blob: 59883bd78214b0428a819ee19d397f460bfc6d8b [file] [log] [blame]
Kiyoshi Uedaf392ba82009-06-22 10:12:28 +01001/*
2 * Copyright (C) 2007-2009 NEC Corporation. All Rights Reserved.
3 *
4 * Module Author: Kiyoshi Ueda
5 *
6 * This file is released under the GPL.
7 *
8 * Throughput oriented path selector.
9 */
10
11#include "dm.h"
12#include "dm-path-selector.h"
13
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090014#include <linux/slab.h>
Paul Gortmaker056075c2011-07-03 13:58:33 -040015#include <linux/module.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090016
Kiyoshi Uedaf392ba82009-06-22 10:12:28 +010017#define DM_MSG_PREFIX "multipath service-time"
18#define ST_MIN_IO 1
19#define ST_MAX_RELATIVE_THROUGHPUT 100
20#define ST_MAX_RELATIVE_THROUGHPUT_SHIFT 7
21#define ST_MAX_INFLIGHT_SIZE ((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT)
22#define ST_VERSION "0.2.0"
23
24struct selector {
25 struct list_head valid_paths;
26 struct list_head failed_paths;
27};
28
29struct path_info {
30 struct list_head list;
31 struct dm_path *path;
32 unsigned repeat_count;
33 unsigned relative_throughput;
34 atomic_t in_flight_size; /* Total size of in-flight I/Os */
35};
36
37static struct selector *alloc_selector(void)
38{
39 struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
40
41 if (s) {
42 INIT_LIST_HEAD(&s->valid_paths);
43 INIT_LIST_HEAD(&s->failed_paths);
44 }
45
46 return s;
47}
48
49static int st_create(struct path_selector *ps, unsigned argc, char **argv)
50{
51 struct selector *s = alloc_selector();
52
53 if (!s)
54 return -ENOMEM;
55
56 ps->context = s;
57 return 0;
58}
59
60static void free_paths(struct list_head *paths)
61{
62 struct path_info *pi, *next;
63
64 list_for_each_entry_safe(pi, next, paths, list) {
65 list_del(&pi->list);
66 kfree(pi);
67 }
68}
69
70static void st_destroy(struct path_selector *ps)
71{
72 struct selector *s = ps->context;
73
74 free_paths(&s->valid_paths);
75 free_paths(&s->failed_paths);
76 kfree(s);
77 ps->context = NULL;
78}
79
80static int st_status(struct path_selector *ps, struct dm_path *path,
81 status_type_t type, char *result, unsigned maxlen)
82{
83 unsigned sz = 0;
84 struct path_info *pi;
85
86 if (!path)
87 DMEMIT("0 ");
88 else {
89 pi = path->pscontext;
90
91 switch (type) {
92 case STATUSTYPE_INFO:
93 DMEMIT("%d %u ", atomic_read(&pi->in_flight_size),
94 pi->relative_throughput);
95 break;
96 case STATUSTYPE_TABLE:
97 DMEMIT("%u %u ", pi->repeat_count,
98 pi->relative_throughput);
99 break;
100 }
101 }
102
103 return sz;
104}
105
106static int st_add_path(struct path_selector *ps, struct dm_path *path,
107 int argc, char **argv, char **error)
108{
109 struct selector *s = ps->context;
110 struct path_info *pi;
111 unsigned repeat_count = ST_MIN_IO;
112 unsigned relative_throughput = 1;
113
114 /*
115 * Arguments: [<repeat_count> [<relative_throughput>]]
116 * <repeat_count>: The number of I/Os before switching path.
117 * If not given, default (ST_MIN_IO) is used.
118 * <relative_throughput>: The relative throughput value of
119 * the path among all paths in the path-group.
120 * The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT>
121 * If not given, minimum value '1' is used.
122 * If '0' is given, the path isn't selected while
123 * other paths having a positive value are
124 * available.
125 */
126 if (argc > 2) {
127 *error = "service-time ps: incorrect number of arguments";
128 return -EINVAL;
129 }
130
131 if (argc && (sscanf(argv[0], "%u", &repeat_count) != 1)) {
132 *error = "service-time ps: invalid repeat count";
133 return -EINVAL;
134 }
135
136 if ((argc == 2) &&
137 (sscanf(argv[1], "%u", &relative_throughput) != 1 ||
138 relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) {
139 *error = "service-time ps: invalid relative_throughput value";
140 return -EINVAL;
141 }
142
143 /* allocate the path */
144 pi = kmalloc(sizeof(*pi), GFP_KERNEL);
145 if (!pi) {
146 *error = "service-time ps: Error allocating path context";
147 return -ENOMEM;
148 }
149
150 pi->path = path;
151 pi->repeat_count = repeat_count;
152 pi->relative_throughput = relative_throughput;
153 atomic_set(&pi->in_flight_size, 0);
154
155 path->pscontext = pi;
156
157 list_add_tail(&pi->list, &s->valid_paths);
158
159 return 0;
160}
161
162static void st_fail_path(struct path_selector *ps, struct dm_path *path)
163{
164 struct selector *s = ps->context;
165 struct path_info *pi = path->pscontext;
166
167 list_move(&pi->list, &s->failed_paths);
168}
169
170static int st_reinstate_path(struct path_selector *ps, struct dm_path *path)
171{
172 struct selector *s = ps->context;
173 struct path_info *pi = path->pscontext;
174
175 list_move_tail(&pi->list, &s->valid_paths);
176
177 return 0;
178}
179
180/*
181 * Compare the estimated service time of 2 paths, pi1 and pi2,
182 * for the incoming I/O.
