROC_ADDR_FUNC2_MBO = (PROC_ADDR_FUNC2_MBI + MAILBOX_COUNT),
+	PROC_ADDR_FUNC2_CTL = 0x000012a1,
+	PROC_ADDR_MPI_RISC = 0x00000000,
+	PROC_ADDR_MDE = 0x00010000,
+	PROC_ADDR_REGBLOCK = 0x00020000,
+	PROC_ADDR_RISC_REG = 0x00030000,
+};
+
+/*
+ * System Register (SYS) bit definitions.
+ */
+enum {
+	SYS_EFE = (1 << 0),
+	SYS_FAE = (1 << 1),
+	SYS_MDC = (1 << 2),
+	SYS_DST = (1 << 3),
+	SYS_DWC = (1 << 4),
+	SYS_EVW = (1 << 5),
+	SYS_OMP_DLY_MASK = 0x3f000000,
+	/*
+	 * There are no values defined as of edit #15.
+	 */
+	SYS_ODI = (1 << 14),
+};
+
+/*
+ *  Reset/Failover Register (RST_FO) bit definitions.
+ */
+enum {
+	RST_FO_TFO = (1 << 0),
+	RST_FO_RR_MASK = 0x00060000,
+	RST_FO_RR_CQ_CAM = 0x00000000,
+	RST_FO_RR_DROP = 0x00000001,
+	RST_FO_RR_DQ = 0x00000002,
+	RST_FO_RR_RCV_FUNC_CQ = 0x00000003,
+	RST_FO_FRB = (1 << 12),
+	RST_FO_MOP = (1 << 13),
+	RST_FO_REG = (1 << 14),
+	RST_FO_FR = (1 << 15),
+};
+
+/*
+ * Function Specific Control Register (FSC) bit definitions.
+ */
+enum {
+	FSC_DBRST_MASK = 0x00070000,
+	FSC_DBRST_256 = 0x00000000,
+	FSC_DBRST_512 = 0x00000001,
+	FSC_DBRST_768 = 0x00000002,
+	FSC_DBRST_1024 = 0x00000003,
+	FSC_DBL_MASK = 0x00180000,
+	FSC_DBL_DBRST = 0x00000000,
+	FSC_DBL_MAX_PLD = 0x00000008,
+	FSC_DBL_MAX_BRST = 0x00000010,
+	FSC_DBL_128_BYTES = 0x00000018,
+	FSC_EC = (1 << 5),
+	FSC_EPC_MASK = 0x00c00000,
+	FSC_EPC_INBOUND = (1 << 6),
+	FSC_EPC_OUTBOUND = (1 << 7),
+	FSC_VM_PAGESIZE_MASK = 0x07000000,
+	FSC_VM_PAGE_2K = 0x00000100,
+	FSC_VM_PAGE_4K = 0x00000200,
+	FSC_VM_PAGE_8K = 0x00000300,
+	FSC_VM_PAGE_64K = 0x00000600,
+	FSC_SH = (1 << 11),
+	FSC_DSB = (1 << 12),
+	FSC_STE = (1 << 13),
+	FSC_FE = (1 << 15),
+};
+
+/*
+ *  Host Command Status Register (CSR) bit definitions.
+ */
+enum {
+	CSR_ERR_STS_MASK = 0x0000003f,
+	/*
+	 * There are no valued defined as of edit #15.
+	 */
+	CSR_RR = (1 << 8),
+	CSR_HRI = (1 << 9),
+	CSR_RP = (1 << 10),
+	CSR_CMD_PARM_SHIFT = 22,
+	CSR_CMD_NOP = 0x00000000,
+	CSR_CMD_SET_RST = 0x1000000,
+	CSR_CMD_CLR_RST = 0x20000000,
+	CSR_CMD_SET_PAUSE = 0x30000000,
+	CSR_CMD_CLR_PAUSE = 0x40000000,
+	CSR_CMD_SET_H2R_INT = 0x50000000,
+	CSR_CMD_CLR_H2R_INT = 0x60000000,
+	CSR_CMD_PAR_EN = 0x70000000,
+	CSR_CMD_SET_BAD_PAR = 0x80000000,
+	CSR_CMD_CLR_BAD_PAR = 0x90000000,
+	CSR_CMD_CLR_R2PCI_INT = 0xa0000000,
+};
+
+/*
+ *  Configuration Register (CFG) bit definitions.
+ */
+enum {
+	CFG_LRQ = (1 << 0),
+	CFG_DRQ = (1 << 1),
+	CFG_LR = (1 << 2),
+	CFG_DR = (1 << 3),
+	CFG_LE = (1 << 5),
+	CFG_LCQ = (1 << 6),
+	CFG_DCQ = (1 << 7),
+	CFG_Q_SHIFT = 8,
+	CFG_Q_MASK = 0x7f000000,
+};
+
+/*
+ *  Status Register (STS) bit definitions.
+ */
+enum {
+	STS_FE = (1 << 0),
+	STS_PI = (1 << 1),
+	STS_PL0 = (1 << 2),
+	STS_PL1 = (1 << 3),
+	STS_PI0 = (1 << 4),
+	STS_PI1 = (1 << 5),
+	STS_FUNC_ID_MASK = 0x000000c0,
+	STS_FUNC_ID_SHIFT = 6,
+	STS_F0E = (1 << 8),
+	STS_F1E = (1 << 9),
+	STS_F2E = (1 << 10),
+	STS_F3E = (1 << 11),
+	STS_NFE = (1 << 12),
+};
+
+/*
+ * Interrupt Enable Register (INTR_EN) bit definitions.
+ */
+enum {
+	INTR_EN_INTR_MASK = 0x007f0000,
+	INTR_EN_TYPE_MASK = 0x03000000,
+	INTR_EN_TYPE_ENABLE = 0x00000100,
+	INTR_EN_TYPE_DISABLE = 0x00000200,
+	INTR_EN_TYPE_READ = 0x00000300,
+	INTR_EN_IHD = (1 << 13),
+	INTR_EN_IHD_MASK = (INTR_EN_IHD << 16),
+	INTR_EN_EI = (1 << 14),
+	INTR_EN_EN = (1 << 15),
+};
+
+/*
+ * Interrupt Mask Register (INTR_MASK) bit definitions.
+ */
+enum {
+	INTR_MASK_PI = (1 << 0),
+	INTR_MASK_HL0 = (1 << 1),
+	INTR_MASK_LH0 = (1 << 2),
+	INTR_MASK_HL1 = (1 << 3),
+	INTR_MASK_LH1 = (1 << 4),
+	INTR_MASK_SE = (1 << 5),
+	INTR_MASK_LSC = (1 << 6),
+	INTR_MASK_MC = (1 << 7),
+	INTR_MASK_LINK_IRQS = INTR_MASK_LSC | INTR_MASK_SE | INTR_MASK_MC,
+};
+
+/*
+ *  Register (REV_ID) bit definitions.
+ */
+enum {
+	REV_ID_MASK = 0x0000000f,
+	REV_ID_NICROLL_SHIFT = 0,
+	REV_ID_NICREV_SHIFT = 4,
+	REV_ID_XGROLL_SHIFT = 8,
+	REV_ID_XGREV_SHIFT = 12,
+	REV_ID_CHIPREV_SHIFT = 28,
+};
+
+/*
+ *  Force ECC Error Register (FRC_ECC_ERR) bit definitions.
+ */
+enum {
+	FRC_ECC_ERR_VW = (1 << 12),
+	FRC_ECC_ERR_VB = (1 << 13),
+	FRC_ECC_ERR_NI = (1 << 14),
+	FRC_ECC_ERR_NO = (1 << 15),
+	FRC_ECC_PFE_SHIFT = 16,
+	FRC_ECC_ERR_DO = (1 << 18),
+	FRC_ECC_P14 = (1 << 19),
+};
+
+/*
+ *  Error Status Register (ERR_STS) bit definitions.
+ */
+enum {
+	ERR_STS_NOF = (1 << 0),
+	ERR_STS_NIF = (1 << 1),
+	ERR_STS_DRP = (1 << 2),
+	ERR_STS_XGP = (1 << 3),
+	ERR_STS_FOU = (1 << 4),
+	ERR_STS_FOC = (1 << 5),
+	ERR_STS_FOF = (1 << 6),
+	ERR_STS_FIU = (1 << 7),
+	ERR_STS_FIC = (1 << 8),
+	ERR_STS_FIF = (1 << 9),
+	ERR_STS_MOF = (1 << 10),
+	ERR_STS_TA = (1 << 11),
+	ERR_STS_MA = (1 << 12),
+	ERR_STS_MPE = (1 << 13),
+	ERR_STS_SCE = (1 << 14),
+	ERR_STS_STE = (1 << 15),
+	ERR_STS_FOW = (1 << 16),
+	ERR_STS_UE = (1 << 17),
+	ERR_STS_MCH = (1 << 26),
+	ERR_STS_LOC_SHIFT = 27,
+};
+
+/*
+ *  RAM Debug Address Register (RAM_DBG_ADDR) bit definitions.
+ */
+enum {
+	RAM_DBG_ADDR_FW = (1 << 30),
+	RAM_DBG_ADDR_FR = (1 << 31),
+};
+
+/*
+ * Semaphore Register (SEM) bit definitions.
+ */
+enum {
+	/*
+	 * Example:
+	 * reg = SEM_XGMAC0_MASK | (SEM_SET << SEM_XGMAC0_SHIFT)
+	 */
+	SEM_CLEAR = 0,
+	SEM_SET = 1,
+	SEM_FORCE = 3,
+	SEM_XGMAC0_SHIFT = 0,
+	SEM_XGMAC1_SHIFT = 2,
+	SEM_ICB_SHIFT = 4,
+	SEM_MAC_ADDR_SHIFT = 6,
+	SEM_FLASH_SHIFT = 8,
+	SEM_PROBE_SHIFT = 10,
+	SEM_RT_IDX_SHIFT = 12,
+	SEM_PROC_REG_SHIFT = 14,
+	SEM_XGMAC0_MASK = 0x00030000,
+	SEM_XGMAC1_MASK = 0x000c0000,
+	SEM_ICB_MASK = 0x00300000,
+	SEM_MAC_ADDR_MASK = 0x00c00000,
+	SEM_FLASH_MASK = 0x03000000,
+	SEM_PROBE_MASK = 0x0c000000,
+	SEM_RT_IDX_MASK = 0x30000000,
+	SEM_PROC_REG_MASK = 0xc0000000,
+};
+
+/*
+ *  10G MAC Address  Register (XGMAC_ADDR) bit definitions.
+ */
+enum {
+	XGMAC_ADDR_RDY = (1 << 31),
+	XGMAC_ADDR_R = (1 << 30),
+	XGMAC_ADDR_XME = (1 << 29),
+
+	/* XGMAC control registers */
+	PAUSE_SRC_LO = 0x00000100,
+	PAUSE_SRC_HI = 0x00000104,
+	GLOBAL_CFG = 0x00000108,
+	GLOBAL_CFG_RESET = (1 << 0),
+	GLOBAL_CFG_JUMBO = (1 << 6),
+	GLOBAL_CFG_TX_STAT_EN = (1 << 10),
+	GLOBAL_CFG_RX_STAT_EN = (1 << 11),
+	TX_CFG = 0x0000010c,
+	TX_CFG_RESET = (1 << 0),
+	TX_CFG_EN = (1 << 1),
+	TX_CFG_PREAM = (1 << 2),
+	RX_CFG = 0x00000110,
+	RX_CFG_RESET = (1 << 0),
+	RX_CFG_EN = (1 << 1),
+	RX_CFG_PREAM = (1 << 2),
+	FLOW_CTL = 0x0000011c,
+	PAUSE_OPCODE = 0x00000120,
+	PAUSE_TIMER = 0x00000124,
+	PAUSE_FRM_DEST_LO = 0x00000128,
+	PAUSE_FRM_DEST_HI = 0x0000012c,
+	MAC_TX_PARAMS = 0x00000134,
+	MAC_TX_PARAMS_JUMBO = (1 << 31),
+	MAC_TX_PARAMS_SIZE_SHIFT = 16,
+	MAC_RX_PARAMS = 0x00000138,
+	MAC_SYS_INT = 0x00000144,
+	MAC_SYS_INT_MASK = 0x00000148,
+	MAC_MGMT_INT = 0x0000014c,
+	MAC_MGMT_IN_MASK = 0x00000150,
+	EXT_ARB_MODE = 0x000001fc,
+
+	/* XGMAC TX statistics  registers */
+	TX_PKTS = 0x00000200,
+	TX_BYTES = 0x00000208,
+	TX_MCAST_PKTS = 0x00000210,
+	TX_BCAST_PKTS = 0x00000218,
+	TX_UCAST_PKTS = 0x00000220,
+	TX_CTL_PKTS = 0x00000228,
+	TX_PAUSE_PKTS = 0x00000230,
+	TX_64_PKT = 0x00000238,
+	TX_65_TO_127_PKT = 0x00000240,
+	TX_128_TO_255_PKT = 0x00000248,
+	TX_256_511_PKT = 0x00000250,
+	TX_512_TO_1023_PKT = 0x00000258,
+	TX_1024_TO_1518_PKT = 0x00000260,
+	TX_1519_TO_MAX_PKT = 0x00000268,
+	TX_UNDERSIZE_PKT = 0x00000270,
+	TX_OVERSIZE_PKT = 0x00000278,
+
+	/* XGMAC statistics control registers */
+	RX_HALF_FULL_DET = 0x000002a0,
+	TX_HALF_FULL_DET = 0x000002a4,
+	RX_OVERFLOW_DET = 0x000002a8,
+	TX_OVERFLOW_DET = 0x000002ac,
+	RX_HALF_FULL_MASK = 0x000002b0,
+	TX_HALF_FULL_MASK = 0x000002b4,
+	RX_OVERFLOW_MASK = 0x000002b8,
+	TX_OVERFLOW_MASK = 0x000002bc,
+	STAT_CNT_CTL = 0x000002c0,
+	STAT_CNT_CTL_CLEAR_TX = (1 << 0),
+	STAT_CNT_CTL_CLEAR_RX = (1 << 1),
+	AUX_RX_HALF_FULL_DET = 0x000002d0,
+	AUX_TX_HALF_FULL_DET = 0x000002d4,
+	AUX_RX_OVERFLOW_DET = 0x000002d8,
+	AUX_TX_OVERFLOW_DET = 0x000002dc,
+	AUX_RX_HALF_FULL_MASK = 0x000002f0,
+	AUX_TX_HALF_FULL_MASK = 0x000002f4,
+	AUX_RX_OVERFLOW_MASK = 0x000002f8,
+	AUX_TX_OVERFLOW_MASK = 0x000002fc,
+
+	/* XGMAC RX statistics  registers */
+	RX_BYTES = 0x00000300,
+	RX_BYTES_OK = 0x00000308,
+	RX_PKTS = 0x00000310,
+	RX_PKTS_OK = 0x00000318,
+	RX_BCAST_PKTS = 0x00000320,
+	RX_MCAST_PKTS = 0x00000328,
+	RX_UCAST_PKTS = 0x00000330,
+	RX_UNDERSIZE_PKTS = 0x00000338,
+	RX_OVERSIZE_PKTS = 0x00000340,
+	RX_JABBER_PKTS = 0x00000348,
+	RX_UNDERSIZE_FCERR_PKTS = 0x00000350,
+	RX_DROP_EVENTS = 0x00000358,
+	RX_FCERR_PKTS = 0x00000360,
+	RX_ALIGN_ERR = 0x00000368,
+	RX_SYMBOL_ERR = 0x00000370,
+	RX_MAC_ERR = 0x00000378,
+	RX_CTL_PKTS = 0x00000380,
+	RX_PAUSE_PKTS = 0x00000384,
+	RX_64_PKTS = 0x00000390,
+	RX_65_TO_127_PKTS = 0x00000398,
+	RX_128_255_PKTS = 0x000003a0,
+	RX_256_511_PKTS = 0x000003a8,
+	RX_512_TO_1023_PKTS = 0x000003b0,
+	RX_1024_TO_1518_PKTS = 0x000003b8,
+	RX_1519_TO_MAX_PKTS = 0x000003c0,
+	RX_LEN_ERR_PKTS = 0x000003c8,
+
+	/* XGMAC MDIO control registers */
+	MDIO_TX_DATA = 0x00000400,
+	MDIO_RX_DATA = 0x00000410,
+	MDIO_CMD = 0x00000420,
+	MDIO_PHY_ADDR = 0x00000430,
+	MDIO_PORT = 0x00000440,
+	MDIO_STATUS = 0x00000450,
+
+	/* XGMAC AUX statistics  registers */
+};
+
+/*
+ *  Enhanced Transmission Schedule Registers (NIC_ETS,CNA_ETS) bit definitions.
+ */
+enum {
+	ETS_QUEUE_SHIFT = 29,
+	ETS_REF = (1 << 26),
+	ETS_RS = (1 << 27),
+	ETS_P = (1 << 28),
+	ETS_FC_COS_SHIFT = 23,
+};
+
+/*
+ *  Flash Address Register (FLASH_ADDR) bit definitions.
+ */
+enum {
+	FLASH_ADDR_RDY = (1 << 31),
+	FLASH_ADDR_R = (1 << 30),
+	FLASH_ADDR_ERR = (1 << 29),
+};
+
+/*
+ *  Stop CQ Processing Register (CQ_STOP) bit definitions.
+ */
+enum {
+	CQ_STOP_QUEUE_MASK = (0x007f0000),
+	CQ_STOP_TYPE_MASK = (0x03000000),
+	CQ_STOP_TYPE_START = 0x00000100,
+	CQ_STOP_TYPE_STOP = 0x00000200,
+	CQ_STOP_TYPE_READ = 0x00000300,
+	CQ_STOP_EN = (1 << 15),
+};
+
+/*
+ *  MAC Protocol Address Index Register (MAC_ADDR_IDX) bit definitions.
+ */
+enum {
+	MAC_ADDR_IDX_SHIFT = 4,
+	MAC_ADDR_TYPE_SHIFT = 16,
+	MAC_ADDR_TYPE_MASK = 0x000f0000,
+	MAC_ADDR_TYPE_CAM_MAC = 0x00000000,
+	MAC_ADDR_TYPE_MULTI_MAC = 0x00010000,
+	MAC_ADDR_TYPE_VLAN = 0x00020000,
+	MAC_ADDR_TYPE_MULTI_FLTR = 0x00030000,
+	MAC_ADDR_TYPE_FC_MAC = 0x00040000,
+	MAC_ADDR_TYPE_MGMT_MAC = 0x00050000,
+	MAC_ADDR_TYPE_MGMT_VLAN = 0x00060000,
+	MAC_ADDR_TYPE_MGMT_V4 = 0x00070000,
+	MAC_ADDR_TYPE_MGMT_V6 = 0x00080000,
+	MAC_ADDR_TYPE_MGMT_TU_DP = 0x00090000,
+	MAC_ADDR_ADR = (1 << 25),
+	MAC_ADDR_RS = (1 << 26),
+	MAC_ADDR_E = (1 << 27),
+	MAC_ADDR_MR = (1 << 30),
+	MAC_ADDR_MW = (1 << 31),
+	MAX_MULTICAST_ENTRIES = 32,
+};
+
+/*
+ *  MAC Protocol Address Index Register (SPLT_HDR) bit definitions.
+ */
+enum {
+	SPLT_HDR_EP = (1 << 31),
+};
+
+/*
+ *  FCoE Receive Configuration Register (FC_RCV_CFG) bit definitions.
+ */
+enum {
+	FC_RCV_CFG_ECT = (1 << 15),
+	FC_RCV_CFG_DFH = (1 << 20),
+	FC_RCV_CFG_DVF = (1 << 21),
+	FC_RCV_CFG_RCE = (1 << 27),
+	FC_RCV_CFG_RFE = (1 << 28),
+	FC_RCV_CFG_TEE = (1 << 29),
+	FC_RCV_CFG_TCE = (1 << 30),
+	FC_RCV_CFG_TFE = (1 << 31),
+};
+
+/*
+ *  NIC Receive Configuration Register (NIC_RCV_CFG) bit definitions.
+ */
+enum {
+	NIC_RCV_CFG_PPE = (1 << 0),
+	NIC_RCV_CFG_VLAN_MASK = 0x00060000,
+	NIC_RCV_CFG_VLAN_ALL = 0x00000000,
+	NIC_RCV_CFG_VLAN_MATCH_ONLY = 0x00000002,
+	NIC_RCV_CFG_VLAN_MATCH_AND_NON = 0x00000004,
+	NIC_RCV_CFG_VLAN_NONE_AND_NON = 0x00000006,
+	NIC_RCV_CFG_RV = (1 << 3),
+	NIC_RCV_CFG_DFQ_MASK = (0x7f000000),
+	NIC_RCV_CFG_DFQ_SHIFT = 8,
+	NIC_RCV_CFG_DFQ = 0,	/* HARDCODE default queue to 0. */
+};
+
+/*
+ *   Mgmt Receive Configuration Register (MGMT_RCV_CFG) bit definitions.
+ */
+enum {
+	MGMT_RCV_CFG_ARP = (1 << 0),
+	MGMT_RCV_CFG_DHC = (1 << 1),
+	MGMT_RCV_CFG_DHS = (1 << 2),
+	MGMT_RCV_CFG_NP = (1 << 3),
+	MGMT_RCV_CFG_I6N = (1 << 4),
+	MGMT_RCV_CFG_I6R = (1 << 5),
+	MGMT_RCV_CFG_DH6 = (1 << 6),
+	MGMT_RCV_CFG_UD1 = (1 << 7),
+	MGMT_RCV_CFG_UD0 = (1 << 8),
+	MGMT_RCV_CFG_BCT = (1 << 9),
+	MGMT_RCV_CFG_MCT = (1 << 10),
+	MGMT_RCV_CFG_DM = (1 << 11),
+	MGMT_RCV_CFG_RM = (1 << 12),
+	MGMT_RCV_CFG_STL = (1 << 13),
+	MGMT_RCV_CFG_VLAN_MASK = 0xc0000000,
+	MGMT_RCV_CFG_VLAN_ALL = 0x00000000,
+	MGMT_RCV_CFG_VLAN_MATCH_ONLY = 0x00004000,
+	MGMT_RCV_CFG_VLAN_MATCH_AND_NON = 0x00008000,
+	MGMT_RCV_CFG_VLAN_NONE_AND_NON = 0x0000c000,
+};
+
+/*
+ *  Routing Index Register (RT_IDX) bit definitions.
+ */
+enum {
+	RT_IDX_IDX_SHIFT = 8,
+	RT_IDX_TYPE_MASK = 0x000f0000,
+	RT_IDX_TYPE_RT = 0x00000000,
+	RT_IDX_TYPE_RT_INV = 0x00010000,
+	RT_IDX_TYPE_NICQ = 0x00020000,
+	RT_IDX_TYPE_NICQ_INV = 0x00030000,
+	RT_IDX_DST_MASK = 0x00700000,
+	RT_IDX_DST_RSS = 0x00000000,
+	RT_IDX_DST_CAM_Q = 0x00100000,
+	RT_IDX_DST_COS_Q = 0x00200000,
+	RT_IDX_DST_DFLT_Q = 0x00300000,
+	RT_IDX_DST_DEST_Q = 0x00400000,
+	RT_IDX_RS = (1 << 26),
+	RT_IDX_E = (1 << 27),
+	RT_IDX_MR = (1 << 30),
+	RT_IDX_MW = (1 << 31),
+
+	/* Nic Queue format - type 2 bits */
+	RT_IDX_BCAST = (1 << 0),
+	RT_IDX_MCAST = (1 << 1),
+	RT_IDX_MCAST_MATCH = (1 << 2),
+	RT_IDX_MCAST_REG_MATCH = (1 << 3),
+	RT_IDX_MCAST_HASH_MATCH = (1 << 4),
+	RT_IDX_FC_MACH = (1 << 5),
+	RT_IDX_ETH_FCOE = (1 << 6),
+	RT_IDX_CAM_HIT = (1 << 7),
+	RT_IDX_CAM_BIT0 = (1 << 8),
+	RT_IDX_CAM_BIT1 = (1 << 9),
+	RT_IDX_VLAN_TAG = (1 << 10),
+	RT_IDX_VLAN_MATCH = (1 << 11),
+	RT_IDX_VLAN_FILTER = (1 << 12),
+	RT_IDX_ETH_SKIP1 = (1 << 13),
+	RT_IDX_ETH_SKIP2 = (1 << 14),
+	RT_IDX_BCAST_MCAST_MATCH = (1 << 15),
+	RT_IDX_802_3 = (1 << 16),
+	RT_IDX_LLDP = (1 << 17),
+	RT_IDX_UNUSED018 = (1 << 18),
+	RT_IDX_UNUSED019 = (1 << 19),
+	RT_IDX_UNUSED20 = (1 << 20),
+	RT_IDX_UNUSED21 = (1 << 21),
+	RT_IDX_ERR = (1 << 22),
+	RT_IDX_VALID = (1 << 23),
+	RT_IDX_TU_CSUM_ERR = (1 << 24),
+	RT_IDX_IP_CSUM_ERR = (1 << 25),
+	RT_IDX_MAC_ERR = (1 << 26),
+	RT_IDX_RSS_TCP6 = (1 << 27),
+	RT_IDX_RSS_TCP4 = (1 << 28),
+	RT_IDX_RSS_IPV6 = (1 << 29),
+	RT_IDX_RSS_IPV4 = (1 << 30),
+	RT_IDX_RSS_MATCH = (1 << 31),
+
+	/* Hierarchy for the NIC Queue Mask */
+	RT_IDX_ALL_ERR_SLOT = 0,
+	RT_IDX_MAC_ERR_SLOT = 0,
+	RT_IDX_IP_CSUM_ERR_SLOT = 1,
+	RT_IDX_TCP_UDP_CSUM_ERR_SLOT = 2,
+	RT_IDX_BCAST_SLOT = 3,
+	RT_IDX_MCAST_MATCH_SLOT = 4,
+	RT_IDX_ALLMULTI_SLOT = 5,
+	RT_IDX_UNUSED6_SLOT = 6,
+	RT_IDX_UNUSED7_SLOT = 7,
+	RT_IDX_RSS_MATCH_SLOT = 8,
+	RT_IDX_RSS_IPV4_SLOT = 8,
+	RT_IDX_RSS_IPV6_SLOT = 9,
+	RT_IDX_RSS_TCP4_SLOT = 10,
+	RT_IDX_RSS_TCP6_SLOT = 11,
+	RT_IDX_CAM_HIT_SLOT = 12,
+	RT_IDX_UNUSED013 = 13,
+	RT_IDX_UNUSED014 = 14,
+	RT_IDX_PROMISCUOUS_SLOT = 15,
+	RT_IDX_MAX_SLOTS = 16,
+};
+
+/*
+ * Control Register Set Map
+ */
+enum {
+	PROC_ADDR = 0,		/* Use semaphore */
+	PROC_DATA = 0x04,	/* Use semaphore */
+	SYS = 0x08,
+	RST_FO = 0x0c,
+	FSC = 0x10,
+	CSR = 0x14,
+	LED = 0x18,
+	ICB_RID = 0x1c,		/* Use semaphore */
+	ICB_L = 0x20,		/* Use semaphore */
+	ICB_H = 0x24,		/* Use semaphore */
+	CFG = 0x28,
+	BIOS_ADDR = 0x2c,
+	STS = 0x30,
+	INTR_EN = 0x34,
+	INTR_MASK = 0x38,
+	ISR1 = 0x3c,
+	ISR2 = 0x40,
+	ISR3 = 0x44,
+	ISR4 = 0x48,
+	REV_ID = 0x4c,
+	FRC_ECC_ERR = 0x50,
+	ERR_STS = 0x54,
+	RAM_DBG_ADDR = 0x58,
+	RAM_DBG_DATA = 0x5c,
+	ECC_ERR_CNT = 0x60,
+	SEM = 0x64,
+	GPIO_1 = 0x68,		/* Use semaphore */
+	GPIO_2 = 0x6c,		/* Use semaphore */
+	GPIO_3 = 0x70,		/* Use semaphore */
+	RSVD2 = 0x74,
+	XGMAC_ADDR = 0x78,	/* Use semaphore */
+	XGMAC_DATA = 0x7c,	/* Use semaphore */
+	NIC_ETS = 0x80,
+	CNA_ETS = 0x84,
+	FLASH_ADDR = 0x88,	/* Use semaphore */
+	FLASH_DATA = 0x8c,	/* Use semaphore */
+	CQ_STOP = 0x90,
+	PAGE_TBL_RID = 0x94,
+	WQ_PAGE_TBL_LO = 0x98,
+	WQ_PAGE_TBL_HI = 0x9c,
+	CQ_PAGE_TBL_LO = 0xa0,
+	CQ_PAGE_TBL_HI = 0xa4,
+	MAC_ADDR_IDX = 0xa8,	/* Use semaphore */
+	MAC_ADDR_DATA = 0xac,	/* Use semaphore */
+	COS_DFLT_CQ1 = 0xb0,
+	COS_DFLT_CQ2 = 0xb4,
+	ETYPE_SKIP1 = 0xb8,
+	ETYPE_SKIP2 = 0xbc,
+	SPLT_HDR = 0xc0,
+	FC_PAUSE_THRES = 0xc4,
+	NIC_PAUSE_THRES = 0xc8,
+	FC_ETHERTYPE = 0xcc,
+	FC_RCV_CFG = 0xd0,
+	NIC_RCV_CFG = 0xd4,
+	FC_COS_TAGS = 0xd8,
+	NIC_COS_TAGS = 0xdc,
+	MGMT_RCV_CFG = 0xe0,
+	RT_IDX = 0xe4,
+	RT_DATA = 0xe8,
+	RSVD7 = 0xec,
+	XG_SERDES_ADDR = 0xf0,
+	XG_SERDES_DATA = 0xf4,
+	PRB_MX_ADDR = 0xf8,	/* Use semaphore */
+	PRB_MX_DATA = 0xfc,	/* Use semaphore */
+};
+
+/*
+ * CAM output format.
