blob: a513a34a51d299a8bf7d9ef7799717ceb4a42430 [file] [log] [blame]
Mark Brown70771482014-10-28 22:15:31 +00001/*
2 * soc-ops.c -- Generic ASoC operations
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 */
18
19#include <linux/module.h>
20#include <linux/moduleparam.h>
21#include <linux/init.h>
22#include <linux/delay.h>
23#include <linux/pm.h>
24#include <linux/bitops.h>
25#include <linux/ctype.h>
26#include <linux/slab.h>
27#include <sound/core.h>
28#include <sound/jack.h>
29#include <sound/pcm.h>
30#include <sound/pcm_params.h>
31#include <sound/soc.h>
32#include <sound/soc-dpcm.h>
33#include <sound/initval.h>
34
35/**
36 * snd_soc_info_enum_double - enumerated double mixer info callback
37 * @kcontrol: mixer control
38 * @uinfo: control element information
39 *
40 * Callback to provide information about a double enumerated
41 * mixer control.
42 *
43 * Returns 0 for success.
44 */
45int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
46 struct snd_ctl_elem_info *uinfo)
47{
48 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
49
50 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
51 e->items, e->texts);
52}
53EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
54
55/**
56 * snd_soc_get_enum_double - enumerated double mixer get callback
57 * @kcontrol: mixer control
58 * @ucontrol: control element information
59 *
60 * Callback to get the value of a double enumerated mixer.
61 *
62 * Returns 0 for success.
63 */
64int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
65 struct snd_ctl_elem_value *ucontrol)
66{
67 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
68 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
69 unsigned int val, item;
70 unsigned int reg_val;
71 int ret;
72
73 ret = snd_soc_component_read(component, e->reg, &reg_val);
74 if (ret)
75 return ret;
76 val = (reg_val >> e->shift_l) & e->mask;
77 item = snd_soc_enum_val_to_item(e, val);
78 ucontrol->value.enumerated.item[0] = item;
79 if (e->shift_l != e->shift_r) {
80 val = (reg_val >> e->shift_l) & e->mask;
81 item = snd_soc_enum_val_to_item(e, val);
82 ucontrol->value.enumerated.item[1] = item;
83 }
84
85 return 0;
86}
87EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
88
89/**
90 * snd_soc_put_enum_double - enumerated double mixer put callback
91 * @kcontrol: mixer control
92 * @ucontrol: control element information
93 *
94 * Callback to set the value of a double enumerated mixer.
95 *
96 * Returns 0 for success.
97 */
98int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
99 struct snd_ctl_elem_value *ucontrol)
100{
101 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
102 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
103 unsigned int *item = ucontrol->value.enumerated.item;
104 unsigned int val;
105 unsigned int mask;
106
107 if (item[0] >= e->items)
108 return -EINVAL;
109 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
110 mask = e->mask << e->shift_l;
111 if (e->shift_l != e->shift_r) {
112 if (item[1] >= e->items)
113 return -EINVAL;
114 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
115 mask |= e->mask << e->shift_r;
116 }
117
118 return snd_soc_component_update_bits(component, e->reg, mask, val);
119}
120EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
121
122/**
123 * snd_soc_read_signed - Read a codec register and interprete as signed value
124 * @component: component
125 * @reg: Register to read
126 * @mask: Mask to use after shifting the register value
127 * @shift: Right shift of register value
128 * @sign_bit: Bit that describes if a number is negative or not.
129 * @signed_val: Pointer to where the read value should be stored
130 *
131 * This functions reads a codec register. The register value is shifted right
132 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
133 * the given registervalue into a signed integer if sign_bit is non-zero.
134 *
135 * Returns 0 on sucess, otherwise an error value
136 */
137static int snd_soc_read_signed(struct snd_soc_component *component,
138 unsigned int reg, unsigned int mask, unsigned int shift,
139 unsigned int sign_bit, int *signed_val)
140{
141 int ret;
142 unsigned int val;
143
144 ret = snd_soc_component_read(component, reg, &val);
145 if (ret < 0)
146 return ret;
147
148 val = (val >> shift) & mask;
149
150 if (!sign_bit) {
151 *signed_val = val;
152 return 0;
153 }
154
155 /* non-negative number */
156 if (!(val & BIT(sign_bit))) {
157 *signed_val = val;
158 return 0;
159 }
160
161 ret = val;
162
163 /*
164 * The register most probably does not contain a full-sized int.
