blob: fdd078d7d82c661ec5c63e8198c9ae6d464366c3 [file] [log] [blame]
Casey Leedomc6e0d912010-06-25 12:13:28 +00001/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/skbuff.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/if_vlan.h>
40#include <linux/ip.h>
41#include <net/ipv6.h>
42#include <net/tcp.h>
43#include <linux/dma-mapping.h>
Paul Gortmaker70c71602011-05-22 16:47:17 -040044#include <linux/prefetch.h>
Casey Leedomc6e0d912010-06-25 12:13:28 +000045
46#include "t4vf_common.h"
47#include "t4vf_defs.h"
48
49#include "../cxgb4/t4_regs.h"
50#include "../cxgb4/t4fw_api.h"
51#include "../cxgb4/t4_msg.h"
52
53/*
Casey Leedomc6e0d912010-06-25 12:13:28 +000054 * Constants ...
55 */
56enum {
57 /*
58 * Egress Queue sizes, producer and consumer indices are all in units
59 * of Egress Context Units bytes. Note that as far as the hardware is
60 * concerned, the free list is an Egress Queue (the host produces free
61 * buffers which the hardware consumes) and free list entries are
62 * 64-bit PCI DMA addresses.
63 */
64 EQ_UNIT = SGE_EQ_IDXSIZE,
65 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
66 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
67
68 /*
69 * Max number of TX descriptors we clean up at a time. Should be
70 * modest as freeing skbs isn't cheap and it happens while holding
71 * locks. We just need to free packets faster than they arrive, we
72 * eventually catch up and keep the amortized cost reasonable.
73 */
74 MAX_TX_RECLAIM = 16,
75
76 /*
77 * Max number of Rx buffers we replenish at a time. Again keep this
78 * modest, allocating buffers isn't cheap either.
79 */
80 MAX_RX_REFILL = 16,
81
82 /*
83 * Period of the Rx queue check timer. This timer is infrequent as it
84 * has something to do only when the system experiences severe memory
85 * shortage.
86 */
87 RX_QCHECK_PERIOD = (HZ / 2),
88
89 /*
90 * Period of the TX queue check timer and the maximum number of TX
91 * descriptors to be reclaimed by the TX timer.
92 */
93 TX_QCHECK_PERIOD = (HZ / 2),
94 MAX_TIMER_TX_RECLAIM = 100,
95
96 /*
Casey Leedomc6e0d912010-06-25 12:13:28 +000097 * Suspend an Ethernet TX queue with fewer available descriptors than
98 * this. We always want to have room for a maximum sized packet:
99 * inline immediate data + MAX_SKB_FRAGS. This is the same as
100 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
101 * (see that function and its helpers for a description of the
102 * calculation).
103 */
104 ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
105 ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
106 ((ETHTXQ_MAX_FRAGS-1) & 1) +
107 2),
108 ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
109 sizeof(struct cpl_tx_pkt_lso_core) +
110 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
111 ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
112
113 ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
114
115 /*
116 * Max TX descriptor space we allow for an Ethernet packet to be
117 * inlined into a WR. This is limited by the maximum value which
118 * we can specify for immediate data in the firmware Ethernet TX
119 * Work Request.
120 */
121 MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK,
122
123 /*
124 * Max size of a WR sent through a control TX queue.
125 */
126 MAX_CTRL_WR_LEN = 256,
127
128 /*
129 * Maximum amount of data which we'll ever need to inline into a
130 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
131 */
132 MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
133 ? MAX_IMM_TX_PKT_LEN
134 : MAX_CTRL_WR_LEN),
135
136 /*
137 * For incoming packets less than RX_COPY_THRES, we copy the data into
138 * an skb rather than referencing the data. We allocate enough
139 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
140 * of the data (header).
141 */
142 RX_COPY_THRES = 256,
143 RX_PULL_LEN = 128,
Casey Leedomc6e0d912010-06-25 12:13:28 +0000144
Casey Leedomeb6c5032010-11-11 09:06:50 +0000145 /*
146 * Main body length for sk_buffs used for RX Ethernet packets with
147 * fragments. Should be >= RX_PULL_LEN but possibly bigger to give
148 * pskb_may_pull() some room.
149 */
150 RX_SKB_LEN = 512,
151};
Casey Leedomc6e0d912010-06-25 12:13:28 +0000152
153/*
154 * Software state per TX descriptor.
155 */
156struct tx_sw_desc {
157 struct sk_buff *skb; /* socket buffer of TX data source */
158 struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */
159};
160
161/*
162 * Software state per RX Free List descriptor. We keep track of the allocated
163 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL
164 * page size and its PCI DMA mapped state are stored in the low bits of the
165 * PCI DMA address as per below.
166 */
167struct rx_sw_desc {
168 struct page *page; /* Free List page buffer */
169 dma_addr_t dma_addr; /* PCI DMA address (if mapped) */
170 /* and flags (see below) */
171};
172
173/*
174 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the
175 * SGE also uses the low 4 bits to determine the size of the buffer. It uses
176 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
177 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
178 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
179 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is
180 * maintained in an inverse sense so the hardware never sees that bit high.
181 */
182enum {
183 RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */
184 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
185};
186
187/**
188 * get_buf_addr - return DMA buffer address of software descriptor
189 * @sdesc: pointer to the software buffer descriptor
190 *
191 * Return the DMA buffer address of a software descriptor (stripping out
192 * our low-order flag bits).
193 */
194static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
195{
196 return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
197}
198
199/**
200 * is_buf_mapped - is buffer mapped for DMA?
201 * @sdesc: pointer to the software buffer descriptor
202 *
203 * Determine whether the buffer associated with a software descriptor in
204 * mapped for DMA or not.
205 */
206static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
207{
208 return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
209}
210
211/**
212 * need_skb_unmap - does the platform need unmapping of sk_buffs?
213 *
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300214 * Returns true if the platform needs sk_buff unmapping. The compiler
215 * optimizes away unnecessary code if this returns true.
Casey Leedomc6e0d912010-06-25 12:13:28 +0000216 */
217static inline int need_skb_unmap(void)
218{
FUJITA Tomonori57b2eaf2010-07-07 23:52:37 +0000219#ifdef CONFIG_NEED_DMA_MAP_STATE
220 return 1;
221#else
222 return 0;
223#endif
Casey Leedomc6e0d912010-06-25 12:13:28 +0000224}
225
226/**
227 * txq_avail - return the number of available slots in a TX queue
228 * @tq: the TX queue
229 *
230 * Returns the number of available descriptors in a TX queue.
231 */
232static inline unsigned int txq_avail(const struct sge_txq *tq)
233{
234 return tq->size - 1 - tq->in_use;
235}
236
237/**
238 * fl_cap - return the capacity of a Free List
239 * @fl: the Free List
240 *
241 * Returns the capacity of a Free List. The capacity is less than the
242 * size because an Egress Queue Index Unit worth of descriptors needs to
243 * be left unpopulated, otherwise the Producer and Consumer indices PIDX
244 * and CIDX will match and the hardware will think the FL is empty.
245 */
246static inline unsigned int fl_cap(const struct sge_fl *fl)
247{
248 return fl->size - FL_PER_EQ_UNIT;
249}
250
251/**
252 * fl_starving - return whether a Free List is starving.
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530253 * @adapter: pointer to the adapter
Casey Leedomc6e0d912010-06-25 12:13:28 +0000254 * @fl: the Free List
255 *
256 * Tests specified Free List to see whether the number of buffers
257 * available to the hardware has falled below our "starvation"
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300258 * threshold.
Casey Leedomc6e0d912010-06-25 12:13:28 +0000259 */
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530260static inline bool fl_starving(const struct adapter *adapter,
261 const struct sge_fl *fl)
Casey Leedomc6e0d912010-06-25 12:13:28 +0000262{
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530263 const struct sge *s = &adapter->sge;
264
265 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
Casey Leedomc6e0d912010-06-25 12:13:28 +0000266}
267
268/**
269 * map_skb - map an skb for DMA to the device
270 * @dev: the egress net device
271 * @skb: the packet to map
272 * @addr: a pointer to the base of the DMA mapping array
273 *
274 * Map an skb for DMA to the device and return an array of DMA addresses.
275 */
276static int map_skb(struct device *dev, const struct sk_buff *skb,
277 dma_addr_t *addr)
278{
279 const skb_frag_t *fp, *end;
280 const struct skb_shared_info *si;
281
282 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
283 if (dma_mapping_error(dev, *addr))
284 goto out_err;
285
286 si = skb_shinfo(skb);
287 end = &si->frags[si->nr_frags];
288 for (fp = si->frags; fp < end; fp++) {
Ian Campbella0006a82011-10-19 23:01:47 +0000289 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
290 DMA_TO_DEVICE);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000291 if (dma_mapping_error(dev, *addr))
292 goto unwind;
293 }
294 return 0;
295
296unwind:
297 while (fp-- > si->frags)
Eric Dumazet9e903e02011-10-18 21:00:24 +0000298 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000299 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
300
301out_err:
302 return -ENOMEM;
303}
304
305static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
306 const struct ulptx_sgl *sgl, const struct sge_txq *tq)
307{
308 const struct ulptx_sge_pair *p;
309 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
310
311 if (likely(skb_headlen(skb)))
312 dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
313 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
314 else {
315 dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
316 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
317 nfrags--;
318 }
319
320 /*
321 * the complexity below is because of the possibility of a wrap-around
322 * in the middle of an SGL
323 */
324 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
325 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
326unmap:
327 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
328 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
329 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
330 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
331 p++;
332 } else if ((u8 *)p == (u8 *)tq->stat) {
333 p = (const struct ulptx_sge_pair *)tq->desc;
334 goto unmap;
335 } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
336 const __be64 *addr = (const __be64 *)tq->desc;
337
338 dma_unmap_page(dev, be64_to_cpu(addr[0]),
339 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
340 dma_unmap_page(dev, be64_to_cpu(addr[1]),
341 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
342 p = (const struct ulptx_sge_pair *)&addr[2];
343 } else {
344 const __be64 *addr = (const __be64 *)tq->desc;
345
346 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
347 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
348 dma_unmap_page(dev, be64_to_cpu(addr[0]),
349 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
350 p = (const struct ulptx_sge_pair *)&addr[1];
351 }
352 }
353 if (nfrags) {
354 __be64 addr;
355
356 if ((u8 *)p == (u8 *)tq->stat)
357 p = (const struct ulptx_sge_pair *)tq->desc;
358 addr = ((u8 *)p + 16 <= (u8 *)tq->stat
359 ? p->addr[0]
360 : *(const __be64 *)tq->desc);
361 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
362 DMA_TO_DEVICE);
363 }
364}
365
366/**
367 * free_tx_desc - reclaims TX descriptors and their buffers
368 * @adapter: the adapter
369 * @tq: the TX queue to reclaim descriptors from
370 * @n: the number of descriptors to reclaim
371 * @unmap: whether the buffers should be unmapped for DMA
372 *
373 * Reclaims TX descriptors from an SGE TX queue and frees the associated
374 * TX buffers. Called with the TX queue lock held.
375 */
376static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
377 unsigned int n, bool unmap)
378{
379 struct tx_sw_desc *sdesc;
380 unsigned int cidx = tq->cidx;
381 struct device *dev = adapter->pdev_dev;
382
383 const int need_unmap = need_skb_unmap() && unmap;
384
385 sdesc = &tq->sdesc[cidx];
386 while (n--) {
387 /*
388 * If we kept a reference to the original TX skb, we need to
389 * unmap it from PCI DMA space (if required) and free it.
