blob: e3180852ec85f282a4cf62ba4864c322ed369d7d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * random.c -- A strong random number generator
3 *
Matt Mackall9e95ce22005-04-16 15:25:56 -07004 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
Linus Torvalds1da177e2005-04-16 15:20:36 -07005 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
Linus Torvaldsa2080a62012-07-04 11:16:01 -0400128 * void add_device_randomness(const void *buf, unsigned int size);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400131 * void add_interrupt_randomness(int irq, int irq_flags);
Jarod Wilson442a4ff2011-02-21 21:43:10 +1100132 * void add_disk_randomness(struct gendisk *disk);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700133 *
Linus Torvaldsa2080a62012-07-04 11:16:01 -0400134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
Jarod Wilson442a4ff2011-02-21 21:43:10 +1100148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
Andrea Righi27ac7922008-07-23 21:28:13 -0700251#include <linux/mm.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
Neil Horman5b739ef2009-06-18 19:50:21 +0800255#include <linux/fips.h>
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400256#include <linux/ptrace.h>
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400257#include <linux/kmemcheck.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258
Yinghai Lud178a1e2009-01-11 00:35:42 -0800259#ifdef CONFIG_GENERIC_HARDIRQS
260# include <linux/irq.h>
261#endif
262
Linus Torvalds1da177e2005-04-16 15:20:36 -0700263#include <asm/processor.h>
264#include <asm/uaccess.h>
265#include <asm/irq.h>
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400266#include <asm/irq_regs.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267#include <asm/io.h>
268
Theodore Ts'o00ce1db2012-07-04 16:19:30 -0400269#define CREATE_TRACE_POINTS
270#include <trace/events/random.h>
271
Linus Torvalds1da177e2005-04-16 15:20:36 -0700272/*
273 * Configuration information
274 */
275#define INPUT_POOL_WORDS 128
276#define OUTPUT_POOL_WORDS 32
277#define SEC_XFER_SIZE 512
Matt Mackalle954bc92010-05-20 19:55:01 +1000278#define EXTRACT_SIZE 10
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279
280/*
281 * The minimum number of bits of entropy before we wake up a read on
282 * /dev/random. Should be enough to do a significant reseed.
283 */
284static int random_read_wakeup_thresh = 64;
285
286/*
287 * If the entropy count falls under this number of bits, then we
288 * should wake up processes which are selecting or polling on write
289 * access to /dev/random.
290 */
291static int random_write_wakeup_thresh = 128;
292
293/*
294 * When the input pool goes over trickle_thresh, start dropping most
295 * samples to avoid wasting CPU time and reduce lock contention.
296 */
297
Christoph Lameter6c036522005-07-07 17:56:59 -0700298static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700299
Matt Mackall90b75ee2008-04-29 01:02:55 -0700300static DEFINE_PER_CPU(int, trickle_count);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301
302/*
303 * A pool of size .poolwords is stirred with a primitive polynomial
304 * of degree .poolwords over GF(2). The taps for various sizes are
305 * defined below. They are chosen to be evenly spaced (minimum RMS
306 * distance from evenly spaced; the numbers in the comments are a
307 * scaled squared error sum) except for the last tap, which is 1 to
308 * get the twisting happening as fast as possible.
309 */
310static struct poolinfo {
311 int poolwords;
312 int tap1, tap2, tap3, tap4, tap5;
313} poolinfo_table[] = {
314 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
315 { 128, 103, 76, 51, 25, 1 },
316 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
317 { 32, 26, 20, 14, 7, 1 },
318#if 0
319 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
320 { 2048, 1638, 1231, 819, 411, 1 },
321
322 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
323 { 1024, 817, 615, 412, 204, 1 },
324
325 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
326 { 1024, 819, 616, 410, 207, 2 },
327
328 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
329 { 512, 411, 308, 208, 104, 1 },
330
331 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
332 { 512, 409, 307, 206, 102, 2 },
333 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
334 { 512, 409, 309, 205, 103, 2 },
335
336 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
337 { 256, 205, 155, 101, 52, 1 },
338
339 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
340 { 128, 103, 78, 51, 27, 2 },
341
342 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
343 { 64, 52, 39, 26, 14, 1 },
344#endif
345};
346
347#define POOLBITS poolwords*32
348#define POOLBYTES poolwords*4
349
350/*
351 * For the purposes of better mixing, we use the CRC-32 polynomial as
352 * well to make a twisted Generalized Feedback Shift Reigster
353 *
354 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
355 * Transactions on Modeling and Computer Simulation 2(3):179-194.
356 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
357 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
358 *
359 * Thanks to Colin Plumb for suggesting this.
360 *
361 * We have not analyzed the resultant polynomial to prove it primitive;
362 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
363 * of a random large-degree polynomial over GF(2) are more than large enough
364 * that periodicity is not a concern.
365 *
366 * The input hash is much less sensitive than the output hash. All
367 * that we want of it is that it be a good non-cryptographic hash;
368 * i.e. it not produce collisions when fed "random" data of the sort
369 * we expect to see. As long as the pool state differs for different
370 * inputs, we have preserved the input entropy and done a good job.
371 * The fact that an intelligent attacker can construct inputs that
372 * will produce controlled alterations to the pool's state is not
373 * important because we don't consider such inputs to contribute any
374 * randomness. The only property we need with respect to them is that
375 * the attacker can't increase his/her knowledge of the pool's state.
376 * Since all additions are reversible (knowing the final state and the
377 * input, you can reconstruct the initial state), if an attacker has
378 * any uncertainty about the initial state, he/she can only shuffle
379 * that uncertainty about, but never cause any collisions (which would
380 * decrease the uncertainty).
381 *
382 * The chosen system lets the state of the pool be (essentially) the input
383 * modulo the generator polymnomial. Now, for random primitive polynomials,
384 * this is a universal class of hash functions, meaning that the chance
385 * of a collision is limited by the attacker's knowledge of the generator
386 * polynomail, so if it is chosen at random, an attacker can never force
387 * a collision. Here, we use a fixed polynomial, but we *can* assume that
388 * ###--> it is unknown to the processes generating the input entropy. <-###
389 * Because of this important property, this is a good, collision-resistant
390 * hash; hash collisions will occur no more often than chance.
391 */
392
393/*
394 * Static global variables
395 */
396static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
397static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
Jeff Dike9a6f70b2008-04-29 01:03:08 -0700398static struct fasync_struct *fasync;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399
400#if 0
Rusty Russell90ab5ee2012-01-13 09:32:20 +1030401static bool debug;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402module_param(debug, bool, 0644);
Matt Mackall90b75ee2008-04-29 01:02:55 -0700403#define DEBUG_ENT(fmt, arg...) do { \
404 if (debug) \
405 printk(KERN_DEBUG "random %04d %04d %04d: " \
406 fmt,\
407 input_pool.entropy_count,\
408 blocking_pool.entropy_count,\
409 nonblocking_pool.entropy_count,\
410 ## arg); } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411#else
412#define DEBUG_ENT(fmt, arg...) do {} while (0)
413#endif
414
415/**********************************************************************
416 *
417 * OS independent entropy store. Here are the functions which handle
418 * storing entropy in an entropy pool.
