| /** |
| * Routines supporting the Power 7+ Nest Accelerators driver |
| * |
| * Copyright (C) 2011-2012 International Business Machines Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 only. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Author: Kent Yoder <yoder1@us.ibm.com> |
| */ |
| |
| #include <crypto/internal/hash.h> |
| #include <crypto/hash.h> |
| #include <crypto/aes.h> |
| #include <crypto/sha.h> |
| #include <crypto/algapi.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/crypto.h> |
| #include <linux/scatterlist.h> |
| #include <linux/device.h> |
| #include <linux/of.h> |
| #include <asm/hvcall.h> |
| #include <asm/vio.h> |
| |
| #include "nx_csbcpb.h" |
| #include "nx.h" |
| |
| |
| /** |
| * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure |
| * |
| * @nx_ctx: the crypto context handle |
| * @op: PFO operation struct to pass in |
| * @may_sleep: flag indicating the request can sleep |
| * |
| * Make the hcall, retrying while the hardware is busy. If we cannot yield |
| * the thread, limit the number of retries to 10 here. |
| */ |
| int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx, |
| struct vio_pfo_op *op, |
| u32 may_sleep) |
| { |
| int rc, retries = 10; |
| struct vio_dev *viodev = nx_driver.viodev; |
| |
| atomic_inc(&(nx_ctx->stats->sync_ops)); |
| |
| do { |
| rc = vio_h_cop_sync(viodev, op); |
| } while (rc == -EBUSY && !may_sleep && retries--); |
| |
| if (rc) { |
| dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d " |
| "hcall rc: %ld\n", rc, op->hcall_err); |
| atomic_inc(&(nx_ctx->stats->errors)); |
| atomic_set(&(nx_ctx->stats->last_error), op->hcall_err); |
| atomic_set(&(nx_ctx->stats->last_error_pid), current->pid); |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * nx_build_sg_list - build an NX scatter list describing a single buffer |
| * |
| * @sg_head: pointer to the first scatter list element to build |
| * @start_addr: pointer to the linear buffer |
| * @len: length of the data at @start_addr |
| * @sgmax: the largest number of scatter list elements we're allowed to create |
| * |
| * This function will start writing nx_sg elements at @sg_head and keep |
| * writing them until all of the data from @start_addr is described or |
| * until sgmax elements have been written. Scatter list elements will be |
| * created such that none of the elements describes a buffer that crosses a 4K |
| * boundary. |
| */ |
| struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, |
| u8 *start_addr, |
| unsigned int *len, |
| u32 sgmax) |
| { |
| unsigned int sg_len = 0; |
| struct nx_sg *sg; |
| u64 sg_addr = (u64)start_addr; |
| u64 end_addr; |
| |
| /* determine the start and end for this address range - slightly |
| * different if this is in VMALLOC_REGION */ |
| if (is_vmalloc_addr(start_addr)) |
| sg_addr = page_to_phys(vmalloc_to_page(start_addr)) |
| + offset_in_page(sg_addr); |
| else |
| sg_addr = __pa(sg_addr); |
| |
| end_addr = sg_addr + *len; |
| |
| /* each iteration will write one struct nx_sg element and add the |
| * length of data described by that element to sg_len. Once @len bytes |
| * have been described (or @sgmax elements have been written), the |
| * loop ends. min_t is used to ensure @end_addr falls on the same page |
| * as sg_addr, if not, we need to create another nx_sg element for the |
| * data on the next page. |
| * |
| * Also when using vmalloc'ed data, every time that a system page |
| * boundary is crossed the physical address needs to be re-calculated. |
| */ |
| for (sg = sg_head; sg_len < *len; sg++) { |
| u64 next_page; |
| |
| sg->addr = sg_addr; |
| sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), |
| end_addr); |
| |
| next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE; |
| sg->len = min_t(u64, sg_addr, next_page) - sg->addr; |
| sg_len += sg->len; |
| |
| if (sg_addr >= next_page && |
