Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame^] | 1 | #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ |
| 2 | #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ |
| 3 | /* |
| 4 | * This file contains the functions and defines necessary to modify and use |
| 5 | * the ppc64 hashed page table. |
| 6 | */ |
| 7 | |
| 8 | #ifdef CONFIG_PPC_64K_PAGES |
| 9 | #include <asm/pgtable-ppc64-64k.h> |
| 10 | #else |
| 11 | #include <asm/pgtable-ppc64-4k.h> |
| 12 | #endif |
| 13 | #include <asm/barrier.h> |
| 14 | |
| 15 | #define FIRST_USER_ADDRESS 0UL |
| 16 | |
| 17 | /* |
| 18 | * Size of EA range mapped by our pagetables. |
| 19 | */ |
| 20 | #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ |
| 21 | PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) |
| 22 | #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE) |
| 23 | |
| 24 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 25 | #define PMD_CACHE_INDEX (PMD_INDEX_SIZE + 1) |
| 26 | #else |
| 27 | #define PMD_CACHE_INDEX PMD_INDEX_SIZE |
| 28 | #endif |
| 29 | /* |
| 30 | * Define the address range of the kernel non-linear virtual area |
| 31 | */ |
| 32 | |
| 33 | #ifdef CONFIG_PPC_BOOK3E |
| 34 | #define KERN_VIRT_START ASM_CONST(0x8000000000000000) |
| 35 | #else |
| 36 | #define KERN_VIRT_START ASM_CONST(0xD000000000000000) |
| 37 | #endif |
| 38 | #define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000) |
| 39 | |
| 40 | /* |
| 41 | * The vmalloc space starts at the beginning of that region, and |
| 42 | * occupies half of it on hash CPUs and a quarter of it on Book3E |
| 43 | * (we keep a quarter for the virtual memmap) |
| 44 | */ |
| 45 | #define VMALLOC_START KERN_VIRT_START |
| 46 | #ifdef CONFIG_PPC_BOOK3E |
| 47 | #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2) |
| 48 | #else |
| 49 | #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) |
| 50 | #endif |
| 51 | #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) |
| 52 | |
| 53 | /* |
| 54 | * The second half of the kernel virtual space is used for IO mappings, |
| 55 | * it's itself carved into the PIO region (ISA and PHB IO space) and |
| 56 | * the ioremap space |
| 57 | * |
| 58 | * ISA_IO_BASE = KERN_IO_START, 64K reserved area |
| 59 | * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces |
| 60 | * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE |
| 61 | */ |
| 62 | #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1)) |
| 63 | #define FULL_IO_SIZE 0x80000000ul |
| 64 | #define ISA_IO_BASE (KERN_IO_START) |
| 65 | #define ISA_IO_END (KERN_IO_START + 0x10000ul) |
| 66 | #define PHB_IO_BASE (ISA_IO_END) |
| 67 | #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) |
| 68 | #define IOREMAP_BASE (PHB_IO_END) |
| 69 | #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE) |
| 70 | |
| 71 | |
| 72 | /* |
| 73 | * Region IDs |
| 74 | */ |
| 75 | #define REGION_SHIFT 60UL |
| 76 | #define REGION_MASK (0xfUL << REGION_SHIFT) |
| 77 | #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT) |
| 78 | |
| 79 | #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START)) |
| 80 | #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET)) |
| 81 | #define VMEMMAP_REGION_ID (0xfUL) /* Server only */ |
| 82 | #define USER_REGION_ID (0UL) |
| 83 | |
| 84 | /* |
| 85 | * Defines the address of the vmemap area, in its own region on |
| 86 | * hash table CPUs and after the vmalloc space on Book3E |
| 87 | */ |
| 88 | #ifdef CONFIG_PPC_BOOK3E |
| 89 | #define VMEMMAP_BASE VMALLOC_END |
| 90 | #define VMEMMAP_END KERN_IO_START |
| 91 | #else |
| 92 | #define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT) |
| 93 | #endif |
| 94 | #define vmemmap ((struct page *)VMEMMAP_BASE) |
| 95 | |
| 96 | |
| 97 | /* |
| 98 | * Include the PTE bits definitions |
| 99 | */ |
| 100 | #ifdef CONFIG_PPC_BOOK3S |
| 101 | #include <asm/book3s/64/hash.h> |
| 102 | #else |
| 103 | #include <asm/pte-book3e.h> |
| 104 | #endif |
| 105 | #include <asm/pte-common.h> |
| 106 | |
| 107 | #ifdef CONFIG_PPC_MM_SLICES |
| 108 | #define HAVE_ARCH_UNMAPPED_AREA |
| 109 | #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN |
| 110 | #endif /* CONFIG_PPC_MM_SLICES */ |
| 111 | |
| 112 | #ifndef __ASSEMBLY__ |
| 113 | |
| 114 | /* |
| 115 | * This is the default implementation of various PTE accessors, it's |