390 */
391 if (sdesc->skb) {
392 if (need_unmap)
393 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
Eric W. Biederman42ffda52014-03-15 16:31:32 -0700394 dev_consume_skb_any(sdesc->skb);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000395 sdesc->skb = NULL;
396 }
397
398 sdesc++;
399 if (++cidx == tq->size) {
400 cidx = 0;
401 sdesc = tq->sdesc;
402 }
403 }
404 tq->cidx = cidx;
405}
406
407/*
408 * Return the number of reclaimable descriptors in a TX queue.
409 */
410static inline int reclaimable(const struct sge_txq *tq)
411{
412 int hw_cidx = be16_to_cpu(tq->stat->cidx);
413 int reclaimable = hw_cidx - tq->cidx;
414 if (reclaimable < 0)
415 reclaimable += tq->size;
416 return reclaimable;
417}
418
419/**
420 * reclaim_completed_tx - reclaims completed TX descriptors
421 * @adapter: the adapter
422 * @tq: the TX queue to reclaim completed descriptors from
423 * @unmap: whether the buffers should be unmapped for DMA
424 *
425 * Reclaims TX descriptors that the SGE has indicated it has processed,
426 * and frees the associated buffers if possible. Called with the TX
427 * queue locked.
428 */
429static inline void reclaim_completed_tx(struct adapter *adapter,
430 struct sge_txq *tq,
431 bool unmap)
432{
433 int avail = reclaimable(tq);
434
435 if (avail) {
436 /*
437 * Limit the amount of clean up work we do at a time to keep
438 * the TX lock hold time O(1).
439 */
440 if (avail > MAX_TX_RECLAIM)
441 avail = MAX_TX_RECLAIM;
442
443 free_tx_desc(adapter, tq, avail, unmap);
444 tq->in_use -= avail;
445 }
446}
447
448/**
449 * get_buf_size - return the size of an RX Free List buffer.
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530450 * @adapter: pointer to the associated adapter
Casey Leedomc6e0d912010-06-25 12:13:28 +0000451 * @sdesc: pointer to the software buffer descriptor
452 */
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530453static inline int get_buf_size(const struct adapter *adapter,
454 const struct rx_sw_desc *sdesc)
Casey Leedomc6e0d912010-06-25 12:13:28 +0000455{
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530456 const struct sge *s = &adapter->sge;
457
458 return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
459 ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000460}
461
462/**
463 * free_rx_bufs - free RX buffers on an SGE Free List
464 * @adapter: the adapter
465 * @fl: the SGE Free List to free buffers from
466 * @n: how many buffers to free
467 *
468 * Release the next @n buffers on an SGE Free List RX queue. The
469 * buffers must be made inaccessible to hardware before calling this
470 * function.
471 */
472static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
473{
474 while (n--) {
475 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
476
477 if (is_buf_mapped(sdesc))
478 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530479 get_buf_size(adapter, sdesc),
480 PCI_DMA_FROMDEVICE);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000481 put_page(sdesc->page);
482 sdesc->page = NULL;
483 if (++fl->cidx == fl->size)
484 fl->cidx = 0;
485 fl->avail--;
486 }
487}
488
489/**
490 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List
491 * @adapter: the adapter
492 * @fl: the SGE Free List
493 *
494 * Unmap the current buffer on an SGE Free List RX queue. The
495 * buffer must be made inaccessible to HW before calling this function.
496 *
497 * This is similar to @free_rx_bufs above but does not free the buffer.
498 * Do note that the FL still loses any further access to the buffer.
499 * This is used predominantly to "transfer ownership" of an FL buffer
500 * to another entity (typically an skb's fragment list).
501 */
502static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
503{
504 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
505
506 if (is_buf_mapped(sdesc))
507 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530508 get_buf_size(adapter, sdesc),
509 PCI_DMA_FROMDEVICE);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000510 sdesc->page = NULL;
511 if (++fl->cidx == fl->size)
512 fl->cidx = 0;
513 fl->avail--;
514}
515
516/**
517 * ring_fl_db - righ doorbell on free list
518 * @adapter: the adapter
519 * @fl: the Free List whose doorbell should be rung ...
520 *
521 * Tell the Scatter Gather Engine that there are new free list entries
522 * available.
523 */
524static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
525{
Santosh Rastapur622c62b2013-03-14 05:08:57 +0000526 u32 val;
527
Casey Leedomc6e0d912010-06-25 12:13:28 +0000528 /*
529 * The SGE keeps track of its Producer and Consumer Indices in terms
530 * of Egress Queue Units so we can only tell it about integral numbers
531 * of multiples of Free List Entries per Egress Queue Units ...
532 */
533 if (fl->pend_cred >= FL_PER_EQ_UNIT) {
Santosh Rastapur622c62b2013-03-14 05:08:57 +0000534 val = PIDX(fl->pend_cred / FL_PER_EQ_UNIT);
Hariprasad Shenai70ee3662013-12-03 17:05:57 +0530535 if (!is_t4(adapter->params.chip))
Santosh Rastapur622c62b2013-03-14 05:08:57 +0000536 val |= DBTYPE(1);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000537 wmb();
538 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
Naresh Kumar Innace91a922012-11-15 22:41:17 +0530539 DBPRIO(1) |
Santosh Rastapur622c62b2013-03-14 05:08:57 +0000540 QID(fl->cntxt_id) | val);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000541 fl->pend_cred %= FL_PER_EQ_UNIT;
542 }
543}
544
545/**
546 * set_rx_sw_desc - initialize software RX buffer descriptor
547 * @sdesc: pointer to the softwore RX buffer descriptor
548 * @page: pointer to the page data structure backing the RX buffer
549 * @dma_addr: PCI DMA address (possibly with low-bit flags)
550 */
551static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
552 dma_addr_t dma_addr)
553{
554 sdesc->page = page;
555 sdesc->dma_addr = dma_addr;
556}
557
558/*
559 * Support for poisoning RX buffers ...
560 */
561#define POISON_BUF_VAL -1
562
563static inline void poison_buf(struct page *page, size_t sz)
564{
565#if POISON_BUF_VAL >= 0
566 memset(page_address(page), POISON_BUF_VAL, sz);
567#endif
568}
569
570/**
571 * refill_fl - refill an SGE RX buffer ring
572 * @adapter: the adapter
573 * @fl: the Free List ring to refill
574 * @n: the number of new buffers to allocate
575 * @gfp: the gfp flags for the allocations
576 *
577 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
578 * allocated with the supplied gfp flags. The caller must assure that
579 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
580 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number
581 * of buffers allocated. If afterwards the queue is found critically low,
582 * mark it as starving in the bitmap of starving FLs.
583 */
584static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
585 int n, gfp_t gfp)
586{
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530587 struct sge *s = &adapter->sge;
Casey Leedomc6e0d912010-06-25 12:13:28 +0000588 struct page *page;
589 dma_addr_t dma_addr;
590 unsigned int cred = fl->avail;
591 __be64 *d = &fl->desc[fl->pidx];
592 struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
593
594 /*
595 * Sanity: ensure that the result of adding n Free List buffers
596 * won't result in wrapping the SGE's Producer Index around to
597 * it's Consumer Index thereby indicating an empty Free List ...
598 */
599 BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
600
601 /*
602 * If we support large pages, prefer large buffers and fail over to
603 * small pages if we can't allocate large pages to satisfy the refill.
604 * If we don't support large pages, drop directly into the small page
605 * allocation code.
606 */
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530607 if (s->fl_pg_order == 0)
Casey Leedomc6e0d912010-06-25 12:13:28 +0000608 goto alloc_small_pages;
609
610 while (n) {
611 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530612 s->fl_pg_order);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000613 if (unlikely(!page)) {
614 /*
615 * We've failed inour attempt to allocate a "large
616 * page". Fail over to the "small page" allocation
617 * below.
618 */
619 fl->large_alloc_failed++;
620 break;
621 }
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530622 poison_buf(page, PAGE_SIZE << s->fl_pg_order);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000623
624 dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530625 PAGE_SIZE << s->fl_pg_order,
Casey Leedomc6e0d912010-06-25 12:13:28 +0000626 PCI_DMA_FROMDEVICE);
627 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
628 /*
629 * We've run out of DMA mapping space. Free up the
630 * buffer and return with what we've managed to put
631 * into the free list. We don't want to fail over to
632 * the small page allocation below in this case
633 * because DMA mapping resources are typically
634 * critical resources once they become scarse.
635 */
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530636 __free_pages(page, s->fl_pg_order);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000637 goto out;
638 }
639 dma_addr |= RX_LARGE_BUF;
640 *d++ = cpu_to_be64(dma_addr);
641
642 set_rx_sw_desc(sdesc, page, dma_addr);
643 sdesc++;
644
645 fl->avail++;
646 if (++fl->pidx == fl->size) {
647 fl->pidx = 0;
648 sdesc = fl->sdesc;
649 d = fl->desc;
650 }
651 n--;
652 }
653
654alloc_small_pages:
655 while (n--) {
Mel Gorman06140022012-07-31 16:44:24 -0700656 page = __skb_alloc_page(gfp | __GFP_NOWARN, NULL);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000657 if (unlikely(!page)) {
658 fl->alloc_failed++;
659 break;
660 }
661 poison_buf(page, PAGE_SIZE);
662
663 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
664 PCI_DMA_FROMDEVICE);
665 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
Eric Dumazet1f2149c2011-11-22 10:57:41 +0000666 put_page(page);
Casey Leedomc6e0d912010-06-25 12:13:28 +0000667 break;
668 }
669 *d++ = cpu_to_be64(dma_addr);
670
671 set_rx_sw_desc(sdesc, page, dma_addr);
672 sdesc++;
673
674 fl->avail++;
675 if (++fl->pidx == fl->size) {
676 fl->pidx = 0;
677 sdesc = fl->sdesc;
678 d = fl->desc;
679 }
680 }
681
682out:
683 /*
684 * Update our accounting state to incorporate the new Free List
685 * buffers, tell the hardware about them and return the number of
Paul Bolle90802ed2011-12-05 13:00:34 +0100686 * buffers which we were able to allocate.
Casey Leedomc6e0d912010-06-25 12:13:28 +0000687 */
688 cred = fl->avail - cred;
689 fl->pend_cred += cred;
690 ring_fl_db(adapter, fl);
691
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +0530692 if (unlikely(fl_starving(adapter, fl))) {
Casey Leedomc6e0d912010-06-25 12:13:28 +0000693 smp_wmb();
694 set_bit(fl->cntxt_id, adapter->sge.starving_fl);
695 }
696
697 return cred;
698}
699
700/*
701 * Refill a Free List to its capacity or the Maximum Refill Increment,
702 * whichever is smaller ...
703 */
704static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
705{
706 refill_fl(adapter, fl,
707 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
708 GFP_ATOMIC);
709}
710
711/**
712 * alloc_ring - allocate resources for an SGE descriptor ring
713 * @dev: the PCI device's core device
714 * @nelem: the number of descriptors
715 * @hwsize: the size of each hardware descriptor
716 * @swsize: the size of each software descriptor
717 * @busaddrp: the physical PCI bus address of the allocated ring
718 * @swringp: return address pointer for software ring
719 * @stat_size: extra space in hardware ring for status information
720 *
721 * Allocates resources for an SGE descriptor ring, such as TX queues,
722 * free buffer lists, response queues, etc. Each SGE ring requires
723 * space for its hardware descriptors plus, optionally, space for software
724 * state associated with each hardware entry (the metadata). The function
725 * returns three values: the virtual address for the hardware ring (the
726 * return value of the function), the PCI bus address of the hardware
727 * ring (in *busaddrp), and the address of the software ring (in swringp).