165 * Instead we have an arbitrary number of bits in a signed
166 * representation which has to be translated into a full-sized int.
167 * This is done by filling up all bits above the sign-bit.
168 */
169 ret |= ~((int)(BIT(sign_bit) - 1));
170
171 *signed_val = ret;
172
173 return 0;
174}
175
176/**
177 * snd_soc_info_volsw - single mixer info callback
178 * @kcontrol: mixer control
179 * @uinfo: control element information
180 *
181 * Callback to provide information about a single mixer control, or a double
182 * mixer control that spans 2 registers.
183 *
184 * Returns 0 for success.
185 */
186int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
187 struct snd_ctl_elem_info *uinfo)
188{
189 struct soc_mixer_control *mc =
190 (struct soc_mixer_control *)kcontrol->private_value;
191 int platform_max;
192
193 if (!mc->platform_max)
194 mc->platform_max = mc->max;
195 platform_max = mc->platform_max;
196
197 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
198 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
199 else
200 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
201
202 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
203 uinfo->value.integer.min = 0;
204 uinfo->value.integer.max = platform_max - mc->min;
205 return 0;
206}
207EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
208
209/**
Charles Keepax34198712015-10-14 13:31:24 +0100210 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
211 * @kcontrol: mixer control
212 * @uinfo: control element information
213 *
214 * Callback to provide information about a single mixer control, or a double
215 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
216 * have a range that represents both positive and negative values either side
217 * of zero but without a sign bit.
218 *
219 * Returns 0 for success.
220 */
221int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
222 struct snd_ctl_elem_info *uinfo)
223{
224 struct soc_mixer_control *mc =
225 (struct soc_mixer_control *)kcontrol->private_value;
226
227 snd_soc_info_volsw(kcontrol, uinfo);
228 /* Max represents the number of levels in an SX control not the
229 * maximum value, so add the minimum value back on
230 */
231 uinfo->value.integer.max += mc->min;
232
233 return 0;
234}
235EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
236
237/**
Mark Brown70771482014-10-28 22:15:31 +0000238 * snd_soc_get_volsw - single mixer get callback
239 * @kcontrol: mixer control
240 * @ucontrol: control element information
241 *
242 * Callback to get the value of a single mixer control, or a double mixer
243 * control that spans 2 registers.
244 *
245 * Returns 0 for success.
246 */
247int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
248 struct snd_ctl_elem_value *ucontrol)
249{
250 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
251 struct soc_mixer_control *mc =
252 (struct soc_mixer_control *)kcontrol->private_value;
253 unsigned int reg = mc->reg;
254 unsigned int reg2 = mc->rreg;
255 unsigned int shift = mc->shift;
256 unsigned int rshift = mc->rshift;
257 int max = mc->max;
258 int min = mc->min;
259 int sign_bit = mc->sign_bit;
260 unsigned int mask = (1 << fls(max)) - 1;
261 unsigned int invert = mc->invert;
262 int val;
263 int ret;
264
265 if (sign_bit)
266 mask = BIT(sign_bit + 1) - 1;
267
268 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
269 if (ret)
270 return ret;
271
272 ucontrol->value.integer.value[0] = val - min;
273 if (invert)
274 ucontrol->value.integer.value[0] =
275 max - ucontrol->value.integer.value[0];
276
277 if (snd_soc_volsw_is_stereo(mc)) {
278 if (reg == reg2)
279 ret = snd_soc_read_signed(component, reg, mask, rshift,
280 sign_bit, &val);
281 else
282 ret = snd_soc_read_signed(component, reg2, mask, shift,
283 sign_bit, &val);
284 if (ret)
285 return ret;
286
287 ucontrol->value.integer.value[1] = val - min;
288 if (invert)
289 ucontrol->value.integer.value[1] =
290 max - ucontrol->value.integer.value[1];
291 }
292
293 return 0;
294}
295EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
296
297/**
298 * snd_soc_put_volsw - single mixer put callback
299 * @kcontrol: mixer control
300 * @ucontrol: control element information
301 *
302 * Callback to set the value of a single mixer control, or a double mixer
303 * control that spans 2 registers.
