blob: 9c3138265f8e4fa62892321c97cd62d88c52584c [file] [log] [blame]
#ifndef _LGUEST_H
#define _LGUEST_H
#ifndef __ASSEMBLY__
#include <linux/types.h>
#include <linux/init.h>
#include <linux/stringify.h>
#include <linux/lguest.h>
#include <linux/lguest_launcher.h>
#include <linux/wait.h>
#include <linux/hrtimer.h>
#include <linux/err.h>
#include <asm/lguest.h>
void free_pagetables(void);
int init_pagetables(struct page **switcher_page, unsigned int pages);
struct pgdir
{
unsigned long gpgdir;
pgd_t *pgdir;
};
/* We have two pages shared with guests, per cpu. */
struct lguest_pages
{
/* This is the stack page mapped rw in guest */
char spare[PAGE_SIZE - sizeof(struct lguest_regs)];
struct lguest_regs regs;
/* This is the host state & guest descriptor page, ro in guest */
struct lguest_ro_state state;
} __attribute__((aligned(PAGE_SIZE)));
#define CHANGED_IDT 1
#define CHANGED_GDT 2
#define CHANGED_GDT_TLS 4 /* Actually a subset of CHANGED_GDT */
#define CHANGED_ALL 3
struct lguest;
struct lg_cpu {
unsigned int id;
struct lguest *lg;
struct task_struct *tsk;
struct mm_struct *mm; /* == tsk->mm, but that becomes NULL on exit */
u32 cr2;
int ts;
u32 esp1;
u16 ss1;
/* Bitmap of what has changed: see CHANGED_* above. */
int changed;
unsigned long pending_notify; /* pfn from LHCALL_NOTIFY */
/* At end of a page shared mapped over lguest_pages in guest. */
unsigned long regs_page;
struct lguest_regs *regs;
struct lguest_pages *last_pages;
int cpu_pgd; /* which pgd this cpu is currently using */
/* If a hypercall was asked for, this points to the arguments. */
struct hcall_args *hcall;
u32 next_hcall;
/* Virtual clock device */
struct hrtimer hrt;
/* Did the Guest tell us to halt? */
int halted;
/* Pending virtual interrupts */
DECLARE_BITMAP(irqs_pending, LGUEST_IRQS);
struct lg_cpu_arch arch;
};
struct lg_eventfd {
unsigned long addr;
struct eventfd_ctx *event;
};
struct lg_eventfd_map {
unsigned int num;
struct lg_eventfd map[];
};
/* The private info the thread maintains about the guest. */
struct lguest
{
struct lguest_data __user *lguest_data;
struct lg_cpu cpus[NR_CPUS];
unsigned int nr_cpus;
u32 pfn_limit;
/* This provides the offset to the base of guest-physical
* memory in the Launcher. */
void __user *mem_base;
unsigned long kernel_address;
struct pgdir pgdirs[4];
unsigned long noirq_start, noirq_end;
unsigned int stack_pages;
u32 tsc_khz;
struct lg_eventfd_map *eventfds;
/* Dead? */
const char *dead;
};
extern struct mutex lguest_lock;
/* core.c: */
bool lguest_address_ok(const struct lguest *lg,
unsigned long addr, unsigned long len);
void __lgread(struct lg_cpu *, void *, unsigned long, unsigned);
void __lgwrite(struct lg_cpu *, unsigned long, const void *, unsigned);
/*H:035 Using memory-copy operations like that is usually inconvient, so we
* have the following helper macros which read and write a specific type (often
* an unsigned long).