728 * Both the hardware and software rings are returned zeroed out.
729 */
730static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
731 size_t swsize, dma_addr_t *busaddrp, void *swringp,
732 size_t stat_size)
733{
734 /*
735 * Allocate the hardware ring and PCI DMA bus address space for said.
736 */
737 size_t hwlen = nelem * hwsize + stat_size;
738 void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
739
740 if (!hwring)
741 return NULL;
742
743 /*
744 * If the caller wants a software ring, allocate it and return a
745 * pointer to it in *swringp.
746 */
747 BUG_ON((swsize != 0) != (swringp != NULL));
748 if (swsize) {
749 void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
750
751 if (!swring) {
752 dma_free_coherent(dev, hwlen, hwring, *busaddrp);
753 return NULL;
754 }
755 *(void **)swringp = swring;
756 }
757
758 /*
759 * Zero out the hardware ring and return its address as our function
760 * value.
761 */
762 memset(hwring, 0, hwlen);
763 return hwring;
764}
765
766/**
767 * sgl_len - calculates the size of an SGL of the given capacity
768 * @n: the number of SGL entries
769 *
770 * Calculates the number of flits (8-byte units) needed for a Direct
771 * Scatter/Gather List that can hold the given number of entries.
772 */
773static inline unsigned int sgl_len(unsigned int n)
774{
775 /*
776 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
777 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
778 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
779 * repeated sequences of { Length[i], Length[i+1], Address[i],
780 * Address[i+1] } (this ensures that all addresses are on 64-bit
781 * boundaries). If N is even, then Length[N+1] should be set to 0 and
782 * Address[N+1] is omitted.
783 *
784 * The following calculation incorporates all of the above. It's
785 * somewhat hard to follow but, briefly: the "+2" accounts for the
786 * first two flits which include the DSGL header, Length0 and
787 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
788 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
789 * finally the "+((n-1)&1)" adds the one remaining flit needed if
790 * (n-1) is odd ...
791 */
792 n--;
793 return (3 * n) / 2 + (n & 1) + 2;
794}
795
796/**
797 * flits_to_desc - returns the num of TX descriptors for the given flits
798 * @flits: the number of flits
799 *
800 * Returns the number of TX descriptors needed for the supplied number
801 * of flits.
802 */
803static inline unsigned int flits_to_desc(unsigned int flits)
804{
805 BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
806 return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
807}
808
809/**
810 * is_eth_imm - can an Ethernet packet be sent as immediate data?
811 * @skb: the packet
812 *
813 * Returns whether an Ethernet packet is small enough to fit completely as
814 * immediate data.
815 */
816static inline int is_eth_imm(const struct sk_buff *skb)
817{
818 /*
819 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
820 * which does not accommodate immediate data. We could dike out all
821 * of the support code for immediate data but that would tie our hands
822 * too much if we ever want to enhace the firmware. It would also
823 * create more differences between the PF and VF Drivers.
824 */
825 return false;
826}
827
828/**
829 * calc_tx_flits - calculate the number of flits for a packet TX WR
830 * @skb: the packet
831 *
832 * Returns the number of flits needed for a TX Work Request for the
833 * given Ethernet packet, including the needed WR and CPL headers.
834 */
835static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
836{
837 unsigned int flits;
838
839 /*
840 * If the skb is small enough, we can pump it out as a work request
841 * with only immediate data. In that case we just have to have the
842 * TX Packet header plus the skb data in the Work Request.
843 */
844 if (is_eth_imm(skb))
845 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
846 sizeof(__be64));
847
848 /*
849 * Otherwise, we're going to have to construct a Scatter gather list
850 * of the skb body and fragments. We also include the flits necessary
851 * for the TX Packet Work Request and CPL. We always have a firmware
852 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
853 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
854 * message or, if we're doing a Large Send Offload, an LSO CPL message
855 * with an embeded TX Packet Write CPL message.
856 */
857 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
858 if (skb_shinfo(skb)->gso_size)
859 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
860 sizeof(struct cpl_tx_pkt_lso_core) +
861 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
862 else
863 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
864 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
865 return flits;
866}
867
868/**
869 * write_sgl - populate a Scatter/Gather List for a packet
870 * @skb: the packet
871 * @tq: the TX queue we are writing into
872 * @sgl: starting location for writing the SGL
873 * @end: points right after the end of the SGL
874 * @start: start offset into skb main-body data to include in the SGL
875 * @addr: the list of DMA bus addresses for the SGL elements
876 *
877 * Generates a Scatter/Gather List for the buffers that make up a packet.
878 * The caller must provide adequate space for the SGL that will be written.
879 * The SGL includes all of the packet's page fragments and the data in its
880 * main body except for the first @start bytes. @pos must be 16-byte
881 * aligned and within a TX descriptor with available space. @end points
882 * write after the end of the SGL but does not account for any potential
883 * wrap around, i.e., @end > @tq->stat.
884 */
885static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
886 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
887 const dma_addr_t *addr)
888{
889 unsigned int i, len;
890 struct ulptx_sge_pair *to;
891 const struct skb_shared_info *si = skb_shinfo(skb);
892 unsigned int nfrags = si->nr_frags;
893 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
894
895 len = skb_headlen(skb) - start;
896 if (likely(len)) {
897 sgl->len0 = htonl(len);
898 sgl->addr0 = cpu_to_be64(addr[0] + start);
899 nfrags++;
900 } else {
Eric Dumazet9e903e02011-10-18 21:00:24 +0000901 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
Casey Leedomc6e0d912010-06-25 12:13:28 +0000902 sgl->addr0 = cpu_to_be64(addr[1]);
903 }
904
905 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) |
906 ULPTX_NSGE(nfrags));
907 if (likely(--nfrags == 0))
908 return;
909 /*
910 * Most of the complexity below deals with the possibility we hit the
911 * end of the queue in the middle of writing the SGL. For this case
912 * only we create the SGL in a temporary buffer and then copy it.
913 */
914 to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
915
916 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
Eric Dumazet9e903e02011-10-18 21:00:24 +0000917 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
918 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
Casey Leedomc6e0d912010-06-25 12:13:28 +0000919 to->addr[0] = cpu_to_be64(addr[i]);
920 to->addr[1] = cpu_to_be64(addr[++i]);
921 }
922 if (nfrags) {
Eric Dumazet9e903e02011-10-18 21:00:24 +0000923 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
Casey Leedomc6e0d912010-06-25 12:13:28 +0000924 to->len[1] = cpu_to_be32(0);
925 to->addr[0] = cpu_to_be64(addr[i + 1]);
926 }
927 if (unlikely((u8 *)end > (u8 *)tq->stat)) {
928 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
929
930 if (likely(part0))
931 memcpy(sgl->sge, buf, part0);
932 part1 = (u8 *)end - (u8 *)tq->stat;
933 memcpy(tq->desc, (u8 *)buf + part0, part1);
934 end = (void *)tq->desc + part1;
935 }
936 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
Joe Perches64699332012-06-04 12:44:16 +0000937 *end = 0;
Casey Leedomc6e0d912010-06-25 12:13:28 +0000938}
939
940/**
941 * check_ring_tx_db - check and potentially ring a TX queue's doorbell
942 * @adapter: the adapter
943 * @tq: the TX queue
944 * @n: number of new descriptors to give to HW
945 *
946 * Ring the doorbel for a TX queue.
947 */
948static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
949 int n)
950{
951 /*
952 * Warn if we write doorbells with the wrong priority and write
953 * descriptors before telling HW.
954 */
Naresh Kumar Innace91a922012-11-15 22:41:17 +0530955 WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO(1));
Casey Leedomc6e0d912010-06-25 12:13:28 +0000956 wmb();
957 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
958 QID(tq->cntxt_id) | PIDX(n));
959}
960
961/**
962 * inline_tx_skb - inline a packet's data into TX descriptors
963 * @skb: the packet
964 * @tq: the TX queue where the packet will be inlined
965 * @pos: starting position in the TX queue to inline the packet
966 *
967 * Inline a packet's contents directly into TX descriptors, starting at
968 * the given position within the TX DMA ring.
969 * Most of the complexity of this operation is dealing with wrap arounds
970 * in the middle of the packet we want to inline.
971 */
972static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
973 void *pos)
974{
975 u64 *p;
976 int left = (void *)tq->stat - pos;
977
978 if (likely(skb->len <= left)) {
979 if (likely(!skb->data_len))
980 skb_copy_from_linear_data(skb, pos, skb->len);
981 else
982 skb_copy_bits(skb, 0, pos, skb->len);
983 pos += skb->len;
984 } else {
985 skb_copy_bits(skb, 0, pos, left);
986 skb_copy_bits(skb, left, tq->desc, skb->len - left);
987 pos = (void *)tq->desc + (skb->len - left);
988 }
989
990 /* 0-pad to multiple of 16 */
991 p = PTR_ALIGN(pos, 8);
992 if ((uintptr_t)p & 8)
993 *p = 0;
994}
995
996/*
997 * Figure out what HW csum a packet wants and return the appropriate control
998 * bits.
999 */
1000static u64 hwcsum(const struct sk_buff *skb)
1001{
1002 int csum_type;
1003 const struct iphdr *iph = ip_hdr(skb);
1004
1005 if (iph->version == 4) {
1006 if (iph->protocol == IPPROTO_TCP)
1007 csum_type = TX_CSUM_TCPIP;
1008 else if (iph->protocol == IPPROTO_UDP)
1009 csum_type = TX_CSUM_UDPIP;
1010 else {
1011nocsum:
1012 /*
1013 * unknown protocol, disable HW csum
1014 * and hope a bad packet is detected
1015 */
1016 return TXPKT_L4CSUM_DIS;
1017 }
1018 } else {
1019 /*
1020 * this doesn't work with extension headers
1021 */
1022 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1023
1024 if (ip6h->nexthdr == IPPROTO_TCP)
1025 csum_type = TX_CSUM_TCPIP6;
1026 else if (ip6h->nexthdr == IPPROTO_UDP)
1027 csum_type = TX_CSUM_UDPIP6;
1028 else
1029 goto nocsum;
1030 }
1031
1032 if (likely(csum_type >= TX_CSUM_TCPIP))
1033 return TXPKT_CSUM_TYPE(csum_type) |
1034 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1035 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1036 else {
1037 int start = skb_transport_offset(skb);
1038
1039 return TXPKT_CSUM_TYPE(csum_type) |
1040 TXPKT_CSUM_START(start) |
1041 TXPKT_CSUM_LOC(start + skb->csum_offset);
1042 }
1043}
1044
1045/*
1046 * Stop an Ethernet TX queue and record that state change.
1047 */
1048static void txq_stop(struct sge_eth_txq *txq)
1049{
1050 netif_tx_stop_queue(txq->txq);
1051 txq->q.stops++;
1052}
1053
1054/*
1055 * Advance our software state for a TX queue by adding n in use descriptors.