304 *
305 * Returns 0 for success.
306 */
307int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
308 struct snd_ctl_elem_value *ucontrol)
309{
310 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
311 struct soc_mixer_control *mc =
312 (struct soc_mixer_control *)kcontrol->private_value;
313 unsigned int reg = mc->reg;
314 unsigned int reg2 = mc->rreg;
315 unsigned int shift = mc->shift;
316 unsigned int rshift = mc->rshift;
317 int max = mc->max;
318 int min = mc->min;
319 unsigned int sign_bit = mc->sign_bit;
320 unsigned int mask = (1 << fls(max)) - 1;
321 unsigned int invert = mc->invert;
322 int err;
323 bool type_2r = false;
324 unsigned int val2 = 0;
325 unsigned int val, val_mask;
326
327 if (sign_bit)
328 mask = BIT(sign_bit + 1) - 1;
329
330 val = ((ucontrol->value.integer.value[0] + min) & mask);
331 if (invert)
332 val = max - val;
333 val_mask = mask << shift;
334 val = val << shift;
335 if (snd_soc_volsw_is_stereo(mc)) {
336 val2 = ((ucontrol->value.integer.value[1] + min) & mask);
337 if (invert)
338 val2 = max - val2;
339 if (reg == reg2) {
340 val_mask |= mask << rshift;
341 val |= val2 << rshift;
342 } else {
343 val2 = val2 << shift;
344 type_2r = true;
345 }
346 }
347 err = snd_soc_component_update_bits(component, reg, val_mask, val);
348 if (err < 0)
349 return err;
350
351 if (type_2r)
352 err = snd_soc_component_update_bits(component, reg2, val_mask,
353 val2);
354
355 return err;
356}
357EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
358
359/**
360 * snd_soc_get_volsw_sx - single mixer get callback
361 * @kcontrol: mixer control
362 * @ucontrol: control element information
363 *
364 * Callback to get the value of a single mixer control, or a double mixer
365 * control that spans 2 registers.
366 *
367 * Returns 0 for success.
368 */
369int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
370 struct snd_ctl_elem_value *ucontrol)
371{
372 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
373 struct soc_mixer_control *mc =
374 (struct soc_mixer_control *)kcontrol->private_value;
375 unsigned int reg = mc->reg;
376 unsigned int reg2 = mc->rreg;
377 unsigned int shift = mc->shift;
378 unsigned int rshift = mc->rshift;
379 int max = mc->max;
380 int min = mc->min;
381 int mask = (1 << (fls(min + max) - 1)) - 1;
382 unsigned int val;
383 int ret;
384
385 ret = snd_soc_component_read(component, reg, &val);
386 if (ret < 0)
387 return ret;
388
389 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
390
391 if (snd_soc_volsw_is_stereo(mc)) {
392 ret = snd_soc_component_read(component, reg2, &val);
393 if (ret < 0)
394 return ret;
395
396 val = ((val >> rshift) - min) & mask;
397 ucontrol->value.integer.value[1] = val;
398 }
399
400 return 0;
401}
402EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
403
404/**
405 * snd_soc_put_volsw_sx - double mixer set callback
406 * @kcontrol: mixer control
Randy Dunlap9a11ef7f2015-11-23 17:37:54 -0800407 * @ucontrol: control element information
Mark Brown70771482014-10-28 22:15:31 +0000408 *
409 * Callback to set the value of a double mixer control that spans 2 registers.
410 *
411 * Returns 0 for success.
