kprobes/x86: Move kprobes stuff under arch/x86/kernel/kprobes/

Move arch-dep kprobes stuff under arch/x86/kernel/kprobes.

Link: http://lkml.kernel.org/r/20120928081522.3560.75469.stgit@ltc138.sdl.hitachi.co.jp

Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
[ fixed whitespace and s/__attribute__((packed))/__packed/ ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
diff --git a/arch/x86/kernel/kprobes/core.c b/arch/x86/kernel/kprobes/core.c
new file mode 100644
index 0000000..e124554
--- /dev/null
+++ b/arch/x86/kernel/kprobes/core.c
@@ -0,0 +1,1064 @@
+/*
+ *  Kernel Probes (KProbes)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * Copyright (C) IBM Corporation, 2002, 2004
+ *
+ * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
+ *		Probes initial implementation ( includes contributions from
+ *		Rusty Russell).
+ * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
+ *		interface to access function arguments.
+ * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
+ *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
+ * 2005-Mar	Roland McGrath <roland@redhat.com>
+ *		Fixed to handle %rip-relative addressing mode correctly.
+ * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
+ *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
+ *		<prasanna@in.ibm.com> added function-return probes.
+ * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
+ *		Added function return probes functionality
+ * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
+ *		kprobe-booster and kretprobe-booster for i386.
+ * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
+ *		and kretprobe-booster for x86-64
+ * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
+ *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
+ *		unified x86 kprobes code.
+ */
+#include <linux/kprobes.h>
+#include <linux/ptrace.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <linux/hardirq.h>
+#include <linux/preempt.h>
+#include <linux/module.h>
+#include <linux/kdebug.h>
+#include <linux/kallsyms.h>
+#include <linux/ftrace.h>
+
+#include <asm/cacheflush.h>
+#include <asm/desc.h>
+#include <asm/pgtable.h>
+#include <asm/uaccess.h>
+#include <asm/alternative.h>
+#include <asm/insn.h>
+#include <asm/debugreg.h>
+
+#include "common.h"
+
+void jprobe_return_end(void);
+
+DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
+DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
+
+#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
+
+#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
+	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
+	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
+	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
+	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
+	 << (row % 32))
+	/*
+	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
+	 * Groups, and some special opcodes can not boost.
+	 * This is non-const and volatile to keep gcc from statically
+	 * optimizing it out, as variable_test_bit makes gcc think only
+	 * *(unsigned long*) is used.
+	 */
+static volatile u32 twobyte_is_boostable[256 / 32] = {
+	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
+	/*      ----------------------------------------------          */
+	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
+	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
+	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
+	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
+	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
+	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
+	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
+	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
+	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
+	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
+	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
+	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
+	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
+	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
+	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
+	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
+	/*      -----------------------------------------------         */
+	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
+};
+#undef W
+
+struct kretprobe_blackpoint kretprobe_blacklist[] = {
+	{"__switch_to", }, /* This function switches only current task, but
+			      doesn't switch kernel stack.*/
+	{NULL, NULL}	/* Terminator */
+};
+
+const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
+
+static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
+{
+	struct __arch_relative_insn {
+		u8 op;
+		s32 raddr;
+	} __packed *insn;
+
+	insn = (struct __arch_relative_insn *)from;
+	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
+	insn->op = op;
+}
+
+/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
+void __kprobes synthesize_reljump(void *from, void *to)
+{
+	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
+}
+
+/* Insert a call instruction at address 'from', which calls address 'to'.*/
+void __kprobes synthesize_relcall(void *from, void *to)
+{
+	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
+}
+
+/*
+ * Skip the prefixes of the instruction.
+ */
+static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
+{
+	insn_attr_t attr;
+
+	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
+	while (inat_is_legacy_prefix(attr)) {
+		insn++;
+		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
+	}
+#ifdef CONFIG_X86_64
+	if (inat_is_rex_prefix(attr))
+		insn++;
+#endif
+	return insn;
+}
+
+/*
+ * Returns non-zero if opcode is boostable.