1056 */
1057static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1058{
1059 tq->in_use += n;
1060 tq->pidx += n;
1061 if (tq->pidx >= tq->size)
1062 tq->pidx -= tq->size;
1063}
1064
1065/**
1066 * t4vf_eth_xmit - add a packet to an Ethernet TX queue
1067 * @skb: the packet
1068 * @dev: the egress net device
1069 *
1070 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1071 */
1072int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1073{
Casey Leedom7f9dd2f2010-07-12 14:39:07 -07001074 u32 wr_mid;
Casey Leedomc6e0d912010-06-25 12:13:28 +00001075 u64 cntrl, *end;
1076 int qidx, credits;
1077 unsigned int flits, ndesc;
1078 struct adapter *adapter;
1079 struct sge_eth_txq *txq;
1080 const struct port_info *pi;
1081 struct fw_eth_tx_pkt_vm_wr *wr;
1082 struct cpl_tx_pkt_core *cpl;
1083 const struct skb_shared_info *ssi;
1084 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1085 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1086 sizeof(wr->ethmacsrc) +
1087 sizeof(wr->ethtype) +
1088 sizeof(wr->vlantci));
1089
1090 /*
1091 * The chip minimum packet length is 10 octets but the firmware
1092 * command that we are using requires that we copy the Ethernet header
1093 * (including the VLAN tag) into the header so we reject anything
1094 * smaller than that ...
1095 */
1096 if (unlikely(skb->len < fw_hdr_copy_len))
1097 goto out_free;
1098
1099 /*
1100 * Figure out which TX Queue we're going to use.
1101 */
1102 pi = netdev_priv(dev);
1103 adapter = pi->adapter;
1104 qidx = skb_get_queue_mapping(skb);
1105 BUG_ON(qidx >= pi->nqsets);
1106 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1107
1108 /*
1109 * Take this opportunity to reclaim any TX Descriptors whose DMA
1110 * transfers have completed.
1111 */
1112 reclaim_completed_tx(adapter, &txq->q, true);
1113
1114 /*
1115 * Calculate the number of flits and TX Descriptors we're going to
1116 * need along with how many TX Descriptors will be left over after
1117 * we inject our Work Request.
1118 */
1119 flits = calc_tx_flits(skb);
1120 ndesc = flits_to_desc(flits);
1121 credits = txq_avail(&txq->q) - ndesc;
1122
1123 if (unlikely(credits < 0)) {
1124 /*
1125 * Not enough room for this packet's Work Request. Stop the
1126 * TX Queue and return a "busy" condition. The queue will get
1127 * started later on when the firmware informs us that space
1128 * has opened up.
1129 */
1130 txq_stop(txq);
1131 dev_err(adapter->pdev_dev,
1132 "%s: TX ring %u full while queue awake!\n",
1133 dev->name, qidx);
1134 return NETDEV_TX_BUSY;
1135 }
1136
1137 if (!is_eth_imm(skb) &&
1138 unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1139 /*
1140 * We need to map the skb into PCI DMA space (because it can't
1141 * be in-lined directly into the Work Request) and the mapping
1142 * operation failed. Record the error and drop the packet.
1143 */
1144 txq->mapping_err++;
1145 goto out_free;
1146 }
1147
Casey Leedom7f9dd2f2010-07-12 14:39:07 -07001148 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
Casey Leedomc6e0d912010-06-25 12:13:28 +00001149 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1150 /*
1151 * After we're done injecting the Work Request for this
Lucas De Marchi25985ed2011-03-30 22:57:33 -03001152 * packet, we'll be below our "stop threshold" so stop the TX
Casey Leedom7f9dd2f2010-07-12 14:39:07 -07001153 * Queue now and schedule a request for an SGE Egress Queue
1154 * Update message. The queue will get started later on when
1155 * the firmware processes this Work Request and sends us an
1156 * Egress Queue Status Update message indicating that space
1157 * has opened up.
Casey Leedomc6e0d912010-06-25 12:13:28 +00001158 */
1159 txq_stop(txq);
Casey Leedom7f9dd2f2010-07-12 14:39:07 -07001160 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
Casey Leedomc6e0d912010-06-25 12:13:28 +00001161 }
1162
1163 /*
1164 * Start filling in our Work Request. Note that we do _not_ handle
1165 * the WR Header wrapping around the TX Descriptor Ring. If our
1166 * maximum header size ever exceeds one TX Descriptor, we'll need to
1167 * do something else here.
1168 */
1169 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1170 wr = (void *)&txq->q.desc[txq->q.pidx];
Casey Leedom7f9dd2f2010-07-12 14:39:07 -07001171 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
Casey Leedomc6e0d912010-06-25 12:13:28 +00001172 wr->r3[0] = cpu_to_be64(0);
1173 wr->r3[1] = cpu_to_be64(0);
1174 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1175 end = (u64 *)wr + flits;
1176
1177 /*
1178 * If this is a Large Send Offload packet we'll put in an LSO CPL
1179 * message with an encapsulated TX Packet CPL message. Otherwise we
1180 * just use a TX Packet CPL message.
1181 */
1182 ssi = skb_shinfo(skb);
1183 if (ssi->gso_size) {
1184 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1185 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1186 int l3hdr_len = skb_network_header_len(skb);
1187 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1188
1189 wr->op_immdlen =
1190 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1191 FW_WR_IMMDLEN(sizeof(*lso) +
1192 sizeof(*cpl)));
1193 /*
1194 * Fill in the LSO CPL message.
1195 */
1196 lso->lso_ctrl =
1197 cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
1198 LSO_FIRST_SLICE |
1199 LSO_LAST_SLICE |
1200 LSO_IPV6(v6) |
1201 LSO_ETHHDR_LEN(eth_xtra_len/4) |
1202 LSO_IPHDR_LEN(l3hdr_len/4) |
1203 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1204 lso->ipid_ofst = cpu_to_be16(0);
1205 lso->mss = cpu_to_be16(ssi->gso_size);
1206 lso->seqno_offset = cpu_to_be32(0);
Hariprasad Shenai7207c0d2014-10-09 05:48:45 +05301207 if (is_t4(adapter->params.chip))
1208 lso->len = cpu_to_be32(skb->len);
1209 else
1210 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE(skb->len));
Casey Leedomc6e0d912010-06-25 12:13:28 +00001211
1212 /*
1213 * Set up TX Packet CPL pointer, control word and perform
1214 * accounting.
1215 */
1216 cpl = (void *)(lso + 1);
1217 cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1218 TXPKT_IPHDR_LEN(l3hdr_len) |
1219 TXPKT_ETHHDR_LEN(eth_xtra_len));
1220 txq->tso++;
1221 txq->tx_cso += ssi->gso_segs;
1222 } else {
1223 int len;
1224
1225 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1226 wr->op_immdlen =
1227 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1228 FW_WR_IMMDLEN(len));
1229
1230 /*
1231 * Set up TX Packet CPL pointer, control word and perform
1232 * accounting.
1233 */
1234 cpl = (void *)(wr + 1);
1235 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1236 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1237 txq->tx_cso++;
1238 } else
1239 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1240 }
1241
1242 /*
1243 * If there's a VLAN tag present, add that to the list of things to
1244 * do in this Work Request.
1245 */
1246 if (vlan_tx_tag_present(skb)) {
1247 txq->vlan_ins++;
1248 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1249 }
1250
1251 /*
1252 * Fill in the TX Packet CPL message header.
1253 */
1254 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1255 TXPKT_INTF(pi->port_id) |
1256 TXPKT_PF(0));
1257 cpl->pack = cpu_to_be16(0);
1258 cpl->len = cpu_to_be16(skb->len);
1259 cpl->ctrl1 = cpu_to_be64(cntrl);
1260
1261#ifdef T4_TRACE
1262 T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1263 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1264 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1265#endif
1266
1267 /*
1268 * Fill in the body of the TX Packet CPL message with either in-lined
1269 * data or a Scatter/Gather List.
1270 */
1271 if (is_eth_imm(skb)) {
1272 /*
1273 * In-line the packet's data and free the skb since we don't
1274 * need it any longer.
1275 */
1276 inline_tx_skb(skb, &txq->q, cpl + 1);
Eric W. Biederman42ffda52014-03-15 16:31:32 -07001277 dev_consume_skb_any(skb);
Casey Leedomc6e0d912010-06-25 12:13:28 +00001278 } else {
1279 /*
1280 * Write the skb's Scatter/Gather list into the TX Packet CPL
1281 * message and retain a pointer to the skb so we can free it
1282 * later when its DMA completes. (We store the skb pointer
1283 * in the Software Descriptor corresponding to the last TX
1284 * Descriptor used by the Work Request.)
1285 *
1286 * The retained skb will be freed when the corresponding TX
1287 * Descriptors are reclaimed after their DMAs complete.
1288 * However, this could take quite a while since, in general,
1289 * the hardware is set up to be lazy about sending DMA
1290 * completion notifications to us and we mostly perform TX
1291 * reclaims in the transmit routine.
1292 *
1293 * This is good for performamce but means that we rely on new
1294 * TX packets arriving to run the destructors of completed
1295 * packets, which open up space in their sockets' send queues.
1296 * Sometimes we do not get such new packets causing TX to
1297 * stall. A single UDP transmitter is a good example of this
1298 * situation. We have a clean up timer that periodically
1299 * reclaims completed packets but it doesn't run often enough
1300 * (nor do we want it to) to prevent lengthy stalls. A
1301 * solution to this problem is to run the destructor early,
1302 * after the packet is queued but before it's DMAd. A con is
1303 * that we lie to socket memory accounting, but the amount of
1304 * extra memory is reasonable (limited by the number of TX
1305 * descriptors), the packets do actually get freed quickly by
1306 * new packets almost always, and for protocols like TCP that
1307 * wait for acks to really free up the data the extra memory
1308 * is even less. On the positive side we run the destructors
1309 * on the sending CPU rather than on a potentially different
Casey Leedom64bb3362010-06-29 12:53:39 +00001310 * completing CPU, usually a good thing.
Casey Leedomc6e0d912010-06-25 12:13:28 +00001311 *
1312 * Run the destructor before telling the DMA engine about the
1313 * packet to make sure it doesn't complete and get freed
1314 * prematurely.
1315 */
1316 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1317 struct sge_txq *tq = &txq->q;
1318 int last_desc;
1319
1320 /*
1321 * If the Work Request header was an exact multiple of our TX
1322 * Descriptor length, then it's possible that the starting SGL
1323 * pointer lines up exactly with the end of our TX Descriptor
1324 * ring. If that's the case, wrap around to the beginning
1325 * here ...
1326 */
1327 if (unlikely((void *)sgl == (void *)tq->stat)) {
1328 sgl = (void *)tq->desc;
Joe Perches64699332012-06-04 12:44:16 +00001329 end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
Casey Leedomc6e0d912010-06-25 12:13:28 +00001330 }
1331
1332 write_sgl(skb, tq, sgl, end, 0, addr);
1333 skb_orphan(skb);
1334
1335 last_desc = tq->pidx + ndesc - 1;
1336 if (last_desc >= tq->size)
1337 last_desc -= tq->size;
1338 tq->sdesc[last_desc].skb = skb;
1339 tq->sdesc[last_desc].sgl = sgl;
1340 }
1341
1342 /*
1343 * Advance our internal TX Queue state, tell the hardware about
1344 * the new TX descriptors and return success.