412 */
413int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
414 struct snd_ctl_elem_value *ucontrol)
415{
416 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
417 struct soc_mixer_control *mc =
418 (struct soc_mixer_control *)kcontrol->private_value;
419
420 unsigned int reg = mc->reg;
421 unsigned int reg2 = mc->rreg;
422 unsigned int shift = mc->shift;
423 unsigned int rshift = mc->rshift;
424 int max = mc->max;
425 int min = mc->min;
426 int mask = (1 << (fls(min + max) - 1)) - 1;
427 int err = 0;
428 unsigned int val, val_mask, val2 = 0;
429
430 val_mask = mask << shift;
431 val = (ucontrol->value.integer.value[0] + min) & mask;
432 val = val << shift;
433
434 err = snd_soc_component_update_bits(component, reg, val_mask, val);
435 if (err < 0)
436 return err;
437
438 if (snd_soc_volsw_is_stereo(mc)) {
439 val_mask = mask << rshift;
440 val2 = (ucontrol->value.integer.value[1] + min) & mask;
441 val2 = val2 << rshift;
442
443 err = snd_soc_component_update_bits(component, reg2, val_mask,
444 val2);
445 }
446 return err;
447}
448EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
449
450/**
451 * snd_soc_info_volsw_range - single mixer info callback with range.
452 * @kcontrol: mixer control
453 * @uinfo: control element information
454 *
455 * Callback to provide information, within a range, about a single
456 * mixer control.
457 *
458 * returns 0 for success.
459 */
460int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
461 struct snd_ctl_elem_info *uinfo)
462{
463 struct soc_mixer_control *mc =
464 (struct soc_mixer_control *)kcontrol->private_value;
465 int platform_max;
466 int min = mc->min;
467
468 if (!mc->platform_max)
469 mc->platform_max = mc->max;
470 platform_max = mc->platform_max;
471
472 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
473 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
474 uinfo->value.integer.min = 0;
475 uinfo->value.integer.max = platform_max - min;
476
477 return 0;
478}
479EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
480
481/**
482 * snd_soc_put_volsw_range - single mixer put value callback with range.
483 * @kcontrol: mixer control
484 * @ucontrol: control element information
485 *
486 * Callback to set the value, within a range, for a single mixer control.
487 *
488 * Returns 0 for success.
489 */
490int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
491 struct snd_ctl_elem_value *ucontrol)
492{
493 struct soc_mixer_control *mc =
494 (struct soc_mixer_control *)kcontrol->private_value;
495 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
496 unsigned int reg = mc->reg;
497 unsigned int rreg = mc->rreg;
498 unsigned int shift = mc->shift;
499 int min = mc->min;
500 int max = mc->max;
501 unsigned int mask = (1 << fls(max)) - 1;
502 unsigned int invert = mc->invert;
503 unsigned int val, val_mask;
504 int ret;
505
506 if (invert)
507 val = (max - ucontrol->value.integer.value[0]) & mask;
508 else
509 val = ((ucontrol->value.integer.value[0] + min) & mask);
510 val_mask = mask << shift;
511 val = val << shift;
512
513 ret = snd_soc_component_update_bits(component, reg, val_mask, val);
514 if (ret < 0)
515 return ret;
516
517 if (snd_soc_volsw_is_stereo(mc)) {
518 if (invert)
519 val = (max - ucontrol->value.integer.value[1]) & mask;
520 else
521 val = ((ucontrol->value.integer.value[1] + min) & mask);
522 val_mask = mask << shift;
523 val = val << shift;
524
525 ret = snd_soc_component_update_bits(component, rreg, val_mask,
526 val);
527 }
528
529 return ret;
530}
531EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
532
533/**
534 * snd_soc_get_volsw_range - single mixer get callback with range
535 * @kcontrol: mixer control
536 * @ucontrol: control element information
537 *
538 * Callback to get the value, within a range, of a single mixer control.
539 *
540 * Returns 0 for success.