419 *
420 **********************************************************************/
421
422struct entropy_store;
423struct entropy_store {
Matt Mackall43358202008-04-29 01:03:01 -0700424 /* read-only data: */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425 struct poolinfo *poolinfo;
426 __u32 *pool;
427 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700428 struct entropy_store *pull;
Richard Kennedy4015d9a2010-07-31 19:58:00 +0800429 int limit;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700430
431 /* read-write data: */
Matt Mackall43358202008-04-29 01:03:01 -0700432 spinlock_t lock;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700433 unsigned add_ptr;
Theodore Ts'o902c0982012-07-04 10:38:30 -0400434 unsigned input_rotate;
Matt Mackallcda796a2009-01-06 14:42:55 -0800435 int entropy_count;
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400436 int entropy_total;
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400437 unsigned int initialized:1;
Matt Mackalle954bc92010-05-20 19:55:01 +1000438 __u8 last_data[EXTRACT_SIZE];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700439};
440
441static __u32 input_pool_data[INPUT_POOL_WORDS];
442static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
443static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
444
445static struct entropy_store input_pool = {
446 .poolinfo = &poolinfo_table[0],
447 .name = "input",
448 .limit = 1,
Ingo Molnare4d91912006-07-03 00:24:34 -0700449 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700450 .pool = input_pool_data
451};
452
453static struct entropy_store blocking_pool = {
454 .poolinfo = &poolinfo_table[1],
455 .name = "blocking",
456 .limit = 1,
457 .pull = &input_pool,
Ingo Molnare4d91912006-07-03 00:24:34 -0700458 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700459 .pool = blocking_pool_data
460};
461
462static struct entropy_store nonblocking_pool = {
463 .poolinfo = &poolinfo_table[1],
464 .name = "nonblocking",
465 .pull = &input_pool,
Ingo Molnare4d91912006-07-03 00:24:34 -0700466 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700467 .pool = nonblocking_pool_data
468};
469
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400470static __u32 const twist_table[8] = {
471 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
472 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
473
Linus Torvalds1da177e2005-04-16 15:20:36 -0700474/*
Matt Mackalle68e5b62008-04-29 01:03:05 -0700475 * This function adds bytes into the entropy "pool". It does not
Linus Torvalds1da177e2005-04-16 15:20:36 -0700476 * update the entropy estimate. The caller should call
Matt Mackalladc782d2008-04-29 01:03:07 -0700477 * credit_entropy_bits if this is appropriate.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700478 *
479 * The pool is stirred with a primitive polynomial of the appropriate
480 * degree, and then twisted. We twist by three bits at a time because
481 * it's cheap to do so and helps slightly in the expected case where
482 * the entropy is concentrated in the low-order bits.
483 */
Theodore Ts'o00ce1db2012-07-04 16:19:30 -0400484static void _mix_pool_bytes(struct entropy_store *r, const void *in,
485 int nbytes, __u8 out[64])
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486{
Matt Mackall993ba212008-04-29 01:03:04 -0700487 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
Matt Mackallfeee7692008-04-29 01:03:02 -0700488 int input_rotate;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700489 int wordmask = r->poolinfo->poolwords - 1;
Matt Mackalle68e5b62008-04-29 01:03:05 -0700490 const char *bytes = in;
Matt Mackall6d38b822008-04-29 01:03:03 -0700491 __u32 w;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700492
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493 tap1 = r->poolinfo->tap1;
494 tap2 = r->poolinfo->tap2;
495 tap3 = r->poolinfo->tap3;
496 tap4 = r->poolinfo->tap4;
497 tap5 = r->poolinfo->tap5;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700498
Theodore Ts'o902c0982012-07-04 10:38:30 -0400499 smp_rmb();
500 input_rotate = ACCESS_ONCE(r->input_rotate);
501 i = ACCESS_ONCE(r->add_ptr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700502
Matt Mackalle68e5b62008-04-29 01:03:05 -0700503 /* mix one byte at a time to simplify size handling and churn faster */
504 while (nbytes--) {
505 w = rol32(*bytes++, input_rotate & 31);
Matt Mackall993ba212008-04-29 01:03:04 -0700506 i = (i - 1) & wordmask;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507
508 /* XOR in the various taps */
Matt Mackall993ba212008-04-29 01:03:04 -0700509 w ^= r->pool[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700510 w ^= r->pool[(i + tap1) & wordmask];
511 w ^= r->pool[(i + tap2) & wordmask];
512 w ^= r->pool[(i + tap3) & wordmask];
513 w ^= r->pool[(i + tap4) & wordmask];
514 w ^= r->pool[(i + tap5) & wordmask];
Matt Mackall993ba212008-04-29 01:03:04 -0700515
516 /* Mix the result back in with a twist */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
Matt Mackallfeee7692008-04-29 01:03:02 -0700518
519 /*
520 * Normally, we add 7 bits of rotation to the pool.
521 * At the beginning of the pool, add an extra 7 bits
522 * rotation, so that successive passes spread the
523 * input bits across the pool evenly.
524 */
525 input_rotate += i ? 7 : 14;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526 }
527
Theodore Ts'o902c0982012-07-04 10:38:30 -0400528 ACCESS_ONCE(r->input_rotate) = input_rotate;
529 ACCESS_ONCE(r->add_ptr) = i;
530 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531
Matt Mackall993ba212008-04-29 01:03:04 -0700532 if (out)
533 for (j = 0; j < 16; j++)
Matt Mackalle68e5b62008-04-29 01:03:05 -0700534 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535}
536
Theodore Ts'o00ce1db2012-07-04 16:19:30 -0400537static void __mix_pool_bytes(struct entropy_store *r, const void *in,
Theodore Ts'o902c0982012-07-04 10:38:30 -0400538 int nbytes, __u8 out[64])
Linus Torvalds1da177e2005-04-16 15:20:36 -0700539{
Theodore Ts'o00ce1db2012-07-04 16:19:30 -0400540 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
541 _mix_pool_bytes(r, in, nbytes, out);
542}
543
544static void mix_pool_bytes(struct entropy_store *r, const void *in,
545 int nbytes, __u8 out[64])
546{
Theodore Ts'o902c0982012-07-04 10:38:30 -0400547 unsigned long flags;
548
Theodore Ts'o00ce1db2012-07-04 16:19:30 -0400549 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
Theodore Ts'o902c0982012-07-04 10:38:30 -0400550 spin_lock_irqsave(&r->lock, flags);
Theodore Ts'o00ce1db2012-07-04 16:19:30 -0400551 _mix_pool_bytes(r, in, nbytes, out);
Theodore Ts'o902c0982012-07-04 10:38:30 -0400552 spin_unlock_irqrestore(&r->lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553}
554
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400555struct fast_pool {
556 __u32 pool[4];
557 unsigned long last;
558 unsigned short count;
559 unsigned char rotate;
560 unsigned char last_timer_intr;
561};
562
563/*
564 * This is a fast mixing routine used by the interrupt randomness
565 * collector. It's hardcoded for an 128 bit pool and assumes that any
566 * locks that might be needed are taken by the caller.