183 *
184 * Returns:
185 * < 0 : pi1 is better
186 * 0 : no difference between pi1 and pi2
187 * > 0 : pi2 is better
188 *
189 * Description:
190 * Basically, the service time is estimated by:
191 * ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput'
192 * To reduce the calculation, some optimizations are made.
193 * (See comments inline)
194 */
195static int st_compare_load(struct path_info *pi1, struct path_info *pi2,
196 size_t incoming)
197{
198 size_t sz1, sz2, st1, st2;
199
200 sz1 = atomic_read(&pi1->in_flight_size);
201 sz2 = atomic_read(&pi2->in_flight_size);
202
203 /*
204 * Case 1: Both have same throughput value. Choose less loaded path.
205 */
206 if (pi1->relative_throughput == pi2->relative_throughput)
207 return sz1 - sz2;
208
209 /*
210 * Case 2a: Both have same load. Choose higher throughput path.
211 * Case 2b: One path has no throughput value. Choose the other one.
212 */
213 if (sz1 == sz2 ||
214 !pi1->relative_throughput || !pi2->relative_throughput)
215 return pi2->relative_throughput - pi1->relative_throughput;
216
217 /*
218 * Case 3: Calculate service time. Choose faster path.
219 * Service time using pi1:
220 * st1 = (sz1 + incoming) / pi1->relative_throughput
221 * Service time using pi2:
222 * st2 = (sz2 + incoming) / pi2->relative_throughput
223 *
224 * To avoid the division, transform the expression to use
225 * multiplication.
226 * Because ->relative_throughput > 0 here, if st1 < st2,
227 * the expressions below are the same meaning:
228 * (sz1 + incoming) / pi1->relative_throughput <
229 * (sz2 + incoming) / pi2->relative_throughput
230 * (sz1 + incoming) * pi2->relative_throughput <
231 * (sz2 + incoming) * pi1->relative_throughput
232 * So use the later one.
233 */
234 sz1 += incoming;
235 sz2 += incoming;
236 if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE ||
237 sz2 >= ST_MAX_INFLIGHT_SIZE)) {
238 /*
239 * Size may be too big for multiplying pi->relative_throughput
240 * and overflow.
241 * To avoid the overflow and mis-selection, shift down both.
242 */
243 sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
244 sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
245 }
246 st1 = sz1 * pi2->relative_throughput;
247 st2 = sz2 * pi1->relative_throughput;
248 if (st1 != st2)
249 return st1 - st2;
250
251 /*
252 * Case 4: Service time is equal. Choose higher throughput path.
253 */
254 return pi2->relative_throughput - pi1->relative_throughput;
255}
256
257static struct dm_path *st_select_path(struct path_selector *ps,
258 unsigned *repeat_count, size_t nr_bytes)
259{
260 struct selector *s = ps->context;
261 struct path_info *pi = NULL, *best = NULL;
262
263 if (list_empty(&s->valid_paths))
264 return NULL;
265
266 /* Change preferred (first in list) path to evenly balance. */
267 list_move_tail(s->valid_paths.next, &s->valid_paths);
268
269 list_for_each_entry(pi, &s->valid_paths, list)
270 if (!best || (st_compare_load(pi, best, nr_bytes) < 0))
271 best = pi;
272
273 if (!best)
274 return NULL;
275
276 *repeat_count = best->repeat_count;
277
278 return best->path;
279}
280
281static int st_start_io(struct path_selector *ps, struct dm_path *path,
282 size_t nr_bytes)
283{
284 struct path_info *pi = path->pscontext;
285
286 atomic_add(nr_bytes, &pi->in_flight_size);
287
288 return 0;
289}
290
291static int st_end_io(struct path_selector *ps, struct dm_path *path,
292 size_t nr_bytes)
293{
294 struct path_info *pi = path->pscontext;
295
296 atomic_sub(nr_bytes, &pi->in_flight_size);
297
298 return 0;
299}
300
301static struct path_selector_type st_ps = {
302 .name = "service-time",
303 .module = THIS_MODULE,
304 .table_args = 2,
305 .info_args = 2,
306 .create = st_create,
307 .destroy = st_destroy,
308 .status = st_status,
309 .add_path = st_add_path,
310 .fail_path = st_fail_path,
311 .reinstate_path = st_reinstate_path,
312 .select_path = st_select_path,
313 .start_io = st_start_io,
314 .end_io = st_end_io,
315};
316
317static int __init dm_st_init(void)
318{
319 int r = dm_register_path_selector(&st_ps);
320
321 if (r < 0)
322 DMERR("register failed %d", r);
323
324 DMINFO("version " ST_VERSION " loaded");
325
326 return r;
327}
328
329static void __exit dm_st_exit(void)
330{
331 int r = dm_unregister_path_selector(&st_ps);
332
333 if (r < 0)
334 DMERR("unregister failed %d", r);
335}
336
337module_init(dm_st_init);
338module_exit(dm_st_exit);
339
340MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector");
341MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>");
342MODULE_LICENSE("GPL");