541 */
542int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
543 struct snd_ctl_elem_value *ucontrol)
544{
545 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
546 struct soc_mixer_control *mc =
547 (struct soc_mixer_control *)kcontrol->private_value;
548 unsigned int reg = mc->reg;
549 unsigned int rreg = mc->rreg;
550 unsigned int shift = mc->shift;
551 int min = mc->min;
552 int max = mc->max;
553 unsigned int mask = (1 << fls(max)) - 1;
554 unsigned int invert = mc->invert;
555 unsigned int val;
556 int ret;
557
558 ret = snd_soc_component_read(component, reg, &val);
559 if (ret)
560 return ret;
561
562 ucontrol->value.integer.value[0] = (val >> shift) & mask;
563 if (invert)
564 ucontrol->value.integer.value[0] =
565 max - ucontrol->value.integer.value[0];
566 else
567 ucontrol->value.integer.value[0] =
568 ucontrol->value.integer.value[0] - min;
569
570 if (snd_soc_volsw_is_stereo(mc)) {
571 ret = snd_soc_component_read(component, rreg, &val);
572 if (ret)
573 return ret;
574
575 ucontrol->value.integer.value[1] = (val >> shift) & mask;
576 if (invert)
577 ucontrol->value.integer.value[1] =
578 max - ucontrol->value.integer.value[1];
579 else
580 ucontrol->value.integer.value[1] =
581 ucontrol->value.integer.value[1] - min;
582 }
583
584 return 0;
585}
586EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
587
588/**
589 * snd_soc_limit_volume - Set new limit to an existing volume control.
590 *
Lars-Peter Clausen26d9ca32015-10-18 17:04:33 +0200591 * @card: where to look for the control
Mark Brown70771482014-10-28 22:15:31 +0000592 * @name: Name of the control
593 * @max: new maximum limit
594 *
595 * Return 0 for success, else error.
596 */
Lars-Peter Clausen26d9ca32015-10-18 17:04:33 +0200597int snd_soc_limit_volume(struct snd_soc_card *card,
Mark Brown70771482014-10-28 22:15:31 +0000598 const char *name, int max)
599{
Lars-Peter Clausen26d9ca32015-10-18 17:04:33 +0200600 struct snd_card *snd_card = card->snd_card;
Mark Brown70771482014-10-28 22:15:31 +0000601 struct snd_kcontrol *kctl;
602 struct soc_mixer_control *mc;
603 int found = 0;
604 int ret = -EINVAL;
605
606 /* Sanity check for name and max */
607 if (unlikely(!name || max <= 0))
608 return -EINVAL;
609
Lars-Peter Clausen26d9ca32015-10-18 17:04:33 +0200610 list_for_each_entry(kctl, &snd_card->controls, list) {
Mark Brown70771482014-10-28 22:15:31 +0000611 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
612 found = 1;
613 break;
614 }
615 }
616 if (found) {
617 mc = (struct soc_mixer_control *)kctl->private_value;
618 if (max <= mc->max) {
619 mc->platform_max = max;
620 ret = 0;
621 }
622 }
623 return ret;
624}
625EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
626
627int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
628 struct snd_ctl_elem_info *uinfo)
629{
630 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
631 struct soc_bytes *params = (void *)kcontrol->private_value;
632
633 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
634 uinfo->count = params->num_regs * component->val_bytes;
635
636 return 0;
637}
638EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
639
640int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
641 struct snd_ctl_elem_value *ucontrol)
642{
643 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
644 struct soc_bytes *params = (void *)kcontrol->private_value;
645 int ret;
646
647 if (component->regmap)
648 ret = regmap_raw_read(component->regmap, params->base,
649 ucontrol->value.bytes.data,
650 params->num_regs * component->val_bytes);
651 else
652 ret = -EINVAL;
653
654 /* Hide any masked bytes to ensure consistent data reporting */
655 if (ret == 0 && params->mask) {
656 switch (component->val_bytes) {
657 case 1:
658 ucontrol->value.bytes.data[0] &= ~params->mask;
659 break;
660 case 2:
661 ((u16 *)(&ucontrol->value.bytes.data))[0]
662 &= cpu_to_be16(~params->mask);
663 break;
664 case 4:
665 ((u32 *)(&ucontrol->value.bytes.data))[0]
666 &= cpu_to_be32(~params->mask);
667 break;
668 default:
669 return -EINVAL;
670 }
671 }
672
673 return ret;
674}
675EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
676
677int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
678 struct snd_ctl_elem_value *ucontrol)
679{
680 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
681 struct soc_bytes *params = (void *)kcontrol->private_value;
682 int ret, len;
683 unsigned int val, mask;
684 void *data;
685
686 if (!component->regmap || !params->num_regs)
687 return -EINVAL;
688
689 len = params->num_regs * component->val_bytes;
690
691 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
692 if (!data)
693 return -ENOMEM;
694
695 /*
696 * If we've got a mask then we need to preserve the register
697 * bits. We shouldn't modify the incoming data so take a
698 * copy.