567 */
568static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
569{
570 const char *bytes = in;
571 __u32 w;
572 unsigned i = f->count;
573 unsigned input_rotate = f->rotate;
574
575 while (nbytes--) {
576 w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
577 f->pool[(i + 1) & 3];
578 f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
579 input_rotate += (i++ & 3) ? 7 : 14;
580 }
581 f->count = i;
582 f->rotate = input_rotate;
583}
584
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585/*
586 * Credit (or debit) the entropy store with n bits of entropy
587 */
Matt Mackalladc782d2008-04-29 01:03:07 -0700588static void credit_entropy_bits(struct entropy_store *r, int nbits)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700589{
Theodore Ts'o902c0982012-07-04 10:38:30 -0400590 int entropy_count, orig;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700591
Matt Mackalladc782d2008-04-29 01:03:07 -0700592 if (!nbits)
593 return;
594
Matt Mackalladc782d2008-04-29 01:03:07 -0700595 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
Theodore Ts'o902c0982012-07-04 10:38:30 -0400596retry:
597 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
Andrew Morton8b76f462008-09-02 14:36:14 -0700598 entropy_count += nbits;
Theodore Ts'o00ce1db2012-07-04 16:19:30 -0400599
Andrew Morton8b76f462008-09-02 14:36:14 -0700600 if (entropy_count < 0) {
Matt Mackalladc782d2008-04-29 01:03:07 -0700601 DEBUG_ENT("negative entropy/overflow\n");
Andrew Morton8b76f462008-09-02 14:36:14 -0700602 entropy_count = 0;
603 } else if (entropy_count > r->poolinfo->POOLBITS)
604 entropy_count = r->poolinfo->POOLBITS;
Theodore Ts'o902c0982012-07-04 10:38:30 -0400605 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
606 goto retry;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700607
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400608 if (!r->initialized && nbits > 0) {
609 r->entropy_total += nbits;
610 if (r->entropy_total > 128)
611 r->initialized = 1;
612 }
613
Theodore Ts'o00ce1db2012-07-04 16:19:30 -0400614 trace_credit_entropy_bits(r->name, nbits, entropy_count,
615 r->entropy_total, _RET_IP_);
616
Matt Mackall88c730d2008-04-29 01:02:56 -0700617 /* should we wake readers? */
Andrew Morton8b76f462008-09-02 14:36:14 -0700618 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
Matt Mackall88c730d2008-04-29 01:02:56 -0700619 wake_up_interruptible(&random_read_wait);
Jeff Dike9a6f70b2008-04-29 01:03:08 -0700620 kill_fasync(&fasync, SIGIO, POLL_IN);
621 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700622}
623
624/*********************************************************************
625 *
626 * Entropy input management
627 *
628 *********************************************************************/
629
630/* There is one of these per entropy source */
631struct timer_rand_state {
632 cycles_t last_time;
Matt Mackall90b75ee2008-04-29 01:02:55 -0700633 long last_delta, last_delta2;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700634 unsigned dont_count_entropy:1;
635};
636
Yinghai Lud7e51e62009-01-07 15:03:13 -0800637#ifndef CONFIG_GENERIC_HARDIRQS
Yinghai Lu2f983572009-01-03 00:06:34 -0800638
639static struct timer_rand_state *irq_timer_state[NR_IRQS];
640
641static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
642{
643 return irq_timer_state[irq];
644}
645
646static void set_timer_rand_state(unsigned int irq,
647 struct timer_rand_state *state)
648{
649 irq_timer_state[irq] = state;
650}
651
652#else
653
654static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
655{
656 struct irq_desc *desc;
657
658 desc = irq_to_desc(irq);
659
660 return desc->timer_rand_state;
661}
662
663static void set_timer_rand_state(unsigned int irq,
664 struct timer_rand_state *state)
665{
666 struct irq_desc *desc;
667
668 desc = irq_to_desc(irq);
669
670 desc->timer_rand_state = state;
671}
Yinghai Lu0b8f1ef2008-12-05 18:58:31 -0800672#endif
Yinghai Lu3060d6f2008-08-19 20:50:08 -0700673
Linus Torvaldsa2080a62012-07-04 11:16:01 -0400674/*
675 * Add device- or boot-specific data to the input and nonblocking
676 * pools to help initialize them to unique values.
677 *
678 * None of this adds any entropy, it is meant to avoid the
679 * problem of the nonblocking pool having similar initial state
680 * across largely identical devices.
681 */
682void add_device_randomness(const void *buf, unsigned int size)
683{
684 unsigned long time = get_cycles() ^ jiffies;
685
686 mix_pool_bytes(&input_pool, buf, size, NULL);
687 mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
688 mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
689 mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
690}
691EXPORT_SYMBOL(add_device_randomness);
692
Yinghai Lu3060d6f2008-08-19 20:50:08 -0700693static struct timer_rand_state input_timer_state;
694
Linus Torvalds1da177e2005-04-16 15:20:36 -0700695/*
696 * This function adds entropy to the entropy "pool" by using timing
697 * delays. It uses the timer_rand_state structure to make an estimate
698 * of how many bits of entropy this call has added to the pool.
699 *
700 * The number "num" is also added to the pool - it should somehow describe
701 * the type of event which just happened. This is currently 0-255 for
702 * keyboard scan codes, and 256 upwards for interrupts.
703 *
704 */
705static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
706{
707 struct {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700708 long jiffies;
Linus Torvaldscf833d02011-12-22 11:36:22 -0800709 unsigned cycles;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710 unsigned num;
711 } sample;
712 long delta, delta2, delta3;
713
714 preempt_disable();
715 /* if over the trickle threshold, use only 1 in 4096 samples */
716 if (input_pool.entropy_count > trickle_thresh &&
Christoph Lameterb29c6172010-12-06 11:40:06 -0600717 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700718 goto out;
719
720 sample.jiffies = jiffies;
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400721 sample.cycles = get_cycles();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700722 sample.num = num;
Theodore Ts'o902c0982012-07-04 10:38:30 -0400723 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700724
725 /*
726 * Calculate number of bits of randomness we probably added.