+ * RIP relative instructions are adjusted at copying time in 64 bits mode
+ */
+int __kprobes can_boost(kprobe_opcode_t *opcodes)
+{
+	kprobe_opcode_t opcode;
+	kprobe_opcode_t *orig_opcodes = opcodes;
+
+	if (search_exception_tables((unsigned long)opcodes))
+		return 0;	/* Page fault may occur on this address. */
+
+retry:
+	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
+		return 0;
+	opcode = *(opcodes++);
+
+	/* 2nd-byte opcode */
+	if (opcode == 0x0f) {
+		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
+			return 0;
+		return test_bit(*opcodes,
+				(unsigned long *)twobyte_is_boostable);
+	}
+
+	switch (opcode & 0xf0) {
+#ifdef CONFIG_X86_64
+	case 0x40:
+		goto retry; /* REX prefix is boostable */
+#endif
+	case 0x60:
+		if (0x63 < opcode && opcode < 0x67)
+			goto retry; /* prefixes */
+		/* can't boost Address-size override and bound */
+		return (opcode != 0x62 && opcode != 0x67);
+	case 0x70:
+		return 0; /* can't boost conditional jump */
+	case 0xc0:
+		/* can't boost software-interruptions */
+		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
+	case 0xd0:
+		/* can boost AA* and XLAT */
+		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
+	case 0xe0:
+		/* can boost in/out and absolute jmps */
+		return ((opcode & 0x04) || opcode == 0xea);
+	case 0xf0:
+		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
+			goto retry; /* lock/rep(ne) prefix */
+		/* clear and set flags are boostable */
+		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
+	default:
+		/* segment override prefixes are boostable */
+		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
+			goto retry; /* prefixes */
+		/* CS override prefix and call are not boostable */
+		return (opcode != 0x2e && opcode != 0x9a);
+	}
+}
+
+static unsigned long
+__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
+{
+	struct kprobe *kp;
+
+	kp = get_kprobe((void *)addr);
+	/* There is no probe, return original address */
+	if (!kp)
+		return addr;
+
+	/*
+	 *  Basically, kp->ainsn.insn has an original instruction.
+	 *  However, RIP-relative instruction can not do single-stepping
+	 *  at different place, __copy_instruction() tweaks the displacement of
+	 *  that instruction. In that case, we can't recover the instruction
+	 *  from the kp->ainsn.insn.
+	 *
+	 *  On the other hand, kp->opcode has a copy of the first byte of
+	 *  the probed instruction, which is overwritten by int3. And
+	 *  the instruction at kp->addr is not modified by kprobes except
+	 *  for the first byte, we can recover the original instruction
+	 *  from it and kp->opcode.
+	 */
+	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
+	buf[0] = kp->opcode;
+	return (unsigned long)buf;
+}
+
+/*
+ * Recover the probed instruction at addr for further analysis.
+ * Caller must lock kprobes by kprobe_mutex, or disable preemption
+ * for preventing to release referencing kprobes.
+ */
+unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
+{
+	unsigned long __addr;
+
+	__addr = __recover_optprobed_insn(buf, addr);
+	if (__addr != addr)
+		return __addr;
+
+	return __recover_probed_insn(buf, addr);
+}
+
+/* Check if paddr is at an instruction boundary */
+static int __kprobes can_probe(unsigned long paddr)
+{
+	unsigned long addr, __addr, offset = 0;
+	struct insn insn;
+	kprobe_opcode_t buf[MAX_INSN_SIZE];
+
+	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
+		return 0;
+
+	/* Decode instructions */
+	addr = paddr - offset;
+	while (addr < paddr) {
+		/*
+		 * Check if the instruction has been modified by another
+		 * kprobe, in which case we replace the breakpoint by the
+		 * original instruction in our buffer.
+		 * Also, jump optimization will change the breakpoint to
+		 * relative-jump. Since the relative-jump itself is
+		 * normally used, we just go through if there is no kprobe.
+		 */
+		__addr = recover_probed_instruction(buf, addr);
+		kernel_insn_init(&insn, (void *)__addr);
+		insn_get_length(&insn);
+
+		/*
+		 * Another debugging subsystem might insert this breakpoint.