699 */
700 if (params->mask) {
701 ret = regmap_read(component->regmap, params->base, &val);
702 if (ret != 0)
703 goto out;
704
705 val &= params->mask;
706
707 switch (component->val_bytes) {
708 case 1:
709 ((u8 *)data)[0] &= ~params->mask;
710 ((u8 *)data)[0] |= val;
711 break;
712 case 2:
713 mask = ~params->mask;
714 ret = regmap_parse_val(component->regmap,
715 &mask, &mask);
716 if (ret != 0)
717 goto out;
718
719 ((u16 *)data)[0] &= mask;
720
721 ret = regmap_parse_val(component->regmap,
722 &val, &val);
723 if (ret != 0)
724 goto out;
725
726 ((u16 *)data)[0] |= val;
727 break;
728 case 4:
729 mask = ~params->mask;
730 ret = regmap_parse_val(component->regmap,
731 &mask, &mask);
732 if (ret != 0)
733 goto out;
734
735 ((u32 *)data)[0] &= mask;
736
737 ret = regmap_parse_val(component->regmap,
738 &val, &val);
739 if (ret != 0)
740 goto out;
741
742 ((u32 *)data)[0] |= val;
743 break;
744 default:
745 ret = -EINVAL;
746 goto out;
747 }
748 }
749
750 ret = regmap_raw_write(component->regmap, params->base,
751 data, len);
752
753out:
754 kfree(data);
755
756 return ret;
757}
758EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
759
760int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
761 struct snd_ctl_elem_info *ucontrol)
762{
763 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
764
765 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
766 ucontrol->count = params->max;
767
768 return 0;
769}
770EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
771
772int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
773 unsigned int size, unsigned int __user *tlv)
774{
775 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
776 unsigned int count = size < params->max ? size : params->max;
777 int ret = -ENXIO;
778
779 switch (op_flag) {
780 case SNDRV_CTL_TLV_OP_READ:
781 if (params->get)
Mythri P Ka1e5e7e92015-11-09 23:20:00 +0530782 ret = params->get(kcontrol, tlv, count);
Mark Brown70771482014-10-28 22:15:31 +0000783 break;
784 case SNDRV_CTL_TLV_OP_WRITE:
785 if (params->put)
Mythri P Ka1e5e7e92015-11-09 23:20:00 +0530786 ret = params->put(kcontrol, tlv, count);
Mark Brown70771482014-10-28 22:15:31 +0000787 break;
788 }
789 return ret;
790}
791EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
792
793/**
794 * snd_soc_info_xr_sx - signed multi register info callback
795 * @kcontrol: mreg control
796 * @uinfo: control element information
797 *
798 * Callback to provide information of a control that can
799 * span multiple codec registers which together
800 * forms a single signed value in a MSB/LSB manner.
801 *
802 * Returns 0 for success.
803 */
804int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
805 struct snd_ctl_elem_info *uinfo)
806{
807 struct soc_mreg_control *mc =
808 (struct soc_mreg_control *)kcontrol->private_value;
809 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
810 uinfo->count = 1;
811 uinfo->value.integer.min = mc->min;
812 uinfo->value.integer.max = mc->max;
813
814 return 0;
815}
816EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
817
818/**
819 * snd_soc_get_xr_sx - signed multi register get callback
820 * @kcontrol: mreg control
821 * @ucontrol: control element information
822 *
823 * Callback to get the value of a control that can span
824 * multiple codec registers which together forms a single
825 * signed value in a MSB/LSB manner. The control supports
826 * specifying total no of bits used to allow for bitfields
827 * across the multiple codec registers.
828 *
829 * Returns 0 for success.