+ */
+enum {
+	CAM_OUT_ROUTE_FC = 0,
+	CAM_OUT_ROUTE_NIC = 1,
+	CAM_OUT_FUNC_SHIFT = 2,
+	CAM_OUT_RV = (1 << 4),
+	CAM_OUT_SH = (1 << 15),
+	CAM_OUT_CQ_ID_SHIFT = 5,
+};
+
+/*
+ * Mailbox  definitions
+ */
+enum {
+	/* Asynchronous Event Notifications */
+	AEN_SYS_ERR = 0x00008002,
+	AEN_LINK_UP = 0x00008011,
+	AEN_LINK_DOWN = 0x00008012,
+	AEN_IDC_CMPLT = 0x00008100,
+	AEN_IDC_REQ = 0x00008101,
+	AEN_FW_INIT_DONE = 0x00008400,
+	AEN_FW_INIT_FAIL = 0x00008401,
+
+	/* Mailbox Command Opcodes. */
+	MB_CMD_NOP = 0x00000000,
+	MB_CMD_EX_FW = 0x00000002,
+	MB_CMD_MB_TEST = 0x00000006,
+	MB_CMD_CSUM_TEST = 0x00000007,	/* Verify Checksum */
+	MB_CMD_ABOUT_FW = 0x00000008,
+	MB_CMD_LOAD_RISC_RAM = 0x0000000b,
+	MB_CMD_DUMP_RISC_RAM = 0x0000000c,
+	MB_CMD_WRITE_RAM = 0x0000000d,
+	MB_CMD_READ_RAM = 0x0000000f,
+	MB_CMD_STOP_FW = 0x00000014,
+	MB_CMD_MAKE_SYS_ERR = 0x0000002a,
+	MB_CMD_INIT_FW = 0x00000060,
+	MB_CMD_GET_INIT_CB = 0x00000061,
+	MB_CMD_GET_FW_STATE = 0x00000069,
+	MB_CMD_IDC_REQ = 0x00000100,	/* Inter-Driver Communication */
+	MB_CMD_IDC_ACK = 0x00000101,	/* Inter-Driver Communication */
+	MB_CMD_SET_WOL_MODE = 0x00000110,	/* Wake On Lan */
+	MB_WOL_DISABLE = 0x00000000,
+	MB_WOL_MAGIC_PKT = 0x00000001,
+	MB_WOL_FLTR = 0x00000002,
+	MB_WOL_UCAST = 0x00000004,
+	MB_WOL_MCAST = 0x00000008,
+	MB_WOL_BCAST = 0x00000010,
+	MB_WOL_LINK_UP = 0x00000020,
+	MB_WOL_LINK_DOWN = 0x00000040,
+	MB_CMD_SET_WOL_FLTR = 0x00000111,	/* Wake On Lan Filter */
+	MB_CMD_CLEAR_WOL_FLTR = 0x00000112,	/* Wake On Lan Filter */
+	MB_CMD_SET_WOL_MAGIC = 0x00000113,	/* Wake On Lan Magic Packet */
+	MB_CMD_CLEAR_WOL_MAGIC = 0x00000114,	/* Wake On Lan Magic Packet */
+	MB_CMD_PORT_RESET = 0x00000120,
+	MB_CMD_SET_PORT_CFG = 0x00000122,
+	MB_CMD_GET_PORT_CFG = 0x00000123,
+	MB_CMD_SET_ASIC_VOLTS = 0x00000130,
+	MB_CMD_GET_SNS_DATA = 0x00000131,	/* Temp and Volt Sense data. */
+
+	/* Mailbox Command Status. */
+	MB_CMD_STS_GOOD = 0x00004000,	/* Success. */
+	MB_CMD_STS_INTRMDT = 0x00001000,	/* Intermediate Complete. */
+	MB_CMD_STS_ERR = 0x00004005,	/* Error. */
+};
+
+struct mbox_params {
+	u32 mbox_in[MAILBOX_COUNT];
+	u32 mbox_out[MAILBOX_COUNT];
+	int in_count;
+	int out_count;
+};
+
+struct flash_params {
+	u8 dev_id_str[4];
+	u16 size;
+	u16 csum;
+	u16 ver;
+	u16 sub_dev_id;
+	u8 mac_addr[6];
+	u16 res;
+};
+
+
+/*
+ * doorbell space for the rx ring context
+ */
+struct rx_doorbell_context {
+	u32 cnsmr_idx;		/* 0x00 */
+	u32 valid;		/* 0x04 */
+	u32 reserved[4];	/* 0x08-0x14 */
+	u32 lbq_prod_idx;	/* 0x18 */
+	u32 sbq_prod_idx;	/* 0x1c */
+};
+
+/*
+ * doorbell space for the tx ring context
+ */
+struct tx_doorbell_context {
+	u32 prod_idx;		/* 0x00 */
+	u32 valid;		/* 0x04 */
+	u32 reserved[4];	/* 0x08-0x14 */
+	u32 lbq_prod_idx;	/* 0x18 */
+	u32 sbq_prod_idx;	/* 0x1c */
+};
+
+/* DATA STRUCTURES SHARED WITH HARDWARE. */
+
+struct bq_element {
+	u32 addr_lo;
+#define BQ_END	0x00000001
+#define BQ_CONT	0x00000002
+#define BQ_MASK	0x00000003
+	u32 addr_hi;
+} __attribute((packed));
+
+struct tx_buf_desc {
+	__le64 addr;
+	__le32 len;
+#define TX_DESC_LEN_MASK	0x000fffff
+#define TX_DESC_C	0x40000000
+#define TX_DESC_E	0x80000000
+} __attribute((packed));
+
+/*
+ * IOCB Definitions...
+ */
+
+#define OPCODE_OB_MAC_IOCB 			0x01
+#define OPCODE_OB_MAC_TSO_IOCB		0x02
+#define OPCODE_IB_MAC_IOCB			0x20
+#define OPCODE_IB_MPI_IOCB			0x21
+#define OPCODE_IB_AE_IOCB			0x3f
+
+struct ob_mac_iocb_req {
+	u8 opcode;
+	u8 flags1;
+#define OB_MAC_IOCB_REQ_OI	0x01
+#define OB_MAC_IOCB_REQ_I	0x02
+#define OB_MAC_IOCB_REQ_D	0x08
+#define OB_MAC_IOCB_REQ_F	0x10
+	u8 flags2;
+	u8 flags3;
+#define OB_MAC_IOCB_DFP	0x02
+#define OB_MAC_IOCB_V	0x04
+	__le32 reserved1[2];
+	__le16 frame_len;
+#define OB_MAC_IOCB_LEN_MASK 0x3ffff
+	__le16 reserved2;
+	__le32 tid;
+	__le32 txq_idx;
+	__le32 reserved3;
+	__le16 vlan_tci;
+	__le16 reserved4;
+	struct tx_buf_desc tbd[TX_DESC_PER_IOCB];
+} __attribute((packed));
+
+struct ob_mac_iocb_rsp {
+	u8 opcode;		/* */
+	u8 flags1;		/* */
+#define OB_MAC_IOCB_RSP_OI	0x01	/* */
+#define OB_MAC_IOCB_RSP_I	0x02	/* */
+#define OB_MAC_IOCB_RSP_E	0x08	/* */
+#define OB_MAC_IOCB_RSP_S	0x10	/* too Short */
+#define OB_MAC_IOCB_RSP_L	0x20	/* too Large */
+#define OB_MAC_IOCB_RSP_P	0x40	/* Padded */
+	u8 flags2;		/* */
+	u8 flags3;		/* */
+#define OB_MAC_IOCB_RSP_B	0x80	/* */
+	__le32 tid;
+	__le32 txq_idx;
+	__le32 reserved[13];
+} __attribute((packed));
+
+struct ob_mac_tso_iocb_req {
+	u8 opcode;
+	u8 flags1;
+#define OB_MAC_TSO_IOCB_OI	0x01
+#define OB_MAC_TSO_IOCB_I	0x02
+#define OB_MAC_TSO_IOCB_D	0x08
+#define OB_MAC_TSO_IOCB_IP4	0x40
+#define OB_MAC_TSO_IOCB_IP6	0x80
+	u8 flags2;
+#define OB_MAC_TSO_IOCB_LSO	0x20
+#define OB_MAC_TSO_IOCB_UC	0x40
+#define OB_MAC_TSO_IOCB_TC	0x80
+	u8 flags3;
+#define OB_MAC_TSO_IOCB_IC	0x01
+#define OB_MAC_TSO_IOCB_DFP	0x02
+#define OB_MAC_TSO_IOCB_V	0x04
+	__le32 reserved1[2];
+	__le32 frame_len;
+	__le32 tid;
+	__le32 txq_idx;
+	__le16 total_hdrs_len;
+	__le16 net_trans_offset;
+#define OB_MAC_TRANSPORT_HDR_SHIFT 6
+	__le16 vlan_tci;
+	__le16 mss;
+	struct tx_buf_desc tbd[TX_DESC_PER_IOCB];
+} __attribute((packed));
+
+struct ob_mac_tso_iocb_rsp {
+	u8 opcode;
+	u8 flags1;
+#define OB_MAC_TSO_IOCB_RSP_OI	0x01
+#define OB_MAC_TSO_IOCB_RSP_I	0x02
+#define OB_MAC_TSO_IOCB_RSP_E	0x08
+#define OB_MAC_TSO_IOCB_RSP_S	0x10
+#define OB_MAC_TSO_IOCB_RSP_L	0x20
+#define OB_MAC_TSO_IOCB_RSP_P	0x40
+	u8 flags2;		/* */
+	u8 flags3;		/* */
+#define OB_MAC_TSO_IOCB_RSP_B	0x8000
+	__le32 tid;
+	__le32 txq_idx;
+	__le32 reserved2[13];
+} __attribute((packed));
+
+struct ib_mac_iocb_rsp {
+	u8 opcode;		/* 0x20 */
+	u8 flags1;
+#define IB_MAC_IOCB_RSP_OI	0x01	/* Overide intr delay */
+#define IB_MAC_IOCB_RSP_I	0x02	/* Disble Intr Generation */
+#define IB_MAC_IOCB_RSP_TE	0x04	/* Checksum error */
+#define IB_MAC_IOCB_RSP_NU	0x08	/* No checksum rcvd */
+#define IB_MAC_IOCB_RSP_IE	0x10	/* IPv4 checksum error */
+#define IB_MAC_IOCB_RSP_M_MASK	0x60	/* Multicast info */
+#define IB_MAC_IOCB_RSP_M_NONE	0x00	/* Not mcast frame */
+#define IB_MAC_IOCB_RSP_M_HASH	0x20	/* HASH mcast frame */
+#define IB_MAC_IOCB_RSP_M_REG 	0x40	/* Registered mcast frame */
+#define IB_MAC_IOCB_RSP_M_PROM 	0x60	/* Promiscuous mcast frame */
+#define IB_MAC_IOCB_RSP_B	0x80	/* Broadcast frame */
+	u8 flags2;
+#define IB_MAC_IOCB_RSP_P	0x01	/* Promiscuous frame */
+#define IB_MAC_IOCB_RSP_V	0x02	/* Vlan tag present */
+#define IB_MAC_IOCB_RSP_ERR_MASK	0x1c	/*  */
+#define IB_MAC_IOCB_RSP_ERR_CODE_ERR	0x04
+#define IB_MAC_IOCB_RSP_ERR_OVERSIZE	0x08
+#define IB_MAC_IOCB_RSP_ERR_UNDERSIZE	0x10
+#define IB_MAC_IOCB_RSP_ERR_PREAMBLE	0x14
+#define IB_MAC_IOCB_RSP_ERR_FRAME_LEN	0x18
+#define IB_MAC_IOCB_RSP_ERR_CRC		0x1c
+#define IB_MAC_IOCB_RSP_U	0x20	/* UDP packet */
+#define IB_MAC_IOCB_RSP_T	0x40	/* TCP packet */
+#define IB_MAC_IOCB_RSP_FO	0x80	/* Failover port */
+	u8 flags3;
+#define IB_MAC_IOCB_RSP_RSS_MASK	0x07	/* RSS mask */
+#define IB_MAC_IOCB_RSP_M_NONE	0x00	/* No RSS match */
+#define IB_MAC_IOCB_RSP_M_IPV4	0x04	/* IPv4 RSS match */
+#define IB_MAC_IOCB_RSP_M_IPV6	0x02	/* IPv6 RSS match */
+#define IB_MAC_IOCB_RSP_M_TCP_V4 	0x05	/* TCP with IPv4 */
+#define IB_MAC_IOCB_RSP_M_TCP_V6 	0x03	/* TCP with IPv6 */
+#define IB_MAC_IOCB_RSP_V4	0x08	/* IPV4 */
+#define IB_MAC_IOCB_RSP_V6	0x10	/* IPV6 */
+#define IB_MAC_IOCB_RSP_IH	0x20	/* Split after IP header */
+#define IB_MAC_IOCB_RSP_DS	0x40	/* data is in small buffer */
+#define IB_MAC_IOCB_RSP_DL	0x80	/* data is in large buffer */
+	__le32 data_len;	/* */
+	__le32 data_addr_lo;	/* */
+	__le32 data_addr_hi;	/* */
+	__le32 rss;		/* */
+	__le16 vlan_id;		/* 12 bits */
+#define IB_MAC_IOCB_RSP_C	0x1000	/* VLAN CFI bit */
+#define IB_MAC_IOCB_RSP_COS_SHIFT	12	/* class of service value */
+
+	__le16 reserved1;
+	__le32 reserved2[6];
+	__le32 flags4;
+#define IB_MAC_IOCB_RSP_HV	0x20000000	/* */
+#define IB_MAC_IOCB_RSP_HS	0x40000000	/* */
+#define IB_MAC_IOCB_RSP_HL	0x80000000	/* */
+	__le32 hdr_len;		/* */
+	__le32 hdr_addr_lo;	/* */
+	__le32 hdr_addr_hi;	/* */
+} __attribute((packed));
+
+struct ib_ae_iocb_rsp {
+	u8 opcode;
+	u8 flags1;
+#define IB_AE_IOCB_RSP_OI		0x01
+#define IB_AE_IOCB_RSP_I		0x02
+	u8 event;
+#define LINK_UP_EVENT              0x00
+#define LINK_DOWN_EVENT            0x01
+#define CAM_LOOKUP_ERR_EVENT       0x06
+#define SOFT_ECC_ERROR_EVENT       0x07
+#define MGMT_ERR_EVENT             0x08
+#define TEN_GIG_MAC_EVENT          0x09
+#define GPI0_H2L_EVENT       	0x10
+#define GPI0_L2H_EVENT       	0x20
+#define GPI1_H2L_EVENT       	0x11
+#define GPI1_L2H_EVENT       	0x21
+#define PCI_ERR_ANON_BUF_RD        0x40
+	u8 q_id;
+	__le32 reserved[15];
+} __attribute((packed));
+
+/*
+ * These three structures are for generic
+ * handling of ib and ob iocbs.
+ */
+struct ql_net_rsp_iocb {
+	u8 opcode;
+	u8 flags0;
+	__le16 length;
+	__le32 tid;
+	__le32 reserved[14];
+} __attribute((packed));
+
+struct net_req_iocb {
+	u8 opcode;
+	u8 flags0;
+	__le16 flags1;
+	__le32 tid;
+	__le32 reserved1[30];
+} __attribute((packed));
+
+/*
+ * tx ring initialization control block for chip.
+ * It is defined as:
+ * "Work Queue Initialization Control Block"
+ */
+struct wqicb {
+	__le16 len;
+#define Q_LEN_V		(1 << 4)
+#define Q_LEN_CPP_CONT	0x0000
+#define Q_LEN_CPP_16	0x0001
+#define Q_LEN_CPP_32	0x0002
+#define Q_LEN_CPP_64	0x0003
+	__le16 flags;
+#define Q_PRI_SHIFT	1
+#define Q_FLAGS_LC	0x1000
+#define Q_FLAGS_LB	0x2000
+#define Q_FLAGS_LI	0x4000
+#define Q_FLAGS_LO	0x8000
+	__le16 cq_id_rss;
+#define Q_CQ_ID_RSS_RV 0x8000
+	__le16 rid;
+	__le32 addr_lo;
+	__le32 addr_hi;
+	__le32 cnsmr_idx_addr_lo;
+	__le32 cnsmr_idx_addr_hi;
+} __attribute((packed));
+
+/*
+ * rx ring initialization control block for chip.
+ * It is defined as:
+ * "Completion Queue Initialization Control Block"
+ */
+struct cqicb {
+	u8 msix_vect;
+	u8 reserved1;
+	u8 reserved2;
+	u8 flags;
+#define FLAGS_LV	0x08
+#define FLAGS_LS	0x10
+#define FLAGS_LL	0x20
+#define FLAGS_LI	0x40
+#define FLAGS_LC	0x80
+	__le16 len;
+#define LEN_V		(1 << 4)
+#define LEN_CPP_CONT	0x0000
+#define LEN_CPP_32	0x0001
+#define LEN_CPP_64	0x0002
+#define LEN_CPP_128	0x0003
+	__le16 rid;
+	__le32 addr_lo;
+	__le32 addr_hi;
+	__le32 prod_idx_addr_lo;
+	__le32 prod_idx_addr_hi;
+	__le16 pkt_delay;
+	__le16 irq_delay;
+	__le32 lbq_addr_lo;
+	__le32 lbq_addr_hi;
+	__le16 lbq_buf_size;
+	__le16 lbq_len;		/* entry count */
+	__le32 sbq_addr_lo;
+	__le32 sbq_addr_hi;
+	__le16 sbq_buf_size;
+	__le16 sbq_len;		/* entry count */
+} __attribute((packed));
+
+struct ricb {
+	u8 base_cq;
+#define RSS_L4K 0x80
+	u8 flags;
+#define RSS_L6K 0x01
+#define RSS_LI  0x02
+#define RSS_LB  0x04
+#define RSS_LM  0x08
+#define RSS_RI4 0x10
+#define RSS_RT4 0x20
+#define RSS_RI6 0x40
+#define RSS_RT6 0x80
+	__le16 mask;
+	__le32 hash_cq_id[256];
+	__le32 ipv6_hash_key[10];
+	__le32 ipv4_hash_key[4];
+} __attribute((packed));
+
+/* SOFTWARE/DRIVER DATA STRUCTURES. */
+
+struct oal {
+	struct tx_buf_desc oal[TX_DESC_PER_OAL];
+};
+
+struct map_list {
+	DECLARE_PCI_UNMAP_ADDR(mapaddr);
+	DECLARE_PCI_UNMAP_LEN(maplen);
+};
+
+struct tx_ring_desc {
+	struct sk_buff *skb;
+	struct ob_mac_iocb_req *queue_entry;
+	int index;
+	struct oal oal;
+	struct map_list map[MAX_SKB_FRAGS + 1];
+	int map_cnt;
+	struct tx_ring_desc *next;
+};
+
+struct bq_desc {
+	union {
+		struct page *lbq_page;
+		struct sk_buff *skb;
+	} p;
+	struct bq_element *bq;
+	int index;
+	 DECLARE_PCI_UNMAP_ADDR(mapaddr);
+	 DECLARE_PCI_UNMAP_LEN(maplen);
+};
+
+#define QL_TXQ_IDX(qdev, skb) (smp_processor_id()%(qdev->tx_ring_count))
+
+struct tx_ring {
+	/*
+	 * queue info.
+	 */
+	struct wqicb wqicb;	/* structure used to inform chip of new queue */
+	void *wq_base;		/* pci_alloc:virtual addr for tx */
+	dma_addr_t wq_base_dma;	/* pci_alloc:dma addr for tx */
+	u32 *cnsmr_idx_sh_reg;	/* shadow copy of consumer idx */
+	dma_addr_t cnsmr_idx_sh_reg_dma;	/* dma-shadow copy of consumer */
+	u32 wq_size;		/* size in bytes of queue area */
+	u32 wq_len;		/* number of entries in queue */
+	void __iomem *prod_idx_db_reg;	/* doorbell area index reg at offset 0x00 */
+	void __iomem *valid_db_reg;	/* doorbell area valid reg at offset 0x04 */
+	u16 prod_idx;		/* current value for prod idx */
+	u16 cq_id;		/* completion (rx) queue for tx completions */
+	u8 wq_id;		/* queue id for this entry */
+	u8 reserved1[3];
+	struct tx_ring_desc *q;	/* descriptor list for the queue */
+	spinlock_t lock;
+	atomic_t tx_count;	/* counts down for every outstanding IO */
+	atomic_t queue_stopped;	/* Turns queue off when full. */
+	struct delayed_work tx_work;
+	struct ql_adapter *qdev;
+};
+
+/*
+ * Type of inbound queue.
+ */
+enum {
+	DEFAULT_Q = 2,		/* Handles slow queue and chip/MPI events. */
+	TX_Q = 3,		/* Handles outbound completions. */
+	RX_Q = 4,		/* Handles inbound completions. */
+};
+
+struct rx_ring {
+	struct cqicb cqicb;	/* The chip's completion queue init control block. */
+
+	/* Completion queue elements. */
+	void *cq_base;
+	dma_addr_t cq_base_dma;
+	u32 cq_size;
+	u32 cq_len;
+	u16 cq_id;
+	u32 *prod_idx_sh_reg;	/* Shadowed producer register. */
+	dma_addr_t prod_idx_sh_reg_dma;
+	void __iomem *cnsmr_idx_db_reg;	/* PCI doorbell mem area + 0 */
+	u32 cnsmr_idx;		/* current sw idx */
+	struct ql_net_rsp_iocb *curr_entry;	/* next entry on queue */
+	void __iomem *valid_db_reg;	/* PCI doorbell mem area + 0x04 */
+
+	/* Large buffer queue elements. */
+	u32 lbq_len;		/* entry count */
+	u32 lbq_size;		/* size in bytes of queue */
+	u32 lbq_buf_size;
+	void *lbq_base;
+	dma_addr_t lbq_base_dma;
+	void *lbq_base_indirect;
+	dma_addr_t lbq_base_indirect_dma;
+	struct bq_desc *lbq;	/* array of control blocks */
+	void __iomem *lbq_prod_idx_db_reg;	/* PCI doorbell mem area + 0x18 */
+	u32 lbq_prod_idx;	/* current sw prod idx */
+	u32 lbq_curr_idx;	/* next entry we expect */
+	u32 lbq_clean_idx;	/* beginning of new descs */
+	u32 lbq_free_cnt;	/* free buffer desc cnt */
+
+	/* Small buffer queue elements. */
+	u32 sbq_len;		/* entry count */
+	u32 sbq_size;		/* size in bytes of queue */
+	u32 sbq_buf_size;
+	void *sbq_base;
+	dma_addr_t sbq_base_dma;
+	void *sbq_base_indirect;
+	dma_addr_t sbq_base_indirect_dma;
+	struct bq_desc *sbq;	/* array of control blocks */
+	void __iomem *sbq_prod_idx_db_reg; /* PCI doorbell mem area + 0x1c */
+	u32 sbq_prod_idx;	/* current sw prod idx */
+	u32 sbq_curr_idx;	/* next entry we expect */
+	u32 sbq_clean_idx;	/* beginning of new descs */
+	u32 sbq_free_cnt;	/* free buffer desc cnt */
+
+	/* Misc. handler elements. */
+	u32 type;		/* Type of queue, tx, rx, or default. */
+	u32 irq;		/* Which vector this ring is assigned. */
+	u32 cpu;		/* Which CPU this should run on. */
+	char name[IFNAMSIZ + 5];
+	struct napi_struct napi;
+	struct delayed_work rx_work;
+	u8 reserved;
+	struct ql_adapter *qdev;
+};
+
+/*
+ * RSS Initialization Control Block
+ */
+struct hash_id {
+	u8 value[4];
+};
+
+struct nic_stats {
+	/*
+	 * These stats come from offset 200h to 278h
+	 * in the XGMAC register.
+	 */
+	u64 tx_pkts;
+	u64 tx_bytes;
+	u64 tx_mcast_pkts;
+	u64 tx_bcast_pkts;
+	u64 tx_ucast_pkts;
+	u64 tx_ctl_pkts;
+	u64 tx_pause_pkts;
+	u64 tx_64_pkt;
+	u64 tx_65_to_127_pkt;
+	u64 tx_128_to_255_pkt;
+	u64 tx_256_511_pkt;
+	u64 tx_512_to_1023_pkt;
+	u64 tx_1024_to_1518_pkt;
+	u64 tx_1519_to_max_pkt;
+	u64 tx_undersize_pkt;
+	u64 tx_oversize_pkt;
+
+	/*
+	 * These stats come from offset 300h to 3C8h
+	 * in the XGMAC register.
+	 */
+	u64 rx_bytes;
+	u64 rx_bytes_ok;
+	u64 rx_pkts;
+	u64 rx_pkts_ok;
+	u64 rx_bcast_pkts;
+	u64 rx_mcast_pkts;
+	u64 rx_ucast_pkts;
+	u64 rx_undersize_pkts;
+	u64 rx_oversize_pkts;
+	u64 rx_jabber_pkts;
+	u64 rx_undersize_fcerr_pkts;
+	u64 rx_drop_events;
+	u64 rx_fcerr_pkts;
+	u64 rx_align_err;
+	u64 rx_symbol_err;
+	u64 rx_mac_err;
+	u64 rx_ctl_pkts;
+	u64 rx_pause_pkts;
+	u64 rx_64_pkts;
+	u64 rx_65_to_127_pkts;
+	u64 rx_128_255_pkts;
+	u64 rx_256_511_pkts;
+	u64 rx_512_to_1023_pkts;
+	u64 rx_1024_to_1518_pkts;
+	u64 rx_1519_to_max_pkts;
+	u64 rx_len_err_pkts;
+};
+
+/*
+ * intr_context structure is used during initialization
+ * to hook the interrupts.  It is also used in a single
+ * irq environment as a context to the ISR.
+ */
+struct intr_context {
+	struct ql_adapter *qdev;
+	u32 intr;
+	u32 hooked;
+	u32 intr_en_mask;	/* value/mask used to enable this intr */
+	u32 intr_dis_mask;	/* value/mask used to disable this intr */
+	u32 intr_read_mask;	/* value/mask used to read this intr */
+	char name[IFNAMSIZ * 2];
+	atomic_t irq_cnt;	/* irq_cnt is used in single vector
+				 * environment.  It's incremented for each
+				 * irq handler that is scheduled.  When each
+				 * handler finishes it decrements irq_cnt and
+				 * enables interrupts if it's zero. */
+	irq_handler_t handler;
+};
+
+/* adapter flags definitions. */
+enum {
+	QL_ADAPTER_UP = (1 << 0),	/* Adapter has been brought up. */
+	QL_LEGACY_ENABLED = (1 << 3),
+	QL_MSI_ENABLED = (1 << 3),
+	QL_MSIX_ENABLED = (1 << 4),
+	QL_DMA64 = (1 << 5),
+	QL_PROMISCUOUS = (1 << 6),
+	QL_ALLMULTI = (1 << 7),
+};
+
+/* link_status bit definitions */
+enum {
+	LOOPBACK_MASK = 0x00000700,
+	LOOPBACK_PCS = 0x00000100,
+	LOOPBACK_HSS = 0x00000200,
+	LOOPBACK_EXT = 0x00000300,
+	PAUSE_MASK = 0x000000c0,
+	PAUSE_STD = 0x00000040,
+	PAUSE_PRI = 0x00000080,
+	SPEED_MASK = 0x00000038,
+	SPEED_100Mb = 0x00000000,
+	SPEED_1Gb = 0x00000008,
+	SPEED_10Gb = 0x00000010,
+	LINK_TYPE_MASK = 0x00000007,
+	LINK_TYPE_XFI = 0x00000001,
+	LINK_TYPE_XAUI = 0x00000002,
+	LINK_TYPE_XFI_BP = 0x00000003,
+	LINK_TYPE_XAUI_BP = 0x00000004,
+	LINK_TYPE_10GBASET = 0x00000005,
+};
+
+/*
+ * The main Adapter structure definition.
+ * This structure has all fields relevant to the hardware.
+ */
+struct ql_adapter {
+	struct ricb ricb;
+	unsigned long flags;
+	u32 wol;
+
+	struct nic_stats nic_stats;
+
+	struct vlan_group *vlgrp;
+
+	/* PCI Configuration information for this device */
+	struct pci_dev *pdev;
+	struct net_device *ndev;	/* Parent NET device */
+
+	/* Hardware information */
+	u32 chip_rev_id;
+	u32 func;		/* PCI function for this adapter */
+
+	spinlock_t adapter_lock;
+	spinlock_t hw_lock;
+	spinlock_t stats_lock;
+	spinlock_t legacy_lock;	/* used for maintaining legacy intr sync */
+
+	/* PCI Bus Relative Register Addresses */
+	void __iomem *reg_base;
+	void __iomem *doorbell_area;
+	u32 doorbell_area_size;
+
+	u32 msg_enable;
+
+	/* Page for Shadow Registers */
+	void *rx_ring_shadow_reg_area;
+	dma_addr_t rx_ring_shadow_reg_dma;
+	void *tx_ring_shadow_reg_area;
+	dma_addr_t tx_ring_shadow_reg_dma;
+
+	u32 mailbox_in;
+	u32 mailbox_out;
+
+	int tx_ring_size;
+	int rx_ring_size;
+	u32 intr_count;
+	struct msix_entry *msi_x_entry;
+	struct intr_context intr_context[MAX_RX_RINGS];
+
+	int (*legacy_check) (struct ql_adapter *);
+
+	int tx_ring_count;	/* One per online CPU. */
+	u32 rss_ring_first_cq_id;/* index of first inbound (rss) rx_ring */
+	u32 rss_ring_count;	/* One per online CPU.  */
+	/*
+	 * rx_ring_count =
+	 *  one default queue +
+	 *  (CPU count * outbound completion rx_ring) +
+	 *  (CPU count * inbound (RSS) completion rx_ring)
+	 */
+	int rx_ring_count;
+	int ring_mem_size;
+	void *ring_mem;
+	struct rx_ring *rx_ring;
+	int rx_csum;
+	struct tx_ring *tx_ring;
+	u32 default_rx_queue;
+
+	u16 rx_coalesce_usecs;	/* cqicb->int_delay */
+	u16 rx_max_coalesced_frames;	/* cqicb->pkt_int_delay */
+	u16 tx_coalesce_usecs;	/* cqicb->int_delay */
+	u16 tx_max_coalesced_frames;	/* cqicb->pkt_int_delay */
+
+	u32 xg_sem_mask;
+	u32 port_link_up;
+	u32 port_init;
+	u32 link_status;
+
+	struct flash_params flash;
+
+	struct net_device_stats stats;
+	struct workqueue_struct *q_workqueue;
+	struct workqueue_struct *workqueue;
+	struct delayed_work asic_reset_work;
+	struct delayed_work mpi_reset_work;
+	struct delayed_work mpi_work;
+};
+
+/*
+ * Typical Register accessor for memory mapped device.
+ */
+static inline u32 ql_read32(const struct ql_adapter *qdev, int reg)
+{
+	return readl(qdev->reg_base + reg);
+}
+
+/*
+ * Typical Register accessor for memory mapped device.
+ */
+static inline void ql_write32(const struct ql_adapter *qdev, int reg, u32 val)
+{
+	writel(val, qdev->reg_base + reg);
+}
+
+/*
+ * Doorbell Registers:
+ * Doorbell registers are virtual registers in the PCI memory space.
+ * The space is allocated by the chip during PCI initialization.  The
+ * device driver finds the doorbell address in BAR 3 in PCI config space.
+ * The registers are used to control outbound and inbound queues. For
+ * example, the producer index for an outbound queue.  Each queue uses
+ * 1 4k chunk of memory.  The lower half of the space is for outbound
+ * queues. The upper half is for inbound queues.
+ */
+static inline void ql_write_db_reg(u32 val, void __iomem *addr)
+{
+	writel(val, addr);
+	mmiowb();
+}
+
+/*
+ * Shadow Registers:
+ * Outbound queues have a consumer index that is maintained by the chip.
+ * Inbound queues have a producer index that is maintained by the chip.
+ * For lower overhead, these registers are "shadowed" to host memory
+ * which allows the device driver to track the queue progress without
+ * PCI reads. When an entry is placed on an inbound queue, the chip will
+ * update the relevant index register and then copy the value to the
+ * shadow register in host memory.