+		 * In that case, we can't recover it.
+		 */
+		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
+			return 0;
+		addr += insn.length;
+	}
+
+	return (addr == paddr);
+}
+
+/*
+ * Returns non-zero if opcode modifies the interrupt flag.
+ */
+static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
+{
+	/* Skip prefixes */
+	insn = skip_prefixes(insn);
+
+	switch (*insn) {
+	case 0xfa:		/* cli */
+	case 0xfb:		/* sti */
+	case 0xcf:		/* iret/iretd */
+	case 0x9d:		/* popf/popfd */
+		return 1;
+	}
+
+	return 0;
+}
+
+/*
+ * Copy an instruction and adjust the displacement if the instruction
+ * uses the %rip-relative addressing mode.
+ * If it does, Return the address of the 32-bit displacement word.
+ * If not, return null.
+ * Only applicable to 64-bit x86.
+ */
+int __kprobes __copy_instruction(u8 *dest, u8 *src)
+{
+	struct insn insn;
+	kprobe_opcode_t buf[MAX_INSN_SIZE];
+
+	kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src));
+	insn_get_length(&insn);
+	/* Another subsystem puts a breakpoint, failed to recover */
+	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
+		return 0;
+	memcpy(dest, insn.kaddr, insn.length);
+
+#ifdef CONFIG_X86_64
+	if (insn_rip_relative(&insn)) {
+		s64 newdisp;
+		u8 *disp;
+		kernel_insn_init(&insn, dest);
+		insn_get_displacement(&insn);
+		/*
+		 * The copied instruction uses the %rip-relative addressing
+		 * mode.  Adjust the displacement for the difference between
+		 * the original location of this instruction and the location
+		 * of the copy that will actually be run.  The tricky bit here
+		 * is making sure that the sign extension happens correctly in
+		 * this calculation, since we need a signed 32-bit result to
+		 * be sign-extended to 64 bits when it's added to the %rip
+		 * value and yield the same 64-bit result that the sign-
+		 * extension of the original signed 32-bit displacement would
+		 * have given.
+		 */
+		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
+		BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check.  */
+		disp = (u8 *) dest + insn_offset_displacement(&insn);
+		*(s32 *) disp = (s32) newdisp;
+	}
+#endif
+	return insn.length;
+}
+
+static void __kprobes arch_copy_kprobe(struct kprobe *p)
+{
+	/* Copy an instruction with recovering if other optprobe modifies it.*/
+	__copy_instruction(p->ainsn.insn, p->addr);
+
+	/*
+	 * __copy_instruction can modify the displacement of the instruction,
+	 * but it doesn't affect boostable check.
+	 */
+	if (can_boost(p->ainsn.insn))
+		p->ainsn.boostable = 0;
+	else
+		p->ainsn.boostable = -1;
+
+	/* Also, displacement change doesn't affect the first byte */
+	p->opcode = p->ainsn.insn[0];
+}
+
+int __kprobes arch_prepare_kprobe(struct kprobe *p)
+{
+	if (alternatives_text_reserved(p->addr, p->addr))
+		return -EINVAL;
+
+	if (!can_probe((unsigned long)p->addr))
+		return -EILSEQ;
+	/* insn: must be on special executable page on x86. */
+	p->ainsn.insn = get_insn_slot();
+	if (!p->ainsn.insn)
+		return -ENOMEM;
+	arch_copy_kprobe(p);
+	return 0;
+}
+
+void __kprobes arch_arm_kprobe(struct kprobe *p)
+{
+	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
+}
+
+void __kprobes arch_disarm_kprobe(struct kprobe *p)
+{
+	text_poke(p->addr, &p->opcode, 1);
+}
+
+void __kprobes arch_remove_kprobe(struct kprobe *p)
+{
+	if (p->ainsn.insn) {
+		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
+		p->ainsn.insn = NULL;
+	}
+}
+
+static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
+{
+	kcb->prev_kprobe.kp = kprobe_running();
+	kcb->prev_kprobe.status = kcb->kprobe_status;
+	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