727 * We take into account the first, second and third-order deltas
728 * in order to make our estimate.
729 */
730
731 if (!state->dont_count_entropy) {
732 delta = sample.jiffies - state->last_time;
733 state->last_time = sample.jiffies;
734
735 delta2 = delta - state->last_delta;
736 state->last_delta = delta;
737
738 delta3 = delta2 - state->last_delta2;
739 state->last_delta2 = delta2;
740
741 if (delta < 0)
742 delta = -delta;
743 if (delta2 < 0)
744 delta2 = -delta2;
745 if (delta3 < 0)
746 delta3 = -delta3;
747 if (delta > delta2)
748 delta = delta2;
749 if (delta > delta3)
750 delta = delta3;
751
752 /*
753 * delta is now minimum absolute delta.
754 * Round down by 1 bit on general principles,
755 * and limit entropy entimate to 12 bits.
756 */
Matt Mackalladc782d2008-04-29 01:03:07 -0700757 credit_entropy_bits(&input_pool,
758 min_t(int, fls(delta>>1), 11));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700759 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700760out:
761 preempt_enable();
762}
763
Stephen Hemmingerd2515752006-01-11 12:17:38 -0800764void add_input_randomness(unsigned int type, unsigned int code,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700765 unsigned int value)
766{
767 static unsigned char last_value;
768
769 /* ignore autorepeat and the like */
770 if (value == last_value)
771 return;
772
773 DEBUG_ENT("input event\n");
774 last_value = value;
775 add_timer_randomness(&input_timer_state,
776 (type << 4) ^ code ^ (code >> 4) ^ value);
777}
Dmitry Torokhov80fc9f52006-10-11 01:43:58 -0400778EXPORT_SYMBOL_GPL(add_input_randomness);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700779
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400780static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
781
782void add_interrupt_randomness(int irq, int irq_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700783{
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400784 struct entropy_store *r;
785 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
786 struct pt_regs *regs = get_irq_regs();
787 unsigned long now = jiffies;
788 __u32 input[4], cycles = get_cycles();
Yinghai Lu3060d6f2008-08-19 20:50:08 -0700789
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400790 input[0] = cycles ^ jiffies;
791 input[1] = irq;
792 if (regs) {
793 __u64 ip = instruction_pointer(regs);
794 input[2] = ip;
795 input[3] = ip >> 32;
796 }
Yinghai Lu3060d6f2008-08-19 20:50:08 -0700797
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400798 fast_mix(fast_pool, input, sizeof(input));
799
800 if ((fast_pool->count & 1023) &&
801 !time_after(now, fast_pool->last + HZ))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700802 return;
803
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400804 fast_pool->last = now;
805
806 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
Theodore Ts'o902c0982012-07-04 10:38:30 -0400807 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400808 /*
809 * If we don't have a valid cycle counter, and we see
810 * back-to-back timer interrupts, then skip giving credit for
811 * any entropy.
812 */
813 if (cycles == 0) {
814 if (irq_flags & __IRQF_TIMER) {
815 if (fast_pool->last_timer_intr)
816 return;
817 fast_pool->last_timer_intr = 1;
818 } else
819 fast_pool->last_timer_intr = 0;
820 }
821 credit_entropy_bits(r, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700822}
823
David Howells93614012006-09-30 20:45:40 +0200824#ifdef CONFIG_BLOCK
Linus Torvalds1da177e2005-04-16 15:20:36 -0700825void add_disk_randomness(struct gendisk *disk)
826{
827 if (!disk || !disk->random)
828 return;
829 /* first major is 1, so we get >= 0x200 here */
Tejun Heof331c022008-09-03 09:01:48 +0200830 DEBUG_ENT("disk event %d:%d\n",
831 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700832
Tejun Heof331c022008-09-03 09:01:48 +0200833 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700834}
David Howells93614012006-09-30 20:45:40 +0200835#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700836
Linus Torvalds1da177e2005-04-16 15:20:36 -0700837/*********************************************************************
838 *
839 * Entropy extraction routines
840 *
841 *********************************************************************/
842
Matt Mackall90b75ee2008-04-29 01:02:55 -0700843static ssize_t extract_entropy(struct entropy_store *r, void *buf,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700844 size_t nbytes, int min, int rsvd);
845
846/*
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300847 * This utility inline function is responsible for transferring entropy
Linus Torvalds1da177e2005-04-16 15:20:36 -0700848 * from the primary pool to the secondary extraction pool. We make
849 * sure we pull enough for a 'catastrophic reseed'.
850 */
851static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
852{
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400853 union {
854 __u32 tmp[OUTPUT_POOL_WORDS];
855 long hwrand[4];
856 } u;
857 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700858
859 if (r->pull && r->entropy_count < nbytes * 8 &&
860 r->entropy_count < r->poolinfo->POOLBITS) {
Matt Mackall5a021e92007-07-19 11:30:14 -0700861 /* If we're limited, always leave two wakeup worth's BITS */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700862 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
Matt Mackall5a021e92007-07-19 11:30:14 -0700863 int bytes = nbytes;
864
865 /* pull at least as many as BYTES as wakeup BITS */
866 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
867 /* but never more than the buffer size */
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400868 bytes = min_t(int, bytes, sizeof(u.tmp));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700869
870 DEBUG_ENT("going to reseed %s with %d bits "
871 "(%d of %d requested)\n",
872 r->name, bytes * 8, nbytes * 8, r->entropy_count);
873
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400874 bytes = extract_entropy(r->pull, u.tmp, bytes,
Matt Mackall90b75ee2008-04-29 01:02:55 -0700875 random_read_wakeup_thresh / 8, rsvd);
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400876 mix_pool_bytes(r, u.tmp, bytes, NULL);
Matt Mackalladc782d2008-04-29 01:03:07 -0700877 credit_entropy_bits(r, bytes*8);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700878 }
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400879 kmemcheck_mark_initialized(&u.hwrand, sizeof(u.hwrand));
880 for (i = 0; i < 4; i++)
881 if (arch_get_random_long(&u.hwrand[i]))
882 break;
883 if (i)
884 mix_pool_bytes(r, &u.hwrand, sizeof(u.hwrand), 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885}
886
887/*
888 * These functions extracts randomness from the "entropy pool", and
889 * returns it in a buffer.
890 *
891 * The min parameter specifies the minimum amount we can pull before
892 * failing to avoid races that defeat catastrophic reseeding while the
893 * reserved parameter indicates how much entropy we must leave in the
894 * pool after each pull to avoid starving other readers.