+ */
+static inline unsigned int ql_read_sh_reg(const volatile void  *addr)
+{
+	return *(volatile unsigned int __force *)addr;
+}
+
+extern char qlge_driver_name[];
+extern const char qlge_driver_version[];
+extern const struct ethtool_ops qlge_ethtool_ops;
+
+extern int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask);
+extern void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask);
+extern int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data);
+extern int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
+			       u32 *value);
+extern int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value);
+extern int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
+			u16 q_id);
+void ql_queue_fw_error(struct ql_adapter *qdev);
+void ql_mpi_work(struct work_struct *work);
+void ql_mpi_reset_work(struct work_struct *work);
+int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 ebit);
+void ql_queue_asic_error(struct ql_adapter *qdev);
+void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr);
+void ql_set_ethtool_ops(struct net_device *ndev);
+int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data);
+
+#if 1
+#define QL_ALL_DUMP
+#define QL_REG_DUMP
+#define QL_DEV_DUMP
+#define QL_CB_DUMP
+/* #define QL_IB_DUMP */
+/* #define QL_OB_DUMP */
+#endif
+
+#ifdef QL_REG_DUMP
+extern void ql_dump_xgmac_control_regs(struct ql_adapter *qdev);
+extern void ql_dump_routing_entries(struct ql_adapter *qdev);
+extern void ql_dump_regs(struct ql_adapter *qdev);
+#define QL_DUMP_REGS(qdev) ql_dump_regs(qdev)
+#define QL_DUMP_ROUTE(qdev) ql_dump_routing_entries(qdev)
+#define QL_DUMP_XGMAC_CONTROL_REGS(qdev) ql_dump_xgmac_control_regs(qdev)
+#else
+#define QL_DUMP_REGS(qdev)
+#define QL_DUMP_ROUTE(qdev)
+#define QL_DUMP_XGMAC_CONTROL_REGS(qdev)
+#endif
+
+#ifdef QL_STAT_DUMP
+extern void ql_dump_stat(struct ql_adapter *qdev);
+#define QL_DUMP_STAT(qdev) ql_dump_stat(qdev)
+#else
+#define QL_DUMP_STAT(qdev)
+#endif
+
+#ifdef QL_DEV_DUMP
+extern void ql_dump_qdev(struct ql_adapter *qdev);
+#define QL_DUMP_QDEV(qdev) ql_dump_qdev(qdev)
+#else
+#define QL_DUMP_QDEV(qdev)
+#endif
+
+#ifdef QL_CB_DUMP
+extern void ql_dump_wqicb(struct wqicb *wqicb);
+extern void ql_dump_tx_ring(struct tx_ring *tx_ring);
+extern void ql_dump_ricb(struct ricb *ricb);
+extern void ql_dump_cqicb(struct cqicb *cqicb);
+extern void ql_dump_rx_ring(struct rx_ring *rx_ring);
+extern void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id);
+#define QL_DUMP_RICB(ricb) ql_dump_ricb(ricb)
+#define QL_DUMP_WQICB(wqicb) ql_dump_wqicb(wqicb)
+#define QL_DUMP_TX_RING(tx_ring) ql_dump_tx_ring(tx_ring)
+#define QL_DUMP_CQICB(cqicb) ql_dump_cqicb(cqicb)
+#define QL_DUMP_RX_RING(rx_ring) ql_dump_rx_ring(rx_ring)
+#define QL_DUMP_HW_CB(qdev, size, bit, q_id) \
+		ql_dump_hw_cb(qdev, size, bit, q_id)
+#else
+#define QL_DUMP_RICB(ricb)
+#define QL_DUMP_WQICB(wqicb)
+#define QL_DUMP_TX_RING(tx_ring)
+#define QL_DUMP_CQICB(cqicb)
+#define QL_DUMP_RX_RING(rx_ring)
+#define QL_DUMP_HW_CB(qdev, size, bit, q_id)
+#endif
+
+#ifdef QL_OB_DUMP
+extern void ql_dump_tx_desc(struct tx_buf_desc *tbd);
+extern void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb);
+extern void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp);
+#define QL_DUMP_OB_MAC_IOCB(ob_mac_iocb) ql_dump_ob_mac_iocb(ob_mac_iocb)
+#define QL_DUMP_OB_MAC_RSP(ob_mac_rsp) ql_dump_ob_mac_rsp(ob_mac_rsp)
+#else
+#define QL_DUMP_OB_MAC_IOCB(ob_mac_iocb)
+#define QL_DUMP_OB_MAC_RSP(ob_mac_rsp)
+#endif
+
+#ifdef QL_IB_DUMP
+extern void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp);
+#define QL_DUMP_IB_MAC_RSP(ib_mac_rsp) ql_dump_ib_mac_rsp(ib_mac_rsp)
+#else
+#define QL_DUMP_IB_MAC_RSP(ib_mac_rsp)
+#endif
+
+#ifdef	QL_ALL_DUMP
+extern void ql_dump_all(struct ql_adapter *qdev);
+#define QL_DUMP_ALL(qdev) ql_dump_all(qdev)
+#else
+#define QL_DUMP_ALL(qdev)
+#endif
+
+#endif /* _QLGE_H_ */
diff --git a/drivers/net/qlge/qlge_dbg.c b/drivers/net/qlge/qlge_dbg.c
new file mode 100644
index 0000000..f0392b1
--- /dev/null
+++ b/drivers/net/qlge/qlge_dbg.c
@@ -0,0 +1,858 @@
+#include "qlge.h"
+
+#ifdef QL_REG_DUMP
+static void ql_dump_intr_states(struct ql_adapter *qdev)
+{
+	int i;
+	u32 value;
+	for (i = 0; i < qdev->intr_count; i++) {
+		ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask);
+		value = ql_read32(qdev, INTR_EN);
+		printk(KERN_ERR PFX
+		       "%s: Interrupt %d is %s.\n",
+		       qdev->ndev->name, i,
+		       (value & INTR_EN_EN ? "enabled" : "disabled"));
+	}
+}
+
+void ql_dump_xgmac_control_regs(struct ql_adapter *qdev)
+{
+	u32 data;
+	if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
+		printk(KERN_ERR "%s: Couldn't get xgmac sem.\n", __func__);
+		return;
+	}
+	ql_read_xgmac_reg(qdev, PAUSE_SRC_LO, &data);
+	printk(KERN_ERR PFX "%s: PAUSE_SRC_LO = 0x%.08x.\n", qdev->ndev->name,
+	       data);
+	ql_read_xgmac_reg(qdev, PAUSE_SRC_HI, &data);
+	printk(KERN_ERR PFX "%s: PAUSE_SRC_HI = 0x%.08x.\n", qdev->ndev->name,
+	       data);
+	ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
+	printk(KERN_ERR PFX "%s: GLOBAL_CFG = 0x%.08x.\n", qdev->ndev->name,
+	       data);
+	ql_read_xgmac_reg(qdev, TX_CFG, &data);
+	printk(KERN_ERR PFX "%s: TX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
+	ql_read_xgmac_reg(qdev, RX_CFG, &data);
+	printk(KERN_ERR PFX "%s: RX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
+	ql_read_xgmac_reg(qdev, FLOW_CTL, &data);
+	printk(KERN_ERR PFX "%s: FLOW_CTL = 0x%.08x.\n", qdev->ndev->name,
+	       data);
+	ql_read_xgmac_reg(qdev, PAUSE_OPCODE, &data);
+	printk(KERN_ERR PFX "%s: PAUSE_OPCODE = 0x%.08x.\n", qdev->ndev->name,
+	       data);
+	ql_read_xgmac_reg(qdev, PAUSE_TIMER, &data);
+	printk(KERN_ERR PFX "%s: PAUSE_TIMER = 0x%.08x.\n", qdev->ndev->name,
+	       data);
+	ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_LO, &data);
+	printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_LO = 0x%.08x.\n",
+	       qdev->ndev->name, data);
+	ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_HI, &data);
+	printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_HI = 0x%.08x.\n",
+	       qdev->ndev->name, data);
+	ql_read_xgmac_reg(qdev, MAC_TX_PARAMS, &data);
+	printk(KERN_ERR PFX "%s: MAC_TX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
+	       data);
+	ql_read_xgmac_reg(qdev, MAC_RX_PARAMS, &data);
+	printk(KERN_ERR PFX "%s: MAC_RX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
+	       data);
+	ql_read_xgmac_reg(qdev, MAC_SYS_INT, &data);
+	printk(KERN_ERR PFX "%s: MAC_SYS_INT = 0x%.08x.\n", qdev->ndev->name,
+	       data);
+	ql_read_xgmac_reg(qdev, MAC_SYS_INT_MASK, &data);
+	printk(KERN_ERR PFX "%s: MAC_SYS_INT_MASK = 0x%.08x.\n",
+	       qdev->ndev->name, data);
+	ql_read_xgmac_reg(qdev, MAC_MGMT_INT, &data);
+	printk(KERN_ERR PFX "%s: MAC_MGMT_INT = 0x%.08x.\n", qdev->ndev->name,
+	       data);
+	ql_read_xgmac_reg(qdev, MAC_MGMT_IN_MASK, &data);
+	printk(KERN_ERR PFX "%s: MAC_MGMT_IN_MASK = 0x%.08x.\n",
+	       qdev->ndev->name, data);
+	ql_read_xgmac_reg(qdev, EXT_ARB_MODE, &data);
+	printk(KERN_ERR PFX "%s: EXT_ARB_MODE = 0x%.08x.\n", qdev->ndev->name,
+	       data);
+	ql_sem_unlock(qdev, qdev->xg_sem_mask);
+
+}
+
+static void ql_dump_ets_regs(struct ql_adapter *qdev)
+{
+}
+
+static void ql_dump_cam_entries(struct ql_adapter *qdev)
+{
+	int i;
+	u32 value[3];
+	for (i = 0; i < 4; i++) {
+		if (ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value)) {
+			printk(KERN_ERR PFX
+			       "%s: Failed read of mac index register.\n",
+			       __func__);
+			return;
+		} else {
+			if (value[0])
+				printk(KERN_ERR PFX
+				       "%s: CAM index %d CAM Lookup Lower = 0x%.08x:%.08x, Output = 0x%.08x.\n",
+				       qdev->ndev->name, i, value[1], value[0],
+				       value[2]);
+		}
+	}
+	for (i = 0; i < 32; i++) {
+		if (ql_get_mac_addr_reg
+		    (qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value)) {
+			printk(KERN_ERR PFX
+			       "%s: Failed read of mac index register.\n",
+			       __func__);
+			return;
+		} else {
+			if (value[0])
+				printk(KERN_ERR PFX
+				       "%s: MCAST index %d CAM Lookup Lower = 0x%.08x:%.08x.\n",
+				       qdev->ndev->name, i, value[1], value[0]);
+		}
+	}
+}
+
+void ql_dump_routing_entries(struct ql_adapter *qdev)
+{
+	int i;
+	u32 value;
+	for (i = 0; i < 16; i++) {
+		value = 0;
+		if (ql_get_routing_reg(qdev, i, &value)) {
+			printk(KERN_ERR PFX
+			       "%s: Failed read of routing index register.\n",
+			       __func__);
+			return;
+		} else {
+			if (value)
+				printk(KERN_ERR PFX
+				       "%s: Routing Mask %d = 0x%.08x.\n",
+				       qdev->ndev->name, i, value);
+		}
+	}
+}
+
+void ql_dump_regs(struct ql_adapter *qdev)
+{
+	printk(KERN_ERR PFX "reg dump for function #%d.\n", qdev->func);
+	printk(KERN_ERR PFX "SYS	 			= 0x%x.\n",
+	       ql_read32(qdev, SYS));
+	printk(KERN_ERR PFX "RST_FO 			= 0x%x.\n",
+	       ql_read32(qdev, RST_FO));
+	printk(KERN_ERR PFX "FSC 				= 0x%x.\n",
+	       ql_read32(qdev, FSC));
+	printk(KERN_ERR PFX "CSR 				= 0x%x.\n",
+	       ql_read32(qdev, CSR));
+	printk(KERN_ERR PFX "ICB_RID 			= 0x%x.\n",
+	       ql_read32(qdev, ICB_RID));
+	printk(KERN_ERR PFX "ICB_L 				= 0x%x.\n",
+	       ql_read32(qdev, ICB_L));
+	printk(KERN_ERR PFX "ICB_H 				= 0x%x.\n",
+	       ql_read32(qdev, ICB_H));
+	printk(KERN_ERR PFX "CFG 				= 0x%x.\n",
+	       ql_read32(qdev, CFG));
+	printk(KERN_ERR PFX "BIOS_ADDR 			= 0x%x.\n",
+	       ql_read32(qdev, BIOS_ADDR));
+	printk(KERN_ERR PFX "STS 				= 0x%x.\n",
+	       ql_read32(qdev, STS));
+	printk(KERN_ERR PFX "INTR_EN			= 0x%x.\n",
+	       ql_read32(qdev, INTR_EN));
+	printk(KERN_ERR PFX "INTR_MASK 			= 0x%x.\n",
+	       ql_read32(qdev, INTR_MASK));
+	printk(KERN_ERR PFX "ISR1 				= 0x%x.\n",
+	       ql_read32(qdev, ISR1));
+	printk(KERN_ERR PFX "ISR2 				= 0x%x.\n",
+	       ql_read32(qdev, ISR2));
+	printk(KERN_ERR PFX "ISR3 				= 0x%x.\n",
+	       ql_read32(qdev, ISR3));
+	printk(KERN_ERR PFX "ISR4 				= 0x%x.\n",
+	       ql_read32(qdev, ISR4));
+	printk(KERN_ERR PFX "REV_ID 			= 0x%x.\n",
+	       ql_read32(qdev, REV_ID));
+	printk(KERN_ERR PFX "FRC_ECC_ERR 			= 0x%x.\n",
+	       ql_read32(qdev, FRC_ECC_ERR));
+	printk(KERN_ERR PFX "ERR_STS 			= 0x%x.\n",
+	       ql_read32(qdev, ERR_STS));
+	printk(KERN_ERR PFX "RAM_DBG_ADDR 			= 0x%x.\n",
+	       ql_read32(qdev, RAM_DBG_ADDR));
+	printk(KERN_ERR PFX "RAM_DBG_DATA 			= 0x%x.\n",
+	       ql_read32(qdev, RAM_DBG_DATA));
+	printk(KERN_ERR PFX "ECC_ERR_CNT 			= 0x%x.\n",
+	       ql_read32(qdev, ECC_ERR_CNT));
+	printk(KERN_ERR PFX "SEM 				= 0x%x.\n",
+	       ql_read32(qdev, SEM));
+	printk(KERN_ERR PFX "GPIO_1 			= 0x%x.\n",
+	       ql_read32(qdev, GPIO_1));
+	printk(KERN_ERR PFX "GPIO_2 			= 0x%x.\n",
+	       ql_read32(qdev, GPIO_2));
+	printk(KERN_ERR PFX "GPIO_3 			= 0x%x.\n",
+	       ql_read32(qdev, GPIO_3));
+	printk(KERN_ERR PFX "XGMAC_ADDR 			= 0x%x.\n",
+	       ql_read32(qdev, XGMAC_ADDR));
+	printk(KERN_ERR PFX "XGMAC_DATA 			= 0x%x.\n",
+	       ql_read32(qdev, XGMAC_DATA));
+	printk(KERN_ERR PFX "NIC_ETS 			= 0x%x.\n",
+	       ql_read32(qdev, NIC_ETS));
+	printk(KERN_ERR PFX "CNA_ETS 			= 0x%x.\n",
+	       ql_read32(qdev, CNA_ETS));
+	printk(KERN_ERR PFX "FLASH_ADDR 			= 0x%x.\n",
+	       ql_read32(qdev, FLASH_ADDR));
+	printk(KERN_ERR PFX "FLASH_DATA 			= 0x%x.\n",
+	       ql_read32(qdev, FLASH_DATA));
+	printk(KERN_ERR PFX "CQ_STOP 			= 0x%x.\n",
+	       ql_read32(qdev, CQ_STOP));
+	printk(KERN_ERR PFX "PAGE_TBL_RID 			= 0x%x.\n",
+	       ql_read32(qdev, PAGE_TBL_RID));
+	printk(KERN_ERR PFX "WQ_PAGE_TBL_LO 		= 0x%x.\n",
+	       ql_read32(qdev, WQ_PAGE_TBL_LO));
+	printk(KERN_ERR PFX "WQ_PAGE_TBL_HI 		= 0x%x.\n",
+	       ql_read32(qdev, WQ_PAGE_TBL_HI));
+	printk(KERN_ERR PFX "CQ_PAGE_TBL_LO 		= 0x%x.\n",
+	       ql_read32(qdev, CQ_PAGE_TBL_LO));
+	printk(KERN_ERR PFX "CQ_PAGE_TBL_HI 		= 0x%x.\n",
+	       ql_read32(qdev, CQ_PAGE_TBL_HI));
+	printk(KERN_ERR PFX "COS_DFLT_CQ1 			= 0x%x.\n",
+	       ql_read32(qdev, COS_DFLT_CQ1));
+	printk(KERN_ERR PFX "COS_DFLT_CQ2 			= 0x%x.\n",
+	       ql_read32(qdev, COS_DFLT_CQ2));
+	printk(KERN_ERR PFX "SPLT_HDR 			= 0x%x.\n",
+	       ql_read32(qdev, SPLT_HDR));
+	printk(KERN_ERR PFX "FC_PAUSE_THRES 		= 0x%x.\n",
+	       ql_read32(qdev, FC_PAUSE_THRES));
+	printk(KERN_ERR PFX "NIC_PAUSE_THRES 		= 0x%x.\n",
+	       ql_read32(qdev, NIC_PAUSE_THRES));
+	printk(KERN_ERR PFX "FC_ETHERTYPE 			= 0x%x.\n",
+	       ql_read32(qdev, FC_ETHERTYPE));
+	printk(KERN_ERR PFX "FC_RCV_CFG 			= 0x%x.\n",
+	       ql_read32(qdev, FC_RCV_CFG));
+	printk(KERN_ERR PFX "NIC_RCV_CFG 			= 0x%x.\n",
+	       ql_read32(qdev, NIC_RCV_CFG));
+	printk(KERN_ERR PFX "FC_COS_TAGS 			= 0x%x.\n",
+	       ql_read32(qdev, FC_COS_TAGS));
+	printk(KERN_ERR PFX "NIC_COS_TAGS 			= 0x%x.\n",
+	       ql_read32(qdev, NIC_COS_TAGS));
+	printk(KERN_ERR PFX "MGMT_RCV_CFG 			= 0x%x.\n",
+	       ql_read32(qdev, MGMT_RCV_CFG));
+	printk(KERN_ERR PFX "XG_SERDES_ADDR 		= 0x%x.\n",
+	       ql_read32(qdev, XG_SERDES_ADDR));
+	printk(KERN_ERR PFX "XG_SERDES_DATA 		= 0x%x.\n",
+	       ql_read32(qdev, XG_SERDES_DATA));
+	printk(KERN_ERR PFX "PRB_MX_ADDR 			= 0x%x.\n",
+	       ql_read32(qdev, PRB_MX_ADDR));
+	printk(KERN_ERR PFX "PRB_MX_DATA 			= 0x%x.\n",
+	       ql_read32(qdev, PRB_MX_DATA));
+	ql_dump_intr_states(qdev);
+	ql_dump_xgmac_control_regs(qdev);
+	ql_dump_ets_regs(qdev);
+	ql_dump_cam_entries(qdev);
+	ql_dump_routing_entries(qdev);
+}
+#endif
+
+#ifdef QL_STAT_DUMP
+void ql_dump_stat(struct ql_adapter *qdev)
+{
+	printk(KERN_ERR "%s: Enter.\n", __func__);
+	printk(KERN_ERR "tx_pkts = %ld\n",
+	       (unsigned long)qdev->nic_stats.tx_pkts);
+	printk(KERN_ERR "tx_bytes = %ld\n",
+	       (unsigned long)qdev->nic_stats.tx_bytes);
+	printk(KERN_ERR "tx_mcast_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_mcast_pkts);
+	printk(KERN_ERR "tx_bcast_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_bcast_pkts);
+	printk(KERN_ERR "tx_ucast_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_ucast_pkts);
+	printk(KERN_ERR "tx_ctl_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_ctl_pkts);
+	printk(KERN_ERR "tx_pause_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_pause_pkts);
+	printk(KERN_ERR "tx_64_pkt = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_64_pkt);
+	printk(KERN_ERR "tx_65_to_127_pkt = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_65_to_127_pkt);
+	printk(KERN_ERR "tx_128_to_255_pkt = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_128_to_255_pkt);
+	printk(KERN_ERR "tx_256_511_pkt = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_256_511_pkt);
+	printk(KERN_ERR "tx_512_to_1023_pkt = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_512_to_1023_pkt);
+	printk(KERN_ERR "tx_1024_to_1518_pkt = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_1024_to_1518_pkt);
+	printk(KERN_ERR "tx_1519_to_max_pkt = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_1519_to_max_pkt);
+	printk(KERN_ERR "tx_undersize_pkt = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_undersize_pkt);
+	printk(KERN_ERR "tx_oversize_pkt = %ld.\n",
+	       (unsigned long)qdev->nic_stats.tx_oversize_pkt);
+	printk(KERN_ERR "rx_bytes = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_bytes);
+	printk(KERN_ERR "rx_bytes_ok = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_bytes_ok);
+	printk(KERN_ERR "rx_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_pkts);
+	printk(KERN_ERR "rx_pkts_ok = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_pkts_ok);
+	printk(KERN_ERR "rx_bcast_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_bcast_pkts);
+	printk(KERN_ERR "rx_mcast_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_mcast_pkts);
+	printk(KERN_ERR "rx_ucast_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_ucast_pkts);
+	printk(KERN_ERR "rx_undersize_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_undersize_pkts);
+	printk(KERN_ERR "rx_oversize_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_oversize_pkts);
+	printk(KERN_ERR "rx_jabber_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_jabber_pkts);
+	printk(KERN_ERR "rx_undersize_fcerr_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_undersize_fcerr_pkts);
+	printk(KERN_ERR "rx_drop_events = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_drop_events);
+	printk(KERN_ERR "rx_fcerr_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_fcerr_pkts);
+	printk(KERN_ERR "rx_align_err = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_align_err);
+	printk(KERN_ERR "rx_symbol_err = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_symbol_err);
+	printk(KERN_ERR "rx_mac_err = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_mac_err);
+	printk(KERN_ERR "rx_ctl_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_ctl_pkts);
+	printk(KERN_ERR "rx_pause_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_pause_pkts);
+	printk(KERN_ERR "rx_64_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_64_pkts);
+	printk(KERN_ERR "rx_65_to_127_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_65_to_127_pkts);
+	printk(KERN_ERR "rx_128_255_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_128_255_pkts);
+	printk(KERN_ERR "rx_256_511_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_256_511_pkts);
+	printk(KERN_ERR "rx_512_to_1023_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_512_to_1023_pkts);
+	printk(KERN_ERR "rx_1024_to_1518_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_1024_to_1518_pkts);
+	printk(KERN_ERR "rx_1519_to_max_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_1519_to_max_pkts);
+	printk(KERN_ERR "rx_len_err_pkts = %ld.\n",
+	       (unsigned long)qdev->nic_stats.rx_len_err_pkts);
+};
+#endif
+
+#ifdef QL_DEV_DUMP
+void ql_dump_qdev(struct ql_adapter *qdev)
+{
+	int i;
+	printk(KERN_ERR PFX "qdev->flags 			= %lx.\n",
+	       qdev->flags);
+	printk(KERN_ERR PFX "qdev->vlgrp 			= %p.\n",
+	       qdev->vlgrp);
+	printk(KERN_ERR PFX "qdev->pdev 			= %p.\n",
+	       qdev->pdev);
+	printk(KERN_ERR PFX "qdev->ndev 			= %p.\n",
+	       qdev->ndev);
+	printk(KERN_ERR PFX "qdev->chip_rev_id 		= %d.\n",
+	       qdev->chip_rev_id);
+	printk(KERN_ERR PFX "qdev->reg_base 		= %p.\n",
+	       qdev->reg_base);
+	printk(KERN_ERR PFX "qdev->doorbell_area 	= %p.\n",
+	       qdev->doorbell_area);
+	printk(KERN_ERR PFX "qdev->doorbell_area_size 	= %d.\n",
+	       qdev->doorbell_area_size);
+	printk(KERN_ERR PFX "msg_enable 		= %x.\n",
+	       qdev->msg_enable);
+	printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_area	= %p.\n",
+	       qdev->rx_ring_shadow_reg_area);
+	printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_dma 	= %p.\n",
+	       (void *)qdev->rx_ring_shadow_reg_dma);
+	printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_area	= %p.\n",
+	       qdev->tx_ring_shadow_reg_area);
+	printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_dma	= %p.\n",
+	       (void *)qdev->tx_ring_shadow_reg_dma);
+	printk(KERN_ERR PFX "qdev->intr_count 		= %d.\n",
+	       qdev->intr_count);
+	if (qdev->msi_x_entry)
+		for (i = 0; i < qdev->intr_count; i++) {
+			printk(KERN_ERR PFX
+			       "msi_x_entry.[%d]vector	= %d.\n", i,
+			       qdev->msi_x_entry[i].vector);
+			printk(KERN_ERR PFX
+			       "msi_x_entry.[%d]entry	= %d.\n", i,
+			       qdev->msi_x_entry[i].entry);
+		}
+	for (i = 0; i < qdev->intr_count; i++) {
+		printk(KERN_ERR PFX
+		       "intr_context[%d].qdev		= %p.\n", i,
+		       qdev->intr_context[i].qdev);
+		printk(KERN_ERR PFX
+		       "intr_context[%d].intr		= %d.\n", i,
+		       qdev->intr_context[i].intr);
+		printk(KERN_ERR PFX
+		       "intr_context[%d].hooked		= %d.\n", i,
+		       qdev->intr_context[i].hooked);
+		printk(KERN_ERR PFX
+		       "intr_context[%d].intr_en_mask	= 0x%08x.\n", i,
+		       qdev->intr_context[i].intr_en_mask);
+		printk(KERN_ERR PFX
+		       "intr_context[%d].intr_dis_mask	= 0x%08x.\n", i,
+		       qdev->intr_context[i].intr_dis_mask);
+		printk(KERN_ERR PFX
+		       "intr_context[%d].intr_read_mask	= 0x%08x.\n", i,
+		       qdev->intr_context[i].intr_read_mask);
+	}
+	printk(KERN_ERR PFX "qdev->tx_ring_count = %d.\n", qdev->tx_ring_count);
+	printk(KERN_ERR PFX "qdev->rx_ring_count = %d.\n", qdev->rx_ring_count);
+	printk(KERN_ERR PFX "qdev->ring_mem_size = %d.\n", qdev->ring_mem_size);
+	printk(KERN_ERR PFX "qdev->ring_mem 	= %p.\n", qdev->ring_mem);
+	printk(KERN_ERR PFX "qdev->intr_count 	= %d.\n", qdev->intr_count);
+	printk(KERN_ERR PFX "qdev->tx_ring		= %p.\n",
+	       qdev->tx_ring);
+	printk(KERN_ERR PFX "qdev->rss_ring_first_cq_id 	= %d.\n",
+	       qdev->rss_ring_first_cq_id);
+	printk(KERN_ERR PFX "qdev->rss_ring_count 	= %d.\n",
+	       qdev->rss_ring_count);
+	printk(KERN_ERR PFX "qdev->rx_ring	= %p.\n", qdev->rx_ring);
+	printk(KERN_ERR PFX "qdev->default_rx_queue	= %d.\n",
+	       qdev->default_rx_queue);
+	printk(KERN_ERR PFX "qdev->xg_sem_mask		= 0x%08x.\n",
+	       qdev->xg_sem_mask);
+	printk(KERN_ERR PFX "qdev->port_link_up		= 0x%08x.\n",
+	       qdev->port_link_up);
+	printk(KERN_ERR PFX "qdev->port_init		= 0x%08x.\n",
+	       qdev->port_init);
+
+}
+#endif
+
+#ifdef QL_CB_DUMP
+void ql_dump_wqicb(struct wqicb *wqicb)
+{
+	printk(KERN_ERR PFX "Dumping wqicb stuff...\n");
+	printk(KERN_ERR PFX "wqicb->len = 0x%x.\n", le16_to_cpu(wqicb->len));
+	printk(KERN_ERR PFX "wqicb->flags = %x.\n", le16_to_cpu(wqicb->flags));
+	printk(KERN_ERR PFX "wqicb->cq_id_rss = %d.\n",
+	       le16_to_cpu(wqicb->cq_id_rss));
+	printk(KERN_ERR PFX "wqicb->rid = 0x%x.\n", le16_to_cpu(wqicb->rid));
+	printk(KERN_ERR PFX "wqicb->wq_addr_lo = 0x%.08x.\n",
+	       le32_to_cpu(wqicb->addr_lo));
+	printk(KERN_ERR PFX "wqicb->wq_addr_hi = 0x%.08x.\n",
+	       le32_to_cpu(wqicb->addr_hi));
+	printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr_lo = 0x%.08x.\n",
+	       le32_to_cpu(wqicb->cnsmr_idx_addr_lo));
+	printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr_hi = 0x%.08x.\n",
+	       le32_to_cpu(wqicb->cnsmr_idx_addr_hi));
+}
+
+void ql_dump_tx_ring(struct tx_ring *tx_ring)
+{
+	if (tx_ring == NULL)
+		return;
+	printk(KERN_ERR PFX
+	       "===================== Dumping tx_ring %d ===============.\n",
+	       tx_ring->wq_id);
+	printk(KERN_ERR PFX "tx_ring->base = %p.\n", tx_ring->wq_base);
+	printk(KERN_ERR PFX "tx_ring->base_dma = 0x%llx.\n",
+	       (u64) tx_ring->wq_base_dma);
+	printk(KERN_ERR PFX "tx_ring->cnsmr_idx_sh_reg = %p.\n",
+	       tx_ring->cnsmr_idx_sh_reg);
+	printk(KERN_ERR PFX "tx_ring->cnsmr_idx_sh_reg_dma = 0x%llx.\n",
+	       (u64) tx_ring->cnsmr_idx_sh_reg_dma);
+	printk(KERN_ERR PFX "tx_ring->size = %d.\n", tx_ring->wq_size);
+	printk(KERN_ERR PFX "tx_ring->len = %d.\n", tx_ring->wq_len);
+	printk(KERN_ERR PFX "tx_ring->prod_idx_db_reg = %p.\n",
+	       tx_ring->prod_idx_db_reg);
+	printk(KERN_ERR PFX "tx_ring->valid_db_reg = %p.\n",
+	       tx_ring->valid_db_reg);
+	printk(KERN_ERR PFX "tx_ring->prod_idx = %d.\n", tx_ring->prod_idx);
+	printk(KERN_ERR PFX "tx_ring->cq_id = %d.\n", tx_ring->cq_id);
+	printk(KERN_ERR PFX "tx_ring->wq_id = %d.\n", tx_ring->wq_id);
+	printk(KERN_ERR PFX "tx_ring->q = %p.\n", tx_ring->q);
+	printk(KERN_ERR PFX "tx_ring->tx_count = %d.\n",
+	       atomic_read(&tx_ring->tx_count));
+}
+
+void ql_dump_ricb(struct ricb *ricb)
+{
+	int i;
+	printk(KERN_ERR PFX
+	       "===================== Dumping ricb ===============.\n");
+	printk(KERN_ERR PFX "Dumping ricb stuff...\n");
+
+	printk(KERN_ERR PFX "ricb->base_cq = %d.\n", ricb->base_cq & 0x1f);
+	printk(KERN_ERR PFX "ricb->flags = %s%s%s%s%s%s%s%s%s.\n",
+	       ricb->base_cq & RSS_L4K ? "RSS_L4K " : "",
+	       ricb->flags & RSS_L6K ? "RSS_L6K " : "",
+	       ricb->flags & RSS_LI ? "RSS_LI " : "",
+	       ricb->flags & RSS_LB ? "RSS_LB " : "",
+	       ricb->flags & RSS_LM ? "RSS_LM " : "",
+	       ricb->flags & RSS_RI4 ? "RSS_RI4 " : "",
+	       ricb->flags & RSS_RT4 ? "RSS_RT4 " : "",
+	       ricb->flags & RSS_RI6 ? "RSS_RI6 " : "",
+	       ricb->flags & RSS_RT6 ? "RSS_RT6 " : "");
+	printk(KERN_ERR PFX "ricb->mask = 0x%.04x.\n", le16_to_cpu(ricb->mask));
+	for (i = 0; i < 16; i++)
+		printk(KERN_ERR PFX "ricb->hash_cq_id[%d] = 0x%.08x.\n", i,