+	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
+}
+
+static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
+{
+	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
+	kcb->kprobe_status = kcb->prev_kprobe.status;
+	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
+	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
+}
+
+static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
+				struct kprobe_ctlblk *kcb)
+{
+	__this_cpu_write(current_kprobe, p);
+	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
+		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
+	if (is_IF_modifier(p->ainsn.insn))
+		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
+}
+
+static void __kprobes clear_btf(void)
+{
+	if (test_thread_flag(TIF_BLOCKSTEP)) {
+		unsigned long debugctl = get_debugctlmsr();
+
+		debugctl &= ~DEBUGCTLMSR_BTF;
+		update_debugctlmsr(debugctl);
+	}
+}
+
+static void __kprobes restore_btf(void)
+{
+	if (test_thread_flag(TIF_BLOCKSTEP)) {
+		unsigned long debugctl = get_debugctlmsr();
+
+		debugctl |= DEBUGCTLMSR_BTF;
+		update_debugctlmsr(debugctl);
+	}
+}
+
+void __kprobes
+arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
+{
+	unsigned long *sara = stack_addr(regs);
+
+	ri->ret_addr = (kprobe_opcode_t *) *sara;
+
+	/* Replace the return addr with trampoline addr */
+	*sara = (unsigned long) &kretprobe_trampoline;
+}
+
+static void __kprobes
+setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter)
+{
+	if (setup_detour_execution(p, regs, reenter))
+		return;
+
+#if !defined(CONFIG_PREEMPT)
+	if (p->ainsn.boostable == 1 && !p->post_handler) {
+		/* Boost up -- we can execute copied instructions directly */
+		if (!reenter)
+			reset_current_kprobe();
+		/*
+		 * Reentering boosted probe doesn't reset current_kprobe,
+		 * nor set current_kprobe, because it doesn't use single
+		 * stepping.
+		 */
+		regs->ip = (unsigned long)p->ainsn.insn;
+		preempt_enable_no_resched();
+		return;
+	}
+#endif
+	if (reenter) {
+		save_previous_kprobe(kcb);
+		set_current_kprobe(p, regs, kcb);
+		kcb->kprobe_status = KPROBE_REENTER;
+	} else
+		kcb->kprobe_status = KPROBE_HIT_SS;
+	/* Prepare real single stepping */
+	clear_btf();
+	regs->flags |= X86_EFLAGS_TF;
+	regs->flags &= ~X86_EFLAGS_IF;
+	/* single step inline if the instruction is an int3 */
+	if (p->opcode == BREAKPOINT_INSTRUCTION)
+		regs->ip = (unsigned long)p->addr;
+	else
+		regs->ip = (unsigned long)p->ainsn.insn;
+}
+
+/*
+ * We have reentered the kprobe_handler(), since another probe was hit while
+ * within the handler. We save the original kprobes variables and just single
+ * step on the instruction of the new probe without calling any user handlers.
+ */
+static int __kprobes
+reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
+{
+	switch (kcb->kprobe_status) {
+	case KPROBE_HIT_SSDONE:
+	case KPROBE_HIT_ACTIVE:
+		kprobes_inc_nmissed_count(p);
+		setup_singlestep(p, regs, kcb, 1);
+		break;
+	case KPROBE_HIT_SS:
+		/* A probe has been hit in the codepath leading up to, or just
+		 * after, single-stepping of a probed instruction. This entire
+		 * codepath should strictly reside in .kprobes.text section.
+		 * Raise a BUG or we'll continue in an endless reentering loop
+		 * and eventually a stack overflow.
+		 */
+		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
+		       p->addr);
+		dump_kprobe(p);
+		BUG();
+	default:
+		/* impossible cases */
+		WARN_ON(1);
+		return 0;
+	}
+
+	return 1;
+}
+
+/*
+ * Interrupts are disabled on entry as trap3 is an interrupt gate and they
+ * remain disabled throughout this function.