1345 */
1346 txq_advance(&txq->q, ndesc);
1347 dev->trans_start = jiffies;
1348 ring_tx_db(adapter, &txq->q, ndesc);
1349 return NETDEV_TX_OK;
1350
1351out_free:
1352 /*
1353 * An error of some sort happened. Free the TX skb and tell the
1354 * OS that we've "dealt" with the packet ...
1355 */
Eric W. Biederman42ffda52014-03-15 16:31:32 -07001356 dev_kfree_skb_any(skb);
Casey Leedomc6e0d912010-06-25 12:13:28 +00001357 return NETDEV_TX_OK;
1358}
1359
1360/**
Ian Campbella0006a82011-10-19 23:01:47 +00001361 * copy_frags - copy fragments from gather list into skb_shared_info
1362 * @skb: destination skb
1363 * @gl: source internal packet gather list
1364 * @offset: packet start offset in first page
1365 *
1366 * Copy an internal packet gather list into a Linux skb_shared_info
1367 * structure.
1368 */
1369static inline void copy_frags(struct sk_buff *skb,
1370 const struct pkt_gl *gl,
1371 unsigned int offset)
1372{
1373 int i;
1374
1375 /* usually there's just one frag */
1376 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1377 gl->frags[0].offset + offset,
1378 gl->frags[0].size - offset);
1379 skb_shinfo(skb)->nr_frags = gl->nfrags;
1380 for (i = 1; i < gl->nfrags; i++)
1381 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1382 gl->frags[i].offset,
1383 gl->frags[i].size);
1384
1385 /* get a reference to the last page, we don't own it */
1386 get_page(gl->frags[gl->nfrags - 1].page);
1387}
1388
1389/**
Casey Leedomeb6c5032010-11-11 09:06:50 +00001390 * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1391 * @gl: the gather list
1392 * @skb_len: size of sk_buff main body if it carries fragments
1393 * @pull_len: amount of data to move to the sk_buff's main body
1394 *
1395 * Builds an sk_buff from the given packet gather list. Returns the
1396 * sk_buff or %NULL if sk_buff allocation failed.
1397 */
Sachin Kamat8a67d1c2013-09-18 09:00:01 +05301398static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1399 unsigned int skb_len,
1400 unsigned int pull_len)
Casey Leedomeb6c5032010-11-11 09:06:50 +00001401{
1402 struct sk_buff *skb;
Casey Leedomeb6c5032010-11-11 09:06:50 +00001403
1404 /*
1405 * If the ingress packet is small enough, allocate an skb large enough
1406 * for all of the data and copy it inline. Otherwise, allocate an skb
1407 * with enough room to pull in the header and reference the rest of
1408 * the data via the skb fragment list.
1409 *
1410 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1411 * buff! size, which is expected since buffers are at least
1412 * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one
1413 * fragment.
1414 */
1415 if (gl->tot_len <= RX_COPY_THRES) {
1416 /* small packets have only one fragment */
1417 skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1418 if (unlikely(!skb))
1419 goto out;
1420 __skb_put(skb, gl->tot_len);
1421 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1422 } else {
1423 skb = alloc_skb(skb_len, GFP_ATOMIC);
1424 if (unlikely(!skb))
1425 goto out;
1426 __skb_put(skb, pull_len);
1427 skb_copy_to_linear_data(skb, gl->va, pull_len);
1428
Ian Campbella0006a82011-10-19 23:01:47 +00001429 copy_frags(skb, gl, pull_len);
Casey Leedomeb6c5032010-11-11 09:06:50 +00001430 skb->len = gl->tot_len;
1431 skb->data_len = skb->len - pull_len;
1432 skb->truesize += skb->data_len;
Casey Leedomeb6c5032010-11-11 09:06:50 +00001433 }
1434
1435out:
1436 return skb;
1437}
1438
1439/**
Casey Leedomc6e0d912010-06-25 12:13:28 +00001440 * t4vf_pktgl_free - free a packet gather list
1441 * @gl: the gather list
1442 *
1443 * Releases the pages of a packet gather list. We do not own the last
1444 * page on the list and do not free it.
1445 */
Sachin Kamat8a67d1c2013-09-18 09:00:01 +05301446static void t4vf_pktgl_free(const struct pkt_gl *gl)
Casey Leedomc6e0d912010-06-25 12:13:28 +00001447{
1448 int frag;
1449
1450 frag = gl->nfrags - 1;
1451 while (frag--)
1452 put_page(gl->frags[frag].page);
1453}
1454
1455/**
Casey Leedomc6e0d912010-06-25 12:13:28 +00001456 * do_gro - perform Generic Receive Offload ingress packet processing
1457 * @rxq: ingress RX Ethernet Queue
1458 * @gl: gather list for ingress packet
1459 * @pkt: CPL header for last packet fragment
1460 *
1461 * Perform Generic Receive Offload (GRO) ingress packet processing.
1462 * We use the standard Linux GRO interfaces for this.
1463 */
1464static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1465 const struct cpl_rx_pkt *pkt)
1466{
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05301467 struct adapter *adapter = rxq->rspq.adapter;
1468 struct sge *s = &adapter->sge;
Casey Leedomc6e0d912010-06-25 12:13:28 +00001469 int ret;
1470 struct sk_buff *skb;
1471
1472 skb = napi_get_frags(&rxq->rspq.napi);
1473 if (unlikely(!skb)) {
1474 t4vf_pktgl_free(gl);
1475 rxq->stats.rx_drops++;
1476 return;
1477 }
1478
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05301479 copy_frags(skb, gl, s->pktshift);
1480 skb->len = gl->tot_len - s->pktshift;
Casey Leedomc6e0d912010-06-25 12:13:28 +00001481 skb->data_len = skb->len;
1482 skb->truesize += skb->data_len;
1483 skb->ip_summed = CHECKSUM_UNNECESSARY;
1484 skb_record_rx_queue(skb, rxq->rspq.idx);
1485
Vipul Pandyaaf32de02013-02-12 00:36:21 +00001486 if (pkt->vlan_ex) {
Patrick McHardy86a9bad2013-04-19 02:04:30 +00001487 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1488 be16_to_cpu(pkt->vlan));
Vipul Pandyaaf32de02013-02-12 00:36:21 +00001489 rxq->stats.vlan_ex++;
1490 }
Casey Leedomc6e0d912010-06-25 12:13:28 +00001491 ret = napi_gro_frags(&rxq->rspq.napi);
1492
Casey Leedomc6e0d912010-06-25 12:13:28 +00001493 if (ret == GRO_HELD)
1494 rxq->stats.lro_pkts++;
1495 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1496 rxq->stats.lro_merged++;
1497 rxq->stats.pkts++;
1498 rxq->stats.rx_cso++;
1499}
1500
1501/**
1502 * t4vf_ethrx_handler - process an ingress ethernet packet
1503 * @rspq: the response queue that received the packet
1504 * @rsp: the response queue descriptor holding the RX_PKT message
1505 * @gl: the gather list of packet fragments
1506 *
1507 * Process an ingress ethernet packet and deliver it to the stack.
1508 */
1509int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1510 const struct pkt_gl *gl)
1511{
1512 struct sk_buff *skb;
Vipul Pandya8b9a4d52013-02-08 02:49:51 +00001513 const struct cpl_rx_pkt *pkt = (void *)rsp;
Hariprasad Shenaic3136f52014-05-07 18:01:04 +05301514 bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1515 (rspq->netdev->features & NETIF_F_RXCSUM);
Casey Leedomc6e0d912010-06-25 12:13:28 +00001516 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05301517 struct adapter *adapter = rspq->adapter;
1518 struct sge *s = &adapter->sge;
Casey Leedomc6e0d912010-06-25 12:13:28 +00001519
1520 /*
1521 * If this is a good TCP packet and we have Generic Receive Offload
1522 * enabled, handle the packet in the GRO path.
1523 */
1524 if ((pkt->l2info & cpu_to_be32(RXF_TCP)) &&
1525 (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1526 !pkt->ip_frag) {
1527 do_gro(rxq, gl, pkt);
1528 return 0;
1529 }
1530
1531 /*
Casey Leedomeb6c5032010-11-11 09:06:50 +00001532 * Convert the Packet Gather List into an skb.
Casey Leedomc6e0d912010-06-25 12:13:28 +00001533 */
Casey Leedomeb6c5032010-11-11 09:06:50 +00001534 skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1535 if (unlikely(!skb)) {
1536 t4vf_pktgl_free(gl);
1537 rxq->stats.rx_drops++;
1538 return 0;
Casey Leedomc6e0d912010-06-25 12:13:28 +00001539 }
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05301540 __skb_pull(skb, s->pktshift);
Casey Leedomc6e0d912010-06-25 12:13:28 +00001541 skb->protocol = eth_type_trans(skb, rspq->netdev);
1542 skb_record_rx_queue(skb, rspq->idx);
Casey Leedomc6e0d912010-06-25 12:13:28 +00001543 rxq->stats.pkts++;
1544
Hariprasad Shenaic3136f52014-05-07 18:01:04 +05301545 if (csum_ok && !pkt->err_vec &&
1546 (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) {
Casey Leedomc6e0d912010-06-25 12:13:28 +00001547 if (!pkt->ip_frag)
1548 skb->ip_summed = CHECKSUM_UNNECESSARY;
1549 else {
1550 __sum16 c = (__force __sum16)pkt->csum;
1551 skb->csum = csum_unfold(c);
1552 skb->ip_summed = CHECKSUM_COMPLETE;
1553 }
1554 rxq->stats.rx_cso++;
1555 } else
Eric Dumazetbc8acf22010-09-02 13:07:41 -07001556 skb_checksum_none_assert(skb);
Casey Leedomc6e0d912010-06-25 12:13:28 +00001557
Jiri Pirko87737662011-07-20 04:54:16 +00001558 if (pkt->vlan_ex) {
Casey Leedomc6e0d912010-06-25 12:13:28 +00001559 rxq->stats.vlan_ex++;
Patrick McHardy86a9bad2013-04-19 02:04:30 +00001560 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan));
Jiri Pirko87737662011-07-20 04:54:16 +00001561 }
1562
1563 netif_receive_skb(skb);
Casey Leedomc6e0d912010-06-25 12:13:28 +00001564
1565 return 0;
Casey Leedomc6e0d912010-06-25 12:13:28 +00001566}
1567
1568/**
1569 * is_new_response - check if a response is newly written
1570 * @rc: the response control descriptor
1571 * @rspq: the response queue
1572 *
1573 * Returns true if a response descriptor contains a yet unprocessed
1574 * response.
1575 */
1576static inline bool is_new_response(const struct rsp_ctrl *rc,
1577 const struct sge_rspq *rspq)
1578{
1579 return RSPD_GEN(rc->type_gen) == rspq->gen;
1580}
1581
1582/**
1583 * restore_rx_bufs - put back a packet's RX buffers
1584 * @gl: the packet gather list
1585 * @fl: the SGE Free List
1586 * @nfrags: how many fragments in @si
1587 *
1588 * Called when we find out that the current packet, @si, can't be
1589 * processed right away for some reason. This is a very rare event and
1590 * there's no effort to make this suspension/resumption process
1591 * particularly efficient.
1592 *
1593 * We implement the suspension by putting all of the RX buffers associated
1594 * with the current packet back on the original Free List. The buffers
1595 * have already been unmapped and are left unmapped, we mark them as
1596 * unmapped in order to prevent further unmapping attempts. (Effectively
1597 * this function undoes the series of @unmap_rx_buf calls which were done
1598 * to create the current packet's gather list.) This leaves us ready to
1599 * restart processing of the packet the next time we start processing the
1600 * RX Queue ...