+		       le32_to_cpu(ricb->hash_cq_id[i]));
+	for (i = 0; i < 10; i++)
+		printk(KERN_ERR PFX "ricb->ipv6_hash_key[%d] = 0x%.08x.\n", i,
+		       le32_to_cpu(ricb->ipv6_hash_key[i]));
+	for (i = 0; i < 4; i++)
+		printk(KERN_ERR PFX "ricb->ipv4_hash_key[%d] = 0x%.08x.\n", i,
+		       le32_to_cpu(ricb->ipv4_hash_key[i]));
+}
+
+void ql_dump_cqicb(struct cqicb *cqicb)
+{
+	printk(KERN_ERR PFX "Dumping cqicb stuff...\n");
+
+	printk(KERN_ERR PFX "cqicb->msix_vect = %d.\n", cqicb->msix_vect);
+	printk(KERN_ERR PFX "cqicb->flags = %x.\n", cqicb->flags);
+	printk(KERN_ERR PFX "cqicb->len = %d.\n", le16_to_cpu(cqicb->len));
+	printk(KERN_ERR PFX "cqicb->addr_lo = %x.\n",
+	       le32_to_cpu(cqicb->addr_lo));
+	printk(KERN_ERR PFX "cqicb->addr_hi = %x.\n",
+	       le32_to_cpu(cqicb->addr_hi));
+	printk(KERN_ERR PFX "cqicb->prod_idx_addr_lo = %x.\n",
+	       le32_to_cpu(cqicb->prod_idx_addr_lo));
+	printk(KERN_ERR PFX "cqicb->prod_idx_addr_hi = %x.\n",
+	       le32_to_cpu(cqicb->prod_idx_addr_hi));
+	printk(KERN_ERR PFX "cqicb->pkt_delay = 0x%.04x.\n",
+	       le16_to_cpu(cqicb->pkt_delay));
+	printk(KERN_ERR PFX "cqicb->irq_delay = 0x%.04x.\n",
+	       le16_to_cpu(cqicb->irq_delay));
+	printk(KERN_ERR PFX "cqicb->lbq_addr_lo = %x.\n",
+	       le32_to_cpu(cqicb->lbq_addr_lo));
+	printk(KERN_ERR PFX "cqicb->lbq_addr_hi = %x.\n",
+	       le32_to_cpu(cqicb->lbq_addr_hi));
+	printk(KERN_ERR PFX "cqicb->lbq_buf_size = 0x%.04x.\n",
+	       le16_to_cpu(cqicb->lbq_buf_size));
+	printk(KERN_ERR PFX "cqicb->lbq_len = 0x%.04x.\n",
+	       le16_to_cpu(cqicb->lbq_len));
+	printk(KERN_ERR PFX "cqicb->sbq_addr_lo = %x.\n",
+	       le32_to_cpu(cqicb->sbq_addr_lo));
+	printk(KERN_ERR PFX "cqicb->sbq_addr_hi = %x.\n",
+	       le32_to_cpu(cqicb->sbq_addr_hi));
+	printk(KERN_ERR PFX "cqicb->sbq_buf_size = 0x%.04x.\n",
+	       le16_to_cpu(cqicb->sbq_buf_size));
+	printk(KERN_ERR PFX "cqicb->sbq_len = 0x%.04x.\n",
+	       le16_to_cpu(cqicb->sbq_len));
+}
+
+void ql_dump_rx_ring(struct rx_ring *rx_ring)
+{
+	if (rx_ring == NULL)
+		return;
+	printk(KERN_ERR PFX
+	       "===================== Dumping rx_ring %d ===============.\n",
+	       rx_ring->cq_id);
+	printk(KERN_ERR PFX "Dumping rx_ring %d, type = %s%s%s.\n",
+	       rx_ring->cq_id, rx_ring->type == DEFAULT_Q ? "DEFAULT" : "",
+	       rx_ring->type == TX_Q ? "OUTBOUND COMPLETIONS" : "",
+	       rx_ring->type == RX_Q ? "INBOUND_COMPLETIONS" : "");
+	printk(KERN_ERR PFX "rx_ring->cqicb = %p.\n", &rx_ring->cqicb);
+	printk(KERN_ERR PFX "rx_ring->cq_base = %p.\n", rx_ring->cq_base);
+	printk(KERN_ERR PFX "rx_ring->cq_base_dma = %llx.\n",
+	       (u64) rx_ring->cq_base_dma);
+	printk(KERN_ERR PFX "rx_ring->cq_size = %d.\n", rx_ring->cq_size);
+	printk(KERN_ERR PFX "rx_ring->cq_len = %d.\n", rx_ring->cq_len);
+	printk(KERN_ERR PFX
+	       "rx_ring->prod_idx_sh_reg, addr = %p, value = %d.\n",
+	       rx_ring->prod_idx_sh_reg,
+	       rx_ring->prod_idx_sh_reg ? *(rx_ring->prod_idx_sh_reg) : 0);
+	printk(KERN_ERR PFX "rx_ring->prod_idx_sh_reg_dma = %llx.\n",
+	       (u64) rx_ring->prod_idx_sh_reg_dma);
+	printk(KERN_ERR PFX "rx_ring->cnsmr_idx_db_reg = %p.\n",
+	       rx_ring->cnsmr_idx_db_reg);
+	printk(KERN_ERR PFX "rx_ring->cnsmr_idx = %d.\n", rx_ring->cnsmr_idx);
+	printk(KERN_ERR PFX "rx_ring->curr_entry = %p.\n", rx_ring->curr_entry);
+	printk(KERN_ERR PFX "rx_ring->valid_db_reg = %p.\n",
+	       rx_ring->valid_db_reg);
+
+	printk(KERN_ERR PFX "rx_ring->lbq_base = %p.\n", rx_ring->lbq_base);
+	printk(KERN_ERR PFX "rx_ring->lbq_base_dma = %llx.\n",
+	       (u64) rx_ring->lbq_base_dma);
+	printk(KERN_ERR PFX "rx_ring->lbq_base_indirect = %p.\n",
+	       rx_ring->lbq_base_indirect);
+	printk(KERN_ERR PFX "rx_ring->lbq_base_indirect_dma = %llx.\n",
+	       (u64) rx_ring->lbq_base_indirect_dma);
+	printk(KERN_ERR PFX "rx_ring->lbq = %p.\n", rx_ring->lbq);
+	printk(KERN_ERR PFX "rx_ring->lbq_len = %d.\n", rx_ring->lbq_len);
+	printk(KERN_ERR PFX "rx_ring->lbq_size = %d.\n", rx_ring->lbq_size);
+	printk(KERN_ERR PFX "rx_ring->lbq_prod_idx_db_reg = %p.\n",
+	       rx_ring->lbq_prod_idx_db_reg);
+	printk(KERN_ERR PFX "rx_ring->lbq_prod_idx = %d.\n",
+	       rx_ring->lbq_prod_idx);
+	printk(KERN_ERR PFX "rx_ring->lbq_curr_idx = %d.\n",
+	       rx_ring->lbq_curr_idx);
+	printk(KERN_ERR PFX "rx_ring->lbq_clean_idx = %d.\n",
+	       rx_ring->lbq_clean_idx);
+	printk(KERN_ERR PFX "rx_ring->lbq_free_cnt = %d.\n",
+	       rx_ring->lbq_free_cnt);
+	printk(KERN_ERR PFX "rx_ring->lbq_buf_size = %d.\n",
+	       rx_ring->lbq_buf_size);
+
+	printk(KERN_ERR PFX "rx_ring->sbq_base = %p.\n", rx_ring->sbq_base);
+	printk(KERN_ERR PFX "rx_ring->sbq_base_dma = %llx.\n",
+	       (u64) rx_ring->sbq_base_dma);
+	printk(KERN_ERR PFX "rx_ring->sbq_base_indirect = %p.\n",
+	       rx_ring->sbq_base_indirect);
+	printk(KERN_ERR PFX "rx_ring->sbq_base_indirect_dma = %llx.\n",
+	       (u64) rx_ring->sbq_base_indirect_dma);
+	printk(KERN_ERR PFX "rx_ring->sbq = %p.\n", rx_ring->sbq);
+	printk(KERN_ERR PFX "rx_ring->sbq_len = %d.\n", rx_ring->sbq_len);
+	printk(KERN_ERR PFX "rx_ring->sbq_size = %d.\n", rx_ring->sbq_size);
+	printk(KERN_ERR PFX "rx_ring->sbq_prod_idx_db_reg addr = %p.\n",
+	       rx_ring->sbq_prod_idx_db_reg);
+	printk(KERN_ERR PFX "rx_ring->sbq_prod_idx = %d.\n",
+	       rx_ring->sbq_prod_idx);
+	printk(KERN_ERR PFX "rx_ring->sbq_curr_idx = %d.\n",
+	       rx_ring->sbq_curr_idx);
+	printk(KERN_ERR PFX "rx_ring->sbq_clean_idx = %d.\n",
+	       rx_ring->sbq_clean_idx);
+	printk(KERN_ERR PFX "rx_ring->sbq_free_cnt = %d.\n",
+	       rx_ring->sbq_free_cnt);
+	printk(KERN_ERR PFX "rx_ring->sbq_buf_size = %d.\n",
+	       rx_ring->sbq_buf_size);
+	printk(KERN_ERR PFX "rx_ring->cq_id = %d.\n", rx_ring->cq_id);
+	printk(KERN_ERR PFX "rx_ring->irq = %d.\n", rx_ring->irq);
+	printk(KERN_ERR PFX "rx_ring->cpu = %d.\n", rx_ring->cpu);
+	printk(KERN_ERR PFX "rx_ring->qdev = %p.\n", rx_ring->qdev);
+}
+
+void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id)
+{
+	void *ptr;
+
+	printk(KERN_ERR PFX "%s: Enter.\n", __func__);
+
+	ptr = kmalloc(size, GFP_ATOMIC);
+	if (ptr == NULL) {
+		printk(KERN_ERR PFX "%s: Couldn't allocate a buffer.\n",
+		       __func__);
+		return;
+	}
+
+	if (ql_write_cfg(qdev, ptr, size, bit, q_id)) {
+		printk(KERN_ERR "%s: Failed to upload control block!\n",
+		       __func__);
+		goto fail_it;
+	}
+	switch (bit) {
+	case CFG_DRQ:
+		ql_dump_wqicb((struct wqicb *)ptr);
+		break;
+	case CFG_DCQ:
+		ql_dump_cqicb((struct cqicb *)ptr);
+		break;
+	case CFG_DR:
+		ql_dump_ricb((struct ricb *)ptr);
+		break;
+	default:
+		printk(KERN_ERR PFX "%s: Invalid bit value = %x.\n",
+		       __func__, bit);
+		break;
+	}
+fail_it:
+	kfree(ptr);
+}
+#endif
+
+#ifdef QL_OB_DUMP
+void ql_dump_tx_desc(struct tx_buf_desc *tbd)
+{
+	printk(KERN_ERR PFX "tbd->addr  = 0x%llx\n",
+	       le64_to_cpu((u64) tbd->addr));
+	printk(KERN_ERR PFX "tbd->len   = %d\n",
+	       le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
+	printk(KERN_ERR PFX "tbd->flags = %s %s\n",
+	       tbd->len & TX_DESC_C ? "C" : ".",
+	       tbd->len & TX_DESC_E ? "E" : ".");
+	tbd++;
+	printk(KERN_ERR PFX "tbd->addr  = 0x%llx\n",
+	       le64_to_cpu((u64) tbd->addr));
+	printk(KERN_ERR PFX "tbd->len   = %d\n",
+	       le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
+	printk(KERN_ERR PFX "tbd->flags = %s %s\n",
+	       tbd->len & TX_DESC_C ? "C" : ".",
+	       tbd->len & TX_DESC_E ? "E" : ".");
+	tbd++;
+	printk(KERN_ERR PFX "tbd->addr  = 0x%llx\n",
+	       le64_to_cpu((u64) tbd->addr));
+	printk(KERN_ERR PFX "tbd->len   = %d\n",
+	       le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
+	printk(KERN_ERR PFX "tbd->flags = %s %s\n",
+	       tbd->len & TX_DESC_C ? "C" : ".",
+	       tbd->len & TX_DESC_E ? "E" : ".");
+
+}
+
+void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb)
+{
+	struct ob_mac_tso_iocb_req *ob_mac_tso_iocb =
+	    (struct ob_mac_tso_iocb_req *)ob_mac_iocb;
+	struct tx_buf_desc *tbd;
+	u16 frame_len;
+
+	printk(KERN_ERR PFX "%s\n", __func__);
+	printk(KERN_ERR PFX "opcode         = %s\n",
+	       (ob_mac_iocb->opcode == OPCODE_OB_MAC_IOCB) ? "MAC" : "TSO");
+	printk(KERN_ERR PFX "flags1          = %s %s %s %s %s\n",
+	       ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_OI ? "OI" : "",
+	       ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_I ? "I" : "",
+	       ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_D ? "D" : "",
+	       ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP4 ? "IP4" : "",
+	       ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP6 ? "IP6" : "");
+	printk(KERN_ERR PFX "flags2          = %s %s %s\n",
+	       ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_LSO ? "LSO" : "",
+	       ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_UC ? "UC" : "",
+	       ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_TC ? "TC" : "");
+	printk(KERN_ERR PFX "flags3          = %s %s %s \n",
+	       ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_IC ? "IC" : "",
+	       ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_DFP ? "DFP" : "",
+	       ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_V ? "V" : "");
+	printk(KERN_ERR PFX "tid = %x\n", ob_mac_iocb->tid);
+	printk(KERN_ERR PFX "txq_idx = %d\n", ob_mac_iocb->txq_idx);
+	printk(KERN_ERR PFX "vlan_tci      = %x\n", ob_mac_tso_iocb->vlan_tci);
+	if (ob_mac_iocb->opcode == OPCODE_OB_MAC_TSO_IOCB) {
+		printk(KERN_ERR PFX "frame_len      = %d\n",
+		       le32_to_cpu(ob_mac_tso_iocb->frame_len));
+		printk(KERN_ERR PFX "mss      = %d\n",
+		       le16_to_cpu(ob_mac_tso_iocb->mss));
+		printk(KERN_ERR PFX "prot_hdr_len   = %d\n",
+		       le16_to_cpu(ob_mac_tso_iocb->total_hdrs_len));
+		printk(KERN_ERR PFX "hdr_offset     = 0x%.04x\n",
+		       le16_to_cpu(ob_mac_tso_iocb->net_trans_offset));
+		frame_len = le32_to_cpu(ob_mac_tso_iocb->frame_len);
+	} else {
+		printk(KERN_ERR PFX "frame_len      = %d\n",
+		       le16_to_cpu(ob_mac_iocb->frame_len));
+		frame_len = le16_to_cpu(ob_mac_iocb->frame_len);
+	}
+	tbd = &ob_mac_iocb->tbd[0];
+	ql_dump_tx_desc(tbd);
+}
+
+void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp)
+{
+	printk(KERN_ERR PFX "%s\n", __func__);
+	printk(KERN_ERR PFX "opcode         = %d\n", ob_mac_rsp->opcode);
+	printk(KERN_ERR PFX "flags          = %s %s %s %s %s %s %s\n",
+	       ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_OI ? "OI" : ".",
+	       ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_I ? "I" : ".",
+	       ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_E ? "E" : ".",
+	       ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_S ? "S" : ".",
+	       ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_L ? "L" : ".",
+	       ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_P ? "P" : ".",
+	       ob_mac_rsp->flags2 & OB_MAC_IOCB_RSP_B ? "B" : ".");
+	printk(KERN_ERR PFX "tid = %x\n", ob_mac_rsp->tid);
+}
+#endif
+
+#ifdef QL_IB_DUMP
+void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp)
+{
+	printk(KERN_ERR PFX "%s\n", __func__);
+	printk(KERN_ERR PFX "opcode         = 0x%x\n", ib_mac_rsp->opcode);
+	printk(KERN_ERR PFX "flags1 = %s%s%s%s%s%s\n",
+	       ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_OI ? "OI " : "",
+	       ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_I ? "I " : "",
+	       ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_TE ? "TE " : "",
+	       ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU ? "NU " : "",
+	       ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_IE ? "IE " : "",
+	       ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_B ? "B " : "");
+
+	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK)
+		printk(KERN_ERR PFX "%s%s%s Multicast.\n",
+		       (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+		       IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
+		       (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+		       IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
+		       (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+		       IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
+
+	printk(KERN_ERR PFX "flags2 = %s%s%s%s%s\n",
+	       (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) ? "P " : "",
+	       (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? "V " : "",
+	       (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) ? "U " : "",
+	       (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ? "T " : "",
+	       (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_FO) ? "FO " : "");
+
+	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK)
+		printk(KERN_ERR PFX "%s%s%s%s%s error.\n",
+		       (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
+		       IB_MAC_IOCB_RSP_ERR_OVERSIZE ? "oversize" : "",
+		       (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
+		       IB_MAC_IOCB_RSP_ERR_UNDERSIZE ? "undersize" : "",
+		       (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
+		       IB_MAC_IOCB_RSP_ERR_PREAMBLE ? "preamble" : "",
+		       (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
+		       IB_MAC_IOCB_RSP_ERR_FRAME_LEN ? "frame length" : "",
+		       (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
+		       IB_MAC_IOCB_RSP_ERR_CRC ? "CRC" : "");
+
+	printk(KERN_ERR PFX "flags3 = %s%s.\n",
+	       ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS ? "DS " : "",
+	       ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL ? "DL " : "");
+
+	if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
+		printk(KERN_ERR PFX "RSS flags = %s%s%s%s.\n",
+		       ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
+			IB_MAC_IOCB_RSP_M_IPV4) ? "IPv4 RSS" : "",
+		       ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
+			IB_MAC_IOCB_RSP_M_IPV6) ? "IPv6 RSS " : "",
+		       ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
+			IB_MAC_IOCB_RSP_M_TCP_V4) ? "TCP/IPv4 RSS" : "",
+		       ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
+			IB_MAC_IOCB_RSP_M_TCP_V6) ? "TCP/IPv6 RSS" : "");
+
+	printk(KERN_ERR PFX "data_len	= %d\n",
+	       le32_to_cpu(ib_mac_rsp->data_len));
+	printk(KERN_ERR PFX "data_addr_hi    = 0x%x\n",
+	       le32_to_cpu(ib_mac_rsp->data_addr_hi));
+	printk(KERN_ERR PFX "data_addr_lo    = 0x%x\n",
+	       le32_to_cpu(ib_mac_rsp->data_addr_lo));
+	if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
+		printk(KERN_ERR PFX "rss    = %x\n",
+		       le32_to_cpu(ib_mac_rsp->rss));
+	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)
+		printk(KERN_ERR PFX "vlan_id    = %x\n",
+		       le16_to_cpu(ib_mac_rsp->vlan_id));
+
+	printk(KERN_ERR PFX "flags4 = %s%s%s.\n",
+	       le32_to_cpu(ib_mac_rsp->
+			   flags4) & IB_MAC_IOCB_RSP_HV ? "HV " : "",
+	       le32_to_cpu(ib_mac_rsp->
+			   flags4) & IB_MAC_IOCB_RSP_HS ? "HS " : "",
+	       le32_to_cpu(ib_mac_rsp->
+			   flags4) & IB_MAC_IOCB_RSP_HL ? "HL " : "");
+
+	if (le32_to_cpu(ib_mac_rsp->flags4) & IB_MAC_IOCB_RSP_HV) {
+		printk(KERN_ERR PFX "hdr length	= %d.\n",
+		       le32_to_cpu(ib_mac_rsp->hdr_len));
+		printk(KERN_ERR PFX "hdr addr_hi    = 0x%x.\n",
+		       le32_to_cpu(ib_mac_rsp->hdr_addr_hi));
+		printk(KERN_ERR PFX "hdr addr_lo    = 0x%x.\n",
+		       le32_to_cpu(ib_mac_rsp->hdr_addr_lo));
+	}
+}
+#endif
+
+#ifdef QL_ALL_DUMP
+void ql_dump_all(struct ql_adapter *qdev)
+{
+	int i;
+
+	QL_DUMP_REGS(qdev);
+	QL_DUMP_QDEV(qdev);
+	for (i = 0; i < qdev->tx_ring_count; i++) {
+		QL_DUMP_TX_RING(&qdev->tx_ring[i]);
+		QL_DUMP_WQICB((struct wqicb *)&qdev->tx_ring[i]);
+	}
+	for (i = 0; i < qdev->rx_ring_count; i++) {
+		QL_DUMP_RX_RING(&qdev->rx_ring[i]);
+		QL_DUMP_CQICB((struct cqicb *)&qdev->rx_ring[i]);
+	}
+}
+#endif
diff --git a/drivers/net/qlge/qlge_ethtool.c b/drivers/net/qlge/qlge_ethtool.c
new file mode 100644
index 0000000..6457f8c
--- /dev/null
+++ b/drivers/net/qlge/qlge_ethtool.c
@@ -0,0 +1,415 @@
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/module.h>
+#include <linux/list.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <linux/pagemap.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/dmapool.h>
+#include <linux/mempool.h>
+#include <linux/spinlock.h>
+#include <linux/kthread.h>
+#include <linux/interrupt.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/ipv6.h>
+#include <net/ipv6.h>
+#include <linux/tcp.h>
+#include <linux/udp.h>
+#include <linux/if_arp.h>
+#include <linux/if_ether.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/ethtool.h>
+#include <linux/skbuff.h>
+#include <linux/rtnetlink.h>
+#include <linux/if_vlan.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/mm.h>
+#include <linux/vmalloc.h>
+
+#include <linux/version.h>
+
+#include "qlge.h"
+
+static int ql_update_ring_coalescing(struct ql_adapter *qdev)
+{
+	int i, status = 0;
+	struct rx_ring *rx_ring;
+	struct cqicb *cqicb;
+
+	if (!netif_running(qdev->ndev))
+		return status;
+
+	spin_lock(&qdev->hw_lock);
+	/* Skip the default queue, and update the outbound handler
+	 * queues if they changed.
+	 */
+	cqicb = (struct cqicb *)&qdev->rx_ring[1];
+	if (le16_to_cpu(cqicb->irq_delay) != qdev->tx_coalesce_usecs ||
+	    le16_to_cpu(cqicb->pkt_delay) != qdev->tx_max_coalesced_frames) {
+		for (i = 1; i < qdev->rss_ring_first_cq_id; i++, rx_ring++) {
+			rx_ring = &qdev->rx_ring[i];
+			cqicb = (struct cqicb *)rx_ring;
+			cqicb->irq_delay = le16_to_cpu(qdev->tx_coalesce_usecs);
+			cqicb->pkt_delay =
+			    le16_to_cpu(qdev->tx_max_coalesced_frames);
+			cqicb->flags = FLAGS_LI;
+			status = ql_write_cfg(qdev, cqicb, sizeof(cqicb),
+						CFG_LCQ, rx_ring->cq_id);
+			if (status) {
+				QPRINTK(qdev, IFUP, ERR,
+					"Failed to load CQICB.\n");
+				goto exit;
+			}
+		}
+	}
+
+	/* Update the inbound (RSS) handler queues if they changed. */
+	cqicb = (struct cqicb *)&qdev->rx_ring[qdev->rss_ring_first_cq_id];
+	if (le16_to_cpu(cqicb->irq_delay) != qdev->rx_coalesce_usecs ||
+	    le16_to_cpu(cqicb->pkt_delay) != qdev->rx_max_coalesced_frames) {
+		for (i = qdev->rss_ring_first_cq_id;
+		     i <= qdev->rss_ring_first_cq_id + qdev->rss_ring_count;
+		     i++) {
+			rx_ring = &qdev->rx_ring[i];
+			cqicb = (struct cqicb *)rx_ring;
+			cqicb->irq_delay = le16_to_cpu(qdev->rx_coalesce_usecs);
+			cqicb->pkt_delay =
+			    le16_to_cpu(qdev->rx_max_coalesced_frames);
+			cqicb->flags = FLAGS_LI;
+			status = ql_write_cfg(qdev, cqicb, sizeof(cqicb),
+						CFG_LCQ, rx_ring->cq_id);
+			if (status) {
+				QPRINTK(qdev, IFUP, ERR,
+					"Failed to load CQICB.\n");
+				goto exit;
+			}
+		}
+	}
+exit:
+	spin_unlock(&qdev->hw_lock);
+	return status;
+}
+
+void ql_update_stats(struct ql_adapter *qdev)
+{
+	u32 i;
+	u64 data;
+	u64 *iter = &qdev->nic_stats.tx_pkts;
+
+	spin_lock(&qdev->stats_lock);
+	if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
+			QPRINTK(qdev, DRV, ERR,
+				"Couldn't get xgmac sem.\n");
+		goto quit;
+	}
+	/*
+	 * Get TX statistics.
+	 */
+	for (i = 0x200; i < 0x280; i += 8) {
+		if (ql_read_xgmac_reg64(qdev, i, &data)) {
+			QPRINTK(qdev, DRV, ERR,
+				"Error reading status register 0x%.04x.\n", i);
+			goto end;
+		} else
+			*iter = data;
+		iter++;
+	}
+
+	/*
+	 * Get RX statistics.
+	 */
+	for (i = 0x300; i < 0x3d0; i += 8) {
+		if (ql_read_xgmac_reg64(qdev, i, &data)) {
+			QPRINTK(qdev, DRV, ERR,
+				"Error reading status register 0x%.04x.\n", i);
+			goto end;
+		} else
+			*iter = data;
+		iter++;
+	}
+
+end:
+	ql_sem_unlock(qdev, qdev->xg_sem_mask);
+quit:
+	spin_unlock(&qdev->stats_lock);
+
+	QL_DUMP_STAT(qdev);
+
+	return;
+}
+
+static char ql_stats_str_arr[][ETH_GSTRING_LEN] = {
+	{"tx_pkts"},
+	{"tx_bytes"},
+	{"tx_mcast_pkts"},
+	{"tx_bcast_pkts"},
+	{"tx_ucast_pkts"},
+	{"tx_ctl_pkts"},
+	{"tx_pause_pkts"},
+	{"tx_64_pkts"},
+	{"tx_65_to_127_pkts"},
+	{"tx_128_to_255_pkts"},
+	{"tx_256_511_pkts"},
+	{"tx_512_to_1023_pkts"},
+	{"tx_1024_to_1518_pkts"},
+	{"tx_1519_to_max_pkts"},
+	{"tx_undersize_pkts"},
+	{"tx_oversize_pkts"},
+	{"rx_bytes"},
+	{"rx_bytes_ok"},
+	{"rx_pkts"},
+	{"rx_pkts_ok"},
+	{"rx_bcast_pkts"},
+	{"rx_mcast_pkts"},
+	{"rx_ucast_pkts"},
+	{"rx_undersize_pkts"},
+	{"rx_oversize_pkts"},
+	{"rx_jabber_pkts"},
+	{"rx_undersize_fcerr_pkts"},
+	{"rx_drop_events"},
+	{"rx_fcerr_pkts"},
+	{"rx_align_err"},
+	{"rx_symbol_err"},
+	{"rx_mac_err"},
+	{"rx_ctl_pkts"},
+	{"rx_pause_pkts"},
+	{"rx_64_pkts"},
+	{"rx_65_to_127_pkts"},
+	{"rx_128_255_pkts"},
+	{"rx_256_511_pkts"},
+	{"rx_512_to_1023_pkts"},
+	{"rx_1024_to_1518_pkts"},
+	{"rx_1519_to_max_pkts"},
+	{"rx_len_err_pkts"},
+};
+
+static void ql_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
+{
+	switch (stringset) {
+	case ETH_SS_STATS:
+		memcpy(buf, ql_stats_str_arr, sizeof(ql_stats_str_arr));
+		break;
+	}
+}
+
+static int ql_get_sset_count(struct net_device *dev, int sset)
+{
+	switch (sset) {
+	case ETH_SS_STATS:
+		return ARRAY_SIZE(ql_stats_str_arr);
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static void
+ql_get_ethtool_stats(struct net_device *ndev,
+		     struct ethtool_stats *stats, u64 *data)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	struct nic_stats *s = &qdev->nic_stats;
+
+	ql_update_stats(qdev);
+
+	*data++ = s->tx_pkts;
+	*data++ = s->tx_bytes;
+	*data++ = s->tx_mcast_pkts;
+	*data++ = s->tx_bcast_pkts;
+	*data++ = s->tx_ucast_pkts;
+	*data++ = s->tx_ctl_pkts;
+	*data++ = s->tx_pause_pkts;
+	*data++ = s->tx_64_pkt;
+	*data++ = s->tx_65_to_127_pkt;
+	*data++ = s->tx_128_to_255_pkt;
+	*data++ = s->tx_256_511_pkt;
+	*data++ = s->tx_512_to_1023_pkt;
+	*data++ = s->tx_1024_to_1518_pkt;
+	*data++ = s->tx_1519_to_max_pkt;
+	*data++ = s->tx_undersize_pkt;
+	*data++ = s->tx_oversize_pkt;
+	*data++ = s->rx_bytes;
+	*data++ = s->rx_bytes_ok;
+	*data++ = s->rx_pkts;
+	*data++ = s->rx_pkts_ok;
+	*data++ = s->rx_bcast_pkts;
+	*data++ = s->rx_mcast_pkts;
+	*data++ = s->rx_ucast_pkts;
+	*data++ = s->rx_undersize_pkts;
+	*data++ = s->rx_oversize_pkts;
+	*data++ = s->rx_jabber_pkts;
+	*data++ = s->rx_undersize_fcerr_pkts;
+	*data++ = s->rx_drop_events;
+	*data++ = s->rx_fcerr_pkts;
+	*data++ = s->rx_align_err;
+	*data++ = s->rx_symbol_err;
+	*data++ = s->rx_mac_err;
+	*data++ = s->rx_ctl_pkts;
+	*data++ = s->rx_pause_pkts;
+	*data++ = s->rx_64_pkts;
+	*data++ = s->rx_65_to_127_pkts;
+	*data++ = s->rx_128_255_pkts;
+	*data++ = s->rx_256_511_pkts;
+	*data++ = s->rx_512_to_1023_pkts;
+	*data++ = s->rx_1024_to_1518_pkts;
+	*data++ = s->rx_1519_to_max_pkts;
+	*data++ = s->rx_len_err_pkts;
+}
+
+static int ql_get_settings(struct net_device *ndev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	ecmd->supported = SUPPORTED_10000baseT_Full;
+	ecmd->advertising = ADVERTISED_10000baseT_Full;
+	ecmd->autoneg = AUTONEG_ENABLE;
+	ecmd->transceiver = XCVR_EXTERNAL;
+	if ((qdev->link_status & LINK_TYPE_MASK) == LINK_TYPE_10GBASET) {
+		ecmd->supported |= (SUPPORTED_TP | SUPPORTED_Autoneg);
+		ecmd->advertising |= (ADVERTISED_TP | ADVERTISED_Autoneg);
+		ecmd->port = PORT_TP;
+	} else {
+		ecmd->supported |= SUPPORTED_FIBRE;
+		ecmd->advertising |= ADVERTISED_FIBRE;
+		ecmd->port = PORT_FIBRE;
+	}
+
+	ecmd->speed = SPEED_10000;
+	ecmd->duplex = DUPLEX_FULL;
+
+	return 0;
+}
+
+static void ql_get_drvinfo(struct net_device *ndev,
+			   struct ethtool_drvinfo *drvinfo)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	strncpy(drvinfo->driver, qlge_driver_name, 32);
+	strncpy(drvinfo->version, qlge_driver_version, 32);
+	strncpy(drvinfo->fw_version, "N/A", 32);
+	strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
+	drvinfo->n_stats = 0;
+	drvinfo->testinfo_len = 0;
+	drvinfo->regdump_len = 0;
+	drvinfo->eedump_len = 0;
+}
+
+static int ql_get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
+{
+	struct ql_adapter *qdev = netdev_priv(dev);
+
+	c->rx_coalesce_usecs = qdev->rx_coalesce_usecs;
+	c->tx_coalesce_usecs = qdev->tx_coalesce_usecs;
+
+	/* This chip coalesces as follows:
+	 * If a packet arrives, hold off interrupts until
+	 * cqicb->int_delay expires, but if no other packets arrive don't
+	 * wait longer than cqicb->pkt_int_delay. But ethtool doesn't use a
+	 * timer to coalesce on a frame basis.  So, we have to take ethtool's
+	 * max_coalesced_frames value and convert it to a delay in microseconds.