895 *
896 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
897 */
898
899static size_t account(struct entropy_store *r, size_t nbytes, int min,
900 int reserved)
901{
902 unsigned long flags;
903
Linus Torvalds1da177e2005-04-16 15:20:36 -0700904 /* Hold lock while accounting */
905 spin_lock_irqsave(&r->lock, flags);
906
Matt Mackallcda796a2009-01-06 14:42:55 -0800907 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700908 DEBUG_ENT("trying to extract %d bits from %s\n",
909 nbytes * 8, r->name);
910
911 /* Can we pull enough? */
912 if (r->entropy_count / 8 < min + reserved) {
913 nbytes = 0;
914 } else {
915 /* If limited, never pull more than available */
916 if (r->limit && nbytes + reserved >= r->entropy_count / 8)
917 nbytes = r->entropy_count/8 - reserved;
918
Matt Mackall90b75ee2008-04-29 01:02:55 -0700919 if (r->entropy_count / 8 >= nbytes + reserved)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700920 r->entropy_count -= nbytes*8;
921 else
922 r->entropy_count = reserved;
923
Jeff Dike9a6f70b2008-04-29 01:03:08 -0700924 if (r->entropy_count < random_write_wakeup_thresh) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700925 wake_up_interruptible(&random_write_wait);
Jeff Dike9a6f70b2008-04-29 01:03:08 -0700926 kill_fasync(&fasync, SIGIO, POLL_OUT);
927 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700928 }
929
930 DEBUG_ENT("debiting %d entropy credits from %s%s\n",
931 nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
932
933 spin_unlock_irqrestore(&r->lock, flags);
934
935 return nbytes;
936}
937
938static void extract_buf(struct entropy_store *r, __u8 *out)
939{
Matt Mackall602b6ae2007-05-29 21:54:27 -0500940 int i;
Matt Mackalle68e5b62008-04-29 01:03:05 -0700941 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
942 __u8 extract[64];
Theodore Ts'o902c0982012-07-04 10:38:30 -0400943 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944
Matt Mackall1c0ad3d2008-04-29 01:03:00 -0700945 /* Generate a hash across the pool, 16 words (512 bits) at a time */
Matt Mackallffd8d3f2008-04-29 01:02:59 -0700946 sha_init(hash);
Theodore Ts'o902c0982012-07-04 10:38:30 -0400947 spin_lock_irqsave(&r->lock, flags);
Matt Mackall1c0ad3d2008-04-29 01:03:00 -0700948 for (i = 0; i < r->poolinfo->poolwords; i += 16)
Matt Mackallffd8d3f2008-04-29 01:02:59 -0700949 sha_transform(hash, (__u8 *)(r->pool + i), workspace);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700950
951 /*
Matt Mackall1c0ad3d2008-04-29 01:03:00 -0700952 * We mix the hash back into the pool to prevent backtracking
953 * attacks (where the attacker knows the state of the pool
954 * plus the current outputs, and attempts to find previous
955 * ouputs), unless the hash function can be inverted. By
956 * mixing at least a SHA1 worth of hash data back, we make
957 * brute-forcing the feedback as hard as brute-forcing the
958 * hash.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700959 */
Theodore Ts'o902c0982012-07-04 10:38:30 -0400960 __mix_pool_bytes(r, hash, sizeof(hash), extract);
961 spin_unlock_irqrestore(&r->lock, flags);
Matt Mackall1c0ad3d2008-04-29 01:03:00 -0700962
963 /*
964 * To avoid duplicates, we atomically extract a portion of the
965 * pool while mixing, and hash one final time.
966 */
Matt Mackalle68e5b62008-04-29 01:03:05 -0700967 sha_transform(hash, extract, workspace);
Matt Mackallffd8d3f2008-04-29 01:02:59 -0700968 memset(extract, 0, sizeof(extract));
969 memset(workspace, 0, sizeof(workspace));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700970
971 /*
Matt Mackall1c0ad3d2008-04-29 01:03:00 -0700972 * In case the hash function has some recognizable output
973 * pattern, we fold it in half. Thus, we always feed back
974 * twice as much data as we output.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700975 */
Matt Mackallffd8d3f2008-04-29 01:02:59 -0700976 hash[0] ^= hash[3];
977 hash[1] ^= hash[4];
978 hash[2] ^= rol32(hash[2], 16);
979 memcpy(out, hash, EXTRACT_SIZE);
980 memset(hash, 0, sizeof(hash));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700981}
982
Matt Mackall90b75ee2008-04-29 01:02:55 -0700983static ssize_t extract_entropy(struct entropy_store *r, void *buf,
Theodore Ts'o902c0982012-07-04 10:38:30 -0400984 size_t nbytes, int min, int reserved)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700985{
986 ssize_t ret = 0, i;
987 __u8 tmp[EXTRACT_SIZE];
988
Theodore Ts'o00ce1db2012-07-04 16:19:30 -0400989 trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700990 xfer_secondary_pool(r, nbytes);
991 nbytes = account(r, nbytes, min, reserved);
992
993 while (nbytes) {
994 extract_buf(r, tmp);
Neil Horman5b739ef2009-06-18 19:50:21 +0800995
Matt Mackalle954bc92010-05-20 19:55:01 +1000996 if (fips_enabled) {
Theodore Ts'o902c0982012-07-04 10:38:30 -0400997 unsigned long flags;
998
Neil Horman5b739ef2009-06-18 19:50:21 +0800999 spin_lock_irqsave(&r->lock, flags);
1000 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1001 panic("Hardware RNG duplicated output!\n");
1002 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1003 spin_unlock_irqrestore(&r->lock, flags);
1004 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001005 i = min_t(int, nbytes, EXTRACT_SIZE);
1006 memcpy(buf, tmp, i);
1007 nbytes -= i;
1008 buf += i;
1009 ret += i;
1010 }
1011
1012 /* Wipe data just returned from memory */
1013 memset(tmp, 0, sizeof(tmp));
1014
1015 return ret;
1016}
1017
1018static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1019 size_t nbytes)
1020{
1021 ssize_t ret = 0, i;
1022 __u8 tmp[EXTRACT_SIZE];
1023
Theodore Ts'o00ce1db2012-07-04 16:19:30 -04001024 trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001025 xfer_secondary_pool(r, nbytes);
1026 nbytes = account(r, nbytes, 0, 0);
1027
1028 while (nbytes) {
1029 if (need_resched()) {
1030 if (signal_pending(current)) {
1031 if (ret == 0)
1032 ret = -ERESTARTSYS;
1033 break;
1034 }
1035 schedule();
1036 }
1037
1038 extract_buf(r, tmp);
1039 i = min_t(int, nbytes, EXTRACT_SIZE);
1040 if (copy_to_user(buf, tmp, i)) {
1041 ret = -EFAULT;
1042 break;
1043 }
1044
1045 nbytes -= i;
1046 buf += i;
1047 ret += i;
1048 }
1049
1050 /* Wipe data just returned from memory */
1051 memset(tmp, 0, sizeof(tmp));
1052
1053 return ret;
1054}
1055
1056/*
1057 * This function is the exported kernel interface. It returns some
Theodore Ts'oc2557a32012-07-05 10:35:23 -04001058 * number of good random numbers, suitable for key generation, seeding
1059 * TCP sequence numbers, etc. It does not use the hw random number
1060 * generator, if available; use get_random_bytes_arch() for that.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001061 */
1062void get_random_bytes(void *buf, int nbytes)
1063{
Theodore Ts'oc2557a32012-07-05 10:35:23 -04001064 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1065}
1066EXPORT_SYMBOL(get_random_bytes);
1067
1068/*
1069 * This function will use the architecture-specific hardware random
1070 * number generator if it is available. The arch-specific hw RNG will
1071 * almost certainly be faster than what we can do in software, but it
1072 * is impossible to verify that it is implemented securely (as
1073 * opposed, to, say, the AES encryption of a sequence number using a
1074 * key known by the NSA). So it's useful if we need the speed, but
1075 * only if we're willing to trust the hardware manufacturer not to
1076 * have put in a back door.