+ */
+static int __kprobes kprobe_handler(struct pt_regs *regs)
+{
+	kprobe_opcode_t *addr;
+	struct kprobe *p;
+	struct kprobe_ctlblk *kcb;
+
+	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
+	/*
+	 * We don't want to be preempted for the entire
+	 * duration of kprobe processing. We conditionally
+	 * re-enable preemption at the end of this function,
+	 * and also in reenter_kprobe() and setup_singlestep().
+	 */
+	preempt_disable();
+
+	kcb = get_kprobe_ctlblk();
+	p = get_kprobe(addr);
+
+	if (p) {
+		if (kprobe_running()) {
+			if (reenter_kprobe(p, regs, kcb))
+				return 1;
+		} else {
+			set_current_kprobe(p, regs, kcb);
+			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
+
+			/*
+			 * If we have no pre-handler or it returned 0, we
+			 * continue with normal processing.  If we have a
+			 * pre-handler and it returned non-zero, it prepped
+			 * for calling the break_handler below on re-entry
+			 * for jprobe processing, so get out doing nothing
+			 * more here.
+			 */
+			if (!p->pre_handler || !p->pre_handler(p, regs))
+				setup_singlestep(p, regs, kcb, 0);
+			return 1;
+		}
+	} else if (*addr != BREAKPOINT_INSTRUCTION) {
+		/*
+		 * The breakpoint instruction was removed right
+		 * after we hit it.  Another cpu has removed
+		 * either a probepoint or a debugger breakpoint
+		 * at this address.  In either case, no further
+		 * handling of this interrupt is appropriate.
+		 * Back up over the (now missing) int3 and run
+		 * the original instruction.
+		 */
+		regs->ip = (unsigned long)addr;
+		preempt_enable_no_resched();
+		return 1;
+	} else if (kprobe_running()) {
+		p = __this_cpu_read(current_kprobe);
+		if (p->break_handler && p->break_handler(p, regs)) {
+			if (!skip_singlestep(p, regs, kcb))
+				setup_singlestep(p, regs, kcb, 0);
+			return 1;
+		}
+	} /* else: not a kprobe fault; let the kernel handle it */
+
+	preempt_enable_no_resched();
+	return 0;
+}
+
+/*
+ * When a retprobed function returns, this code saves registers and
+ * calls trampoline_handler() runs, which calls the kretprobe's handler.
+ */
+static void __used __kprobes kretprobe_trampoline_holder(void)
+{
+	asm volatile (
+			".global kretprobe_trampoline\n"
+			"kretprobe_trampoline: \n"
+#ifdef CONFIG_X86_64
+			/* We don't bother saving the ss register */
+			"	pushq %rsp\n"
+			"	pushfq\n"
+			SAVE_REGS_STRING
+			"	movq %rsp, %rdi\n"
+			"	call trampoline_handler\n"
+			/* Replace saved sp with true return address. */
+			"	movq %rax, 152(%rsp)\n"
+			RESTORE_REGS_STRING
+			"	popfq\n"
+#else
+			"	pushf\n"
+			SAVE_REGS_STRING
+			"	movl %esp, %eax\n"
+			"	call trampoline_handler\n"
+			/* Move flags to cs */
+			"	movl 56(%esp), %edx\n"
+			"	movl %edx, 52(%esp)\n"
+			/* Replace saved flags with true return address. */
+			"	movl %eax, 56(%esp)\n"
+			RESTORE_REGS_STRING
+			"	popf\n"
+#endif
+			"	ret\n");
+}
+
+/*
+ * Called from kretprobe_trampoline
+ */
+static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
+{
+	struct kretprobe_instance *ri = NULL;
+	struct hlist_head *head, empty_rp;
+	struct hlist_node *node, *tmp;
+	unsigned long flags, orig_ret_address = 0;
+	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
+	kprobe_opcode_t *correct_ret_addr = NULL;
+
+	INIT_HLIST_HEAD(&empty_rp);
+	kretprobe_hash_lock(current, &head, &flags);
+	/* fixup registers */
+#ifdef CONFIG_X86_64
+	regs->cs = __KERNEL_CS;
+#else
+	regs->cs = __KERNEL_CS | get_kernel_rpl();
+	regs->gs = 0;
+#endif
+	regs->ip = trampoline_address;
+	regs->orig_ax = ~0UL;
+
+	/*
+	 * It is possible to have multiple instances associated with a given
+	 * task either because multiple functions in the call path have
+	 * return probes installed on them, and/or more than one
+	 * return probe was registered for a target function.