1601 */
1602static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1603 int frags)
1604{
1605 struct rx_sw_desc *sdesc;
1606
1607 while (frags--) {
1608 if (fl->cidx == 0)
1609 fl->cidx = fl->size - 1;
1610 else
1611 fl->cidx--;
1612 sdesc = &fl->sdesc[fl->cidx];
1613 sdesc->page = gl->frags[frags].page;
1614 sdesc->dma_addr |= RX_UNMAPPED_BUF;
1615 fl->avail++;
1616 }
1617}
1618
1619/**
1620 * rspq_next - advance to the next entry in a response queue
1621 * @rspq: the queue
1622 *
1623 * Updates the state of a response queue to advance it to the next entry.
1624 */
1625static inline void rspq_next(struct sge_rspq *rspq)
1626{
1627 rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1628 if (unlikely(++rspq->cidx == rspq->size)) {
1629 rspq->cidx = 0;
1630 rspq->gen ^= 1;
1631 rspq->cur_desc = rspq->desc;
1632 }
1633}
1634
1635/**
1636 * process_responses - process responses from an SGE response queue
1637 * @rspq: the ingress response queue to process
1638 * @budget: how many responses can be processed in this round
1639 *
1640 * Process responses from a Scatter Gather Engine response queue up to
1641 * the supplied budget. Responses include received packets as well as
1642 * control messages from firmware or hardware.
1643 *
1644 * Additionally choose the interrupt holdoff time for the next interrupt
1645 * on this queue. If the system is under memory shortage use a fairly
1646 * long delay to help recovery.
1647 */
Sachin Kamat8a67d1c2013-09-18 09:00:01 +05301648static int process_responses(struct sge_rspq *rspq, int budget)
Casey Leedomc6e0d912010-06-25 12:13:28 +00001649{
1650 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05301651 struct adapter *adapter = rspq->adapter;
1652 struct sge *s = &adapter->sge;
Casey Leedomc6e0d912010-06-25 12:13:28 +00001653 int budget_left = budget;
1654
1655 while (likely(budget_left)) {
1656 int ret, rsp_type;
1657 const struct rsp_ctrl *rc;
1658
1659 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1660 if (!is_new_response(rc, rspq))
1661 break;
1662
1663 /*
1664 * Figure out what kind of response we've received from the
1665 * SGE.
1666 */
1667 rmb();
1668 rsp_type = RSPD_TYPE(rc->type_gen);
1669 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
Ian Campbella0006a82011-10-19 23:01:47 +00001670 struct page_frag *fp;
Casey Leedomc6e0d912010-06-25 12:13:28 +00001671 struct pkt_gl gl;
1672 const struct rx_sw_desc *sdesc;
1673 u32 bufsz, frag;
1674 u32 len = be32_to_cpu(rc->pldbuflen_qid);
1675
1676 /*
1677 * If we get a "new buffer" message from the SGE we
1678 * need to move on to the next Free List buffer.
1679 */
1680 if (len & RSPD_NEWBUF) {
1681 /*
1682 * We get one "new buffer" message when we
1683 * first start up a queue so we need to ignore
1684 * it when our offset into the buffer is 0.
1685 */
1686 if (likely(rspq->offset > 0)) {
1687 free_rx_bufs(rspq->adapter, &rxq->fl,
1688 1);
1689 rspq->offset = 0;
1690 }
1691 len = RSPD_LEN(len);
1692 }
Casey Leedomb94e72e2010-11-11 09:06:49 +00001693 gl.tot_len = len;
Casey Leedomc6e0d912010-06-25 12:13:28 +00001694
1695 /*
1696 * Gather packet fragments.
1697 */
1698 for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1699 BUG_ON(frag >= MAX_SKB_FRAGS);
1700 BUG_ON(rxq->fl.avail == 0);
1701 sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05301702 bufsz = get_buf_size(adapter, sdesc);
Casey Leedomc6e0d912010-06-25 12:13:28 +00001703 fp->page = sdesc->page;
Ian Campbella0006a82011-10-19 23:01:47 +00001704 fp->offset = rspq->offset;
1705 fp->size = min(bufsz, len);
1706 len -= fp->size;
Casey Leedomc6e0d912010-06-25 12:13:28 +00001707 if (!len)
1708 break;
1709 unmap_rx_buf(rspq->adapter, &rxq->fl);
1710 }
1711 gl.nfrags = frag+1;
1712
1713 /*
1714 * Last buffer remains mapped so explicitly make it
1715 * coherent for CPU access and start preloading first
1716 * cache line ...
1717 */
1718 dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1719 get_buf_addr(sdesc),
Ian Campbella0006a82011-10-19 23:01:47 +00001720 fp->size, DMA_FROM_DEVICE);
Casey Leedomc6e0d912010-06-25 12:13:28 +00001721 gl.va = (page_address(gl.frags[0].page) +
Ian Campbella0006a82011-10-19 23:01:47 +00001722 gl.frags[0].offset);
Casey Leedomc6e0d912010-06-25 12:13:28 +00001723 prefetch(gl.va);
1724
1725 /*
1726 * Hand the new ingress packet to the handler for
1727 * this Response Queue.
1728 */
1729 ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1730 if (likely(ret == 0))
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05301731 rspq->offset += ALIGN(fp->size, s->fl_align);
Casey Leedomc6e0d912010-06-25 12:13:28 +00001732 else
1733 restore_rx_bufs(&gl, &rxq->fl, frag);
1734 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1735 ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1736 } else {
1737 WARN_ON(rsp_type > RSP_TYPE_CPL);
1738 ret = 0;
1739 }
1740
1741 if (unlikely(ret)) {
1742 /*
1743 * Couldn't process descriptor, back off for recovery.
1744 * We use the SGE's last timer which has the longest
1745 * interrupt coalescing value ...
1746 */
1747 const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1748 rspq->next_intr_params =
1749 QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
1750 break;
1751 }
1752
1753 rspq_next(rspq);
1754 budget_left--;
1755 }
1756
1757 /*
1758 * If this is a Response Queue with an associated Free List and
1759 * at least two Egress Queue units available in the Free List
1760 * for new buffer pointers, refill the Free List.
1761 */
1762 if (rspq->offset >= 0 &&
1763 rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1764 __refill_fl(rspq->adapter, &rxq->fl);
1765 return budget - budget_left;
1766}
1767
1768/**
1769 * napi_rx_handler - the NAPI handler for RX processing
1770 * @napi: the napi instance
1771 * @budget: how many packets we can process in this round
1772 *
1773 * Handler for new data events when using NAPI. This does not need any
1774 * locking or protection from interrupts as data interrupts are off at
1775 * this point and other adapter interrupts do not interfere (the latter
1776 * in not a concern at all with MSI-X as non-data interrupts then have
1777 * a separate handler).
1778 */
1779static int napi_rx_handler(struct napi_struct *napi, int budget)
1780{
1781 unsigned int intr_params;
1782 struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1783 int work_done = process_responses(rspq, budget);
1784
1785 if (likely(work_done < budget)) {
1786 napi_complete(napi);
1787 intr_params = rspq->next_intr_params;
1788 rspq->next_intr_params = rspq->intr_params;
1789 } else
1790 intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
1791
Casey Leedom68dc9d32010-07-08 10:05:48 -07001792 if (unlikely(work_done == 0))
1793 rspq->unhandled_irqs++;
1794
Casey Leedomc6e0d912010-06-25 12:13:28 +00001795 t4_write_reg(rspq->adapter,
1796 T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1797 CIDXINC(work_done) |
1798 INGRESSQID((u32)rspq->cntxt_id) |
1799 SEINTARM(intr_params));
1800 return work_done;
1801}
1802
1803/*
1804 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1805 * (i.e., response queue serviced by NAPI polling).
1806 */
1807irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1808{
1809 struct sge_rspq *rspq = cookie;
1810
1811 napi_schedule(&rspq->napi);
1812 return IRQ_HANDLED;
1813}
1814
1815/*
1816 * Process the indirect interrupt entries in the interrupt queue and kick off
1817 * NAPI for each queue that has generated an entry.
1818 */
1819static unsigned int process_intrq(struct adapter *adapter)
1820{
1821 struct sge *s = &adapter->sge;
1822 struct sge_rspq *intrq = &s->intrq;
1823 unsigned int work_done;
1824
1825 spin_lock(&adapter->sge.intrq_lock);
1826 for (work_done = 0; ; work_done++) {
1827 const struct rsp_ctrl *rc;
1828 unsigned int qid, iq_idx;
1829 struct sge_rspq *rspq;
1830
1831 /*
1832 * Grab the next response from the interrupt queue and bail
1833 * out if it's not a new response.
1834 */
1835 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1836 if (!is_new_response(rc, intrq))
1837 break;
1838
1839 /*
1840 * If the response isn't a forwarded interrupt message issue a
1841 * error and go on to the next response message. This should
1842 * never happen ...
1843 */
1844 rmb();
1845 if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
1846 dev_err(adapter->pdev_dev,
1847 "Unexpected INTRQ response type %d\n",
1848 RSPD_TYPE(rc->type_gen));
1849 continue;
1850 }
1851
1852 /*
1853 * Extract the Queue ID from the interrupt message and perform
1854 * sanity checking to make sure it really refers to one of our
1855 * Ingress Queues which is active and matches the queue's ID.
1856 * None of these error conditions should ever happen so we may
1857 * want to either make them fatal and/or conditionalized under
1858 * DEBUG.
1859 */
1860 qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
1861 iq_idx = IQ_IDX(s, qid);
1862 if (unlikely(iq_idx >= MAX_INGQ)) {
1863 dev_err(adapter->pdev_dev,
1864 "Ingress QID %d out of range\n", qid);
1865 continue;
1866 }
1867 rspq = s->ingr_map[iq_idx];
1868 if (unlikely(rspq == NULL)) {
1869 dev_err(adapter->pdev_dev,
1870 "Ingress QID %d RSPQ=NULL\n", qid);
1871 continue;
1872 }
1873 if (unlikely(rspq->abs_id != qid)) {
1874 dev_err(adapter->pdev_dev,
1875 "Ingress QID %d refers to RSPQ %d\n",
1876 qid, rspq->abs_id);
1877 continue;
1878 }
1879
1880 /*
1881 * Schedule NAPI processing on the indicated Response Queue
1882 * and move on to the next entry in the Forwarded Interrupt
1883 * Queue.
1884 */
1885 napi_schedule(&rspq->napi);
1886 rspq_next(intrq);
1887 }
1888
1889 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1890 CIDXINC(work_done) |
1891 INGRESSQID(intrq->cntxt_id) |
1892 SEINTARM(intrq->intr_params));
1893
1894 spin_unlock(&adapter->sge.intrq_lock);
1895
1896 return work_done;
1897}
1898
1899/*
1900 * The MSI interrupt handler handles data events from SGE response queues as
1901 * well as error and other async events as they all use the same MSI vector.
1902 */
Sachin Kamat8a67d1c2013-09-18 09:00:01 +05301903static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
Casey Leedomc6e0d912010-06-25 12:13:28 +00001904{
1905 struct adapter *adapter = cookie;
1906
1907 process_intrq(adapter);
1908 return IRQ_HANDLED;
1909}
1910
1911/**
1912 * t4vf_intr_handler - select the top-level interrupt handler
1913 * @adapter: the adapter
1914 *
1915 * Selects the top-level interrupt handler based on the type of interrupts
1916 * (MSI-X or MSI).