+	 * We do this by using a basic thoughput of 1,000,000 frames per
+	 * second @ (1024 bytes).  This means one frame per usec. So it's a
+	 * simple one to one ratio.
+	 */
+	c->rx_max_coalesced_frames = qdev->rx_max_coalesced_frames;
+	c->tx_max_coalesced_frames = qdev->tx_max_coalesced_frames;
+
+	return 0;
+}
+
+static int ql_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *c)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	/* Validate user parameters. */
+	if (c->rx_coalesce_usecs > qdev->rx_ring_size / 2)
+		return -EINVAL;
+       /* Don't wait more than 10 usec. */
+	if (c->rx_max_coalesced_frames > MAX_INTER_FRAME_WAIT)
+		return -EINVAL;
+	if (c->tx_coalesce_usecs > qdev->tx_ring_size / 2)
+		return -EINVAL;
+	if (c->tx_max_coalesced_frames > MAX_INTER_FRAME_WAIT)
+		return -EINVAL;
+
+	/* Verify a change took place before updating the hardware. */
+	if (qdev->rx_coalesce_usecs == c->rx_coalesce_usecs &&
+	    qdev->tx_coalesce_usecs == c->tx_coalesce_usecs &&
+	    qdev->rx_max_coalesced_frames == c->rx_max_coalesced_frames &&
+	    qdev->tx_max_coalesced_frames == c->tx_max_coalesced_frames)
+		return 0;
+
+	qdev->rx_coalesce_usecs = c->rx_coalesce_usecs;
+	qdev->tx_coalesce_usecs = c->tx_coalesce_usecs;
+	qdev->rx_max_coalesced_frames = c->rx_max_coalesced_frames;
+	qdev->tx_max_coalesced_frames = c->tx_max_coalesced_frames;
+
+	return ql_update_ring_coalescing(qdev);
+}
+
+static u32 ql_get_rx_csum(struct net_device *netdev)
+{
+	struct ql_adapter *qdev = netdev_priv(netdev);
+	return qdev->rx_csum;
+}
+
+static int ql_set_rx_csum(struct net_device *netdev, uint32_t data)
+{
+	struct ql_adapter *qdev = netdev_priv(netdev);
+	qdev->rx_csum = data;
+	return 0;
+}
+
+static int ql_set_tso(struct net_device *ndev, uint32_t data)
+{
+
+	if (data) {
+		ndev->features |= NETIF_F_TSO;
+		ndev->features |= NETIF_F_TSO6;
+	} else {
+		ndev->features &= ~NETIF_F_TSO;
+		ndev->features &= ~NETIF_F_TSO6;
+	}
+	return 0;
+}
+
+static u32 ql_get_msglevel(struct net_device *ndev)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	return qdev->msg_enable;
+}
+
+static void ql_set_msglevel(struct net_device *ndev, u32 value)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	qdev->msg_enable = value;
+}
+
+const struct ethtool_ops qlge_ethtool_ops = {
+	.get_settings = ql_get_settings,
+	.get_drvinfo = ql_get_drvinfo,
+	.get_msglevel = ql_get_msglevel,
+	.set_msglevel = ql_set_msglevel,
+	.get_link = ethtool_op_get_link,
+	.get_rx_csum = ql_get_rx_csum,
+	.set_rx_csum = ql_set_rx_csum,
+	.get_tx_csum = ethtool_op_get_tx_csum,
+	.get_sg = ethtool_op_get_sg,
+	.set_sg = ethtool_op_set_sg,
+	.get_tso = ethtool_op_get_tso,
+	.set_tso = ql_set_tso,
+	.get_coalesce = ql_get_coalesce,
+	.set_coalesce = ql_set_coalesce,
+	.get_sset_count = ql_get_sset_count,
+	.get_strings = ql_get_strings,
+	.get_ethtool_stats = ql_get_ethtool_stats,
+};
+
diff --git a/drivers/net/qlge/qlge_main.c b/drivers/net/qlge/qlge_main.c
new file mode 100644
index 0000000..ad878e2
--- /dev/null
+++ b/drivers/net/qlge/qlge_main.c
@@ -0,0 +1,3954 @@
+/*
+ * QLogic qlge NIC HBA Driver
+ * Copyright (c)  2003-2008 QLogic Corporation
+ * See LICENSE.qlge for copyright and licensing details.
+ * Author:     Linux qlge network device driver by
+ *                      Ron Mercer <ron.mercer@qlogic.com>
+ */
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/module.h>
+#include <linux/list.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <linux/pagemap.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/dmapool.h>
+#include <linux/mempool.h>
+#include <linux/spinlock.h>
+#include <linux/kthread.h>
+#include <linux/interrupt.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/ipv6.h>
+#include <net/ipv6.h>
+#include <linux/tcp.h>
+#include <linux/udp.h>
+#include <linux/if_arp.h>
+#include <linux/if_ether.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/ethtool.h>
+#include <linux/skbuff.h>
+#include <linux/rtnetlink.h>
+#include <linux/if_vlan.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/mm.h>
+#include <linux/vmalloc.h>
+
+#include "qlge.h"
+
+char qlge_driver_name[] = DRV_NAME;
+const char qlge_driver_version[] = DRV_VERSION;
+
+MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
+MODULE_DESCRIPTION(DRV_STRING " ");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+static const u32 default_msg =
+    NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
+/* NETIF_MSG_TIMER |	*/
+    NETIF_MSG_IFDOWN |
+    NETIF_MSG_IFUP |
+    NETIF_MSG_RX_ERR |
+    NETIF_MSG_TX_ERR |
+    NETIF_MSG_TX_QUEUED |
+    NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
+/* NETIF_MSG_PKTDATA | */
+    NETIF_MSG_HW | NETIF_MSG_WOL | 0;
+
+static int debug = 0x00007fff;	/* defaults above */
+module_param(debug, int, 0);
+MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
+
+#define MSIX_IRQ 0
+#define MSI_IRQ 1
+#define LEG_IRQ 2
+static int irq_type = MSIX_IRQ;
+module_param(irq_type, int, MSIX_IRQ);
+MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
+
+static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
+	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
+	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
+	/* required last entry */
+	{0,}
+};
+
+MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
+
+/* This hardware semaphore causes exclusive access to
+ * resources shared between the NIC driver, MPI firmware,
+ * FCOE firmware and the FC driver.
+ */
+static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
+{
+	u32 sem_bits = 0;
+
+	switch (sem_mask) {
+	case SEM_XGMAC0_MASK:
+		sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
+		break;
+	case SEM_XGMAC1_MASK:
+		sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
+		break;
+	case SEM_ICB_MASK:
+		sem_bits = SEM_SET << SEM_ICB_SHIFT;
+		break;
+	case SEM_MAC_ADDR_MASK:
+		sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
+		break;
+	case SEM_FLASH_MASK:
+		sem_bits = SEM_SET << SEM_FLASH_SHIFT;
+		break;
+	case SEM_PROBE_MASK:
+		sem_bits = SEM_SET << SEM_PROBE_SHIFT;
+		break;
+	case SEM_RT_IDX_MASK:
+		sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
+		break;
+	case SEM_PROC_REG_MASK:
+		sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
+		break;
+	default:
+		QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
+		return -EINVAL;
+	}
+
+	ql_write32(qdev, SEM, sem_bits | sem_mask);
+	return !(ql_read32(qdev, SEM) & sem_bits);
+}
+
+int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
+{
+	unsigned int seconds = 3;
+	do {
+		if (!ql_sem_trylock(qdev, sem_mask))
+			return 0;
+		ssleep(1);
+	} while (--seconds);
+	return -ETIMEDOUT;
+}
+
+void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
+{
+	ql_write32(qdev, SEM, sem_mask);
+	ql_read32(qdev, SEM);	/* flush */
+}
+
+/* This function waits for a specific bit to come ready
+ * in a given register.  It is used mostly by the initialize
+ * process, but is also used in kernel thread API such as
+ * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
+ */
+int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
+{
+	u32 temp;
+	int count = UDELAY_COUNT;
+
+	while (count) {
+		temp = ql_read32(qdev, reg);
+
+		/* check for errors */
+		if (temp & err_bit) {
+			QPRINTK(qdev, PROBE, ALERT,
+				"register 0x%.08x access error, value = 0x%.08x!.\n",
+				reg, temp);
+			return -EIO;
+		} else if (temp & bit)
+			return 0;
+		udelay(UDELAY_DELAY);
+		count--;
+	}
+	QPRINTK(qdev, PROBE, ALERT,
+		"Timed out waiting for reg %x to come ready.\n", reg);
+	return -ETIMEDOUT;
+}
+
+/* The CFG register is used to download TX and RX control blocks
+ * to the chip. This function waits for an operation to complete.
+ */
+static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
+{
+	int count = UDELAY_COUNT;
+	u32 temp;
+
+	while (count) {
+		temp = ql_read32(qdev, CFG);
+		if (temp & CFG_LE)
+			return -EIO;
+		if (!(temp & bit))
+			return 0;
+		udelay(UDELAY_DELAY);
+		count--;
+	}
+	return -ETIMEDOUT;
+}
+
+
+/* Used to issue init control blocks to hw. Maps control block,
+ * sets address, triggers download, waits for completion.
+ */
+int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
+		 u16 q_id)
+{
+	u64 map;
+	int status = 0;
+	int direction;
+	u32 mask;
+	u32 value;
+
+	direction =
+	    (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
+	    PCI_DMA_FROMDEVICE;
+
+	map = pci_map_single(qdev->pdev, ptr, size, direction);
+	if (pci_dma_mapping_error(qdev->pdev, map)) {
+		QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
+		return -ENOMEM;
+	}
+
+	status = ql_wait_cfg(qdev, bit);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Timed out waiting for CFG to come ready.\n");
+		goto exit;
+	}
+
+	status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
+	if (status)
+		goto exit;
+	ql_write32(qdev, ICB_L, (u32) map);
+	ql_write32(qdev, ICB_H, (u32) (map >> 32));
+	ql_sem_unlock(qdev, SEM_ICB_MASK);	/* does flush too */
+
+	mask = CFG_Q_MASK | (bit << 16);
+	value = bit | (q_id << CFG_Q_SHIFT);
+	ql_write32(qdev, CFG, (mask | value));
+
+	/*
+	 * Wait for the bit to clear after signaling hw.
+	 */
+	status = ql_wait_cfg(qdev, bit);
+exit:
+	pci_unmap_single(qdev->pdev, map, size, direction);
+	return status;
+}
+
+/* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
+int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
+			u32 *value)
+{
+	u32 offset = 0;
+	int status;
+
+	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
+	if (status)
+		return status;
+	switch (type) {
+	case MAC_ADDR_TYPE_MULTI_MAC:
+	case MAC_ADDR_TYPE_CAM_MAC:
+		{
+			status =
+			    ql_wait_reg_rdy(qdev,
+				MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+			if (status)
+				goto exit;
+			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
+				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
+			status =
+			    ql_wait_reg_rdy(qdev,
+				MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
+			if (status)
+				goto exit;
+			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
+			status =
+			    ql_wait_reg_rdy(qdev,
+				MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+			if (status)
+				goto exit;
+			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
+				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
+			status =
+			    ql_wait_reg_rdy(qdev,
+				MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
+			if (status)
+				goto exit;
+			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
+			if (type == MAC_ADDR_TYPE_CAM_MAC) {
+				status =
+				    ql_wait_reg_rdy(qdev,
+					MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+				if (status)
+					goto exit;
+				ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+					   (index << MAC_ADDR_IDX_SHIFT) | /* index */
+					   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
+				status =
+				    ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
+						    MAC_ADDR_MR, MAC_ADDR_E);
+				if (status)
+					goto exit;
+				*value++ = ql_read32(qdev, MAC_ADDR_DATA);
+			}
+			break;
+		}
+	case MAC_ADDR_TYPE_VLAN:
+	case MAC_ADDR_TYPE_MULTI_FLTR:
+	default:
+		QPRINTK(qdev, IFUP, CRIT,
+			"Address type %d not yet supported.\n", type);
+		status = -EPERM;
+	}
+exit:
+	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+	return status;
+}
+
+/* Set up a MAC, multicast or VLAN address for the
+ * inbound frame matching.
+ */
+static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
+			       u16 index)
+{
+	u32 offset = 0;
+	int status = 0;
+
+	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
+	if (status)
+		return status;
+	switch (type) {
+	case MAC_ADDR_TYPE_MULTI_MAC:
+	case MAC_ADDR_TYPE_CAM_MAC:
+		{
+			u32 cam_output;
+			u32 upper = (addr[0] << 8) | addr[1];
+			u32 lower =
+			    (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
+			    (addr[5]);
+
+			QPRINTK(qdev, IFUP, INFO,
+				"Adding %s address %02x:%02x:%02x:%02x:%02x:%02x"
+				" at index %d in the CAM.\n",
+				((type ==
+				  MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
+				 "UNICAST"), addr[0], addr[1], addr[2], addr[3],
+				addr[4], addr[5], index);
+
+			status =
+			    ql_wait_reg_rdy(qdev,
+				MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+			if (status)
+				goto exit;
+			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
+				   type);	/* type */
+			ql_write32(qdev, MAC_ADDR_DATA, lower);
+			status =
+			    ql_wait_reg_rdy(qdev,
+				MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+			if (status)
+				goto exit;
+			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
+				   type);	/* type */
+			ql_write32(qdev, MAC_ADDR_DATA, upper);
+			status =
+			    ql_wait_reg_rdy(qdev,
+				MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+			if (status)
+				goto exit;
+			ql_write32(qdev, MAC_ADDR_IDX, (offset) |	/* offset */
+				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
+				   type);	/* type */
+			/* This field should also include the queue id
+			   and possibly the function id.  Right now we hardcode
+			   the route field to NIC core.
+			 */
+			if (type == MAC_ADDR_TYPE_CAM_MAC) {
+				cam_output = (CAM_OUT_ROUTE_NIC |
+					      (qdev->
+					       func << CAM_OUT_FUNC_SHIFT) |
+					      (qdev->
+					       rss_ring_first_cq_id <<
+					       CAM_OUT_CQ_ID_SHIFT));
+				if (qdev->vlgrp)
+					cam_output |= CAM_OUT_RV;
+				/* route to NIC core */
+				ql_write32(qdev, MAC_ADDR_DATA, cam_output);
+			}
+			break;
+		}
+	case MAC_ADDR_TYPE_VLAN:
+		{
+			u32 enable_bit = *((u32 *) &addr[0]);
+			/* For VLAN, the addr actually holds a bit that
+			 * either enables or disables the vlan id we are
+			 * addressing. It's either MAC_ADDR_E on or off.
+			 * That's bit-27 we're talking about.
+			 */
+			QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
+				(enable_bit ? "Adding" : "Removing"),
+				index, (enable_bit ? "to" : "from"));
+
+			status =
+			    ql_wait_reg_rdy(qdev,
+				MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+			if (status)
+				goto exit;
+			ql_write32(qdev, MAC_ADDR_IDX, offset |	/* offset */
+				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
+				   type |	/* type */
+				   enable_bit);	/* enable/disable */
+			break;
+		}
+	case MAC_ADDR_TYPE_MULTI_FLTR:
+	default:
+		QPRINTK(qdev, IFUP, CRIT,
+			"Address type %d not yet supported.\n", type);
+		status = -EPERM;
+	}
+exit:
+	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+	return status;
+}
+
+/* Get a specific frame routing value from the CAM.
+ * Used for debug and reg dump.
+ */
+int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
+{
+	int status = 0;
+
+	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
+	if (status)
+		goto exit;
+
+	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
+	if (status)
+		goto exit;
+
+	ql_write32(qdev, RT_IDX,
+		   RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
+	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
+	if (status)
+		goto exit;
+	*value = ql_read32(qdev, RT_DATA);
+exit:
+	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
+	return status;
+}
+
+/* The NIC function for this chip has 16 routing indexes.  Each one can be used
+ * to route different frame types to various inbound queues.  We send broadcast/
+ * multicast/error frames to the default queue for slow handling,
+ * and CAM hit/RSS frames to the fast handling queues.
+ */
+static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
+			      int enable)
+{
+	int status;
+	u32 value = 0;
+
+	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
+	if (status)
+		return status;
+
+	QPRINTK(qdev, IFUP, DEBUG,
+		"%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
+		(enable ? "Adding" : "Removing"),
+		((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
+		((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
+		((index ==
+		  RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
+		((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
+		((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
+		((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
+		((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
+		((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
+		((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
+		((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
+		((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
+		((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
+		((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
+		((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
+		((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
+		((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
+		(enable ? "to" : "from"));
+
+	switch (mask) {
+	case RT_IDX_CAM_HIT:
+		{
+			value = RT_IDX_DST_CAM_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case RT_IDX_VALID:	/* Promiscuous Mode frames. */
+		{
+			value = RT_IDX_DST_DFLT_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case RT_IDX_ERR:	/* Pass up MAC,IP,TCP/UDP error frames. */
+		{
+			value = RT_IDX_DST_DFLT_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case RT_IDX_BCAST:	/* Pass up Broadcast frames to default Q. */
+		{
+			value = RT_IDX_DST_DFLT_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case RT_IDX_MCAST:	/* Pass up All Multicast frames. */
+		{
+			value = RT_IDX_DST_CAM_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case RT_IDX_MCAST_MATCH:	/* Pass up matched Multicast frames. */
+		{
+			value = RT_IDX_DST_CAM_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case RT_IDX_RSS_MATCH:	/* Pass up matched RSS frames. */
+		{
+			value = RT_IDX_DST_RSS |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case 0:		/* Clear the E-bit on an entry. */
+		{
+			value = RT_IDX_DST_DFLT_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (index << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	default:
+		QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
+			mask);
+		status = -EPERM;
+		goto exit;
+	}
+
+	if (value) {
+		status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
+		if (status)
+			goto exit;
+		value |= (enable ? RT_IDX_E : 0);
+		ql_write32(qdev, RT_IDX, value);
+		ql_write32(qdev, RT_DATA, enable ? mask : 0);
+	}
+exit:
+	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
+	return status;
+}
+
+static void ql_enable_interrupts(struct ql_adapter *qdev)
+{
+	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
+}
+
+static void ql_disable_interrupts(struct ql_adapter *qdev)
+{
+	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
+}
+
+/* If we're running with multiple MSI-X vectors then we enable on the fly.
+ * Otherwise, we may have multiple outstanding workers and don't want to
+ * enable until the last one finishes. In this case, the irq_cnt gets
+ * incremented everytime we queue a worker and decremented everytime
+ * a worker finishes.  Once it hits zero we enable the interrupt.
+ */
+void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
+{
+	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
+		ql_write32(qdev, INTR_EN,
+			   qdev->intr_context[intr].intr_en_mask);
+	else {
+		if (qdev->legacy_check)
+			spin_lock(&qdev->legacy_lock);
+		if (atomic_dec_and_test(&qdev->intr_context[intr].irq_cnt)) {
+			QPRINTK(qdev, INTR, ERR, "Enabling interrupt %d.\n",
+				intr);
+			ql_write32(qdev, INTR_EN,
+				   qdev->intr_context[intr].intr_en_mask);
+		} else {
+			QPRINTK(qdev, INTR, ERR,
+				"Skip enable, other queue(s) are active.\n");
+		}
+		if (qdev->legacy_check)
+			spin_unlock(&qdev->legacy_lock);
+	}
+}
+
+static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
+{
+	u32 var = 0;
+
+	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
+		goto exit;
+	else if (!atomic_read(&qdev->intr_context[intr].irq_cnt)) {
+		ql_write32(qdev, INTR_EN,
+			   qdev->intr_context[intr].intr_dis_mask);
+		var = ql_read32(qdev, STS);
+	}
+	atomic_inc(&qdev->intr_context[intr].irq_cnt);
+exit:
+	return var;
+}
+
+static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
+{
+	int i;
+	for (i = 0; i < qdev->intr_count; i++) {
+		/* The enable call does a atomic_dec_and_test
+		 * and enables only if the result is zero.
+		 * So we precharge it here.
+		 */
+		atomic_set(&qdev->intr_context[i].irq_cnt, 1);
+		ql_enable_completion_interrupt(qdev, i);
+	}
+
+}
+
+int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
+{
+	int status = 0;
+	/* wait for reg to come ready */
+	status = ql_wait_reg_rdy(qdev,
+			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
+	if (status)
+		goto exit;
+	/* set up for reg read */
+	ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
+	/* wait for reg to come ready */
+	status = ql_wait_reg_rdy(qdev,
+			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
+	if (status)
+		goto exit;
+	/* get the data */
+	*data = ql_read32(qdev, FLASH_DATA);
+exit:
+	return status;
+}
+
+static int ql_get_flash_params(struct ql_adapter *qdev)
+{
+	int i;
+	int status;
+	u32 *p = (u32 *)&qdev->flash;
+
+	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
+		return -ETIMEDOUT;
+
+	for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
+		status = ql_read_flash_word(qdev, i, p);
+		if (status) {
+			QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
+			goto exit;
+		}
+
+	}
+exit:
+	ql_sem_unlock(qdev, SEM_FLASH_MASK);
+	return status;
+}
+
+/* xgmac register are located behind the xgmac_addr and xgmac_data
+ * register pair.  Each read/write requires us to wait for the ready
+ * bit before reading/writing the data.
+ */
+static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
+{
+	int status;
+	/* wait for reg to come ready */
+	status = ql_wait_reg_rdy(qdev,
+			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
+	if (status)
+		return status;
+	/* write the data to the data reg */
+	ql_write32(qdev, XGMAC_DATA, data);
+	/* trigger the write */
+	ql_write32(qdev, XGMAC_ADDR, reg);
+	return status;
+}
+
+/* xgmac register are located behind the xgmac_addr and xgmac_data
+ * register pair.  Each read/write requires us to wait for the ready
+ * bit before reading/writing the data.
+ */
+int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
+{
+	int status = 0;
+	/* wait for reg to come ready */
+	status = ql_wait_reg_rdy(qdev,
+			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
+	if (status)
+		goto exit;
+	/* set up for reg read */
+	ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
+	/* wait for reg to come ready */
+	status = ql_wait_reg_rdy(qdev,
+			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
+	if (status)
+		goto exit;
+	/* get the data */
+	*data = ql_read32(qdev, XGMAC_DATA);
+exit:
+	return status;
+}
+
+/* This is used for reading the 64-bit statistics regs. */
+int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
+{
+	int status = 0;
+	u32 hi = 0;
+	u32 lo = 0;
+
+	status = ql_read_xgmac_reg(qdev, reg, &lo);
+	if (status)
+		goto exit;
+
+	status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
+	if (status)
+		goto exit;
+
+	*data = (u64) lo | ((u64) hi << 32);
+
+exit:
+	return status;
+}
+
+/* Take the MAC Core out of reset.
+ * Enable statistics counting.
+ * Take the transmitter/receiver out of reset.
+ * This functionality may be done in the MPI firmware at a
+ * later date.
+ */
+static int ql_port_initialize(struct ql_adapter *qdev)
+{
+	int status = 0;
+	u32 data;
+
+	if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
+		/* Another function has the semaphore, so
+		 * wait for the port init bit to come ready.
+		 */
+		QPRINTK(qdev, LINK, INFO,
+			"Another function has the semaphore, so wait for the port init bit to come ready.\n");
+		status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
+		if (status) {
+			QPRINTK(qdev, LINK, CRIT,
+				"Port initialize timed out.\n");
+		}
+		return status;
+	}
+
+	QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
+	/* Set the core reset. */
+	status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
+	if (status)
+		goto end;
+	data |= GLOBAL_CFG_RESET;
+	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
+	if (status)
+		goto end;
+
+	/* Clear the core reset and turn on jumbo for receiver. */
+	data &= ~GLOBAL_CFG_RESET;	/* Clear core reset. */
+	data |= GLOBAL_CFG_JUMBO;	/* Turn on jumbo. */
+	data |= GLOBAL_CFG_TX_STAT_EN;
+	data |= GLOBAL_CFG_RX_STAT_EN;
+	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
+	if (status)
+		goto end;
+
+	/* Enable transmitter, and clear it's reset. */
+	status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
+	if (status)
+		goto end;
+	data &= ~TX_CFG_RESET;	/* Clear the TX MAC reset. */
+	data |= TX_CFG_EN;	/* Enable the transmitter. */
+	status = ql_write_xgmac_reg(qdev, TX_CFG, data);
+	if (status)
+		goto end;
+
+	/* Enable receiver and clear it's reset. */
+	status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
+	if (status)
+		goto end;
+	data &= ~RX_CFG_RESET;	/* Clear the RX MAC reset. */
+	data |= RX_CFG_EN;	/* Enable the receiver. */
+	status = ql_write_xgmac_reg(qdev, RX_CFG, data);
+	if (status)
+		goto end;
+
+	/* Turn on jumbo. */
+	status =
+	    ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
+	if (status)
+		goto end;
+	status =
+	    ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
+	if (status)
+		goto end;
+
+	/* Signal to the world that the port is enabled.        */
+	ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
+end:
+	ql_sem_unlock(qdev, qdev->xg_sem_mask);
+	return status;
+}
+
+/* Get the next large buffer. */
+struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
+{
+	struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
+	rx_ring->lbq_curr_idx++;
+	if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
+		rx_ring->lbq_curr_idx = 0;
+	rx_ring->lbq_free_cnt++;
+	return lbq_desc;
+}
+
+/* Get the next small buffer. */
+struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
+{
+	struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
+	rx_ring->sbq_curr_idx++;
+	if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
+		rx_ring->sbq_curr_idx = 0;
+	rx_ring->sbq_free_cnt++;
+	return sbq_desc;
+}
+
+/* Update an rx ring index. */
+static void ql_update_cq(struct rx_ring *rx_ring)
+{
+	rx_ring->cnsmr_idx++;
+	rx_ring->curr_entry++;
+	if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
+		rx_ring->cnsmr_idx = 0;
+		rx_ring->curr_entry = rx_ring->cq_base;
+	}
+}
+
+static void ql_write_cq_idx(struct rx_ring *rx_ring)
+{
+	ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
+}
+
+/* Process (refill) a large buffer queue. */
+static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+	int clean_idx = rx_ring->lbq_clean_idx;
+	struct bq_desc *lbq_desc;
+	struct bq_element *bq;
+	u64 map;
+	int i;
+
+	while (rx_ring->lbq_free_cnt > 16) {
+		for (i = 0; i < 16; i++) {
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"lbq: try cleaning clean_idx = %d.\n",
+				clean_idx);
+			lbq_desc = &rx_ring->lbq[clean_idx];
+			bq = lbq_desc->bq;
+			if (lbq_desc->p.lbq_page == NULL) {
+				QPRINTK(qdev, RX_STATUS, DEBUG,
+					"lbq: getting new page for index %d.\n",
+					lbq_desc->index);
+				lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
+				if (lbq_desc->p.lbq_page == NULL) {
+					QPRINTK(qdev, RX_STATUS, ERR,
+						"Couldn't get a page.\n");
+					return;
+				}
+				map = pci_map_page(qdev->pdev,
+						   lbq_desc->p.lbq_page,
+						   0, PAGE_SIZE,
+						   PCI_DMA_FROMDEVICE);
+				if (pci_dma_mapping_error(qdev->pdev, map)) {
+					QPRINTK(qdev, RX_STATUS, ERR,
+						"PCI mapping failed.\n");
+					return;
+				}
+				pci_unmap_addr_set(lbq_desc, mapaddr, map);
+				pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
+				bq->addr_lo =	/*lbq_desc->addr_lo = */
+				    cpu_to_le32(map);
+				bq->addr_hi =	/*lbq_desc->addr_hi = */
+				    cpu_to_le32(map >> 32);
+			}
+			clean_idx++;
+			if (clean_idx == rx_ring->lbq_len)
+				clean_idx = 0;
+		}
+
+		rx_ring->lbq_clean_idx = clean_idx;
+		rx_ring->lbq_prod_idx += 16;
+		if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
+			rx_ring->lbq_prod_idx = 0;
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"lbq: updating prod idx = %d.\n",
+			rx_ring->lbq_prod_idx);
+		ql_write_db_reg(rx_ring->lbq_prod_idx,
+				rx_ring->lbq_prod_idx_db_reg);
+		rx_ring->lbq_free_cnt -= 16;
+	}
+}
+
+/* Process (refill) a small buffer queue. */
+static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+	int clean_idx = rx_ring->sbq_clean_idx;
+	struct bq_desc *sbq_desc;
+	struct bq_element *bq;
+	u64 map;
+	int i;
+
+	while (rx_ring->sbq_free_cnt > 16) {
+		for (i = 0; i < 16; i++) {
+			sbq_desc = &rx_ring->sbq[clean_idx];
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"sbq: try cleaning clean_idx = %d.\n",
+				clean_idx);
+			bq = sbq_desc->bq;
+			if (sbq_desc->p.skb == NULL) {
+				QPRINTK(qdev, RX_STATUS, DEBUG,
+					"sbq: getting new skb for index %d.\n",
+					sbq_desc->index);
+				sbq_desc->p.skb =
+				    netdev_alloc_skb(qdev->ndev,
+						     rx_ring->sbq_buf_size);
+				if (sbq_desc->p.skb == NULL) {
+					QPRINTK(qdev, PROBE, ERR,
+						"Couldn't get an skb.\n");
+					rx_ring->sbq_clean_idx = clean_idx;
+					return;
+				}
+				skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
+				map = pci_map_single(qdev->pdev,
+						     sbq_desc->p.skb->data,
+						     rx_ring->sbq_buf_size /
+						     2, PCI_DMA_FROMDEVICE);
+				pci_unmap_addr_set(sbq_desc, mapaddr, map);
+				pci_unmap_len_set(sbq_desc, maplen,
+						  rx_ring->sbq_buf_size / 2);
+				bq->addr_lo = cpu_to_le32(map);
+				bq->addr_hi = cpu_to_le32(map >> 32);
+			}
+
+			clean_idx++;
+			if (clean_idx == rx_ring->sbq_len)
+				clean_idx = 0;
+		}
+		rx_ring->sbq_clean_idx = clean_idx;
+		rx_ring->sbq_prod_idx += 16;
+		if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
+			rx_ring->sbq_prod_idx = 0;
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"sbq: updating prod idx = %d.\n",
+			rx_ring->sbq_prod_idx);
+		ql_write_db_reg(rx_ring->sbq_prod_idx,
+				rx_ring->sbq_prod_idx_db_reg);
+
+		rx_ring->sbq_free_cnt -= 16;
+	}
+}
+
+static void ql_update_buffer_queues(struct ql_adapter *qdev,
+				    struct rx_ring *rx_ring)
+{
+	ql_update_sbq(qdev, rx_ring);
+	ql_update_lbq(qdev, rx_ring);
+}
+
+/* Unmaps tx buffers.  Can be called from send() if a pci mapping
+ * fails at some stage, or from the interrupt when a tx completes.