+	 *
+	 * We can handle this because:
+	 *     - instances are always pushed into the head of the list
+	 *     - when multiple return probes are registered for the same
+	 *	 function, the (chronologically) first instance's ret_addr
+	 *	 will be the real return address, and all the rest will
+	 *	 point to kretprobe_trampoline.
+	 */
+	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
+		if (ri->task != current)
+			/* another task is sharing our hash bucket */
+			continue;
+
+		orig_ret_address = (unsigned long)ri->ret_addr;
+
+		if (orig_ret_address != trampoline_address)
+			/*
+			 * This is the real return address. Any other
+			 * instances associated with this task are for
+			 * other calls deeper on the call stack
+			 */
+			break;
+	}
+
+	kretprobe_assert(ri, orig_ret_address, trampoline_address);
+
+	correct_ret_addr = ri->ret_addr;
+	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
+		if (ri->task != current)
+			/* another task is sharing our hash bucket */
+			continue;
+
+		orig_ret_address = (unsigned long)ri->ret_addr;
+		if (ri->rp && ri->rp->handler) {
+			__this_cpu_write(current_kprobe, &ri->rp->kp);
+			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
+			ri->ret_addr = correct_ret_addr;
+			ri->rp->handler(ri, regs);
+			__this_cpu_write(current_kprobe, NULL);
+		}
+
+		recycle_rp_inst(ri, &empty_rp);
+
+		if (orig_ret_address != trampoline_address)
+			/*
+			 * This is the real return address. Any other
+			 * instances associated with this task are for
+			 * other calls deeper on the call stack
+			 */
+			break;
+	}
+
+	kretprobe_hash_unlock(current, &flags);
+
+	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
+		hlist_del(&ri->hlist);
+		kfree(ri);
+	}
+	return (void *)orig_ret_address;
+}
+
+/*
+ * Called after single-stepping.  p->addr is the address of the
+ * instruction whose first byte has been replaced by the "int 3"
+ * instruction.  To avoid the SMP problems that can occur when we
+ * temporarily put back the original opcode to single-step, we
+ * single-stepped a copy of the instruction.  The address of this
+ * copy is p->ainsn.insn.
+ *
+ * This function prepares to return from the post-single-step
+ * interrupt.  We have to fix up the stack as follows:
+ *
+ * 0) Except in the case of absolute or indirect jump or call instructions,
+ * the new ip is relative to the copied instruction.  We need to make
+ * it relative to the original instruction.
+ *
+ * 1) If the single-stepped instruction was pushfl, then the TF and IF
+ * flags are set in the just-pushed flags, and may need to be cleared.
+ *
+ * 2) If the single-stepped instruction was a call, the return address
+ * that is atop the stack is the address following the copied instruction.
+ * We need to make it the address following the original instruction.
+ *
+ * If this is the first time we've single-stepped the instruction at
+ * this probepoint, and the instruction is boostable, boost it: add a
+ * jump instruction after the copied instruction, that jumps to the next
+ * instruction after the probepoint.
+ */
+static void __kprobes
+resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
+{
+	unsigned long *tos = stack_addr(regs);
+	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
+	unsigned long orig_ip = (unsigned long)p->addr;
+	kprobe_opcode_t *insn = p->ainsn.insn;
+
+	/* Skip prefixes */
+	insn = skip_prefixes(insn);
+
+	regs->flags &= ~X86_EFLAGS_TF;
+	switch (*insn) {
+	case 0x9c:	/* pushfl */
+		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
+		*tos |= kcb->kprobe_old_flags;
+		break;
+	case 0xc2:	/* iret/ret/lret */
+	case 0xc3:
+	case 0xca:
+	case 0xcb:
+	case 0xcf:
+	case 0xea:	/* jmp absolute -- ip is correct */
+		/* ip is already adjusted, no more changes required */
+		p->ainsn.boostable = 1;
+		goto no_change;
+	case 0xe8:	/* call relative - Fix return addr */
+		*tos = orig_ip + (*tos - copy_ip);
+		break;
+#ifdef CONFIG_X86_32
+	case 0x9a:	/* call absolute -- same as call absolute, indirect */
+		*tos = orig_ip + (*tos - copy_ip);
+		goto no_change;
+#endif
+	case 0xff:
+		if ((insn[1] & 0x30) == 0x10) {
+			/*
+			 * call absolute, indirect
+			 * Fix return addr; ip is correct.