| is_vmalloc_addr(start_addr + sg_len)) { |
| sg_addr = page_to_phys(vmalloc_to_page( |
| start_addr + sg_len)); |
| end_addr = sg_addr + *len - sg_len; |
| } |
| |
| if ((sg - sg_head) == sgmax) { |
| pr_err("nx: scatter/gather list overflow, pid: %d\n", |
| current->pid); |
| sg++; |
| break; |
| } |
| } |
| *len = sg_len; |
| |
| /* return the moved sg_head pointer */ |
| return sg; |
| } |
| |
| /** |
| * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist |
| * |
| * @nx_dst: pointer to the first nx_sg element to write |
| * @sglen: max number of nx_sg entries we're allowed to write |
| * @sg_src: pointer to the source linux scatterlist to walk |
| * @start: number of bytes to fast-forward past at the beginning of @sg_src |
| * @src_len: number of bytes to walk in @sg_src |
| */ |
| struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst, |
| unsigned int sglen, |
| struct scatterlist *sg_src, |
| unsigned int start, |
| unsigned int *src_len) |
| { |
| struct scatter_walk walk; |
| struct nx_sg *nx_sg = nx_dst; |
| unsigned int n, offset = 0, len = *src_len; |
| char *dst; |
| |
| /* we need to fast forward through @start bytes first */ |
| for (;;) { |
| scatterwalk_start(&walk, sg_src); |
| |
| if (start < offset + sg_src->length) |
| break; |
| |
| offset += sg_src->length; |
| sg_src = scatterwalk_sg_next(sg_src); |
| } |
| |
| /* start - offset is the number of bytes to advance in the scatterlist |
| * element we're currently looking at */ |
| scatterwalk_advance(&walk, start - offset); |
| |
| while (len && (nx_sg - nx_dst) < sglen) { |
| n = scatterwalk_clamp(&walk, len); |
| if (!n) { |
| /* In cases where we have scatterlist chain scatterwalk_sg_next |
| * handles with it properly */ |
| scatterwalk_start(&walk, scatterwalk_sg_next(walk.sg)); |
| n = scatterwalk_clamp(&walk, len); |
| } |
| dst = scatterwalk_map(&walk); |
| |
| nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst)); |
| len -= n; |
| |
| scatterwalk_unmap(dst); |
| scatterwalk_advance(&walk, n); |
| scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len); |
| } |
| /* update to_process */ |
| *src_len -= len; |
| |
| /* return the moved destination pointer */ |
| return nx_sg; |
| } |
| |
| /** |
| * trim_sg_list - ensures the bound in sg list. |
| * @sg: sg list head |
| * @end: sg lisg end |
| * @delta: is the amount we need to crop in order to bound the list. |
| * |
| */ |
| static long int trim_sg_list(struct nx_sg *sg, struct nx_sg *end, unsigned int delta) |
| { |
| while (delta && end > sg) { |
| struct nx_sg *last = end - 1; |
| |
| if (last->len > delta) { |
| last->len -= delta; |
| delta = 0; |
| } else { |
| end--; |
| delta -= last->len; |
| } |
| } |
| return (sg - end) * sizeof(struct nx_sg); |
| } |
| |
| /** |
| * nx_sha_build_sg_list - walk and build sg list to sha modes |
| * using right bounds and limits. |
| * @nx_ctx: NX crypto context for the lists we're building |
| * @nx_sg: current sg list in or out list |
| * @op_len: current op_len to be used in order to build a sg list |
| * @nbytes: number or bytes to be processed |
| * @offset: buf offset |
| * @mode: SHA256 or SHA512 |
| */ |
| int nx_sha_build_sg_list(struct nx_crypto_ctx *nx_ctx, |
| struct nx_sg *nx_in_outsg, |
| s64 *op_len, |
| unsigned int *nbytes, |
| u8 *offset, |
| u32 mode) |
| { |
| unsigned int delta = 0; |
| unsigned int total = *nbytes; |
| struct nx_sg *nx_insg = nx_in_outsg; |
| unsigned int max_sg_len; |
| |
| max_sg_len = min_t(u64, nx_ctx->ap->sglen, |
| nx_driver.of.max_sg_len/sizeof(struct nx_sg)); |
| max_sg_len = min_t(u64, max_sg_len, |
| nx_ctx->ap->databytelen/NX_PAGE_SIZE); |
| |
| *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen); |
| nx_insg = nx_build_sg_list(nx_insg, offset, nbytes, max_sg_len); |
| |
| switch (mode) { |
| case NX_DS_SHA256: |
| if (*nbytes < total) |