1077 */
1078void get_random_bytes_arch(void *buf, int nbytes)
1079{
H. Peter Anvin63d77172011-07-31 13:54:50 -07001080 char *p = buf;
1081
Theodore Ts'o00ce1db2012-07-04 16:19:30 -04001082 trace_get_random_bytes(nbytes, _RET_IP_);
H. Peter Anvin63d77172011-07-31 13:54:50 -07001083 while (nbytes) {
1084 unsigned long v;
1085 int chunk = min(nbytes, (int)sizeof(unsigned long));
Theodore Ts'oc2557a32012-07-05 10:35:23 -04001086
H. Peter Anvin63d77172011-07-31 13:54:50 -07001087 if (!arch_get_random_long(&v))
1088 break;
1089
Luck, Tonybd29e562011-11-16 10:50:56 -08001090 memcpy(p, &v, chunk);
H. Peter Anvin63d77172011-07-31 13:54:50 -07001091 p += chunk;
1092 nbytes -= chunk;
1093 }
1094
Theodore Ts'oc2557a32012-07-05 10:35:23 -04001095 if (nbytes)
1096 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001097}
Theodore Ts'oc2557a32012-07-05 10:35:23 -04001098EXPORT_SYMBOL(get_random_bytes_arch);
1099
Linus Torvalds1da177e2005-04-16 15:20:36 -07001100
1101/*
1102 * init_std_data - initialize pool with system data
1103 *
1104 * @r: pool to initialize
1105 *
1106 * This function clears the pool's entropy count and mixes some system
1107 * data into the pool to prepare it for use. The pool is not cleared
1108 * as that can only decrease the entropy in the pool.
1109 */
1110static void init_std_data(struct entropy_store *r)
1111{
Theodore Ts'o3e88bdf2011-12-22 16:28:01 -05001112 int i;
Theodore Ts'o902c0982012-07-04 10:38:30 -04001113 ktime_t now = ktime_get_real();
1114 unsigned long rv;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001115
Linus Torvalds1da177e2005-04-16 15:20:36 -07001116 r->entropy_count = 0;
Theodore Ts'o775f4b22012-07-02 07:52:16 -04001117 r->entropy_total = 0;
Theodore Ts'o902c0982012-07-04 10:38:30 -04001118 mix_pool_bytes(r, &now, sizeof(now), NULL);
1119 for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
1120 if (!arch_get_random_long(&rv))
Theodore Ts'o3e88bdf2011-12-22 16:28:01 -05001121 break;
Theodore Ts'o902c0982012-07-04 10:38:30 -04001122 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
Theodore Ts'o3e88bdf2011-12-22 16:28:01 -05001123 }
Theodore Ts'o902c0982012-07-04 10:38:30 -04001124 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001125}
1126
Matt Mackall53c3f632008-04-29 01:02:58 -07001127static int rand_initialize(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001128{
1129 init_std_data(&input_pool);
1130 init_std_data(&blocking_pool);
1131 init_std_data(&nonblocking_pool);
1132 return 0;
1133}
1134module_init(rand_initialize);
1135
1136void rand_initialize_irq(int irq)
1137{
1138 struct timer_rand_state *state;
1139
Yinghai Lu3060d6f2008-08-19 20:50:08 -07001140 state = get_timer_rand_state(irq);
1141
1142 if (state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001143 return;
1144
1145 /*
Eric Dumazetf8595812007-03-28 14:22:33 -07001146 * If kzalloc returns null, we just won't use that entropy
Linus Torvalds1da177e2005-04-16 15:20:36 -07001147 * source.
1148 */
Eric Dumazetf8595812007-03-28 14:22:33 -07001149 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1150 if (state)
Yinghai Lu3060d6f2008-08-19 20:50:08 -07001151 set_timer_rand_state(irq, state);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001152}
1153
David Howells93614012006-09-30 20:45:40 +02001154#ifdef CONFIG_BLOCK
Linus Torvalds1da177e2005-04-16 15:20:36 -07001155void rand_initialize_disk(struct gendisk *disk)
1156{
1157 struct timer_rand_state *state;
1158
1159 /*
Eric Dumazetf8595812007-03-28 14:22:33 -07001160 * If kzalloc returns null, we just won't use that entropy
Linus Torvalds1da177e2005-04-16 15:20:36 -07001161 * source.