+			 * But this is not boostable
+			 */
+			*tos = orig_ip + (*tos - copy_ip);
+			goto no_change;
+		} else if (((insn[1] & 0x31) == 0x20) ||
+			   ((insn[1] & 0x31) == 0x21)) {
+			/*
+			 * jmp near and far, absolute indirect
+			 * ip is correct. And this is boostable
+			 */
+			p->ainsn.boostable = 1;
+			goto no_change;
+		}
+	default:
+		break;
+	}
+
+	if (p->ainsn.boostable == 0) {
+		if ((regs->ip > copy_ip) &&
+		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
+			/*
+			 * These instructions can be executed directly if it
+			 * jumps back to correct address.
+			 */
+			synthesize_reljump((void *)regs->ip,
+				(void *)orig_ip + (regs->ip - copy_ip));
+			p->ainsn.boostable = 1;
+		} else {
+			p->ainsn.boostable = -1;
+		}
+	}
+
+	regs->ip += orig_ip - copy_ip;
+
+no_change:
+	restore_btf();
+}
+
+/*
+ * Interrupts are disabled on entry as trap1 is an interrupt gate and they
+ * remain disabled throughout this function.
+ */
+static int __kprobes post_kprobe_handler(struct pt_regs *regs)
+{
+	struct kprobe *cur = kprobe_running();
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+	if (!cur)
+		return 0;
+
+	resume_execution(cur, regs, kcb);
+	regs->flags |= kcb->kprobe_saved_flags;
+
+	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
+		kcb->kprobe_status = KPROBE_HIT_SSDONE;
+		cur->post_handler(cur, regs, 0);
+	}
+
+	/* Restore back the original saved kprobes variables and continue. */
+	if (kcb->kprobe_status == KPROBE_REENTER) {
+		restore_previous_kprobe(kcb);
+		goto out;
+	}
+	reset_current_kprobe();
+out:
+	preempt_enable_no_resched();
+
+	/*
+	 * if somebody else is singlestepping across a probe point, flags
+	 * will have TF set, in which case, continue the remaining processing
+	 * of do_debug, as if this is not a probe hit.
+	 */
+	if (regs->flags & X86_EFLAGS_TF)
+		return 0;
+
+	return 1;
+}
+
+int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
+{
+	struct kprobe *cur = kprobe_running();
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+	switch (kcb->kprobe_status) {
+	case KPROBE_HIT_SS:
+	case KPROBE_REENTER:
+		/*
+		 * We are here because the instruction being single
+		 * stepped caused a page fault. We reset the current
+		 * kprobe and the ip points back to the probe address
+		 * and allow the page fault handler to continue as a
+		 * normal page fault.
+		 */
+		regs->ip = (unsigned long)cur->addr;
+		regs->flags |= kcb->kprobe_old_flags;
+		if (kcb->kprobe_status == KPROBE_REENTER)
+			restore_previous_kprobe(kcb);
+		else
+			reset_current_kprobe();
+		preempt_enable_no_resched();
+		break;
+	case KPROBE_HIT_ACTIVE:
+	case KPROBE_HIT_SSDONE:
+		/*
+		 * We increment the nmissed count for accounting,
+		 * we can also use npre/npostfault count for accounting
+		 * these specific fault cases.
+		 */
+		kprobes_inc_nmissed_count(cur);
+
+		/*
+		 * We come here because instructions in the pre/post
+		 * handler caused the page_fault, this could happen
+		 * if handler tries to access user space by
+		 * copy_from_user(), get_user() etc. Let the
+		 * user-specified handler try to fix it first.