| delta = *nbytes - (*nbytes & ~(SHA256_BLOCK_SIZE - 1)); |
| break; |
| case NX_DS_SHA512: |
| if (*nbytes < total) |
| delta = *nbytes - (*nbytes & ~(SHA512_BLOCK_SIZE - 1)); |
| break; |
| default: |
| return -EINVAL; |
| } |
| *op_len = trim_sg_list(nx_in_outsg, nx_insg, delta); |
| |
| return 0; |
| } |
| |
| /** |
| * nx_build_sg_lists - walk the input scatterlists and build arrays of NX |
| * scatterlists based on them. |
| * |
| * @nx_ctx: NX crypto context for the lists we're building |
| * @desc: the block cipher descriptor for the operation |
| * @dst: destination scatterlist |
| * @src: source scatterlist |
| * @nbytes: length of data described in the scatterlists |
| * @offset: number of bytes to fast-forward past at the beginning of |
| * scatterlists. |
| * @iv: destination for the iv data, if the algorithm requires it |
| * |
| * This is common code shared by all the AES algorithms. It uses the block |
| * cipher walk routines to traverse input and output scatterlists, building |
| * corresponding NX scatterlists |
| */ |
| int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx, |
| struct blkcipher_desc *desc, |
| struct scatterlist *dst, |
| struct scatterlist *src, |
| unsigned int *nbytes, |
| unsigned int offset, |
| u8 *iv) |
| { |
| unsigned int delta = 0; |
| unsigned int total = *nbytes; |
| struct nx_sg *nx_insg = nx_ctx->in_sg; |
| struct nx_sg *nx_outsg = nx_ctx->out_sg; |
| unsigned int max_sg_len; |
| |
| max_sg_len = min_t(u64, nx_ctx->ap->sglen, |
| nx_driver.of.max_sg_len/sizeof(struct nx_sg)); |
| max_sg_len = min_t(u64, max_sg_len, |
| nx_ctx->ap->databytelen/NX_PAGE_SIZE); |
| |
| if (iv) |
| memcpy(iv, desc->info, AES_BLOCK_SIZE); |
| |
| *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen); |
| |
| nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst, |
| offset, nbytes); |
| nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src, |
| offset, nbytes); |
| |
| if (*nbytes < total) |
| delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1)); |
| |
| /* these lengths should be negative, which will indicate to phyp that |
| * the input and output parameters are scatterlists, not linear |
| * buffers */ |
| nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta); |
| nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta); |
| |
| return 0; |
| } |
| |
| /** |
| * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct |
| * |
| * @nx_ctx: the nx context to initialize |
| * @function: the function code for the op |
| */ |
| void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function) |
| { |
| spin_lock_init(&nx_ctx->lock); |
| memset(nx_ctx->kmem, 0, nx_ctx->kmem_len); |
| nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT; |
| |
| nx_ctx->op.flags = function; |
| nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb); |
| nx_ctx->op.in = __pa(nx_ctx->in_sg); |
| nx_ctx->op.out = __pa(nx_ctx->out_sg); |
| |
| if (nx_ctx->csbcpb_aead) { |
| nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT; |
| |
| nx_ctx->op_aead.flags = function; |
| nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead); |
| nx_ctx->op_aead.in = __pa(nx_ctx->in_sg); |
| nx_ctx->op_aead.out = __pa(nx_ctx->out_sg); |
| } |
| } |
| |
| static void nx_of_update_status(struct device *dev, |
| struct property *p, |
| struct nx_of *props) |
| { |
| if (!strncmp(p->value, "okay", p->length)) { |
| props->status = NX_WAITING; |
| props->flags |= NX_OF_FLAG_STATUS_SET; |
| } else { |
| dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__, |
| (char *)p->value); |
| } |
| } |
| |
| static void nx_of_update_sglen(struct device *dev, |
| struct property *p, |
| struct nx_of *props) |
| { |
| if (p->length != sizeof(props->max_sg_len)) { |
| dev_err(dev, "%s: unexpected format for " |
| "ibm,max-sg-len property\n", __func__); |
| dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes " |
| "long, expected %zd bytes\n", __func__, |
| p->length, sizeof(props->max_sg_len)); |
| return; |
| } |
| |
| props->max_sg_len = *(u32 *)p->value; |
| props->flags |= NX_OF_FLAG_MAXSGLEN_SET; |
| } |
| |
| static void nx_of_update_msc(struct device *dev, |
| struct property *p, |
| struct nx_of *props) |
| { |
| struct msc_triplet *trip; |
| struct max_sync_cop *msc; |
| unsigned int bytes_so_far, i, lenp; |
| |
| msc = (struct max_sync_cop *)p->value; |
| lenp = p->length; |
| |
| /* You can't tell if the data read in for this property is sane by its |
| * size alone. This is because there are sizes embedded in the data |
| * structure. The best we can do is check lengths as we parse and bail |
| * as soon as a length error is detected. */ |
| bytes_so_far = 0; |
| |
| while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) { |
| bytes_so_far += sizeof(struct max_sync_cop); |
| |
| trip = msc->trip; |
| |
| for (i = 0; |
| ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) && |
| i < msc->triplets; |
| i++) { |
| if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) { |
| dev_err(dev, "unknown function code/mode " |
| "combo: %d/%d (ignored)\n", msc->fc, |
| msc->mode); |
| goto next_loop; |
| } |
| |
| switch (trip->keybitlen) { |
| case 128: |
| case 160: |
| props->ap[msc->fc][msc->mode][0].databytelen = |
| trip->databytelen; |
| props->ap[msc->fc][msc->mode][0].sglen = |
| trip->sglen; |
| break; |
| case 192: |
| props->ap[msc->fc][msc->mode][1].databytelen = |
| trip->databytelen; |
| props->ap[msc->fc][msc->mode][1].sglen = |
| trip->sglen; |
| break; |
| case 256: |
| if (msc->fc == NX_FC_AES) { |
| props->ap[msc->fc][msc->mode][2]. |
| databytelen = trip->databytelen; |
| props->ap[msc->fc][msc->mode][2].sglen = |
| trip->sglen; |
| } else if (msc->fc == NX_FC_AES_HMAC || |
| msc->fc == NX_FC_SHA) { |
| props->ap[msc->fc][msc->mode][1]. |
| databytelen = trip->databytelen; |
| props->ap[msc->fc][msc->mode][1].sglen = |
| trip->sglen; |
| } else { |
| dev_warn(dev, "unknown function " |
| "code/key bit len combo" |
| ": (%u/256)\n", msc->fc); |
| } |
| break; |
| case 512: |
| props->ap[msc->fc][msc->mode][2].databytelen = |
| trip->databytelen; |
| props->ap[msc->fc][msc->mode][2].sglen = |
| trip->sglen; |
| break; |
| default: |
| dev_warn(dev, "unknown function code/key bit " |
| "len combo: (%u/%u)\n", msc->fc, |
| trip->keybitlen); |
| break; |
| } |
| next_loop: |
| bytes_so_far += sizeof(struct msc_triplet); |
| trip++; |
| } |
| |
| msc = (struct max_sync_cop *)trip; |
| } |
| |
| props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET; |
| } |
| |
| /** |
| * nx_of_init - read openFirmware values from the device tree |
| * |
| * @dev: device handle |
| * @props: pointer to struct to hold the properties values |
| * |
| * Called once at driver probe time, this function will read out the |
| * openFirmware properties we use at runtime. If all the OF properties are |
| * acceptable, when we exit this function props->flags will indicate that |
| * we're ready to register our crypto algorithms. |
| */ |
| static void nx_of_init(struct device *dev, struct nx_of *props) |
| { |
| struct device_node *base_node = dev->of_node; |
| struct property *p; |
| |
| p = of_find_property(base_node, "status", NULL); |
| if (!p) |
| dev_info(dev, "%s: property 'status' not found\n", __func__); |
| else |
| nx_of_update_status(dev, p, props); |
| |
| p = of_find_property(base_node, "ibm,max-sg-len", NULL); |
| if (!p) |
| dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n", |
| __func__); |
| else |
| nx_of_update_sglen(dev, p, props); |
| |
| p = of_find_property(base_node, "ibm,max-sync-cop", NULL); |
| if (!p) |
| dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n", |
| __func__); |
| else |
| nx_of_update_msc(dev, p, props); |
| } |
| |
| /** |
| * nx_register_algs - register algorithms with the crypto API |