+ */
+static void ql_unmap_send(struct ql_adapter *qdev,
+			  struct tx_ring_desc *tx_ring_desc, int mapped)
+{
+	int i;
+	for (i = 0; i < mapped; i++) {
+		if (i == 0 || (i == 7 && mapped > 7)) {
+			/*
+			 * Unmap the skb->data area, or the
+			 * external sglist (AKA the Outbound
+			 * Address List (OAL)).
+			 * If its the zeroeth element, then it's
+			 * the skb->data area.  If it's the 7th
+			 * element and there is more than 6 frags,
+			 * then its an OAL.
+			 */
+			if (i == 7) {
+				QPRINTK(qdev, TX_DONE, DEBUG,
+					"unmapping OAL area.\n");
+			}
+			pci_unmap_single(qdev->pdev,
+					 pci_unmap_addr(&tx_ring_desc->map[i],
+							mapaddr),
+					 pci_unmap_len(&tx_ring_desc->map[i],
+						       maplen),
+					 PCI_DMA_TODEVICE);
+		} else {
+			QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
+				i);
+			pci_unmap_page(qdev->pdev,
+				       pci_unmap_addr(&tx_ring_desc->map[i],
+						      mapaddr),
+				       pci_unmap_len(&tx_ring_desc->map[i],
+						     maplen), PCI_DMA_TODEVICE);
+		}
+	}
+
+}
+
+/* Map the buffers for this transmit.  This will return
+ * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
+ */
+static int ql_map_send(struct ql_adapter *qdev,
+		       struct ob_mac_iocb_req *mac_iocb_ptr,
+		       struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
+{
+	int len = skb_headlen(skb);
+	dma_addr_t map;
+	int frag_idx, err, map_idx = 0;
+	struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
+	int frag_cnt = skb_shinfo(skb)->nr_frags;
+
+	if (frag_cnt) {
+		QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
+	}
+	/*
+	 * Map the skb buffer first.
+	 */
+	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
+
+	err = pci_dma_mapping_error(qdev->pdev, map);
+	if (err) {
+		QPRINTK(qdev, TX_QUEUED, ERR,
+			"PCI mapping failed with error: %d\n", err);
+
+		return NETDEV_TX_BUSY;
+	}
+
+	tbd->len = cpu_to_le32(len);
+	tbd->addr = cpu_to_le64(map);
+	pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
+	pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
+	map_idx++;
+
+	/*
+	 * This loop fills the remainder of the 8 address descriptors
+	 * in the IOCB.  If there are more than 7 fragments, then the
+	 * eighth address desc will point to an external list (OAL).
+	 * When this happens, the remainder of the frags will be stored
+	 * in this list.
+	 */
+	for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
+		skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
+		tbd++;
+		if (frag_idx == 6 && frag_cnt > 7) {
+			/* Let's tack on an sglist.
+			 * Our control block will now
+			 * look like this:
+			 * iocb->seg[0] = skb->data
+			 * iocb->seg[1] = frag[0]
+			 * iocb->seg[2] = frag[1]
+			 * iocb->seg[3] = frag[2]
+			 * iocb->seg[4] = frag[3]
+			 * iocb->seg[5] = frag[4]
+			 * iocb->seg[6] = frag[5]
+			 * iocb->seg[7] = ptr to OAL (external sglist)
+			 * oal->seg[0] = frag[6]
+			 * oal->seg[1] = frag[7]
+			 * oal->seg[2] = frag[8]
+			 * oal->seg[3] = frag[9]
+			 * oal->seg[4] = frag[10]
+			 *      etc...
+			 */
+			/* Tack on the OAL in the eighth segment of IOCB. */
+			map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
+					     sizeof(struct oal),
+					     PCI_DMA_TODEVICE);
+			err = pci_dma_mapping_error(qdev->pdev, map);
+			if (err) {
+				QPRINTK(qdev, TX_QUEUED, ERR,
+					"PCI mapping outbound address list with error: %d\n",
+					err);
+				goto map_error;
+			}
+
+			tbd->addr = cpu_to_le64(map);
+			/*
+			 * The length is the number of fragments
+			 * that remain to be mapped times the length
+			 * of our sglist (OAL).
+			 */
+			tbd->len =
+			    cpu_to_le32((sizeof(struct tx_buf_desc) *
+					 (frag_cnt - frag_idx)) | TX_DESC_C);
+			pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
+					   map);
+			pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
+					  sizeof(struct oal));
+			tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
+			map_idx++;
+		}
+
+		map =
+		    pci_map_page(qdev->pdev, frag->page,
+				 frag->page_offset, frag->size,
+				 PCI_DMA_TODEVICE);
+
+		err = pci_dma_mapping_error(qdev->pdev, map);
+		if (err) {
+			QPRINTK(qdev, TX_QUEUED, ERR,
+				"PCI mapping frags failed with error: %d.\n",
+				err);
+			goto map_error;
+		}
+
+		tbd->addr = cpu_to_le64(map);
+		tbd->len = cpu_to_le32(frag->size);
+		pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
+		pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
+				  frag->size);
+
+	}
+	/* Save the number of segments we've mapped. */
+	tx_ring_desc->map_cnt = map_idx;
+	/* Terminate the last segment. */
+	tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
+	return NETDEV_TX_OK;
+
+map_error:
+	/*
+	 * If the first frag mapping failed, then i will be zero.
+	 * This causes the unmap of the skb->data area.  Otherwise
+	 * we pass in the number of frags that mapped successfully
+	 * so they can be umapped.
+	 */
+	ql_unmap_send(qdev, tx_ring_desc, map_idx);
+	return NETDEV_TX_BUSY;
+}
+
+void ql_realign_skb(struct sk_buff *skb, int len)
+{
+	void *temp_addr = skb->data;
+
+	/* Undo the skb_reserve(skb,32) we did before
+	 * giving to hardware, and realign data on
+	 * a 2-byte boundary.
+	 */
+	skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
+	skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
+	skb_copy_to_linear_data(skb, temp_addr,
+		(unsigned int)len);
+}
+
+/*
+ * This function builds an skb for the given inbound
+ * completion.  It will be rewritten for readability in the near
+ * future, but for not it works well.
+ */
+static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
+				       struct rx_ring *rx_ring,
+				       struct ib_mac_iocb_rsp *ib_mac_rsp)
+{
+	struct bq_desc *lbq_desc;
+	struct bq_desc *sbq_desc;
+	struct sk_buff *skb = NULL;
+	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
+       u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
+
+	/*
+	 * Handle the header buffer if present.
+	 */
+	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
+	    ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
+		QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
+		/*
+		 * Headers fit nicely into a small buffer.
+		 */
+		sbq_desc = ql_get_curr_sbuf(rx_ring);
+		pci_unmap_single(qdev->pdev,
+				pci_unmap_addr(sbq_desc, mapaddr),
+				pci_unmap_len(sbq_desc, maplen),
+				PCI_DMA_FROMDEVICE);
+		skb = sbq_desc->p.skb;
+		ql_realign_skb(skb, hdr_len);
+		skb_put(skb, hdr_len);
+		sbq_desc->p.skb = NULL;
+	}
+
+	/*
+	 * Handle the data buffer(s).
+	 */
+	if (unlikely(!length)) {	/* Is there data too? */
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"No Data buffer in this packet.\n");
+		return skb;
+	}
+
+	if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
+		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Headers in small, data of %d bytes in small, combine them.\n", length);
+			/*
+			 * Data is less than small buffer size so it's
+			 * stuffed in a small buffer.
+			 * For this case we append the data
+			 * from the "data" small buffer to the "header" small
+			 * buffer.
+			 */
+			sbq_desc = ql_get_curr_sbuf(rx_ring);
+			pci_dma_sync_single_for_cpu(qdev->pdev,
+						    pci_unmap_addr
+						    (sbq_desc, mapaddr),
+						    pci_unmap_len
+						    (sbq_desc, maplen),
+						    PCI_DMA_FROMDEVICE);
+			memcpy(skb_put(skb, length),
+			       sbq_desc->p.skb->data, length);
+			pci_dma_sync_single_for_device(qdev->pdev,
+						       pci_unmap_addr
+						       (sbq_desc,
+							mapaddr),
+						       pci_unmap_len
+						       (sbq_desc,
+							maplen),
+						       PCI_DMA_FROMDEVICE);
+		} else {
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"%d bytes in a single small buffer.\n", length);
+			sbq_desc = ql_get_curr_sbuf(rx_ring);
+			skb = sbq_desc->p.skb;
+			ql_realign_skb(skb, length);
+			skb_put(skb, length);
+			pci_unmap_single(qdev->pdev,
+					 pci_unmap_addr(sbq_desc,
+							mapaddr),
+					 pci_unmap_len(sbq_desc,
+						       maplen),
+					 PCI_DMA_FROMDEVICE);
+			sbq_desc->p.skb = NULL;
+		}
+	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
+		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Header in small, %d bytes in large. Chain large to small!\n", length);
+			/*
+			 * The data is in a single large buffer.  We
+			 * chain it to the header buffer's skb and let
+			 * it rip.
+			 */
+			lbq_desc = ql_get_curr_lbuf(rx_ring);
+			pci_unmap_page(qdev->pdev,
+				       pci_unmap_addr(lbq_desc,
+						      mapaddr),
+				       pci_unmap_len(lbq_desc, maplen),
+				       PCI_DMA_FROMDEVICE);
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Chaining page to skb.\n");
+			skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
+					   0, length);
+			skb->len += length;
+			skb->data_len += length;
+			skb->truesize += length;
+			lbq_desc->p.lbq_page = NULL;
+		} else {
+			/*
+			 * The headers and data are in a single large buffer. We
+			 * copy it to a new skb and let it go. This can happen with
+			 * jumbo mtu on a non-TCP/UDP frame.
+			 */
+			lbq_desc = ql_get_curr_lbuf(rx_ring);
+			skb = netdev_alloc_skb(qdev->ndev, length);
+			if (skb == NULL) {
+				QPRINTK(qdev, PROBE, DEBUG,
+					"No skb available, drop the packet.\n");
+				return NULL;
+			}
+			skb_reserve(skb, NET_IP_ALIGN);
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
+			skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
+					   0, length);
+			skb->len += length;
+			skb->data_len += length;
+			skb->truesize += length;
+			length -= length;
+			lbq_desc->p.lbq_page = NULL;
+			__pskb_pull_tail(skb,
+				(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
+				VLAN_ETH_HLEN : ETH_HLEN);
+		}
+	} else {
+		/*
+		 * The data is in a chain of large buffers
+		 * pointed to by a small buffer.  We loop
+		 * thru and chain them to the our small header
+		 * buffer's skb.
+		 * frags:  There are 18 max frags and our small
+		 *         buffer will hold 32 of them. The thing is,
+		 *         we'll use 3 max for our 9000 byte jumbo
+		 *         frames.  If the MTU goes up we could
+		 *          eventually be in trouble.
+		 */
+		int size, offset, i = 0;
+		struct bq_element *bq, bq_array[8];
+		sbq_desc = ql_get_curr_sbuf(rx_ring);
+		pci_unmap_single(qdev->pdev,
+				 pci_unmap_addr(sbq_desc, mapaddr),
+				 pci_unmap_len(sbq_desc, maplen),
+				 PCI_DMA_FROMDEVICE);
+		if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
+			/*
+			 * This is an non TCP/UDP IP frame, so
+			 * the headers aren't split into a small
+			 * buffer.  We have to use the small buffer
+			 * that contains our sg list as our skb to
+			 * send upstairs. Copy the sg list here to
+			 * a local buffer and use it to find the
+			 * pages to chain.
+			 */
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"%d bytes of headers & data in chain of large.\n", length);
+			skb = sbq_desc->p.skb;
+			bq = &bq_array[0];
+			memcpy(bq, skb->data, sizeof(bq_array));
+			sbq_desc->p.skb = NULL;
+			skb_reserve(skb, NET_IP_ALIGN);
+		} else {
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Headers in small, %d bytes of data in chain of large.\n", length);
+			bq = (struct bq_element *)sbq_desc->p.skb->data;
+		}
+		while (length > 0) {
+			lbq_desc = ql_get_curr_lbuf(rx_ring);
+			if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
+				QPRINTK(qdev, RX_STATUS, ERR,
+					"Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
+					lbq_desc->bq->addr_lo, bq->addr_lo);
+				return NULL;
+			}
+			pci_unmap_page(qdev->pdev,
+				       pci_unmap_addr(lbq_desc,
+						      mapaddr),
+				       pci_unmap_len(lbq_desc,
+						     maplen),
+				       PCI_DMA_FROMDEVICE);
+			size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
+			offset = 0;
+
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Adding page %d to skb for %d bytes.\n",
+				i, size);
+			skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
+					   offset, size);
+			skb->len += size;
+			skb->data_len += size;
+			skb->truesize += size;
+			length -= size;
+			lbq_desc->p.lbq_page = NULL;
+			bq++;
+			i++;
+		}
+		__pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
+				VLAN_ETH_HLEN : ETH_HLEN);
+	}
+	return skb;
+}
+
+/* Process an inbound completion from an rx ring. */
+static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
+				   struct rx_ring *rx_ring,
+				   struct ib_mac_iocb_rsp *ib_mac_rsp)
+{
+	struct net_device *ndev = qdev->ndev;
+	struct sk_buff *skb = NULL;
+
+	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
+
+	skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
+	if (unlikely(!skb)) {
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"No skb available, drop packet.\n");
+		return;
+	}
+
+	prefetch(skb->data);
+	skb->dev = ndev;
+	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
+		QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
+			(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+			IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
+			(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+			IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
+			(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+			IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
+	}
+	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
+		QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
+	}
+	if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
+		QPRINTK(qdev, RX_STATUS, ERR,
+			"Bad checksum for this %s packet.\n",
+			((ib_mac_rsp->
+			  flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
+		skb->ip_summed = CHECKSUM_NONE;
+	} else if (qdev->rx_csum &&
+		   ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
+		    ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
+		     !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
+		QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
+		skb->ip_summed = CHECKSUM_UNNECESSARY;
+	}
+	qdev->stats.rx_packets++;
+	qdev->stats.rx_bytes += skb->len;
+	skb->protocol = eth_type_trans(skb, ndev);
+	if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"Passing a VLAN packet upstream.\n");
+		vlan_hwaccel_rx(skb, qdev->vlgrp,
+				le16_to_cpu(ib_mac_rsp->vlan_id));
+	} else {
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"Passing a normal packet upstream.\n");
+		netif_rx(skb);
+	}
+	ndev->last_rx = jiffies;
+}
+
+/* Process an outbound completion from an rx ring. */
+static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
+				   struct ob_mac_iocb_rsp *mac_rsp)
+{
+	struct tx_ring *tx_ring;
+	struct tx_ring_desc *tx_ring_desc;
+
+	QL_DUMP_OB_MAC_RSP(mac_rsp);
+	tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
+	tx_ring_desc = &tx_ring->q[mac_rsp->tid];
+	ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
+	qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
+	qdev->stats.tx_packets++;
+	dev_kfree_skb(tx_ring_desc->skb);
+	tx_ring_desc->skb = NULL;
+
+	if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
+					OB_MAC_IOCB_RSP_S |
+					OB_MAC_IOCB_RSP_L |
+					OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
+		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
+			QPRINTK(qdev, TX_DONE, WARNING,
+				"Total descriptor length did not match transfer length.\n");
+		}
+		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
+			QPRINTK(qdev, TX_DONE, WARNING,
+				"Frame too short to be legal, not sent.\n");
+		}
+		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
+			QPRINTK(qdev, TX_DONE, WARNING,
+				"Frame too long, but sent anyway.\n");
+		}
+		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
+			QPRINTK(qdev, TX_DONE, WARNING,
+				"PCI backplane error. Frame not sent.\n");
+		}
+	}
+	atomic_inc(&tx_ring->tx_count);
+}
+
+/* Fire up a handler to reset the MPI processor. */
+void ql_queue_fw_error(struct ql_adapter *qdev)
+{
+	netif_stop_queue(qdev->ndev);
+	netif_carrier_off(qdev->ndev);
+	queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
+}
+
+void ql_queue_asic_error(struct ql_adapter *qdev)
+{
+	netif_stop_queue(qdev->ndev);
+	netif_carrier_off(qdev->ndev);
+	ql_disable_interrupts(qdev);
+	queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
+}
+
+static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
+				    struct ib_ae_iocb_rsp *ib_ae_rsp)
+{
+	switch (ib_ae_rsp->event) {
+	case MGMT_ERR_EVENT:
+		QPRINTK(qdev, RX_ERR, ERR,
+			"Management Processor Fatal Error.\n");
+		ql_queue_fw_error(qdev);
+		return;
+
+	case CAM_LOOKUP_ERR_EVENT:
+		QPRINTK(qdev, LINK, ERR,
+			"Multiple CAM hits lookup occurred.\n");
+		QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
+		ql_queue_asic_error(qdev);
+		return;
+
+	case SOFT_ECC_ERROR_EVENT:
+		QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
+		ql_queue_asic_error(qdev);
+		break;
+
+	case PCI_ERR_ANON_BUF_RD:
+		QPRINTK(qdev, RX_ERR, ERR,
+			"PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
+			ib_ae_rsp->q_id);
+		ql_queue_asic_error(qdev);
+		break;
+
+	default:
+		QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
+			ib_ae_rsp->event);
+		ql_queue_asic_error(qdev);
+		break;
+	}
+}
+
+static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
+{
+	struct ql_adapter *qdev = rx_ring->qdev;
+	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+	struct ob_mac_iocb_rsp *net_rsp = NULL;
+	int count = 0;
+
+	/* While there are entries in the completion queue. */
+	while (prod != rx_ring->cnsmr_idx) {
+
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
+			prod, rx_ring->cnsmr_idx);
+
+		net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
+		rmb();
+		switch (net_rsp->opcode) {
+
+		case OPCODE_OB_MAC_TSO_IOCB:
+		case OPCODE_OB_MAC_IOCB:
+			ql_process_mac_tx_intr(qdev, net_rsp);
+			break;
+		default:
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Hit default case, not handled! dropping the packet, opcode = %x.\n",
+				net_rsp->opcode);
+		}
+		count++;
+		ql_update_cq(rx_ring);
+		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+	}
+	ql_write_cq_idx(rx_ring);
+	if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
+		struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
+		if (atomic_read(&tx_ring->queue_stopped) &&
+		    (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
+			/*
+			 * The queue got stopped because the tx_ring was full.
+			 * Wake it up, because it's now at least 25% empty.
+			 */
+			netif_wake_queue(qdev->ndev);
+	}
+
+	return count;
+}
+
+static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
+{
+	struct ql_adapter *qdev = rx_ring->qdev;
+	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+	struct ql_net_rsp_iocb *net_rsp;
+	int count = 0;
+
+	/* While there are entries in the completion queue. */
+	while (prod != rx_ring->cnsmr_idx) {
+
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
+			prod, rx_ring->cnsmr_idx);
+
+		net_rsp = rx_ring->curr_entry;
+		rmb();
+		switch (net_rsp->opcode) {
+		case OPCODE_IB_MAC_IOCB:
+			ql_process_mac_rx_intr(qdev, rx_ring,
+					       (struct ib_mac_iocb_rsp *)
+					       net_rsp);
+			break;
+
+		case OPCODE_IB_AE_IOCB:
+			ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
+						net_rsp);
+			break;
+		default:
+			{
+				QPRINTK(qdev, RX_STATUS, DEBUG,
+					"Hit default case, not handled! dropping the packet, opcode = %x.\n",
+					net_rsp->opcode);
+			}
+		}
+		count++;
+		ql_update_cq(rx_ring);
+		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+		if (count == budget)
+			break;
+	}
+	ql_update_buffer_queues(qdev, rx_ring);
+	ql_write_cq_idx(rx_ring);
+	return count;
+}
+
+static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
+{
+	struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
+	struct ql_adapter *qdev = rx_ring->qdev;
+	int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
+
+	QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
+		rx_ring->cq_id);
+
+	if (work_done < budget) {
+		__netif_rx_complete(qdev->ndev, napi);
+		ql_enable_completion_interrupt(qdev, rx_ring->irq);
+	}
+	return work_done;
+}
+
+static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	qdev->vlgrp = grp;
+	if (grp) {
+		QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
+		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
+			   NIC_RCV_CFG_VLAN_MATCH_AND_NON);
+	} else {
+		QPRINTK(qdev, IFUP, DEBUG,
+			"Turning off VLAN in NIC_RCV_CFG.\n");
+		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
+	}
+}
+
+static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	u32 enable_bit = MAC_ADDR_E;
+
+	spin_lock(&qdev->hw_lock);
+	if (ql_set_mac_addr_reg
+	    (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
+	}
+	spin_unlock(&qdev->hw_lock);
+}
+
+static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	u32 enable_bit = 0;
+
+	spin_lock(&qdev->hw_lock);
+	if (ql_set_mac_addr_reg
+	    (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
+	}
+	spin_unlock(&qdev->hw_lock);
+
+}
+
+/* Worker thread to process a given rx_ring that is dedicated
+ * to outbound completions.
+ */
+static void ql_tx_clean(struct work_struct *work)
+{
+	struct rx_ring *rx_ring =
+	    container_of(work, struct rx_ring, rx_work.work);
+	ql_clean_outbound_rx_ring(rx_ring);
+	ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
+
+}
+
+/* Worker thread to process a given rx_ring that is dedicated
+ * to inbound completions.
+ */
+static void ql_rx_clean(struct work_struct *work)
+{
+	struct rx_ring *rx_ring =
+	    container_of(work, struct rx_ring, rx_work.work);
+	ql_clean_inbound_rx_ring(rx_ring, 64);
+	ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
+}
+
+/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
+static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
+{
+	struct rx_ring *rx_ring = dev_id;
+	queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
+			      &rx_ring->rx_work, 0);
+	return IRQ_HANDLED;
+}
+
+/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
+static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
+{
+	struct rx_ring *rx_ring = dev_id;
+	struct ql_adapter *qdev = rx_ring->qdev;
+	netif_rx_schedule(qdev->ndev, &rx_ring->napi);
+	return IRQ_HANDLED;
+}
+
+/* We check here to see if we're already handling a legacy
+ * interrupt.  If we are, then it must belong to another
+ * chip with which we're sharing the interrupt line.
+ */
+int ql_legacy_check(struct ql_adapter *qdev)
+{
+	int err;
+	spin_lock(&qdev->legacy_lock);
+	err = atomic_read(&qdev->intr_context[0].irq_cnt);
+	spin_unlock(&qdev->legacy_lock);
+	return err;
+}
+
+/* This handles a fatal error, MPI activity, and the default
+ * rx_ring in an MSI-X multiple vector environment.
+ * In MSI/Legacy environment it also process the rest of
+ * the rx_rings.
+ */
+static irqreturn_t qlge_isr(int irq, void *dev_id)
+{
+	struct rx_ring *rx_ring = dev_id;
+	struct ql_adapter *qdev = rx_ring->qdev;
+	struct intr_context *intr_context = &qdev->intr_context[0];
+	u32 var;
+	int i;
+	int work_done = 0;
+
+	if (qdev->legacy_check && qdev->legacy_check(qdev)) {
+		QPRINTK(qdev, INTR, INFO, "Already busy, not our interrupt.\n");
+		return IRQ_NONE;	/* Not our interrupt */
+	}
+
+	var = ql_read32(qdev, STS);
+
+	/*
+	 * Check for fatal error.
+	 */
+	if (var & STS_FE) {
+		ql_queue_asic_error(qdev);
+		QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
+		var = ql_read32(qdev, ERR_STS);
+		QPRINTK(qdev, INTR, ERR,
+			"Resetting chip. Error Status Register = 0x%x\n", var);
+		return IRQ_HANDLED;
+	}
+
+	/*
+	 * Check MPI processor activity.
+	 */
+	if (var & STS_PI) {
+		/*
+		 * We've got an async event or mailbox completion.
+		 * Handle it and clear the source of the interrupt.
+		 */
+		QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
+		ql_disable_completion_interrupt(qdev, intr_context->intr);
+		queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
+				      &qdev->mpi_work, 0);
+		work_done++;
+	}
+
+	/*
+	 * Check the default queue and wake handler if active.
+	 */
+	rx_ring = &qdev->rx_ring[0];
+	if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
+		QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
+		ql_disable_completion_interrupt(qdev, intr_context->intr);
+		queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
+				      &rx_ring->rx_work, 0);
+		work_done++;
+	}
+
+	if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+		/*
+		 * Start the DPC for each active queue.
+		 */
+		for (i = 1; i < qdev->rx_ring_count; i++) {
+			rx_ring = &qdev->rx_ring[i];
+			if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
+			    rx_ring->cnsmr_idx) {
+				QPRINTK(qdev, INTR, INFO,
+					"Waking handler for rx_ring[%d].\n", i);
+				ql_disable_completion_interrupt(qdev,
+								intr_context->
+								intr);
+				if (i < qdev->rss_ring_first_cq_id)
+					queue_delayed_work_on(rx_ring->cpu,
+							      qdev->q_workqueue,
+							      &rx_ring->rx_work,
+							      0);
+				else
+					netif_rx_schedule(qdev->ndev,
+							  &rx_ring->napi);
+				work_done++;
+			}
+		}
+	}
+	return work_done ? IRQ_HANDLED : IRQ_NONE;
+}
+
+static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
+{
+
+	if (skb_is_gso(skb)) {
+		int err;
+		if (skb_header_cloned(skb)) {
+			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
+			if (err)
+				return err;
+		}
+
+		mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
+		mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
+		mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
+		mac_iocb_ptr->total_hdrs_len =
+		    cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
+		mac_iocb_ptr->net_trans_offset =
+		    cpu_to_le16(skb_network_offset(skb) |
+				skb_transport_offset(skb)
+				<< OB_MAC_TRANSPORT_HDR_SHIFT);
+		mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
+		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
+		if (likely(skb->protocol == htons(ETH_P_IP))) {
+			struct iphdr *iph = ip_hdr(skb);
+			iph->check = 0;
+			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
+			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
+								 iph->daddr, 0,
+								 IPPROTO_TCP,
+								 0);
+		} else if (skb->protocol == htons(ETH_P_IPV6)) {
+			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
+			tcp_hdr(skb)->check =
+			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
+					     &ipv6_hdr(skb)->daddr,
+					     0, IPPROTO_TCP, 0);
+		}
+		return 1;
+	}
+	return 0;
+}
+
+static void ql_hw_csum_setup(struct sk_buff *skb,
+			     struct ob_mac_tso_iocb_req *mac_iocb_ptr)
+{
+	int len;
+	struct iphdr *iph = ip_hdr(skb);
+	u16 *check;
+	mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
+	mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
+	mac_iocb_ptr->net_trans_offset =
+		cpu_to_le16(skb_network_offset(skb) |
+		skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
+
+	mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
+	len = (ntohs(iph->tot_len) - (iph->ihl << 2));
+	if (likely(iph->protocol == IPPROTO_TCP)) {
+		check = &(tcp_hdr(skb)->check);
+		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
+		mac_iocb_ptr->total_hdrs_len =
+		    cpu_to_le16(skb_transport_offset(skb) +
+				(tcp_hdr(skb)->doff << 2));
+	} else {
+		check = &(udp_hdr(skb)->check);
+		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
+		mac_iocb_ptr->total_hdrs_len =
+		    cpu_to_le16(skb_transport_offset(skb) +
+				sizeof(struct udphdr));
+	}
+	*check = ~csum_tcpudp_magic(iph->saddr,
+				    iph->daddr, len, iph->protocol, 0);
+}
+
+static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
+{
+	struct tx_ring_desc *tx_ring_desc;
+	struct ob_mac_iocb_req *mac_iocb_ptr;
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	int tso;
+	struct tx_ring *tx_ring;
+	u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
+
+	tx_ring = &qdev->tx_ring[tx_ring_idx];
+
+	if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
+		QPRINTK(qdev, TX_QUEUED, INFO,
+			"%s: shutting down tx queue %d du to lack of resources.\n",
+			__func__, tx_ring_idx);
+		netif_stop_queue(ndev);
+		atomic_inc(&tx_ring->queue_stopped);
+		return NETDEV_TX_BUSY;
+	}
+	tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
+	mac_iocb_ptr = tx_ring_desc->queue_entry;
+	memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
+	if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
+		QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
+		return NETDEV_TX_BUSY;
+	}
+
+	mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
+	mac_iocb_ptr->tid = tx_ring_desc->index;
+	/* We use the upper 32-bits to store the tx queue for this IO.
+	 * When we get the completion we can use it to establish the context.