1162 */
Eric Dumazetf8595812007-03-28 14:22:33 -07001163 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1164 if (state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001165 disk->random = state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001166}
David Howells93614012006-09-30 20:45:40 +02001167#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001168
1169static ssize_t
Matt Mackall90b75ee2008-04-29 01:02:55 -07001170random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001171{
1172 ssize_t n, retval = 0, count = 0;
1173
1174 if (nbytes == 0)
1175 return 0;
1176
1177 while (nbytes > 0) {
1178 n = nbytes;
1179 if (n > SEC_XFER_SIZE)
1180 n = SEC_XFER_SIZE;
1181
1182 DEBUG_ENT("reading %d bits\n", n*8);
1183
1184 n = extract_entropy_user(&blocking_pool, buf, n);
1185
1186 DEBUG_ENT("read got %d bits (%d still needed)\n",
1187 n*8, (nbytes-n)*8);
1188
1189 if (n == 0) {
1190 if (file->f_flags & O_NONBLOCK) {
1191 retval = -EAGAIN;
1192 break;
1193 }
1194
1195 DEBUG_ENT("sleeping?\n");
1196
1197 wait_event_interruptible(random_read_wait,
1198 input_pool.entropy_count >=
1199 random_read_wakeup_thresh);
1200
1201 DEBUG_ENT("awake\n");
1202
1203 if (signal_pending(current)) {
1204 retval = -ERESTARTSYS;
1205 break;
1206 }
1207
1208 continue;
1209 }
1210
1211 if (n < 0) {
1212 retval = n;
1213 break;
1214 }
1215 count += n;
1216 buf += n;
1217 nbytes -= n;
1218 break; /* This break makes the device work */
1219 /* like a named pipe */
1220 }
1221
Linus Torvalds1da177e2005-04-16 15:20:36 -07001222 return (count ? count : retval);
1223}
1224
1225static ssize_t
Matt Mackall90b75ee2008-04-29 01:02:55 -07001226urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001227{
1228 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1229}
1230
1231static unsigned int
1232random_poll(struct file *file, poll_table * wait)
1233{
1234 unsigned int mask;
1235
1236 poll_wait(file, &random_read_wait, wait);
1237 poll_wait(file, &random_write_wait, wait);
1238 mask = 0;
1239 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1240 mask |= POLLIN | POLLRDNORM;
1241 if (input_pool.entropy_count < random_write_wakeup_thresh)
1242 mask |= POLLOUT | POLLWRNORM;
1243 return mask;
1244}
1245
Matt Mackall7f397dc2007-05-29 21:58:10 -05001246static int
1247write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1248{
1249 size_t bytes;
1250 __u32 buf[16];
1251 const char __user *p = buffer;
1252
1253 while (count > 0) {
1254 bytes = min(count, sizeof(buf));
1255 if (copy_from_user(&buf, p, bytes))
1256 return -EFAULT;
1257
1258 count -= bytes;
1259 p += bytes;
1260
Theodore Ts'o902c0982012-07-04 10:38:30 -04001261 mix_pool_bytes(r, buf, bytes, NULL);
Matt Mackall91f3f1e2008-02-06 01:37:20 -08001262 cond_resched();
Matt Mackall7f397dc2007-05-29 21:58:10 -05001263 }
1264
1265 return 0;
1266}
1267
Matt Mackall90b75ee2008-04-29 01:02:55 -07001268static ssize_t random_write(struct file *file, const char __user *buffer,
1269 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001270{
Matt Mackall7f397dc2007-05-29 21:58:10 -05001271 size_t ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001272
Matt Mackall7f397dc2007-05-29 21:58:10 -05001273 ret = write_pool(&blocking_pool, buffer, count);
1274 if (ret)
1275 return ret;
1276 ret = write_pool(&nonblocking_pool, buffer, count);
1277 if (ret)
1278 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001279
Matt Mackall7f397dc2007-05-29 21:58:10 -05001280 return (ssize_t)count;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001281}
1282
Matt Mackall43ae4862008-04-29 01:02:58 -07001283static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001284{
1285 int size, ent_count;
1286 int __user *p = (int __user *)arg;
1287 int retval;
1288
1289 switch (cmd) {
1290 case RNDGETENTCNT:
Matt Mackall43ae4862008-04-29 01:02:58 -07001291 /* inherently racy, no point locking */
1292 if (put_user(input_pool.entropy_count, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001293 return -EFAULT;
1294 return 0;
1295 case RNDADDTOENTCNT:
1296 if (!capable(CAP_SYS_ADMIN))
1297 return -EPERM;
1298 if (get_user(ent_count, p))
1299 return -EFAULT;
Matt Mackalladc782d2008-04-29 01:03:07 -07001300 credit_entropy_bits(&input_pool, ent_count);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001301 return 0;
1302 case RNDADDENTROPY:
1303 if (!capable(CAP_SYS_ADMIN))
1304 return -EPERM;
1305 if (get_user(ent_count, p++))
1306 return -EFAULT;
1307 if (ent_count < 0)
1308 return -EINVAL;
1309 if (get_user(size, p++))
1310 return -EFAULT;
Matt Mackall7f397dc2007-05-29 21:58:10 -05001311 retval = write_pool(&input_pool, (const char __user *)p,
1312 size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001313 if (retval < 0)
1314 return retval;
Matt Mackalladc782d2008-04-29 01:03:07 -07001315 credit_entropy_bits(&input_pool, ent_count);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001316 return 0;
1317 case RNDZAPENTCNT:
1318 case RNDCLEARPOOL:
1319 /* Clear the entropy pool counters. */
1320 if (!capable(CAP_SYS_ADMIN))
1321 return -EPERM;
Matt Mackall53c3f632008-04-29 01:02:58 -07001322 rand_initialize();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001323 return 0;
1324 default:
1325 return -EINVAL;
1326 }
1327}
1328
Jeff Dike9a6f70b2008-04-29 01:03:08 -07001329static int random_fasync(int fd, struct file *filp, int on)
1330{
1331 return fasync_helper(fd, filp, on, &fasync);
1332}
1333
Arjan van de Ven2b8693c2007-02-12 00:55:32 -08001334const struct file_operations random_fops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001335 .read = random_read,
1336 .write = random_write,
1337 .poll = random_poll,
Matt Mackall43ae4862008-04-29 01:02:58 -07001338 .unlocked_ioctl = random_ioctl,
Jeff Dike9a6f70b2008-04-29 01:03:08 -07001339 .fasync = random_fasync,
Arnd Bergmann6038f372010-08-15 18:52:59 +02001340 .llseek = noop_llseek,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001341};
1342
Arjan van de Ven2b8693c2007-02-12 00:55:32 -08001343const struct file_operations urandom_fops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001344 .read = urandom_read,
1345 .write = random_write,
Matt Mackall43ae4862008-04-29 01:02:58 -07001346 .unlocked_ioctl = random_ioctl,
Jeff Dike9a6f70b2008-04-29 01:03:08 -07001347 .fasync = random_fasync,
Arnd Bergmann6038f372010-08-15 18:52:59 +02001348 .llseek = noop_llseek,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001349};
1350
1351/***************************************************************
1352 * Random UUID interface
1353 *
1354 * Used here for a Boot ID, but can be useful for other kernel
1355 * drivers.
1356 ***************************************************************/
1357
1358/*
1359 * Generate random UUID
1360 */
1361void generate_random_uuid(unsigned char uuid_out[16])
1362{
1363 get_random_bytes(uuid_out, 16);
Adam Buchbinderc41b20e2009-12-11 16:35:39 -05001364 /* Set UUID version to 4 --- truly random generation */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001365 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1366 /* Set the UUID variant to DCE */
1367 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1368}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001369EXPORT_SYMBOL(generate_random_uuid);
1370
1371/********************************************************************
1372 *
1373 * Sysctl interface
1374 *
1375 ********************************************************************/
1376
1377#ifdef CONFIG_SYSCTL
1378
1379#include <linux/sysctl.h>
1380
1381static int min_read_thresh = 8, min_write_thresh;
1382static int max_read_thresh = INPUT_POOL_WORDS * 32;
1383static int max_write_thresh = INPUT_POOL_WORDS * 32;
1384static char sysctl_bootid[16];
1385
1386/*
1387 * These functions is used to return both the bootid UUID, and random
1388 * UUID. The difference is in whether table->data is NULL; if it is,
1389 * then a new UUID is generated and returned to the user.