1917 */
1918irq_handler_t t4vf_intr_handler(struct adapter *adapter)
1919{
1920 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
1921 if (adapter->flags & USING_MSIX)
1922 return t4vf_sge_intr_msix;
1923 else
1924 return t4vf_intr_msi;
1925}
1926
1927/**
1928 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
1929 * @data: the adapter
1930 *
1931 * Runs periodically from a timer to perform maintenance of SGE RX queues.
1932 *
1933 * a) Replenishes RX queues that have run out due to memory shortage.
1934 * Normally new RX buffers are added when existing ones are consumed but
1935 * when out of memory a queue can become empty. We schedule NAPI to do
1936 * the actual refill.
1937 */
1938static void sge_rx_timer_cb(unsigned long data)
1939{
1940 struct adapter *adapter = (struct adapter *)data;
1941 struct sge *s = &adapter->sge;
1942 unsigned int i;
1943
1944 /*
1945 * Scan the "Starving Free Lists" flag array looking for any Free
1946 * Lists in need of more free buffers. If we find one and it's not
1947 * being actively polled, then bump its "starving" counter and attempt
1948 * to refill it. If we're successful in adding enough buffers to push
1949 * the Free List over the starving threshold, then we can clear its
1950 * "starving" status.
1951 */
1952 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
1953 unsigned long m;
1954
1955 for (m = s->starving_fl[i]; m; m &= m - 1) {
1956 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1957 struct sge_fl *fl = s->egr_map[id];
1958
1959 clear_bit(id, s->starving_fl);
Peter Zijlstra4e857c52014-03-17 18:06:10 +01001960 smp_mb__after_atomic();
Casey Leedomc6e0d912010-06-25 12:13:28 +00001961
1962 /*
1963 * Since we are accessing fl without a lock there's a
1964 * small probability of a false positive where we
1965 * schedule napi but the FL is no longer starving.
1966 * No biggie.
1967 */
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05301968 if (fl_starving(adapter, fl)) {
Casey Leedomc6e0d912010-06-25 12:13:28 +00001969 struct sge_eth_rxq *rxq;
1970
1971 rxq = container_of(fl, struct sge_eth_rxq, fl);
1972 if (napi_reschedule(&rxq->rspq.napi))
1973 fl->starving++;
1974 else
1975 set_bit(id, s->starving_fl);
1976 }
1977 }
1978 }
1979
1980 /*
1981 * Reschedule the next scan for starving Free Lists ...
1982 */
1983 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
1984}
1985
1986/**
1987 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
1988 * @data: the adapter
1989 *
1990 * Runs periodically from a timer to perform maintenance of SGE TX queues.
1991 *
1992 * b) Reclaims completed Tx packets for the Ethernet queues. Normally
1993 * packets are cleaned up by new Tx packets, this timer cleans up packets
1994 * when no new packets are being submitted. This is essential for pktgen,
1995 * at least.
1996 */
1997static void sge_tx_timer_cb(unsigned long data)
1998{
1999 struct adapter *adapter = (struct adapter *)data;
2000 struct sge *s = &adapter->sge;
2001 unsigned int i, budget;
2002
2003 budget = MAX_TIMER_TX_RECLAIM;
2004 i = s->ethtxq_rover;
2005 do {
2006 struct sge_eth_txq *txq = &s->ethtxq[i];
2007
2008 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2009 int avail = reclaimable(&txq->q);
2010
2011 if (avail > budget)
2012 avail = budget;
2013
2014 free_tx_desc(adapter, &txq->q, avail, true);
2015 txq->q.in_use -= avail;
2016 __netif_tx_unlock(txq->txq);
2017
2018 budget -= avail;
2019 if (!budget)
2020 break;
2021 }
2022
2023 i++;
2024 if (i >= s->ethqsets)
2025 i = 0;
2026 } while (i != s->ethtxq_rover);
2027 s->ethtxq_rover = i;
2028
2029 /*
2030 * If we found too many reclaimable packets schedule a timer in the
2031 * near future to continue where we left off. Otherwise the next timer
2032 * will be at its normal interval.
2033 */
2034 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2035}
2036
2037/**
2038 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2039 * @adapter: the adapter
2040 * @rspq: pointer to to the new rxq's Response Queue to be filled in
2041 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2042 * @dev: the network device associated with the new rspq
2043 * @intr_dest: MSI-X vector index (overriden in MSI mode)
2044 * @fl: pointer to the new rxq's Free List to be filled in
2045 * @hnd: the interrupt handler to invoke for the rspq
2046 */
2047int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2048 bool iqasynch, struct net_device *dev,
2049 int intr_dest,
2050 struct sge_fl *fl, rspq_handler_t hnd)
2051{
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05302052 struct sge *s = &adapter->sge;
Casey Leedomc6e0d912010-06-25 12:13:28 +00002053 struct port_info *pi = netdev_priv(dev);
2054 struct fw_iq_cmd cmd, rpl;
2055 int ret, iqandst, flsz = 0;
2056
2057 /*
2058 * If we're using MSI interrupts and we're not initializing the
2059 * Forwarded Interrupt Queue itself, then set up this queue for
2060 * indirect interrupts to the Forwarded Interrupt Queue. Obviously
2061 * the Forwarded Interrupt Queue must be set up before any other
2062 * ingress queue ...
2063 */
2064 if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2065 iqandst = SGE_INTRDST_IQ;
2066 intr_dest = adapter->sge.intrq.abs_id;
2067 } else
2068 iqandst = SGE_INTRDST_PCI;
2069
2070 /*
2071 * Allocate the hardware ring for the Response Queue. The size needs
2072 * to be a multiple of 16 which includes the mandatory status entry
2073 * (regardless of whether the Status Page capabilities are enabled or
2074 * not).
2075 */
2076 rspq->size = roundup(rspq->size, 16);
2077 rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2078 0, &rspq->phys_addr, NULL, 0);
2079 if (!rspq->desc)
2080 return -ENOMEM;
2081
2082 /*
2083 * Fill in the Ingress Queue Command. Note: Ideally this code would
2084 * be in t4vf_hw.c but there are so many parameters and dependencies
2085 * on our Linux SGE state that we would end up having to pass tons of
2086 * parameters. We'll have to think about how this might be migrated
2087 * into OS-independent common code ...
2088 */
2089 memset(&cmd, 0, sizeof(cmd));
2090 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
2091 FW_CMD_REQUEST |
2092 FW_CMD_WRITE |
2093 FW_CMD_EXEC);
2094 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC |
2095 FW_IQ_CMD_IQSTART(1) |
2096 FW_LEN16(cmd));
2097 cmd.type_to_iqandstindex =
2098 cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2099 FW_IQ_CMD_IQASYNCH(iqasynch) |
2100 FW_IQ_CMD_VIID(pi->viid) |
2101 FW_IQ_CMD_IQANDST(iqandst) |
2102 FW_IQ_CMD_IQANUS(1) |
2103 FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) |
2104 FW_IQ_CMD_IQANDSTINDEX(intr_dest));
2105 cmd.iqdroprss_to_iqesize =
2106 cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) |
2107 FW_IQ_CMD_IQGTSMODE |
2108 FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) |
2109 FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4));
2110 cmd.iqsize = cpu_to_be16(rspq->size);
2111 cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2112
2113 if (fl) {
2114 /*
2115 * Allocate the ring for the hardware free list (with space
2116 * for its status page) along with the associated software
2117 * descriptor ring. The free list size needs to be a multiple
2118 * of the Egress Queue Unit.
2119 */
2120 fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2121 fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2122 sizeof(__be64), sizeof(struct rx_sw_desc),
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05302123 &fl->addr, &fl->sdesc, s->stat_len);
Casey Leedomc6e0d912010-06-25 12:13:28 +00002124 if (!fl->desc) {
2125 ret = -ENOMEM;
2126 goto err;
2127 }
2128
2129 /*
2130 * Calculate the size of the hardware free list ring plus
Casey Leedomcaedda32010-11-11 09:30:40 +00002131 * Status Page (which the SGE will place after the end of the
Casey Leedomc6e0d912010-06-25 12:13:28 +00002132 * free list ring) in Egress Queue Units.
2133 */
2134 flsz = (fl->size / FL_PER_EQ_UNIT +
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05302135 s->stat_len / EQ_UNIT);
Casey Leedomc6e0d912010-06-25 12:13:28 +00002136
2137 /*
2138 * Fill in all the relevant firmware Ingress Queue Command
2139 * fields for the free list.
2140 */
2141 cmd.iqns_to_fl0congen =
2142 cpu_to_be32(
2143 FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) |
Naresh Kumar Innace91a922012-11-15 22:41:17 +05302144 FW_IQ_CMD_FL0PACKEN(1) |
2145 FW_IQ_CMD_FL0PADEN(1));
Casey Leedomc6e0d912010-06-25 12:13:28 +00002146 cmd.fl0dcaen_to_fl0cidxfthresh =
2147 cpu_to_be16(
2148 FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) |
2149 FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B));
2150 cmd.fl0size = cpu_to_be16(flsz);
2151 cmd.fl0addr = cpu_to_be64(fl->addr);
2152 }
2153
2154 /*
2155 * Issue the firmware Ingress Queue Command and extract the results if
2156 * it completes successfully.
2157 */
2158 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2159 if (ret)
2160 goto err;
2161
2162 netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2163 rspq->cur_desc = rspq->desc;
2164 rspq->cidx = 0;
2165 rspq->gen = 1;
2166 rspq->next_intr_params = rspq->intr_params;
2167 rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2168 rspq->abs_id = be16_to_cpu(rpl.physiqid);
2169 rspq->size--; /* subtract status entry */
2170 rspq->adapter = adapter;
2171 rspq->netdev = dev;
2172 rspq->handler = hnd;
2173
2174 /* set offset to -1 to distinguish ingress queues without FL */
2175 rspq->offset = fl ? 0 : -1;
2176
2177 if (fl) {
2178 fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2179 fl->avail = 0;
2180 fl->pend_cred = 0;
2181 fl->pidx = 0;
2182 fl->cidx = 0;
2183 fl->alloc_failed = 0;
2184 fl->large_alloc_failed = 0;
2185 fl->starving = 0;
2186 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2187 }
2188
2189 return 0;
2190
2191err:
2192 /*
2193 * An error occurred. Clean up our partial allocation state and
2194 * return the error.
2195 */
2196 if (rspq->desc) {
2197 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2198 rspq->desc, rspq->phys_addr);
2199 rspq->desc = NULL;
2200 }
2201 if (fl && fl->desc) {
2202 kfree(fl->sdesc);
2203 fl->sdesc = NULL;
2204 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2205 fl->desc, fl->addr);
2206 fl->desc = NULL;
2207 }
2208 return ret;
2209}
2210
2211/**
2212 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2213 * @adapter: the adapter
2214 * @txq: pointer to the new txq to be filled in
2215 * @devq: the network TX queue associated with the new txq
2216 * @iqid: the relative ingress queue ID to which events relating to
2217 * the new txq should be directed
2218 */
2219int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2220 struct net_device *dev, struct netdev_queue *devq,
2221 unsigned int iqid)
2222{
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05302223 struct sge *s = &adapter->sge;
Casey Leedomc6e0d912010-06-25 12:13:28 +00002224 int ret, nentries;
2225 struct fw_eq_eth_cmd cmd, rpl;
2226 struct port_info *pi = netdev_priv(dev);
2227
2228 /*
Casey Leedomcaedda32010-11-11 09:30:40 +00002229 * Calculate the size of the hardware TX Queue (including the Status
2230 * Page on the end of the TX Queue) in units of TX Descriptors.