+	 */
+	mac_iocb_ptr->txq_idx = tx_ring_idx;
+	tx_ring_desc->skb = skb;
+
+	mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
+
+	if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
+		QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
+			vlan_tx_tag_get(skb));
+		mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
+		mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
+	}
+	tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
+	if (tso < 0) {
+		dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
+		ql_hw_csum_setup(skb,
+				 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
+	}
+	QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
+	tx_ring->prod_idx++;
+	if (tx_ring->prod_idx == tx_ring->wq_len)
+		tx_ring->prod_idx = 0;
+	wmb();
+
+	ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
+	ndev->trans_start = jiffies;
+	QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
+		tx_ring->prod_idx, skb->len);
+
+	atomic_dec(&tx_ring->tx_count);
+	return NETDEV_TX_OK;
+}
+
+static void ql_free_shadow_space(struct ql_adapter *qdev)
+{
+	if (qdev->rx_ring_shadow_reg_area) {
+		pci_free_consistent(qdev->pdev,
+				    PAGE_SIZE,
+				    qdev->rx_ring_shadow_reg_area,
+				    qdev->rx_ring_shadow_reg_dma);
+		qdev->rx_ring_shadow_reg_area = NULL;
+	}
+	if (qdev->tx_ring_shadow_reg_area) {
+		pci_free_consistent(qdev->pdev,
+				    PAGE_SIZE,
+				    qdev->tx_ring_shadow_reg_area,
+				    qdev->tx_ring_shadow_reg_dma);
+		qdev->tx_ring_shadow_reg_area = NULL;
+	}
+}
+
+static int ql_alloc_shadow_space(struct ql_adapter *qdev)
+{
+	qdev->rx_ring_shadow_reg_area =
+	    pci_alloc_consistent(qdev->pdev,
+				 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
+	if (qdev->rx_ring_shadow_reg_area == NULL) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Allocation of RX shadow space failed.\n");
+		return -ENOMEM;
+	}
+	qdev->tx_ring_shadow_reg_area =
+	    pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
+				 &qdev->tx_ring_shadow_reg_dma);
+	if (qdev->tx_ring_shadow_reg_area == NULL) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Allocation of TX shadow space failed.\n");
+		goto err_wqp_sh_area;
+	}
+	return 0;
+
+err_wqp_sh_area:
+	pci_free_consistent(qdev->pdev,
+			    PAGE_SIZE,
+			    qdev->rx_ring_shadow_reg_area,
+			    qdev->rx_ring_shadow_reg_dma);
+	return -ENOMEM;
+}
+
+static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
+{
+	struct tx_ring_desc *tx_ring_desc;
+	int i;
+	struct ob_mac_iocb_req *mac_iocb_ptr;
+
+	mac_iocb_ptr = tx_ring->wq_base;
+	tx_ring_desc = tx_ring->q;
+	for (i = 0; i < tx_ring->wq_len; i++) {
+		tx_ring_desc->index = i;
+		tx_ring_desc->skb = NULL;
+		tx_ring_desc->queue_entry = mac_iocb_ptr;
+		mac_iocb_ptr++;
+		tx_ring_desc++;
+	}
+	atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
+	atomic_set(&tx_ring->queue_stopped, 0);
+}
+
+static void ql_free_tx_resources(struct ql_adapter *qdev,
+				 struct tx_ring *tx_ring)
+{
+	if (tx_ring->wq_base) {
+		pci_free_consistent(qdev->pdev, tx_ring->wq_size,
+				    tx_ring->wq_base, tx_ring->wq_base_dma);
+		tx_ring->wq_base = NULL;
+	}
+	kfree(tx_ring->q);
+	tx_ring->q = NULL;
+}
+
+static int ql_alloc_tx_resources(struct ql_adapter *qdev,
+				 struct tx_ring *tx_ring)
+{
+	tx_ring->wq_base =
+	    pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
+				 &tx_ring->wq_base_dma);
+
+	if ((tx_ring->wq_base == NULL)
+	    || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
+		QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
+		return -ENOMEM;
+	}
+	tx_ring->q =
+	    kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
+	if (tx_ring->q == NULL)
+		goto err;
+
+	return 0;
+err:
+	pci_free_consistent(qdev->pdev, tx_ring->wq_size,
+			    tx_ring->wq_base, tx_ring->wq_base_dma);
+	return -ENOMEM;
+}
+
+void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+	int i;
+	struct bq_desc *lbq_desc;
+
+	for (i = 0; i < rx_ring->lbq_len; i++) {
+		lbq_desc = &rx_ring->lbq[i];
+		if (lbq_desc->p.lbq_page) {
+			pci_unmap_page(qdev->pdev,
+				       pci_unmap_addr(lbq_desc, mapaddr),
+				       pci_unmap_len(lbq_desc, maplen),
+				       PCI_DMA_FROMDEVICE);
+
+			put_page(lbq_desc->p.lbq_page);
+			lbq_desc->p.lbq_page = NULL;
+		}
+		lbq_desc->bq->addr_lo = 0;
+		lbq_desc->bq->addr_hi = 0;
+	}
+}
+
+/*
+ * Allocate and map a page for each element of the lbq.
+ */
+static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
+				struct rx_ring *rx_ring)
+{
+	int i;
+	struct bq_desc *lbq_desc;
+	u64 map;
+	struct bq_element *bq = rx_ring->lbq_base;
+
+	for (i = 0; i < rx_ring->lbq_len; i++) {
+		lbq_desc = &rx_ring->lbq[i];
+		memset(lbq_desc, 0, sizeof(lbq_desc));
+		lbq_desc->bq = bq;
+		lbq_desc->index = i;
+		lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
+		if (unlikely(!lbq_desc->p.lbq_page)) {
+			QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
+			goto mem_error;
+		} else {
+			map = pci_map_page(qdev->pdev,
+					   lbq_desc->p.lbq_page,
+					   0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
+			if (pci_dma_mapping_error(qdev->pdev, map)) {
+				QPRINTK(qdev, IFUP, ERR,
+					"PCI mapping failed.\n");
+				goto mem_error;
+			}
+			pci_unmap_addr_set(lbq_desc, mapaddr, map);
+			pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
+			bq->addr_lo = cpu_to_le32(map);
+			bq->addr_hi = cpu_to_le32(map >> 32);
+		}
+		bq++;
+	}
+	return 0;
+mem_error:
+	ql_free_lbq_buffers(qdev, rx_ring);
+	return -ENOMEM;
+}
+
+void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+	int i;
+	struct bq_desc *sbq_desc;
+
+	for (i = 0; i < rx_ring->sbq_len; i++) {
+		sbq_desc = &rx_ring->sbq[i];
+		if (sbq_desc == NULL) {
+			QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
+			return;
+		}
+		if (sbq_desc->p.skb) {
+			pci_unmap_single(qdev->pdev,
+					 pci_unmap_addr(sbq_desc, mapaddr),
+					 pci_unmap_len(sbq_desc, maplen),
+					 PCI_DMA_FROMDEVICE);
+			dev_kfree_skb(sbq_desc->p.skb);
+			sbq_desc->p.skb = NULL;
+		}
+		if (sbq_desc->bq == NULL) {
+			QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
+				i);
+			return;
+		}
+		sbq_desc->bq->addr_lo = 0;
+		sbq_desc->bq->addr_hi = 0;
+	}
+}
+
+/* Allocate and map an skb for each element of the sbq. */
+static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
+				struct rx_ring *rx_ring)
+{
+	int i;
+	struct bq_desc *sbq_desc;
+	struct sk_buff *skb;
+	u64 map;
+	struct bq_element *bq = rx_ring->sbq_base;
+
+	for (i = 0; i < rx_ring->sbq_len; i++) {
+		sbq_desc = &rx_ring->sbq[i];
+		memset(sbq_desc, 0, sizeof(sbq_desc));
+		sbq_desc->index = i;
+		sbq_desc->bq = bq;
+		skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			QPRINTK(qdev, IFUP, ERR,
+				"small buff alloc failed for %d bytes at index %d.\n",
+				rx_ring->sbq_buf_size, i);
+			goto mem_err;
+		}
+		skb_reserve(skb, QLGE_SB_PAD);
+		sbq_desc->p.skb = skb;
+		/*
+		 * Map only half the buffer. Because the
+		 * other half may get some data copied to it
+		 * when the completion arrives.
+		 */
+		map = pci_map_single(qdev->pdev,
+				     skb->data,
+				     rx_ring->sbq_buf_size / 2,
+				     PCI_DMA_FROMDEVICE);
+		if (pci_dma_mapping_error(qdev->pdev, map)) {
+			QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
+			goto mem_err;
+		}
+		pci_unmap_addr_set(sbq_desc, mapaddr, map);
+		pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
+		bq->addr_lo =	/*sbq_desc->addr_lo = */
+		    cpu_to_le32(map);
+		bq->addr_hi =	/*sbq_desc->addr_hi = */
+		    cpu_to_le32(map >> 32);
+		bq++;
+	}
+	return 0;
+mem_err:
+	ql_free_sbq_buffers(qdev, rx_ring);
+	return -ENOMEM;
+}
+
+static void ql_free_rx_resources(struct ql_adapter *qdev,
+				 struct rx_ring *rx_ring)
+{
+	if (rx_ring->sbq_len)
+		ql_free_sbq_buffers(qdev, rx_ring);
+	if (rx_ring->lbq_len)
+		ql_free_lbq_buffers(qdev, rx_ring);
+
+	/* Free the small buffer queue. */
+	if (rx_ring->sbq_base) {
+		pci_free_consistent(qdev->pdev,
+				    rx_ring->sbq_size,
+				    rx_ring->sbq_base, rx_ring->sbq_base_dma);
+		rx_ring->sbq_base = NULL;
+	}
+
+	/* Free the small buffer queue control blocks. */
+	kfree(rx_ring->sbq);
+	rx_ring->sbq = NULL;
+
+	/* Free the large buffer queue. */
+	if (rx_ring->lbq_base) {
+		pci_free_consistent(qdev->pdev,
+				    rx_ring->lbq_size,
+				    rx_ring->lbq_base, rx_ring->lbq_base_dma);
+		rx_ring->lbq_base = NULL;
+	}
+
+	/* Free the large buffer queue control blocks. */
+	kfree(rx_ring->lbq);
+	rx_ring->lbq = NULL;
+
+	/* Free the rx queue. */
+	if (rx_ring->cq_base) {
+		pci_free_consistent(qdev->pdev,
+				    rx_ring->cq_size,
+				    rx_ring->cq_base, rx_ring->cq_base_dma);
+		rx_ring->cq_base = NULL;
+	}
+}
+
+/* Allocate queues and buffers for this completions queue based
+ * on the values in the parameter structure. */
+static int ql_alloc_rx_resources(struct ql_adapter *qdev,
+				 struct rx_ring *rx_ring)
+{
+
+	/*
+	 * Allocate the completion queue for this rx_ring.
+	 */
+	rx_ring->cq_base =
+	    pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
+				 &rx_ring->cq_base_dma);
+
+	if (rx_ring->cq_base == NULL) {
+		QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
+		return -ENOMEM;
+	}
+
+	if (rx_ring->sbq_len) {
+		/*
+		 * Allocate small buffer queue.
+		 */
+		rx_ring->sbq_base =
+		    pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
+					 &rx_ring->sbq_base_dma);
+
+		if (rx_ring->sbq_base == NULL) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Small buffer queue allocation failed.\n");
+			goto err_mem;
+		}
+
+		/*
+		 * Allocate small buffer queue control blocks.
+		 */
+		rx_ring->sbq =
+		    kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
+			    GFP_KERNEL);
+		if (rx_ring->sbq == NULL) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Small buffer queue control block allocation failed.\n");
+			goto err_mem;
+		}
+
+		if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Small buffer allocation failed.\n");
+			goto err_mem;
+		}
+	}
+
+	if (rx_ring->lbq_len) {
+		/*
+		 * Allocate large buffer queue.
+		 */
+		rx_ring->lbq_base =
+		    pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
+					 &rx_ring->lbq_base_dma);
+
+		if (rx_ring->lbq_base == NULL) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Large buffer queue allocation failed.\n");
+			goto err_mem;
+		}
+		/*
+		 * Allocate large buffer queue control blocks.
+		 */
+		rx_ring->lbq =
+		    kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
+			    GFP_KERNEL);
+		if (rx_ring->lbq == NULL) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Large buffer queue control block allocation failed.\n");
+			goto err_mem;
+		}
+
+		/*
+		 * Allocate the buffers.
+		 */
+		if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Large buffer allocation failed.\n");
+			goto err_mem;
+		}
+	}
+
+	return 0;
+
+err_mem:
+	ql_free_rx_resources(qdev, rx_ring);
+	return -ENOMEM;
+}
+
+static void ql_tx_ring_clean(struct ql_adapter *qdev)
+{
+	struct tx_ring *tx_ring;
+	struct tx_ring_desc *tx_ring_desc;
+	int i, j;
+
+	/*
+	 * Loop through all queues and free
+	 * any resources.
+	 */
+	for (j = 0; j < qdev->tx_ring_count; j++) {
+		tx_ring = &qdev->tx_ring[j];
+		for (i = 0; i < tx_ring->wq_len; i++) {
+			tx_ring_desc = &tx_ring->q[i];
+			if (tx_ring_desc && tx_ring_desc->skb) {
+				QPRINTK(qdev, IFDOWN, ERR,
+				"Freeing lost SKB %p, from queue %d, index %d.\n",
+					tx_ring_desc->skb, j,
+					tx_ring_desc->index);
+				ql_unmap_send(qdev, tx_ring_desc,
+					      tx_ring_desc->map_cnt);
+				dev_kfree_skb(tx_ring_desc->skb);
+				tx_ring_desc->skb = NULL;
+			}
+		}
+	}
+}
+
+static void ql_free_ring_cb(struct ql_adapter *qdev)
+{
+	kfree(qdev->ring_mem);
+}
+
+static int ql_alloc_ring_cb(struct ql_adapter *qdev)
+{
+	/* Allocate space for tx/rx ring control blocks. */
+	qdev->ring_mem_size =
+	    (qdev->tx_ring_count * sizeof(struct tx_ring)) +
+	    (qdev->rx_ring_count * sizeof(struct rx_ring));
+	qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
+	if (qdev->ring_mem == NULL) {
+		return -ENOMEM;
+	} else {
+		qdev->rx_ring = qdev->ring_mem;
+		qdev->tx_ring = qdev->ring_mem +
+		    (qdev->rx_ring_count * sizeof(struct rx_ring));
+	}
+	return 0;
+}
+
+static void ql_free_mem_resources(struct ql_adapter *qdev)
+{
+	int i;
+
+	for (i = 0; i < qdev->tx_ring_count; i++)
+		ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
+	for (i = 0; i < qdev->rx_ring_count; i++)
+		ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
+	ql_free_shadow_space(qdev);
+}
+
+static int ql_alloc_mem_resources(struct ql_adapter *qdev)
+{
+	int i;
+
+	/* Allocate space for our shadow registers and such. */
+	if (ql_alloc_shadow_space(qdev))
+		return -ENOMEM;
+
+	for (i = 0; i < qdev->rx_ring_count; i++) {
+		if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
+			QPRINTK(qdev, IFUP, ERR,
+				"RX resource allocation failed.\n");
+			goto err_mem;
+		}
+	}
+	/* Allocate tx queue resources */
+	for (i = 0; i < qdev->tx_ring_count; i++) {
+		if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
+			QPRINTK(qdev, IFUP, ERR,
+				"TX resource allocation failed.\n");
+			goto err_mem;
+		}
+	}
+	return 0;
+
+err_mem:
+	ql_free_mem_resources(qdev);
+	return -ENOMEM;
+}
+
+/* Set up the rx ring control block and pass it to the chip.
+ * The control block is defined as
+ * "Completion Queue Initialization Control Block", or cqicb.
+ */
+static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+	struct cqicb *cqicb = &rx_ring->cqicb;
+	void *shadow_reg = qdev->rx_ring_shadow_reg_area +
+	    (rx_ring->cq_id * sizeof(u64) * 4);
+	u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
+	    (rx_ring->cq_id * sizeof(u64) * 4);
+	void __iomem *doorbell_area =
+	    qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
+	int err = 0;
+	u16 bq_len;
+
+	/* Set up the shadow registers for this ring. */
+	rx_ring->prod_idx_sh_reg = shadow_reg;
+	rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
+	shadow_reg += sizeof(u64);
+	shadow_reg_dma += sizeof(u64);
+	rx_ring->lbq_base_indirect = shadow_reg;
+	rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
+	shadow_reg += sizeof(u64);
+	shadow_reg_dma += sizeof(u64);
+	rx_ring->sbq_base_indirect = shadow_reg;
+	rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
+
+	/* PCI doorbell mem area + 0x00 for consumer index register */
+	rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area;
+	rx_ring->cnsmr_idx = 0;
+	rx_ring->curr_entry = rx_ring->cq_base;
+
+	/* PCI doorbell mem area + 0x04 for valid register */
+	rx_ring->valid_db_reg = doorbell_area + 0x04;
+
+	/* PCI doorbell mem area + 0x18 for large buffer consumer */
+	rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18);
+
+	/* PCI doorbell mem area + 0x1c */
+	rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c);
+
+	memset((void *)cqicb, 0, sizeof(struct cqicb));
+	cqicb->msix_vect = rx_ring->irq;
+
+	cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
+
+	cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
+	cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
+
+	cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
+	cqicb->prod_idx_addr_hi =
+	    cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
+
+	/*
+	 * Set up the control block load flags.
+	 */
+	cqicb->flags = FLAGS_LC |	/* Load queue base address */
+	    FLAGS_LV |		/* Load MSI-X vector */
+	    FLAGS_LI;		/* Load irq delay values */
+	if (rx_ring->lbq_len) {
+		cqicb->flags |= FLAGS_LL;	/* Load lbq values */
+		*((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
+		cqicb->lbq_addr_lo =
+		    cpu_to_le32(rx_ring->lbq_base_indirect_dma);
+		cqicb->lbq_addr_hi =
+		    cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
+		cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
+		bq_len = (u16) rx_ring->lbq_len;
+		cqicb->lbq_len = cpu_to_le16(bq_len);
+		rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
+		rx_ring->lbq_curr_idx = 0;
+		rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
+		rx_ring->lbq_free_cnt = 16;
+	}
+	if (rx_ring->sbq_len) {
+		cqicb->flags |= FLAGS_LS;	/* Load sbq values */
+		*((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
+		cqicb->sbq_addr_lo =
+		    cpu_to_le32(rx_ring->sbq_base_indirect_dma);
+		cqicb->sbq_addr_hi =
+		    cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
+		cqicb->sbq_buf_size =
+		    cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
+		bq_len = (u16) rx_ring->sbq_len;
+		cqicb->sbq_len = cpu_to_le16(bq_len);
+		rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
+		rx_ring->sbq_curr_idx = 0;
+		rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
+		rx_ring->sbq_free_cnt = 16;
+	}
+	switch (rx_ring->type) {
+	case TX_Q:
+		/* If there's only one interrupt, then we use
+		 * worker threads to process the outbound
+		 * completion handling rx_rings. We do this so
+		 * they can be run on multiple CPUs. There is
+		 * room to play with this more where we would only
+		 * run in a worker if there are more than x number
+		 * of outbound completions on the queue and more
+		 * than one queue active.  Some threshold that
+		 * would indicate a benefit in spite of the cost
+		 * of a context switch.
+		 * If there's more than one interrupt, then the
+		 * outbound completions are processed in the ISR.
+		 */
+		if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
+			INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
+		else {
+			/* With all debug warnings on we see a WARN_ON message
+			 * when we free the skb in the interrupt context.
+			 */
+			INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
+		}
+		cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
+		cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
+		break;
+	case DEFAULT_Q:
+		INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
+		cqicb->irq_delay = 0;
+		cqicb->pkt_delay = 0;
+		break;
+	case RX_Q:
+		/* Inbound completion handling rx_rings run in
+		 * separate NAPI contexts.
+		 */
+		netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
+			       64);
+		cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
+		cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
+		break;
+	default:
+		QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
+			rx_ring->type);
+	}
+	QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
+	err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
+			   CFG_LCQ, rx_ring->cq_id);
+	if (err) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
+		return err;
+	}
+	QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
+	/*
+	 * Advance the producer index for the buffer queues.
+	 */
+	wmb();
+	if (rx_ring->lbq_len)
+		ql_write_db_reg(rx_ring->lbq_prod_idx,
+				rx_ring->lbq_prod_idx_db_reg);
+	if (rx_ring->sbq_len)
+		ql_write_db_reg(rx_ring->sbq_prod_idx,
+				rx_ring->sbq_prod_idx_db_reg);
+	return err;
+}
+
+static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
+{
+	struct wqicb *wqicb = (struct wqicb *)tx_ring;
+	void __iomem *doorbell_area =
+	    qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
+	void *shadow_reg = qdev->tx_ring_shadow_reg_area +
+	    (tx_ring->wq_id * sizeof(u64));
+	u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
+	    (tx_ring->wq_id * sizeof(u64));
+	int err = 0;
+
+	/*
+	 * Assign doorbell registers for this tx_ring.
+	 */
+	/* TX PCI doorbell mem area for tx producer index */
+	tx_ring->prod_idx_db_reg = (u32 *) doorbell_area;
+	tx_ring->prod_idx = 0;
+	/* TX PCI doorbell mem area + 0x04 */
+	tx_ring->valid_db_reg = doorbell_area + 0x04;
+
+	/*
+	 * Assign shadow registers for this tx_ring.
+	 */
+	tx_ring->cnsmr_idx_sh_reg = shadow_reg;
+	tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
+
+	wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
+	wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
+				   Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
+	wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
+	wqicb->rid = 0;
+	wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
+	wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
+
+	wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
+	wqicb->cnsmr_idx_addr_hi =
+	    cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
+
+	ql_init_tx_ring(qdev, tx_ring);
+
+	err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
+			   (u16) tx_ring->wq_id);
+	if (err) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
+		return err;
+	}
+	QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
+	return err;
+}
+
+static void ql_disable_msix(struct ql_adapter *qdev)
+{
+	if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+		pci_disable_msix(qdev->pdev);
+		clear_bit(QL_MSIX_ENABLED, &qdev->flags);
+		kfree(qdev->msi_x_entry);
+		qdev->msi_x_entry = NULL;
+	} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
+		pci_disable_msi(qdev->pdev);
+		clear_bit(QL_MSI_ENABLED, &qdev->flags);
+	}
+}
+
+static void ql_enable_msix(struct ql_adapter *qdev)
+{
+	int i;
+
+	qdev->intr_count = 1;
+	/* Get the MSIX vectors. */
+	if (irq_type == MSIX_IRQ) {
+		/* Try to alloc space for the msix struct,
+		 * if it fails then go to MSI/legacy.
+		 */
+		qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
+					    sizeof(struct msix_entry),
+					    GFP_KERNEL);
+		if (!qdev->msi_x_entry) {
+			irq_type = MSI_IRQ;
+			goto msi;
+		}
+
+		for (i = 0; i < qdev->rx_ring_count; i++)
+			qdev->msi_x_entry[i].entry = i;
+
+		if (!pci_enable_msix
+		    (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
+			set_bit(QL_MSIX_ENABLED, &qdev->flags);
+			qdev->intr_count = qdev->rx_ring_count;
+			QPRINTK(qdev, IFUP, INFO,
+				"MSI-X Enabled, got %d vectors.\n",
+				qdev->intr_count);
+			return;
+		} else {
+			kfree(qdev->msi_x_entry);
+			qdev->msi_x_entry = NULL;
+			QPRINTK(qdev, IFUP, WARNING,
+				"MSI-X Enable failed, trying MSI.\n");
+			irq_type = MSI_IRQ;
+		}
+	}
+msi:
+	if (irq_type == MSI_IRQ) {
+		if (!pci_enable_msi(qdev->pdev)) {
+			set_bit(QL_MSI_ENABLED, &qdev->flags);
+			QPRINTK(qdev, IFUP, INFO,
+				"Running with MSI interrupts.\n");
+			return;
+		}
+	}
+	irq_type = LEG_IRQ;
+	spin_lock_init(&qdev->legacy_lock);
+	qdev->legacy_check = ql_legacy_check;
+	QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
+}
+
+/*
+ * Here we build the intr_context structures based on
+ * our rx_ring count and intr vector count.
+ * The intr_context structure is used to hook each vector
+ * to possibly different handlers.
+ */
+static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
+{
+	int i = 0;
+	struct intr_context *intr_context = &qdev->intr_context[0];
+
+	ql_enable_msix(qdev);
+
+	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
+		/* Each rx_ring has it's
+		 * own intr_context since we have separate
+		 * vectors for each queue.
+		 * This only true when MSI-X is enabled.
+		 */
+		for (i = 0; i < qdev->intr_count; i++, intr_context++) {
+			qdev->rx_ring[i].irq = i;
+			intr_context->intr = i;
+			intr_context->qdev = qdev;
+			/*
+			 * We set up each vectors enable/disable/read bits so
+			 * there's no bit/mask calculations in the critical path.
+			 */
+			intr_context->intr_en_mask =
+			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+			    INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
+			    | i;
+			intr_context->intr_dis_mask =
+			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+			    INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
+			    INTR_EN_IHD | i;
+			intr_context->intr_read_mask =
+			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+			    INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
+			    i;
+
+			if (i == 0) {
+				/*
+				 * Default queue handles bcast/mcast plus
+				 * async events.  Needs buffers.
+				 */
+				intr_context->handler = qlge_isr;
+				sprintf(intr_context->name, "%s-default-queue",
+					qdev->ndev->name);
+			} else if (i < qdev->rss_ring_first_cq_id) {
+				/*
+				 * Outbound queue is for outbound completions only.
+				 */
+				intr_context->handler = qlge_msix_tx_isr;
+				sprintf(intr_context->name, "%s-txq-%d",
+					qdev->ndev->name, i);
+			} else {
+				/*
+				 * Inbound queues handle unicast frames only.
+				 */
+				intr_context->handler = qlge_msix_rx_isr;
+				sprintf(intr_context->name, "%s-rxq-%d",
+					qdev->ndev->name, i);
+			}
+		}
+	} else {
+		/*
+		 * All rx_rings use the same intr_context since
+		 * there is only one vector.
+		 */
+		intr_context->intr = 0;
+		intr_context->qdev = qdev;
+		/*
+		 * We set up each vectors enable/disable/read bits so
+		 * there's no bit/mask calculations in the critical path.
+		 */
+		intr_context->intr_en_mask =
+		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
+		intr_context->intr_dis_mask =
+		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+		    INTR_EN_TYPE_DISABLE;
+		intr_context->intr_read_mask =
+		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
+		/*
+		 * Single interrupt means one handler for all rings.
+		 */
+		intr_context->handler = qlge_isr;
+		sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
+		for (i = 0; i < qdev->rx_ring_count; i++)
+			qdev->rx_ring[i].irq = 0;
+	}
+}
+
+static void ql_free_irq(struct ql_adapter *qdev)
+{
+	int i;
+	struct intr_context *intr_context = &qdev->intr_context[0];
+
+	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
+		if (intr_context->hooked) {
+			if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+				free_irq(qdev->msi_x_entry[i].vector,
+					 &qdev->rx_ring[i]);
+				QPRINTK(qdev, IFDOWN, ERR,
+					"freeing msix interrupt %d.\n", i);
+			} else {
+				free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
+				QPRINTK(qdev, IFDOWN, ERR,
+					"freeing msi interrupt %d.\n", i);
+			}
+		}
+	}
+	ql_disable_msix(qdev);
+}
+
+static int ql_request_irq(struct ql_adapter *qdev)
+{
+	int i;
+	int status = 0;
+	struct pci_dev *pdev = qdev->pdev;
+	struct intr_context *intr_context = &qdev->intr_context[0];
+
+	ql_resolve_queues_to_irqs(qdev);
+
+	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
+		atomic_set(&intr_context->irq_cnt, 0);
+		if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+			status = request_irq(qdev->msi_x_entry[i].vector,
+					     intr_context->handler,
+					     0,
+					     intr_context->name,
+					     &qdev->rx_ring[i]);
+			if (status) {
+				QPRINTK(qdev, IFUP, ERR,
+					"Failed request for MSIX interrupt %d.\n",
+					i);
+				goto err_irq;
+			} else {
+				QPRINTK(qdev, IFUP, INFO,
+					"Hooked intr %d, queue type %s%s%s, with name %s.\n",
+					i,
+					qdev->rx_ring[i].type ==
+					DEFAULT_Q ? "DEFAULT_Q" : "",
+					qdev->rx_ring[i].type ==
+					TX_Q ? "TX_Q" : "",
+					qdev->rx_ring[i].type ==
+					RX_Q ? "RX_Q" : "", intr_context->name);
+			}
+		} else {
+			QPRINTK(qdev, IFUP, DEBUG,
+				"trying msi or legacy interrupts.\n");
+			QPRINTK(qdev, IFUP, DEBUG,
+				"%s: irq = %d.\n", __func__, pdev->irq);
+			QPRINTK(qdev, IFUP, DEBUG,
+				"%s: context->name = %s.\n", __func__,
+			       intr_context->name);
+			QPRINTK(qdev, IFUP, DEBUG,
+				"%s: dev_id = 0x%p.\n", __func__,
+			       &qdev->rx_ring[0]);
+			status =
+			    request_irq(pdev->irq, qlge_isr,
+					test_bit(QL_MSI_ENABLED,
+						 &qdev->
+						 flags) ? 0 : IRQF_SHARED,
+					intr_context->name, &qdev->rx_ring[0]);
+			if (status)
+				goto err_irq;
+
+			QPRINTK(qdev, IFUP, ERR,
+				"Hooked intr %d, queue type %s%s%s, with name %s.\n",
+				i,
+				qdev->rx_ring[0].type ==
+				DEFAULT_Q ? "DEFAULT_Q" : "",
+				qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
+				qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
+				intr_context->name);
+		}
+		intr_context->hooked = 1;
+	}
+	return status;
+err_irq:
+	QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
+	ql_free_irq(qdev);
+	return status;
+}
+
+static int ql_start_rss(struct ql_adapter *qdev)
+{
+	struct ricb *ricb = &qdev->ricb;
+	int status = 0;
+	int i;
+	u8 *hash_id = (u8 *) ricb->hash_cq_id;
+
+	memset((void *)ricb, 0, sizeof(ricb));
+
+	ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
+	ricb->flags =
+	    (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
+	     RSS_RT6);
+	ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
+
+	/*
+	 * Fill out the Indirection Table.
+	 */
+	for (i = 0; i < 32; i++)
+		hash_id[i] = i & 1;
+
+	/*
+	 * Random values for the IPv6 and IPv4 Hash Keys.
+	 */
+	get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
+	get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
+
+	QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
+
+	status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
+		return status;
+	}
+	QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
+	return status;
+}
+
+/* Initialize the frame-to-queue routing. */
+static int ql_route_initialize(struct ql_adapter *qdev)
+{
+	int status = 0;
+	int i;
+
+	/* Clear all the entries in the routing table. */
+	for (i = 0; i < 16; i++) {
+		status = ql_set_routing_reg(qdev, i, 0, 0);
+		if (status) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Failed to init routing register for CAM packets.\n");
+			return status;
+		}
+	}
+
+	status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Failed to init routing register for error packets.\n");
+		return status;
+	}
+	status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Failed to init routing register for broadcast packets.\n");
+		return status;
+	}
+	/* If we have more than one inbound queue, then turn on RSS in the
+	 * routing block.
+	 */
+	if (qdev->rss_ring_count > 1) {
+		status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
+					RT_IDX_RSS_MATCH, 1);
+		if (status) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Failed to init routing register for MATCH RSS packets.\n");
+			return status;
+		}
+	}
+
+	status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
+				    RT_IDX_CAM_HIT, 1);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Failed to init routing register for CAM packets.\n");
+		return status;
+	}
+	return status;
+}
+
+static int ql_adapter_initialize(struct ql_adapter *qdev)
+{
+	u32 value, mask;
+	int i;
+	int status = 0;
+
+	/*
+	 * Set up the System register to halt on errors.
+	 */
+	value = SYS_EFE | SYS_FAE;
+	mask = value << 16;
+	ql_write32(qdev, SYS, mask | value);
+
+	/* Set the default queue. */
+	value = NIC_RCV_CFG_DFQ;
+	mask = NIC_RCV_CFG_DFQ_MASK;
+	ql_write32(qdev, NIC_RCV_CFG, (mask | value));
+
+	/* Set the MPI interrupt to enabled. */
+	ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
+
+	/* Enable the function, set pagesize, enable error checking. */
+	value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
+	    FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
+
+	/* Set/clear header splitting. */
+	mask = FSC_VM_PAGESIZE_MASK |
+	    FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
+	ql_write32(qdev, FSC, mask | value);
+
+	ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
+		min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
+
+	/* Start up the rx queues. */
+	for (i = 0; i < qdev->rx_ring_count; i++) {
+		status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
+		if (status) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Failed to start rx ring[%d].\n", i);
+			return status;
+		}
+	}
+
+	/* If there is more than one inbound completion queue
+	 * then download a RICB to configure RSS.