*
* This reads into a variable of the given type then returns that. */
#define lgread(cpu, addr, type) \
({ type _v; __lgread((cpu), &_v, (addr), sizeof(_v)); _v; })
/* This checks that the variable is of the given type, then writes it out. */
#define lgwrite(cpu, addr, type, val) \
do { \
typecheck(type, val); \
__lgwrite((cpu), (addr), &(val), sizeof(val)); \
} while(0)
/* (end of memory access helper routines) :*/
int run_guest(struct lg_cpu *cpu, unsigned long __user *user);
/* Helper macros to obtain the first 12 or the last 20 bits, this is only the
* first step in the migration to the kernel types. pte_pfn is already defined
* in the kernel. */
#define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK)
#define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT)
#define pmd_flags(x) (pmd_val(x) & ~PAGE_MASK)
#define pmd_pfn(x) (pmd_val(x) >> PAGE_SHIFT)
/* interrupts_and_traps.c: */
unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more);
void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more);
void set_interrupt(struct lg_cpu *cpu, unsigned int irq);
bool deliver_trap(struct lg_cpu *cpu, unsigned int num);
void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int i,
u32 low, u32 hi);
void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages);
void pin_stack_pages(struct lg_cpu *cpu);
void setup_default_idt_entries(struct lguest_ro_state *state,
const unsigned long *def);
void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
const unsigned long *def);
void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta);
bool send_notify_to_eventfd(struct lg_cpu *cpu);
void init_clockdev(struct lg_cpu *cpu);
bool check_syscall_vector(struct lguest *lg);
int init_interrupts(void);
void free_interrupts(void);
/* segments.c: */
void setup_default_gdt_entries(struct lguest_ro_state *state);
void setup_guest_gdt(struct lg_cpu *cpu);
void load_guest_gdt_entry(struct lg_cpu *cpu, unsigned int i,
u32 low, u32 hi);
void guest_load_tls(struct lg_cpu *cpu, unsigned long tls_array);
void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt);
void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt);
/* page_tables.c: */
int init_guest_pagetable(struct lguest *lg);
void free_guest_pagetable(struct lguest *lg);
void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable);
void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 i);
#ifdef CONFIG_X86_PAE
void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i);
#endif
void guest_pagetable_clear_all(struct lg_cpu *cpu);
void guest_pagetable_flush_user(struct lg_cpu *cpu);
void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir,
unsigned long vaddr, pte_t val);
void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages);
bool demand_page(struct lg_cpu *cpu, unsigned long cr2, int errcode);
void pin_page(struct lg_cpu *cpu, unsigned long vaddr);
unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr);
void page_table_guest_data_init(struct lg_cpu *cpu);
/* <arch>/core.c: */
void lguest_arch_host_init(void);
void lguest_arch_host_fini(void);
void lguest_arch_run_guest(struct lg_cpu *cpu);
void lguest_arch_handle_trap(struct lg_cpu *cpu);
int lguest_arch_init_hypercalls(struct lg_cpu *cpu);
int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args);
void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start);
/* <arch>/switcher.S: */
extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
/* lguest_user.c: */
int lguest_device_init(void);
void lguest_device_remove(void);
/* hypercalls.c: */
void do_hypercalls(struct lg_cpu *cpu);
void write_timestamp(struct lg_cpu *cpu);
/*L:035
* Let's step aside for the moment, to study one important routine that's used
* widely in the Host code.
*
* There are many cases where the Guest can do something invalid, like pass crap
* to a hypercall. Since only the Guest kernel can make hypercalls, it's quite
* acceptable to simply terminate the Guest and give the Launcher a nicely
* formatted reason. It's also simpler for the Guest itself, which doesn't
* need to check most hypercalls for "success"; if you're still running, it
* succeeded.
*
* Once this is called, the Guest will never run again, so most Host code can
* call this then continue as if nothing had happened. This means many
* functions don't have to explicitly return an error code, which keeps the
* code simple.
*
* It also means that this can be called more than once: only the first one is
* remembered. The only trick is that we still need to kill the Guest even if
* we can't allocate memory to store the reason. Linux has a neat way of
* packing error codes into invalid pointers, so we use that here.
*
* Like any macro which uses an "if", it is safely wrapped in a run-once "do {
* } while(0)".
*/
#define kill_guest(cpu, fmt...) \
do { \
if (!(cpu)->lg->dead) { \
(cpu)->lg->dead = kasprintf(GFP_ATOMIC, fmt); \
if (!(cpu)->lg->dead) \
(cpu)->lg->dead = ERR_PTR(-ENOMEM); \
} \
} while(0)
/* (End of aside) :*/
#endif /* __ASSEMBLY__ */
#endif /* _LGUEST_H */