Casey Leedomc6e0d912010-06-25 12:13:28 +00002231 */
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05302232 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
Casey Leedomc6e0d912010-06-25 12:13:28 +00002233
2234 /*
2235 * Allocate the hardware ring for the TX ring (with space for its
2236 * status page) along with the associated software descriptor ring.
2237 */
2238 txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2239 sizeof(struct tx_desc),
2240 sizeof(struct tx_sw_desc),
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05302241 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
Casey Leedomc6e0d912010-06-25 12:13:28 +00002242 if (!txq->q.desc)
2243 return -ENOMEM;
2244
2245 /*
2246 * Fill in the Egress Queue Command. Note: As with the direct use of
2247 * the firmware Ingress Queue COmmand above in our RXQ allocation
2248 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll
2249 * have to see if there's some reasonable way to parameterize it
2250 * into the common code ...
2251 */
2252 memset(&cmd, 0, sizeof(cmd));
2253 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
2254 FW_CMD_REQUEST |
2255 FW_CMD_WRITE |
2256 FW_CMD_EXEC);
2257 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC |
2258 FW_EQ_ETH_CMD_EQSTART |
2259 FW_LEN16(cmd));
Hariprasad Shenai08f1a1b2014-08-21 17:04:46 +05302260 cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE |
2261 FW_EQ_ETH_CMD_VIID(pi->viid));
Casey Leedomc6e0d912010-06-25 12:13:28 +00002262 cmd.fetchszm_to_iqid =
2263 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) |
2264 FW_EQ_ETH_CMD_PCIECHN(pi->port_id) |
2265 FW_EQ_ETH_CMD_IQID(iqid));
2266 cmd.dcaen_to_eqsize =
2267 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) |
2268 FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) |
2269 FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) |
2270 FW_EQ_ETH_CMD_EQSIZE(nentries));
2271 cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2272
2273 /*
2274 * Issue the firmware Egress Queue Command and extract the results if
2275 * it completes successfully.
2276 */
2277 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2278 if (ret) {
2279 /*
2280 * The girmware Ingress Queue Command failed for some reason.
2281 * Free up our partial allocation state and return the error.
2282 */
2283 kfree(txq->q.sdesc);
2284 txq->q.sdesc = NULL;
2285 dma_free_coherent(adapter->pdev_dev,
2286 nentries * sizeof(struct tx_desc),
2287 txq->q.desc, txq->q.phys_addr);
2288 txq->q.desc = NULL;
2289 return ret;
2290 }
2291
2292 txq->q.in_use = 0;
2293 txq->q.cidx = 0;
2294 txq->q.pidx = 0;
2295 txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2296 txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd));
2297 txq->q.abs_id =
2298 FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd));
2299 txq->txq = devq;
2300 txq->tso = 0;
2301 txq->tx_cso = 0;
2302 txq->vlan_ins = 0;
2303 txq->q.stops = 0;
2304 txq->q.restarts = 0;
2305 txq->mapping_err = 0;
2306 return 0;
2307}
2308
2309/*
2310 * Free the DMA map resources associated with a TX queue.
2311 */
2312static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2313{
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05302314 struct sge *s = &adapter->sge;
2315
Casey Leedomc6e0d912010-06-25 12:13:28 +00002316 dma_free_coherent(adapter->pdev_dev,
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05302317 tq->size * sizeof(*tq->desc) + s->stat_len,
Casey Leedomc6e0d912010-06-25 12:13:28 +00002318 tq->desc, tq->phys_addr);
2319 tq->cntxt_id = 0;
2320 tq->sdesc = NULL;
2321 tq->desc = NULL;
2322}
2323
2324/*
2325 * Free the resources associated with a response queue (possibly including a
2326 * free list).
2327 */
2328static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2329 struct sge_fl *fl)
2330{
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05302331 struct sge *s = &adapter->sge;
Casey Leedomc6e0d912010-06-25 12:13:28 +00002332 unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2333
2334 t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2335 rspq->cntxt_id, flid, 0xffff);
2336 dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2337 rspq->desc, rspq->phys_addr);
2338 netif_napi_del(&rspq->napi);
2339 rspq->netdev = NULL;
2340 rspq->cntxt_id = 0;
2341 rspq->abs_id = 0;
2342 rspq->desc = NULL;
2343
2344 if (fl) {
2345 free_rx_bufs(adapter, fl, fl->avail);
2346 dma_free_coherent(adapter->pdev_dev,
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05302347 fl->size * sizeof(*fl->desc) + s->stat_len,
Casey Leedomc6e0d912010-06-25 12:13:28 +00002348 fl->desc, fl->addr);
2349 kfree(fl->sdesc);
2350 fl->sdesc = NULL;
2351 fl->cntxt_id = 0;
2352 fl->desc = NULL;
2353 }
2354}
2355
2356/**
2357 * t4vf_free_sge_resources - free SGE resources
2358 * @adapter: the adapter
2359 *
2360 * Frees resources used by the SGE queue sets.
2361 */
2362void t4vf_free_sge_resources(struct adapter *adapter)
2363{
2364 struct sge *s = &adapter->sge;
2365 struct sge_eth_rxq *rxq = s->ethrxq;
2366 struct sge_eth_txq *txq = s->ethtxq;
2367 struct sge_rspq *evtq = &s->fw_evtq;
2368 struct sge_rspq *intrq = &s->intrq;
2369 int qs;
2370
Casey Leedomb97d13a2010-07-15 22:47:06 -07002371 for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
Casey Leedomc6e0d912010-06-25 12:13:28 +00002372 if (rxq->rspq.desc)
2373 free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2374 if (txq->q.desc) {
2375 t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2376 free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2377 kfree(txq->q.sdesc);
2378 free_txq(adapter, &txq->q);
2379 }
2380 }
2381 if (evtq->desc)
2382 free_rspq_fl(adapter, evtq, NULL);
2383 if (intrq->desc)
2384 free_rspq_fl(adapter, intrq, NULL);
2385}
2386
2387/**
2388 * t4vf_sge_start - enable SGE operation
2389 * @adapter: the adapter
2390 *
2391 * Start tasklets and timers associated with the DMA engine.
2392 */
2393void t4vf_sge_start(struct adapter *adapter)
2394{
2395 adapter->sge.ethtxq_rover = 0;
2396 mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2397 mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2398}
2399
2400/**
2401 * t4vf_sge_stop - disable SGE operation
2402 * @adapter: the adapter
2403 *
2404 * Stop tasklets and timers associated with the DMA engine. Note that
2405 * this is effective only if measures have been taken to disable any HW
2406 * events that may restart them.
2407 */
2408void t4vf_sge_stop(struct adapter *adapter)
2409{
2410 struct sge *s = &adapter->sge;
2411
2412 if (s->rx_timer.function)
2413 del_timer_sync(&s->rx_timer);
2414 if (s->tx_timer.function)
2415 del_timer_sync(&s->tx_timer);
2416}
2417
2418/**
2419 * t4vf_sge_init - initialize SGE
2420 * @adapter: the adapter
2421 *
2422 * Performs SGE initialization needed every time after a chip reset.
2423 * We do not initialize any of the queue sets here, instead the driver
2424 * top-level must request those individually. We also do not enable DMA
2425 * here, that should be done after the queues have been set up.
2426 */
2427int t4vf_sge_init(struct adapter *adapter)
2428{
2429 struct sge_params *sge_params = &adapter->params.sge;
2430 u32 fl0 = sge_params->sge_fl_buffer_size[0];
2431 u32 fl1 = sge_params->sge_fl_buffer_size[1];
2432 struct sge *s = &adapter->sge;
Hariprasad Shenaice8f4072014-11-07 17:06:30 +05302433 unsigned int ingpadboundary, ingpackboundary;
Casey Leedomc6e0d912010-06-25 12:13:28 +00002434
2435 /*
2436 * Start by vetting the basic SGE parameters which have been set up by
2437 * the Physical Function Driver. Ideally we should be able to deal
2438 * with _any_ configuration. Practice is different ...
2439 */
2440 if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2441 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2442 fl0, fl1);
2443 return -EINVAL;
2444 }
Vipul Pandya52367a72012-09-26 02:39:38 +00002445 if ((sge_params->sge_control & RXPKTCPLMODE_MASK) == 0) {
Casey Leedomc6e0d912010-06-25 12:13:28 +00002446 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2447 return -EINVAL;
2448 }
2449
2450 /*
2451 * Now translate the adapter parameters into our internal forms.
2452 */
2453 if (fl1)
Hariprasad Shenai65f6ecc2014-11-07 17:06:29 +05302454 s->fl_pg_order = ilog2(fl1) - PAGE_SHIFT;
2455 s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_MASK)
2456 ? 128 : 64);
2457 s->pktshift = PKTSHIFT_GET(sge_params->sge_control);
Hariprasad Shenaice8f4072014-11-07 17:06:30 +05302458
2459 /* T4 uses a single control field to specify both the PCIe Padding and
2460 * Packing Boundary. T5 introduced the ability to specify these
2461 * separately. The actual Ingress Packet Data alignment boundary
2462 * within Packed Buffer Mode is the maximum of these two
2463 * specifications. (Note that it makes no real practical sense to
2464 * have the Pading Boudary be larger than the Packing Boundary but you
2465 * could set the chip up that way and, in fact, legacy T4 code would
2466 * end doing this because it would initialize the Padding Boundary and
2467 * leave the Packing Boundary initialized to 0 (16 bytes).)
2468 */
2469 ingpadboundary = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) +
2470 X_INGPADBOUNDARY_SHIFT);
2471 if (is_t4(adapter->params.chip)) {
2472 s->fl_align = ingpadboundary;
2473 } else {
2474 /* T5 has a different interpretation of one of the PCIe Packing
2475 * Boundary values.
2476 */
2477 ingpackboundary = INGPACKBOUNDARY_G(sge_params->sge_control2);
2478 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
2479 ingpackboundary = 16;
2480 else
2481 ingpackboundary = 1 << (ingpackboundary +
2482 INGPACKBOUNDARY_SHIFT_X);
2483
2484 s->fl_align = max(ingpadboundary, ingpackboundary);
2485 }
Casey Leedomc6e0d912010-06-25 12:13:28 +00002486
Hariprasad Shenai50d21a62014-11-07 17:06:31 +05302487 /* A FL with <= fl_starve_thres buffers is starving and a periodic
2488 * timer will attempt to refill it. This needs to be larger than the
2489 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2490 * stuck waiting for new packets while the SGE is waiting for us to
2491 * give it more Free List entries. (Note that the SGE's Egress
2492 * Congestion Threshold is in units of 2 Free List pointers.)
2493 */
2494 s->fl_starve_thres
2495 = EGRTHRESHOLD_GET(sge_params->sge_congestion_control)*2 + 1;
2496
Casey Leedomc6e0d912010-06-25 12:13:28 +00002497 /*
2498 * Set up tasklet timers.
2499 */
2500 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2501 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2502
2503 /*
2504 * Initialize Forwarded Interrupt Queue lock.
2505 */
2506 spin_lock_init(&s->intrq_lock);
2507
2508 return 0;
2509}