+	 */
+	if (qdev->rss_ring_count > 1) {
+		status = ql_start_rss(qdev);
+		if (status) {
+			QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
+			return status;
+		}
+	}
+
+	/* Start up the tx queues. */
+	for (i = 0; i < qdev->tx_ring_count; i++) {
+		status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
+		if (status) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Failed to start tx ring[%d].\n", i);
+			return status;
+		}
+	}
+
+	status = ql_port_initialize(qdev);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
+		return status;
+	}
+
+	status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
+				     MAC_ADDR_TYPE_CAM_MAC, qdev->func);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
+		return status;
+	}
+
+	status = ql_route_initialize(qdev);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
+		return status;
+	}
+
+	/* Start NAPI for the RSS queues. */
+	for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
+		QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
+			i);
+		napi_enable(&qdev->rx_ring[i].napi);
+	}
+
+	return status;
+}
+
+/* Issue soft reset to chip. */
+static int ql_adapter_reset(struct ql_adapter *qdev)
+{
+	u32 value;
+	int max_wait_time;
+	int status = 0;
+	int resetCnt = 0;
+
+#define MAX_RESET_CNT   1
+issueReset:
+	resetCnt++;
+	QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
+	ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
+	/* Wait for reset to complete. */
+	max_wait_time = 3;
+	QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
+		max_wait_time);
+	do {
+		value = ql_read32(qdev, RST_FO);
+		if ((value & RST_FO_FR) == 0)
+			break;
+
+		ssleep(1);
+	} while ((--max_wait_time));
+	if (value & RST_FO_FR) {
+		QPRINTK(qdev, IFDOWN, ERR,
+			"Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
+		if (resetCnt < MAX_RESET_CNT)
+			goto issueReset;
+	}
+	if (max_wait_time == 0) {
+		status = -ETIMEDOUT;
+		QPRINTK(qdev, IFDOWN, ERR,
+			"ETIMEOUT!!! errored out of resetting the chip!\n");
+	}
+
+	return status;
+}
+
+static void ql_display_dev_info(struct net_device *ndev)
+{
+	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
+
+	QPRINTK(qdev, PROBE, INFO,
+		"Function #%d, NIC Roll %d, NIC Rev = %d, "
+		"XG Roll = %d, XG Rev = %d.\n",
+		qdev->func,
+		qdev->chip_rev_id & 0x0000000f,
+		qdev->chip_rev_id >> 4 & 0x0000000f,
+		qdev->chip_rev_id >> 8 & 0x0000000f,
+		qdev->chip_rev_id >> 12 & 0x0000000f);
+	QPRINTK(qdev, PROBE, INFO,
+		"MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
+		ndev->dev_addr[0], ndev->dev_addr[1],
+		ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
+		ndev->dev_addr[5]);
+}
+
+static int ql_adapter_down(struct ql_adapter *qdev)
+{
+	struct net_device *ndev = qdev->ndev;
+	int i, status = 0;
+	struct rx_ring *rx_ring;
+
+	netif_stop_queue(ndev);
+	netif_carrier_off(ndev);
+
+	cancel_delayed_work_sync(&qdev->asic_reset_work);
+	cancel_delayed_work_sync(&qdev->mpi_reset_work);
+	cancel_delayed_work_sync(&qdev->mpi_work);
+
+	/* The default queue at index 0 is always processed in
+	 * a workqueue.
+	 */
+	cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
+
+	/* The rest of the rx_rings are processed in
+	 * a workqueue only if it's a single interrupt
+	 * environment (MSI/Legacy).
+	 */
+	for (i = 1; i > qdev->rx_ring_count; i++) {
+		rx_ring = &qdev->rx_ring[i];
+		/* Only the RSS rings use NAPI on multi irq
+		 * environment.  Outbound completion processing
+		 * is done in interrupt context.
+		 */
+		if (i >= qdev->rss_ring_first_cq_id) {
+			napi_disable(&rx_ring->napi);
+		} else {
+			cancel_delayed_work_sync(&rx_ring->rx_work);
+		}
+	}
+
+	clear_bit(QL_ADAPTER_UP, &qdev->flags);
+
+	ql_disable_interrupts(qdev);
+
+	ql_tx_ring_clean(qdev);
+
+	spin_lock(&qdev->hw_lock);
+	status = ql_adapter_reset(qdev);
+	if (status)
+		QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
+			qdev->func);
+	spin_unlock(&qdev->hw_lock);
+	return status;
+}
+
+static int ql_adapter_up(struct ql_adapter *qdev)
+{
+	int err = 0;
+
+	spin_lock(&qdev->hw_lock);
+	err = ql_adapter_initialize(qdev);
+	if (err) {
+		QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
+		spin_unlock(&qdev->hw_lock);
+		goto err_init;
+	}
+	spin_unlock(&qdev->hw_lock);
+	set_bit(QL_ADAPTER_UP, &qdev->flags);
+	ql_enable_interrupts(qdev);
+	ql_enable_all_completion_interrupts(qdev);
+	if ((ql_read32(qdev, STS) & qdev->port_init)) {
+		netif_carrier_on(qdev->ndev);
+		netif_start_queue(qdev->ndev);
+	}
+
+	return 0;
+err_init:
+	ql_adapter_reset(qdev);
+	return err;
+}
+
+static int ql_cycle_adapter(struct ql_adapter *qdev)
+{
+	int status;
+
+	status = ql_adapter_down(qdev);
+	if (status)
+		goto error;
+
+	status = ql_adapter_up(qdev);
+	if (status)
+		goto error;
+
+	return status;
+error:
+	QPRINTK(qdev, IFUP, ALERT,
+		"Driver up/down cycle failed, closing device\n");
+	rtnl_lock();
+	dev_close(qdev->ndev);
+	rtnl_unlock();
+	return status;
+}
+
+static void ql_release_adapter_resources(struct ql_adapter *qdev)
+{
+	ql_free_mem_resources(qdev);
+	ql_free_irq(qdev);
+}
+
+static int ql_get_adapter_resources(struct ql_adapter *qdev)
+{
+	int status = 0;
+
+	if (ql_alloc_mem_resources(qdev)) {
+		QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
+		return -ENOMEM;
+	}
+	status = ql_request_irq(qdev);
+	if (status)
+		goto err_irq;
+	return status;
+err_irq:
+	ql_free_mem_resources(qdev);
+	return status;
+}
+
+static int qlge_close(struct net_device *ndev)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	/*
+	 * Wait for device to recover from a reset.
+	 * (Rarely happens, but possible.)
+	 */
+	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
+		msleep(1);
+	ql_adapter_down(qdev);
+	ql_release_adapter_resources(qdev);
+	ql_free_ring_cb(qdev);
+	return 0;
+}
+
+static int ql_configure_rings(struct ql_adapter *qdev)
+{
+	int i;
+	struct rx_ring *rx_ring;
+	struct tx_ring *tx_ring;
+	int cpu_cnt = num_online_cpus();
+
+	/*
+	 * For each processor present we allocate one
+	 * rx_ring for outbound completions, and one
+	 * rx_ring for inbound completions.  Plus there is
+	 * always the one default queue.  For the CPU
+	 * counts we end up with the following rx_rings:
+	 * rx_ring count =
+	 *  one default queue +
+	 *  (CPU count * outbound completion rx_ring) +
+	 *  (CPU count * inbound (RSS) completion rx_ring)
+	 * To keep it simple we limit the total number of
+	 * queues to < 32, so we truncate CPU to 8.
+	 * This limitation can be removed when requested.
+	 */
+
+	if (cpu_cnt > 8)
+		cpu_cnt = 8;
+
+	/*
+	 * rx_ring[0] is always the default queue.
+	 */
+	/* Allocate outbound completion ring for each CPU. */
+	qdev->tx_ring_count = cpu_cnt;
+	/* Allocate inbound completion (RSS) ring for each CPU. */
+	qdev->rss_ring_count = cpu_cnt;
+	/* cq_id for the first inbound ring handler. */
+	qdev->rss_ring_first_cq_id = cpu_cnt + 1;
+	/*
+	 * qdev->rx_ring_count:
+	 * Total number of rx_rings.  This includes the one
+	 * default queue, a number of outbound completion
+	 * handler rx_rings, and the number of inbound
+	 * completion handler rx_rings.
+	 */
+	qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
+
+	if (ql_alloc_ring_cb(qdev))
+		return -ENOMEM;
+
+	for (i = 0; i < qdev->tx_ring_count; i++) {
+		tx_ring = &qdev->tx_ring[i];
+		memset((void *)tx_ring, 0, sizeof(tx_ring));
+		tx_ring->qdev = qdev;
+		tx_ring->wq_id = i;
+		tx_ring->wq_len = qdev->tx_ring_size;
+		tx_ring->wq_size =
+		    tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
+
+		/*
+		 * The completion queue ID for the tx rings start
+		 * immediately after the default Q ID, which is zero.
+		 */
+		tx_ring->cq_id = i + 1;
+	}
+
+	for (i = 0; i < qdev->rx_ring_count; i++) {
+		rx_ring = &qdev->rx_ring[i];
+		memset((void *)rx_ring, 0, sizeof(rx_ring));
+		rx_ring->qdev = qdev;
+		rx_ring->cq_id = i;
+		rx_ring->cpu = i % cpu_cnt;	/* CPU to run handler on. */
+		if (i == 0) {	/* Default queue at index 0. */
+			/*
+			 * Default queue handles bcast/mcast plus
+			 * async events.  Needs buffers.
+			 */
+			rx_ring->cq_len = qdev->rx_ring_size;
+			rx_ring->cq_size =
+			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
+			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
+			rx_ring->lbq_size =
+			    rx_ring->lbq_len * sizeof(struct bq_element);
+			rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
+			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
+			rx_ring->sbq_size =
+			    rx_ring->sbq_len * sizeof(struct bq_element);
+			rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
+			rx_ring->type = DEFAULT_Q;
+		} else if (i < qdev->rss_ring_first_cq_id) {
+			/*
+			 * Outbound queue handles outbound completions only.
+			 */
+			/* outbound cq is same size as tx_ring it services. */
+			rx_ring->cq_len = qdev->tx_ring_size;
+			rx_ring->cq_size =
+			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
+			rx_ring->lbq_len = 0;
+			rx_ring->lbq_size = 0;
+			rx_ring->lbq_buf_size = 0;
+			rx_ring->sbq_len = 0;
+			rx_ring->sbq_size = 0;
+			rx_ring->sbq_buf_size = 0;
+			rx_ring->type = TX_Q;
+		} else {	/* Inbound completions (RSS) queues */
+			/*
+			 * Inbound queues handle unicast frames only.
+			 */
+			rx_ring->cq_len = qdev->rx_ring_size;
+			rx_ring->cq_size =
+			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
+			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
+			rx_ring->lbq_size =
+			    rx_ring->lbq_len * sizeof(struct bq_element);
+			rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
+			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
+			rx_ring->sbq_size =
+			    rx_ring->sbq_len * sizeof(struct bq_element);
+			rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
+			rx_ring->type = RX_Q;
+		}
+	}
+	return 0;
+}
+
+static int qlge_open(struct net_device *ndev)
+{
+	int err = 0;
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	err = ql_configure_rings(qdev);
+	if (err)
+		return err;
+
+	err = ql_get_adapter_resources(qdev);
+	if (err)
+		goto error_up;
+
+	err = ql_adapter_up(qdev);
+	if (err)
+		goto error_up;
+
+	return err;
+
+error_up:
+	ql_release_adapter_resources(qdev);
+	ql_free_ring_cb(qdev);
+	return err;
+}
+
+static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	if (ndev->mtu == 1500 && new_mtu == 9000) {
+		QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
+	} else if (ndev->mtu == 9000 && new_mtu == 1500) {
+		QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
+	} else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
+		   (ndev->mtu == 9000 && new_mtu == 9000)) {
+		return 0;
+	} else
+		return -EINVAL;
+	ndev->mtu = new_mtu;
+	return 0;
+}
+
+static struct net_device_stats *qlge_get_stats(struct net_device
+					       *ndev)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	return &qdev->stats;
+}
+
+static void qlge_set_multicast_list(struct net_device *ndev)
+{
+	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
+	struct dev_mc_list *mc_ptr;
+	int i;
+
+	spin_lock(&qdev->hw_lock);
+	/*
+	 * Set or clear promiscuous mode if a
+	 * transition is taking place.
+	 */
+	if (ndev->flags & IFF_PROMISC) {
+		if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
+			if (ql_set_routing_reg
+			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
+				QPRINTK(qdev, HW, ERR,
+					"Failed to set promiscous mode.\n");
+			} else {
+				set_bit(QL_PROMISCUOUS, &qdev->flags);
+			}
+		}
+	} else {
+		if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
+			if (ql_set_routing_reg
+			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
+				QPRINTK(qdev, HW, ERR,
+					"Failed to clear promiscous mode.\n");
+			} else {
+				clear_bit(QL_PROMISCUOUS, &qdev->flags);
+			}
+		}
+	}
+
+	/*
+	 * Set or clear all multicast mode if a
+	 * transition is taking place.
+	 */
+	if ((ndev->flags & IFF_ALLMULTI) ||
+	    (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
+		if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
+			if (ql_set_routing_reg
+			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
+				QPRINTK(qdev, HW, ERR,
+					"Failed to set all-multi mode.\n");
+			} else {
+				set_bit(QL_ALLMULTI, &qdev->flags);
+			}
+		}
+	} else {
+		if (test_bit(QL_ALLMULTI, &qdev->flags)) {
+			if (ql_set_routing_reg
+			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
+				QPRINTK(qdev, HW, ERR,
+					"Failed to clear all-multi mode.\n");
+			} else {
+				clear_bit(QL_ALLMULTI, &qdev->flags);
+			}
+		}
+	}
+
+	if (ndev->mc_count) {
+		for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
+		     i++, mc_ptr = mc_ptr->next)
+			if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
+						MAC_ADDR_TYPE_MULTI_MAC, i)) {
+				QPRINTK(qdev, HW, ERR,
+					"Failed to loadmulticast address.\n");
+				goto exit;
+			}
+		if (ql_set_routing_reg
+		    (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
+			QPRINTK(qdev, HW, ERR,
+				"Failed to set multicast match mode.\n");
+		} else {
+			set_bit(QL_ALLMULTI, &qdev->flags);
+		}
+	}
+exit:
+	spin_unlock(&qdev->hw_lock);
+}
+
+static int qlge_set_mac_address(struct net_device *ndev, void *p)
+{
+	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
+	struct sockaddr *addr = p;
+
+	if (netif_running(ndev))
+		return -EBUSY;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
+
+	spin_lock(&qdev->hw_lock);
+	if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
+			MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
+		QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
+		return -1;
+	}
+	spin_unlock(&qdev->hw_lock);
+
+	return 0;
+}
+
+static void qlge_tx_timeout(struct net_device *ndev)
+{
+	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
+	queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
+}
+
+static void ql_asic_reset_work(struct work_struct *work)
+{
+	struct ql_adapter *qdev =
+	    container_of(work, struct ql_adapter, asic_reset_work.work);
+	ql_cycle_adapter(qdev);
+}
+
+static void ql_get_board_info(struct ql_adapter *qdev)
+{
+	qdev->func =
+	    (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
+	if (qdev->func) {
+		qdev->xg_sem_mask = SEM_XGMAC1_MASK;
+		qdev->port_link_up = STS_PL1;
+		qdev->port_init = STS_PI1;
+		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
+		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
+	} else {
+		qdev->xg_sem_mask = SEM_XGMAC0_MASK;
+		qdev->port_link_up = STS_PL0;
+		qdev->port_init = STS_PI0;
+		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
+		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
+	}
+	qdev->chip_rev_id = ql_read32(qdev, REV_ID);
+}
+
+static void ql_release_all(struct pci_dev *pdev)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	if (qdev->workqueue) {
+		destroy_workqueue(qdev->workqueue);
+		qdev->workqueue = NULL;
+	}
+	if (qdev->q_workqueue) {
+		destroy_workqueue(qdev->q_workqueue);
+		qdev->q_workqueue = NULL;
+	}
+	if (qdev->reg_base)
+		iounmap((void *)qdev->reg_base);
+	if (qdev->doorbell_area)
+		iounmap(qdev->doorbell_area);
+	pci_release_regions(pdev);
+	pci_set_drvdata(pdev, NULL);
+}
+
+static int __devinit ql_init_device(struct pci_dev *pdev,
+				    struct net_device *ndev, int cards_found)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	int pos, err = 0;
+	u16 val16;
+
+	memset((void *)qdev, 0, sizeof(qdev));
+	err = pci_enable_device(pdev);
+	if (err) {
+		dev_err(&pdev->dev, "PCI device enable failed.\n");
+		return err;
+	}
+
+	pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
+	if (pos <= 0) {
+		dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
+			"aborting.\n");
+		goto err_out;
+	} else {
+		pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
+		val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
+		val16 |= (PCI_EXP_DEVCTL_CERE |
+			  PCI_EXP_DEVCTL_NFERE |
+			  PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
+		pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
+	}
+
+	err = pci_request_regions(pdev, DRV_NAME);
+	if (err) {
+		dev_err(&pdev->dev, "PCI region request failed.\n");
+		goto err_out;
+	}
+
+	pci_set_master(pdev);
+	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
+		set_bit(QL_DMA64, &qdev->flags);
+		err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
+	} else {
+		err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
+		if (!err)
+		       err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
+	}
+
+	if (err) {
+		dev_err(&pdev->dev, "No usable DMA configuration.\n");
+		goto err_out;
+	}
+
+	pci_set_drvdata(pdev, ndev);
+	qdev->reg_base =
+	    ioremap_nocache(pci_resource_start(pdev, 1),
+			    pci_resource_len(pdev, 1));
+	if (!qdev->reg_base) {
+		dev_err(&pdev->dev, "Register mapping failed.\n");
+		err = -ENOMEM;
+		goto err_out;
+	}
+
+	qdev->doorbell_area_size = pci_resource_len(pdev, 3);
+	qdev->doorbell_area =
+	    ioremap_nocache(pci_resource_start(pdev, 3),
+			    pci_resource_len(pdev, 3));
+	if (!qdev->doorbell_area) {
+		dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
+		err = -ENOMEM;
+		goto err_out;
+	}
+
+	ql_get_board_info(qdev);
+	qdev->ndev = ndev;
+	qdev->pdev = pdev;
+	qdev->msg_enable = netif_msg_init(debug, default_msg);
+	spin_lock_init(&qdev->hw_lock);
+	spin_lock_init(&qdev->stats_lock);
+
+	/* make sure the EEPROM is good */
+	err = ql_get_flash_params(qdev);
+	if (err) {
+		dev_err(&pdev->dev, "Invalid FLASH.\n");
+		goto err_out;
+	}
+
+	if (!is_valid_ether_addr(qdev->flash.mac_addr))
+		goto err_out;
+
+	memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
+	memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
+
+	/* Set up the default ring sizes. */
+	qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
+	qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
+
+	/* Set up the coalescing parameters. */
+	qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
+	qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
+	qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
+	qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
+
+	/*
+	 * Set up the operating parameters.
+	 */
+	qdev->rx_csum = 1;
+
+	qdev->q_workqueue = create_workqueue(ndev->name);
+	qdev->workqueue = create_singlethread_workqueue(ndev->name);
+	INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
+	INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
+	INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
+
+	if (!cards_found) {
+		dev_info(&pdev->dev, "%s\n", DRV_STRING);
+		dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
+			 DRV_NAME, DRV_VERSION);
+	}
+	return 0;
+err_out:
+	ql_release_all(pdev);
+	pci_disable_device(pdev);
+	return err;
+}
+
+static int __devinit qlge_probe(struct pci_dev *pdev,
+				const struct pci_device_id *pci_entry)
+{
+	struct net_device *ndev = NULL;
+	struct ql_adapter *qdev = NULL;
+	static int cards_found = 0;
+	int err = 0;
+
+	ndev = alloc_etherdev(sizeof(struct ql_adapter));
+	if (!ndev)
+		return -ENOMEM;
+
+	err = ql_init_device(pdev, ndev, cards_found);
+	if (err < 0) {
+		free_netdev(ndev);
+		return err;
+	}
+
+	qdev = netdev_priv(ndev);
+	SET_NETDEV_DEV(ndev, &pdev->dev);
+	ndev->features = (0
+			  | NETIF_F_IP_CSUM
+			  | NETIF_F_SG
+			  | NETIF_F_TSO
+			  | NETIF_F_TSO6
+			  | NETIF_F_TSO_ECN
+			  | NETIF_F_HW_VLAN_TX
+			  | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
+
+	if (test_bit(QL_DMA64, &qdev->flags))
+		ndev->features |= NETIF_F_HIGHDMA;
+
+	/*
+	 * Set up net_device structure.
+	 */
+	ndev->tx_queue_len = qdev->tx_ring_size;
+	ndev->irq = pdev->irq;
+	ndev->open = qlge_open;
+	ndev->stop = qlge_close;
+	ndev->hard_start_xmit = qlge_send;
+	SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
+	ndev->change_mtu = qlge_change_mtu;
+	ndev->get_stats = qlge_get_stats;
+	ndev->set_multicast_list = qlge_set_multicast_list;
+	ndev->set_mac_address = qlge_set_mac_address;
+	ndev->tx_timeout = qlge_tx_timeout;
+	ndev->watchdog_timeo = 10 * HZ;
+	ndev->vlan_rx_register = ql_vlan_rx_register;
+	ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid;
+	ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid;
+	err = register_netdev(ndev);
+	if (err) {
+		dev_err(&pdev->dev, "net device registration failed.\n");
+		ql_release_all(pdev);
+		pci_disable_device(pdev);
+		return err;
+	}
+	netif_carrier_off(ndev);
+	netif_stop_queue(ndev);
+	ql_display_dev_info(ndev);
+	cards_found++;
+	return 0;
+}
+
+static void __devexit qlge_remove(struct pci_dev *pdev)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	unregister_netdev(ndev);
+	ql_release_all(pdev);
+	pci_disable_device(pdev);
+	free_netdev(ndev);
+}
+
+/*
+ * This callback is called by the PCI subsystem whenever
+ * a PCI bus error is detected.
+ */
+static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
+					       enum pci_channel_state state)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	if (netif_running(ndev))
+		ql_adapter_down(qdev);
+
+	pci_disable_device(pdev);
+
+	/* Request a slot reset. */
+	return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/*
+ * This callback is called after the PCI buss has been reset.
+ * Basically, this tries to restart the card from scratch.
+ * This is a shortened version of the device probe/discovery code,
+ * it resembles the first-half of the () routine.
+ */
+static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	if (pci_enable_device(pdev)) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Cannot re-enable PCI device after reset.\n");
+		return PCI_ERS_RESULT_DISCONNECT;
+	}
+
+	pci_set_master(pdev);
+
+	netif_carrier_off(ndev);
+	netif_stop_queue(ndev);
+	ql_adapter_reset(qdev);
+
+	/* Make sure the EEPROM is good */
+	memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
+
+	if (!is_valid_ether_addr(ndev->perm_addr)) {
+		QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
+		return PCI_ERS_RESULT_DISCONNECT;
+	}
+
+	return PCI_ERS_RESULT_RECOVERED;
+}
+
+static void qlge_io_resume(struct pci_dev *pdev)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	pci_set_master(pdev);
+
+	if (netif_running(ndev)) {
+		if (ql_adapter_up(qdev)) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Device initialization failed after reset.\n");
+			return;
+		}
+	}
+
+	netif_device_attach(ndev);
+}
+
+static struct pci_error_handlers qlge_err_handler = {
+	.error_detected = qlge_io_error_detected,
+	.slot_reset = qlge_io_slot_reset,
+	.resume = qlge_io_resume,
+};
+
+static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	int err;
+
+	netif_device_detach(ndev);
+
+	if (netif_running(ndev)) {
+		err = ql_adapter_down(qdev);
+		if (!err)
+			return err;
+	}
+
+	err = pci_save_state(pdev);
+	if (err)
+		return err;
+
+	pci_disable_device(pdev);
+
+	pci_set_power_state(pdev, pci_choose_state(pdev, state));
+
+	return 0;
+}
+
+static int qlge_resume(struct pci_dev *pdev)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	int err;
+
+	pci_set_power_state(pdev, PCI_D0);
+	pci_restore_state(pdev);
+	err = pci_enable_device(pdev);
+	if (err) {
+		QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
+		return err;
+	}
+	pci_set_master(pdev);
+
+	pci_enable_wake(pdev, PCI_D3hot, 0);
+	pci_enable_wake(pdev, PCI_D3cold, 0);
+
+	if (netif_running(ndev)) {
+		err = ql_adapter_up(qdev);
+		if (err)
+			return err;
+	}
+
+	netif_device_attach(ndev);
+
+	return 0;
+}
+
+static void qlge_shutdown(struct pci_dev *pdev)
+{
+	qlge_suspend(pdev, PMSG_SUSPEND);
+}
+
+static struct pci_driver qlge_driver = {
+	.name = DRV_NAME,
+	.id_table = qlge_pci_tbl,
+	.probe = qlge_probe,
+	.remove = __devexit_p(qlge_remove),
+#ifdef CONFIG_PM
+	.suspend = qlge_suspend,
+	.resume = qlge_resume,
+#endif
+	.shutdown = qlge_shutdown,
+	.err_handler = &qlge_err_handler
+};
+
+static int __init qlge_init_module(void)
+{
+	return pci_register_driver(&qlge_driver);
+}
+
+static void __exit qlge_exit(void)
+{
+	pci_unregister_driver(&qlge_driver);
+}
+
+module_init(qlge_init_module);
+module_exit(qlge_exit);
diff --git a/drivers/net/qlge/qlge_mpi.c b/drivers/net/qlge/qlge_mpi.c
new file mode 100644
index 0000000..24fe344
--- /dev/null
+++ b/drivers/net/qlge/qlge_mpi.c
@@ -0,0 +1,150 @@
+#include "qlge.h"
+
+static int ql_read_mbox_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
+{
+	int status;
+	/* wait for reg to come ready */
+	status = ql_wait_reg_rdy(qdev, PROC_ADDR, PROC_ADDR_RDY, PROC_ADDR_ERR);
+	if (status)
+		goto exit;
+	/* set up for reg read */
+	ql_write32(qdev, PROC_ADDR, reg | PROC_ADDR_R);
+	/* wait for reg to come ready */
+	status = ql_wait_reg_rdy(qdev, PROC_ADDR, PROC_ADDR_RDY, PROC_ADDR_ERR);
+	if (status)
+		goto exit;
+	/* get the data */
+	*data = ql_read32(qdev, PROC_DATA);
+exit:
+	return status;
+}
+
+int ql_get_mb_sts(struct ql_adapter *qdev, struct mbox_params *mbcp)
+{
+	int i, status;
+
+	status = ql_sem_spinlock(qdev, SEM_PROC_REG_MASK);
+	if (status)
+		return -EBUSY;
+	for (i = 0; i < mbcp->out_count; i++) {
+		status =
+		    ql_read_mbox_reg(qdev, qdev->mailbox_out + i,
+				     &mbcp->mbox_out[i]);
+		if (status) {
+			QPRINTK(qdev, DRV, ERR, "Failed mailbox read.\n");
+			break;
+		}
+	}
+	ql_sem_unlock(qdev, SEM_PROC_REG_MASK);	/* does flush too */
+	return status;
+}
+
+static void ql_link_up(struct ql_adapter *qdev, struct mbox_params *mbcp)
+{
+	mbcp->out_count = 2;
+
+	if (ql_get_mb_sts(qdev, mbcp))
+		goto exit;
+
+	qdev->link_status = mbcp->mbox_out[1];
+	QPRINTK(qdev, DRV, ERR, "Link Up.\n");
+	QPRINTK(qdev, DRV, INFO, "Link Status = 0x%.08x.\n", mbcp->mbox_out[1]);
+	if (!netif_carrier_ok(qdev->ndev)) {
+		QPRINTK(qdev, LINK, INFO, "Link is Up.\n");
+		netif_carrier_on(qdev->ndev);
+		netif_wake_queue(qdev->ndev);
+	}
+exit:
+	/* Clear the MPI firmware status. */
+	ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
+}
+
+static void ql_link_down(struct ql_adapter *qdev, struct mbox_params *mbcp)
+{
+	mbcp->out_count = 3;
+
+	if (ql_get_mb_sts(qdev, mbcp)) {
+		QPRINTK(qdev, DRV, ERR, "Firmware did not initialize!\n");
+		goto exit;
+	}
+
+	if (netif_carrier_ok(qdev->ndev)) {
+		QPRINTK(qdev, LINK, INFO, "Link is Down.\n");
+		netif_carrier_off(qdev->ndev);
+		netif_stop_queue(qdev->ndev);
+	}
+	QPRINTK(qdev, DRV, ERR, "Link Down.\n");
+	QPRINTK(qdev, DRV, ERR, "Link Status = 0x%.08x.\n", mbcp->mbox_out[1]);
+exit:
+	/* Clear the MPI firmware status. */
+	ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
+}
+
+static void ql_init_fw_done(struct ql_adapter *qdev, struct mbox_params *mbcp)
+{
+	mbcp->out_count = 2;
+
+	if (ql_get_mb_sts(qdev, mbcp)) {
+		QPRINTK(qdev, DRV, ERR, "Firmware did not initialize!\n");
+		goto exit;
+	}
+	QPRINTK(qdev, DRV, ERR, "Firmware initialized!\n");
+	QPRINTK(qdev, DRV, ERR, "Firmware status = 0x%.08x.\n",
+		mbcp->mbox_out[0]);
+	QPRINTK(qdev, DRV, ERR, "Firmware Revision  = 0x%.08x.\n",
+		mbcp->mbox_out[1]);
+exit:
+	/* Clear the MPI firmware status. */
+	ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
+}
+
+void ql_mpi_work(struct work_struct *work)
+{
+	struct ql_adapter *qdev =
+	    container_of(work, struct ql_adapter, mpi_work.work);
+	struct mbox_params mbc;
+	struct mbox_params *mbcp = &mbc;
+	mbcp->out_count = 1;
+
+	while (ql_read32(qdev, STS) & STS_PI) {
+		if (ql_get_mb_sts(qdev, mbcp)) {
+			QPRINTK(qdev, DRV, ERR,
+				"Could not read MPI, resetting ASIC!\n");
+			ql_queue_asic_error(qdev);
+		}
+
+		switch (mbcp->mbox_out[0]) {
+		case AEN_LINK_UP:
+			ql_link_up(qdev, mbcp);
+			break;
+		case AEN_LINK_DOWN:
+			ql_link_down(qdev, mbcp);
+			break;
+		case AEN_FW_INIT_DONE:
+			ql_init_fw_done(qdev, mbcp);
+			break;
+		case MB_CMD_STS_GOOD:
+			break;
+		case AEN_FW_INIT_FAIL:
+		case AEN_SYS_ERR:
+		case MB_CMD_STS_ERR:
+			ql_queue_fw_error(qdev);
+		default:
+			/* Clear the MPI firmware status. */
+			ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
+			break;
+		}
+	}
+	ql_enable_completion_interrupt(qdev, 0);
+}
+
+void ql_mpi_reset_work(struct work_struct *work)
+{
+	struct ql_adapter *qdev =
+	    container_of(work, struct ql_adapter, mpi_reset_work.work);
+	QPRINTK(qdev, DRV, ERR,
+		"Enter, qdev = %p..\n", qdev);
+	ql_write32(qdev, CSR, CSR_CMD_SET_RST);
+	msleep(50);
+	ql_write32(qdev, CSR, CSR_CMD_CLR_RST);
+}