+		 */
+		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
+			return 1;
+
+		/*
+		 * In case the user-specified fault handler returned
+		 * zero, try to fix up.
+		 */
+		if (fixup_exception(regs))
+			return 1;
+
+		/*
+		 * fixup routine could not handle it,
+		 * Let do_page_fault() fix it.
+		 */
+		break;
+	default:
+		break;
+	}
+	return 0;
+}
+
+/*
+ * Wrapper routine for handling exceptions.
+ */
+int __kprobes
+kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data)
+{
+	struct die_args *args = data;
+	int ret = NOTIFY_DONE;
+
+	if (args->regs && user_mode_vm(args->regs))
+		return ret;
+
+	switch (val) {
+	case DIE_INT3:
+		if (kprobe_handler(args->regs))
+			ret = NOTIFY_STOP;
+		break;
+	case DIE_DEBUG:
+		if (post_kprobe_handler(args->regs)) {
+			/*
+			 * Reset the BS bit in dr6 (pointed by args->err) to
+			 * denote completion of processing
+			 */
+			(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
+			ret = NOTIFY_STOP;
+		}
+		break;
+	case DIE_GPF:
+		/*
+		 * To be potentially processing a kprobe fault and to
+		 * trust the result from kprobe_running(), we have
+		 * be non-preemptible.
+		 */
+		if (!preemptible() && kprobe_running() &&
+		    kprobe_fault_handler(args->regs, args->trapnr))
+			ret = NOTIFY_STOP;
+		break;
+	default:
+		break;
+	}
+	return ret;
+}
+
+int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
+{
+	struct jprobe *jp = container_of(p, struct jprobe, kp);
+	unsigned long addr;
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+	kcb->jprobe_saved_regs = *regs;
+	kcb->jprobe_saved_sp = stack_addr(regs);
+	addr = (unsigned long)(kcb->jprobe_saved_sp);
+
+	/*
+	 * As Linus pointed out, gcc assumes that the callee
+	 * owns the argument space and could overwrite it, e.g.
+	 * tailcall optimization. So, to be absolutely safe
+	 * we also save and restore enough stack bytes to cover
+	 * the argument area.
+	 */
+	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
+	       MIN_STACK_SIZE(addr));
+	regs->flags &= ~X86_EFLAGS_IF;
+	trace_hardirqs_off();
+	regs->ip = (unsigned long)(jp->entry);
+	return 1;
+}
+
+void __kprobes jprobe_return(void)
+{
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+	asm volatile (
+#ifdef CONFIG_X86_64
+			"       xchg   %%rbx,%%rsp	\n"
+#else
+			"       xchgl   %%ebx,%%esp	\n"
+#endif
+			"       int3			\n"
+			"       .globl jprobe_return_end\n"
+			"       jprobe_return_end:	\n"
+			"       nop			\n"::"b"
+			(kcb->jprobe_saved_sp):"memory");
+}
+
+int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
+{
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+	u8 *addr = (u8 *) (regs->ip - 1);
+	struct jprobe *jp = container_of(p, struct jprobe, kp);
+
+	if ((addr > (u8 *) jprobe_return) &&
+	    (addr < (u8 *) jprobe_return_end)) {
+		if (stack_addr(regs) != kcb->jprobe_saved_sp) {
+			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
+			printk(KERN_ERR
+			       "current sp %p does not match saved sp %p\n",
+			       stack_addr(regs), kcb->jprobe_saved_sp);
+			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
+			show_regs(saved_regs);
+			printk(KERN_ERR "Current registers\n");
+			show_regs(regs);
+			BUG();
+		}
+		*regs = kcb->jprobe_saved_regs;
+		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
+		       kcb->jprobes_stack,
+		       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
+		preempt_enable_no_resched();
+		return 1;
+	}
+	return 0;
+}
+
+int __init arch_init_kprobes(void)
+{
+	return arch_init_optprobes();
+}
+
+int __kprobes arch_trampoline_kprobe(struct kprobe *p)
+{
+	return 0;
+}