1390 *
1391 * If the user accesses this via the proc interface, it will be returned
1392 * as an ASCII string in the standard UUID format. If accesses via the
1393 * sysctl system call, it is returned as 16 bytes of binary data.
1394 */
Alexey Dobriyan8d65af72009-09-23 15:57:19 -07001395static int proc_do_uuid(ctl_table *table, int write,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001396 void __user *buffer, size_t *lenp, loff_t *ppos)
1397{
1398 ctl_table fake_table;
1399 unsigned char buf[64], tmp_uuid[16], *uuid;
1400
1401 uuid = table->data;
1402 if (!uuid) {
1403 uuid = tmp_uuid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001404 generate_random_uuid(uuid);
Mathieu Desnoyers44e43602012-04-12 12:49:12 -07001405 } else {
1406 static DEFINE_SPINLOCK(bootid_spinlock);
1407
1408 spin_lock(&bootid_spinlock);
1409 if (!uuid[8])
1410 generate_random_uuid(uuid);
1411 spin_unlock(&bootid_spinlock);
1412 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001413
Joe Perches35900772009-12-14 18:01:11 -08001414 sprintf(buf, "%pU", uuid);
1415
Linus Torvalds1da177e2005-04-16 15:20:36 -07001416 fake_table.data = buf;
1417 fake_table.maxlen = sizeof(buf);
1418
Alexey Dobriyan8d65af72009-09-23 15:57:19 -07001419 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001420}
1421
Linus Torvalds1da177e2005-04-16 15:20:36 -07001422static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
Theodore Ts'o74feec52012-07-06 14:03:18 -04001423extern ctl_table random_table[];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001424ctl_table random_table[] = {
1425 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426 .procname = "poolsize",
1427 .data = &sysctl_poolsize,
1428 .maxlen = sizeof(int),
1429 .mode = 0444,
Eric W. Biederman6d456112009-11-16 03:11:48 -08001430 .proc_handler = proc_dointvec,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431 },
1432 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001433 .procname = "entropy_avail",
1434 .maxlen = sizeof(int),
1435 .mode = 0444,
Eric W. Biederman6d456112009-11-16 03:11:48 -08001436 .proc_handler = proc_dointvec,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001437 .data = &input_pool.entropy_count,
1438 },
1439 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001440 .procname = "read_wakeup_threshold",
1441 .data = &random_read_wakeup_thresh,
1442 .maxlen = sizeof(int),
1443 .mode = 0644,
Eric W. Biederman6d456112009-11-16 03:11:48 -08001444 .proc_handler = proc_dointvec_minmax,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001445 .extra1 = &min_read_thresh,
1446 .extra2 = &max_read_thresh,
1447 },
1448 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001449 .procname = "write_wakeup_threshold",
1450 .data = &random_write_wakeup_thresh,
1451 .maxlen = sizeof(int),
1452 .mode = 0644,
Eric W. Biederman6d456112009-11-16 03:11:48 -08001453 .proc_handler = proc_dointvec_minmax,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001454 .extra1 = &min_write_thresh,
1455 .extra2 = &max_write_thresh,
1456 },
1457 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458 .procname = "boot_id",
1459 .data = &sysctl_bootid,
1460 .maxlen = 16,
1461 .mode = 0444,
Eric W. Biederman6d456112009-11-16 03:11:48 -08001462 .proc_handler = proc_do_uuid,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001463 },
1464 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001465 .procname = "uuid",
1466 .maxlen = 16,
1467 .mode = 0444,
Eric W. Biederman6d456112009-11-16 03:11:48 -08001468 .proc_handler = proc_do_uuid,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001469 },
Eric W. Biederman894d2492009-11-05 14:34:02 -08001470 { }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001471};
1472#endif /* CONFIG_SYSCTL */
1473
David S. Miller6e5714e2011-08-03 20:50:44 -07001474static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001475
David S. Miller6e5714e2011-08-03 20:50:44 -07001476static int __init random_int_secret_init(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477{
David S. Miller6e5714e2011-08-03 20:50:44 -07001478 get_random_bytes(random_int_secret, sizeof(random_int_secret));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001479 return 0;
1480}
David S. Miller6e5714e2011-08-03 20:50:44 -07001481late_initcall(random_int_secret_init);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001482
1483/*
1484 * Get a random word for internal kernel use only. Similar to urandom but
1485 * with the goal of minimal entropy pool depletion. As a result, the random
1486 * value is not cryptographically secure but for several uses the cost of
1487 * depleting entropy is too high
1488 */
Theodore Ts'o74feec52012-07-06 14:03:18 -04001489static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001490unsigned int get_random_int(void)
1491{
H. Peter Anvin63d77172011-07-31 13:54:50 -07001492 __u32 *hash;
David S. Miller6e5714e2011-08-03 20:50:44 -07001493 unsigned int ret;
Linus Torvalds8a0a9bd2009-05-05 08:17:43 -07001494
H. Peter Anvin63d77172011-07-31 13:54:50 -07001495 if (arch_get_random_int(&ret))
1496 return ret;
1497
1498 hash = get_cpu_var(get_random_int_hash);
Linus Torvalds8a0a9bd2009-05-05 08:17:43 -07001499
Linus Torvalds26a9a412009-05-19 11:25:35 -07001500 hash[0] += current->pid + jiffies + get_cycles();
David S. Miller6e5714e2011-08-03 20:50:44 -07001501 md5_transform(hash, random_int_secret);
1502 ret = hash[0];
Linus Torvalds8a0a9bd2009-05-05 08:17:43 -07001503 put_cpu_var(get_random_int_hash);
1504
1505 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001506}
1507
1508/*
1509 * randomize_range() returns a start address such that
1510 *
1511 * [...... <range> .....]
1512 * start end
1513 *
1514 * a <range> with size "len" starting at the return value is inside in the
1515 * area defined by [start, end], but is otherwise randomized.
1516 */
1517unsigned long
1518randomize_range(unsigned long start, unsigned long end, unsigned long len)
1519{
1520 unsigned long range = end - len - start;
1521
1522 if (end <= start + len)
1523 return 0;
1524 return PAGE_ALIGN(get_random_int() % range + start);
1525}