830 */
831int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
832 struct snd_ctl_elem_value *ucontrol)
833{
834 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
835 struct soc_mreg_control *mc =
836 (struct soc_mreg_control *)kcontrol->private_value;
837 unsigned int regbase = mc->regbase;
838 unsigned int regcount = mc->regcount;
839 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
840 unsigned int regwmask = (1<<regwshift)-1;
841 unsigned int invert = mc->invert;
842 unsigned long mask = (1UL<<mc->nbits)-1;
843 long min = mc->min;
844 long max = mc->max;
845 long val = 0;
846 unsigned int regval;
847 unsigned int i;
848 int ret;
849
850 for (i = 0; i < regcount; i++) {
851 ret = snd_soc_component_read(component, regbase+i, &regval);
852 if (ret)
853 return ret;
854 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
855 }
856 val &= mask;
857 if (min < 0 && val > max)
858 val |= ~mask;
859 if (invert)
860 val = max - val;
861 ucontrol->value.integer.value[0] = val;
862
863 return 0;
864}
865EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
866
867/**
868 * snd_soc_put_xr_sx - signed multi register get callback
869 * @kcontrol: mreg control
870 * @ucontrol: control element information
871 *
872 * Callback to set the value of a control that can span
873 * multiple codec registers which together forms a single
874 * signed value in a MSB/LSB manner. The control supports
875 * specifying total no of bits used to allow for bitfields
876 * across the multiple codec registers.
877 *
878 * Returns 0 for success.
879 */
880int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
881 struct snd_ctl_elem_value *ucontrol)
882{
883 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
884 struct soc_mreg_control *mc =
885 (struct soc_mreg_control *)kcontrol->private_value;
886 unsigned int regbase = mc->regbase;
887 unsigned int regcount = mc->regcount;
888 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
889 unsigned int regwmask = (1<<regwshift)-1;
890 unsigned int invert = mc->invert;
891 unsigned long mask = (1UL<<mc->nbits)-1;
892 long max = mc->max;
893 long val = ucontrol->value.integer.value[0];
894 unsigned int i, regval, regmask;
895 int err;
896
897 if (invert)
898 val = max - val;
899 val &= mask;
900 for (i = 0; i < regcount; i++) {
901 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
902 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
903 err = snd_soc_component_update_bits(component, regbase+i,
904 regmask, regval);
905 if (err < 0)
906 return err;
907 }
908
909 return 0;
910}
911EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
912
913/**
914 * snd_soc_get_strobe - strobe get callback
915 * @kcontrol: mixer control
916 * @ucontrol: control element information
917 *
918 * Callback get the value of a strobe mixer control.
919 *
920 * Returns 0 for success.
921 */
922int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
923 struct snd_ctl_elem_value *ucontrol)
924{
925 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
926 struct soc_mixer_control *mc =
927 (struct soc_mixer_control *)kcontrol->private_value;
928 unsigned int reg = mc->reg;
929 unsigned int shift = mc->shift;
930 unsigned int mask = 1 << shift;
931 unsigned int invert = mc->invert != 0;
932 unsigned int val;
933 int ret;
934
935 ret = snd_soc_component_read(component, reg, &val);
936 if (ret)
937 return ret;
938
939 val &= mask;
940
941 if (shift != 0 && val != 0)
942 val = val >> shift;
943 ucontrol->value.enumerated.item[0] = val ^ invert;
944
945 return 0;
946}
947EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
948
949/**
950 * snd_soc_put_strobe - strobe put callback
951 * @kcontrol: mixer control
952 * @ucontrol: control element information
953 *
954 * Callback strobe a register bit to high then low (or the inverse)
955 * in one pass of a single mixer enum control.
956 *
957 * Returns 1 for success.
958 */
959int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
960 struct snd_ctl_elem_value *ucontrol)
961{
962 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
963 struct soc_mixer_control *mc =
964 (struct soc_mixer_control *)kcontrol->private_value;
965 unsigned int reg = mc->reg;
966 unsigned int shift = mc->shift;
967 unsigned int mask = 1 << shift;
968 unsigned int invert = mc->invert != 0;
969 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
970 unsigned int val1 = (strobe ^ invert) ? mask : 0;
971 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
972 int err;
973
974 err = snd_soc_component_update_bits(component, reg, mask, val1);
975 if (err < 0)
976 return err;
977
978 return snd_soc_component_update_bits(component, reg, mask, val2);
979}
980EXPORT_SYMBOL_GPL(snd_soc_put_strobe);