| * |
| * Called from nx_probe() |
| * |
| * If all OF properties are in an acceptable state, the driver flags will |
| * indicate that we're ready and we'll create our debugfs files and register |
| * out crypto algorithms. |
| */ |
| static int nx_register_algs(void) |
| { |
| int rc = -1; |
| |
| if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY) |
| goto out; |
| |
| memset(&nx_driver.stats, 0, sizeof(struct nx_stats)); |
| |
| rc = NX_DEBUGFS_INIT(&nx_driver); |
| if (rc) |
| goto out; |
| |
| nx_driver.of.status = NX_OKAY; |
| |
| rc = crypto_register_alg(&nx_ecb_aes_alg); |
| if (rc) |
| goto out; |
| |
| rc = crypto_register_alg(&nx_cbc_aes_alg); |
| if (rc) |
| goto out_unreg_ecb; |
| |
| rc = crypto_register_alg(&nx_ctr_aes_alg); |
| if (rc) |
| goto out_unreg_cbc; |
| |
| rc = crypto_register_alg(&nx_ctr3686_aes_alg); |
| if (rc) |
| goto out_unreg_ctr; |
| |
| rc = crypto_register_alg(&nx_gcm_aes_alg); |
| if (rc) |
| goto out_unreg_ctr3686; |
| |
| rc = crypto_register_alg(&nx_gcm4106_aes_alg); |
| if (rc) |
| goto out_unreg_gcm; |
| |
| rc = crypto_register_alg(&nx_ccm_aes_alg); |
| if (rc) |
| goto out_unreg_gcm4106; |
| |
| rc = crypto_register_alg(&nx_ccm4309_aes_alg); |
| if (rc) |
| goto out_unreg_ccm; |
| |
| rc = crypto_register_shash(&nx_shash_sha256_alg); |
| if (rc) |
| goto out_unreg_ccm4309; |
| |
| rc = crypto_register_shash(&nx_shash_sha512_alg); |
| if (rc) |
| goto out_unreg_s256; |
| |
| rc = crypto_register_shash(&nx_shash_aes_xcbc_alg); |
| if (rc) |
| goto out_unreg_s512; |
| |
| goto out; |
| |
| out_unreg_s512: |
| crypto_unregister_shash(&nx_shash_sha512_alg); |
| out_unreg_s256: |
| crypto_unregister_shash(&nx_shash_sha256_alg); |
| out_unreg_ccm4309: |
| crypto_unregister_alg(&nx_ccm4309_aes_alg); |
| out_unreg_ccm: |
| crypto_unregister_alg(&nx_ccm_aes_alg); |
| out_unreg_gcm4106: |
| crypto_unregister_alg(&nx_gcm4106_aes_alg); |
| out_unreg_gcm: |
| crypto_unregister_alg(&nx_gcm_aes_alg); |
| out_unreg_ctr3686: |
| crypto_unregister_alg(&nx_ctr3686_aes_alg); |
| out_unreg_ctr: |
| crypto_unregister_alg(&nx_ctr_aes_alg); |
| out_unreg_cbc: |
| crypto_unregister_alg(&nx_cbc_aes_alg); |
| out_unreg_ecb: |
| crypto_unregister_alg(&nx_ecb_aes_alg); |
| out: |
| return rc; |
| } |
| |
| /** |
| * nx_crypto_ctx_init - create and initialize a crypto api context |
| * |
| * @nx_ctx: the crypto api context |
| * @fc: function code for the context |
| * @mode: the function code specific mode for this context |
| */ |
| static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode) |
| { |
| if (nx_driver.of.status != NX_OKAY) { |
| pr_err("Attempt to initialize NX crypto context while device " |
| "is not available!\n"); |
| return -ENODEV; |
| } |
| |
| /* we need an extra page for csbcpb_aead for these modes */ |
| if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) |
| nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) + |
| sizeof(struct nx_csbcpb); |
| else |
| nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) + |
| sizeof(struct nx_csbcpb); |
| |
| nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL); |
| if (!nx_ctx->kmem) |
| return -ENOMEM; |
| |
| /* the csbcpb and scatterlists must be 4K aligned pages */ |
| nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem, |
| (u64)NX_PAGE_SIZE)); |
| nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE); |
| nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE); |
| |
| if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) |
| nx_ctx->csbcpb_aead = |
| (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg + |
| NX_PAGE_SIZE); |
| |
| /* give each context a pointer to global stats and their OF |
| * properties */ |
| nx_ctx->stats = &nx_driver.stats; |
| memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode], |
| sizeof(struct alg_props) * 3); |
| |
| return 0; |
| } |
| |
| /* entry points from the crypto tfm initializers */ |
| int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm) |
| { |
| return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, |
| NX_MODE_AES_CCM); |
| } |
| |
| int nx_crypto_ctx_aes_gcm_init(struct crypto_tfm *tfm) |
| { |
| return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, |
| NX_MODE_AES_GCM); |
| } |
| |
| int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm) |
| { |
| return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, |
| NX_MODE_AES_CTR); |
| } |
| |
| int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm) |
| { |
| return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, |
| NX_MODE_AES_CBC); |
| } |
| |
| int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm) |
| { |
| return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, |
| NX_MODE_AES_ECB); |
| } |
| |
| int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm) |
| { |
| return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA); |
| } |
| |
| int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm) |
| { |
| return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, |
| NX_MODE_AES_XCBC_MAC); |
| } |
| |
| /** |
| * nx_crypto_ctx_exit - destroy a crypto api context |
| * |
| * @tfm: the crypto transform pointer for the context |
| * |
| * As crypto API contexts are destroyed, this exit hook is called to free the |
| * memory associated with it. |
| */ |
| void nx_crypto_ctx_exit(struct crypto_tfm *tfm) |
| { |
| struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); |
| |
| kzfree(nx_ctx->kmem); |
| nx_ctx->csbcpb = NULL; |
| nx_ctx->csbcpb_aead = NULL; |
| nx_ctx->in_sg = NULL; |
| nx_ctx->out_sg = NULL; |
| } |
| |
| static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id) |
| { |
| dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n", |
| viodev->name, viodev->resource_id); |
| |
| if (nx_driver.viodev) { |
| dev_err(&viodev->dev, "%s: Attempt to register more than one " |
| "instance of the hardware\n", __func__); |
| return -EINVAL; |
| } |
| |
| nx_driver.viodev = viodev; |
| |
| nx_of_init(&viodev->dev, &nx_driver.of); |
| |
| return nx_register_algs(); |
| } |
| |
| static int nx_remove(struct vio_dev *viodev) |
| { |
| dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n", |
| viodev->unit_address); |
| |
| if (nx_driver.of.status == NX_OKAY) { |
| NX_DEBUGFS_FINI(&nx_driver); |
| |
| crypto_unregister_alg(&nx_ccm_aes_alg); |
| crypto_unregister_alg(&nx_ccm4309_aes_alg); |
| crypto_unregister_alg(&nx_gcm_aes_alg); |
| crypto_unregister_alg(&nx_gcm4106_aes_alg); |
| crypto_unregister_alg(&nx_ctr_aes_alg); |
| crypto_unregister_alg(&nx_ctr3686_aes_alg); |
| crypto_unregister_alg(&nx_cbc_aes_alg); |
| crypto_unregister_alg(&nx_ecb_aes_alg); |
| crypto_unregister_shash(&nx_shash_sha256_alg); |
| crypto_unregister_shash(&nx_shash_sha512_alg); |
| crypto_unregister_shash(&nx_shash_aes_xcbc_alg); |
| } |
| |
| return 0; |
| } |
| |
| |
| /* module wide initialization/cleanup */ |
| static int __init nx_init(void) |
| { |
| return vio_register_driver(&nx_driver.viodriver); |
| } |
| |
| static void __exit nx_fini(void) |
| { |
| vio_unregister_driver(&nx_driver.viodriver); |
| } |
| |
| static struct vio_device_id nx_crypto_driver_ids[] = { |
| { "ibm,sym-encryption-v1", "ibm,sym-encryption" }, |
| { "", "" } |
| }; |
| MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids); |
| |
| /* driver state structure */ |
| struct nx_crypto_driver nx_driver = { |
| .viodriver = { |
| .id_table = nx_crypto_driver_ids, |
| .probe = nx_probe, |
| .remove = nx_remove, |
| .name = NX_NAME, |
| }, |
| }; |
| |
| module_init(nx_init); |
| module_exit(nx_fini); |
| |
| MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>"); |
| MODULE_DESCRIPTION(NX_STRING); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(NX_VERSION); |