| 116 | * used in all cases except Book3S with 64K pages where we have a |
| 117 | * concept of sub-pages |
| 118 | */ |
| 119 | #ifndef __real_pte |
| 120 | |
| 121 | #ifdef CONFIG_STRICT_MM_TYPECHECKS |
| 122 | #define __real_pte(e,p) ((real_pte_t){(e)}) |
| 123 | #define __rpte_to_pte(r) ((r).pte) |
| 124 | #else |
| 125 | #define __real_pte(e,p) (e) |
| 126 | #define __rpte_to_pte(r) (__pte(r)) |
| 127 | #endif |
| 128 | #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12) |
| 129 | |
| 130 | #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ |
| 131 | do { \ |
| 132 | index = 0; \ |
| 133 | shift = mmu_psize_defs[psize].shift; \ |
| 134 | |
| 135 | #define pte_iterate_hashed_end() } while(0) |
| 136 | |
| 137 | /* |
| 138 | * We expect this to be called only for user addresses or kernel virtual |
| 139 | * addresses other than the linear mapping. |
| 140 | */ |
| 141 | #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K |
| 142 | |
| 143 | #endif /* __real_pte */ |
| 144 | |
| 145 | |
| 146 | /* pte_clear moved to later in this file */ |
| 147 | |
| 148 | #define PMD_BAD_BITS (PTE_TABLE_SIZE-1) |
| 149 | #define PUD_BAD_BITS (PMD_TABLE_SIZE-1) |
| 150 | |
| 151 | #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval)) |
| 152 | #define pmd_none(pmd) (!pmd_val(pmd)) |
| 153 | #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \ |
| 154 | || (pmd_val(pmd) & PMD_BAD_BITS)) |
| 155 | #define pmd_present(pmd) (!pmd_none(pmd)) |
| 156 | #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) |
| 157 | #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) |
| 158 | extern struct page *pmd_page(pmd_t pmd); |
| 159 | |
| 160 | #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval)) |
| 161 | #define pud_none(pud) (!pud_val(pud)) |
| 162 | #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \ |
| 163 | || (pud_val(pud) & PUD_BAD_BITS)) |
| 164 | #define pud_present(pud) (pud_val(pud) != 0) |
| 165 | #define pud_clear(pudp) (pud_val(*(pudp)) = 0) |
| 166 | #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS) |
| 167 | |
| 168 | extern struct page *pud_page(pud_t pud); |
| 169 | |
| 170 | static inline pte_t pud_pte(pud_t pud) |
| 171 | { |
| 172 | return __pte(pud_val(pud)); |
| 173 | } |
| 174 | |
| 175 | static inline pud_t pte_pud(pte_t pte) |
| 176 | { |
| 177 | return __pud(pte_val(pte)); |
| 178 | } |
| 179 | #define pud_write(pud) pte_write(pud_pte(pud)) |
| 180 | #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);}) |
| 181 | #define pgd_write(pgd) pte_write(pgd_pte(pgd)) |
| 182 | |
| 183 | /* |
| 184 | * Find an entry in a page-table-directory. We combine the address region |
| 185 | * (the high order N bits) and the pgd portion of the address. |
| 186 | */ |
| 187 | #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1)) |
| 188 | |
| 189 | #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) |
| 190 | |
| 191 | #define pmd_offset(pudp,addr) \ |
| 192 | (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) |
| 193 | |
| 194 | #define pte_offset_kernel(dir,addr) \ |
| 195 | (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) |
| 196 | |
| 197 | #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) |
| 198 | #define pte_unmap(pte) do { } while(0) |
| 199 | |
| 200 | /* to find an entry in a kernel page-table-directory */ |
| 201 | /* This now only contains the vmalloc pages */ |
| 202 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| 203 | extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr, |
| 204 | pte_t *ptep, unsigned long pte, int huge); |
| 205 | |
| 206 | /* Atomic PTE updates */ |
| 207 | static inline unsigned long pte_update(struct mm_struct *mm, |
| 208 | unsigned long addr, |
| 209 | pte_t *ptep, unsigned long clr, |
| 210 | unsigned long set, |
| 211 | int huge) |
| 212 | { |
| 213 | #ifdef PTE_ATOMIC_UPDATES |
| 214 | unsigned long old, tmp; |
| 215 | |
| 216 | __asm__ __volatile__( |
| 217 | "1: ldarx %0,0,%3 # pte_update\n\ |
| 218 | andi. %1,%0,%6\n\ |
| 219 | bne- 1b \n\ |
| 220 | andc %1,%0,%4 \n\ |
| 221 | or %1,%1,%7\n\ |
| 222 | stdcx. %1,0,%3 \n\ |
| 223 | bne- 1b" |
| 224 | : "=&r" (old), "=&r" (tmp), "=m" (*ptep) |
| 225 | : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set) |
| 226 | : "cc" ); |
| 227 | #else |
| 228 | unsigned long old = pte_val(*ptep); |
| 229 | *ptep = __pte((old & ~clr) | set); |
| 230 | #endif |
| 231 | /* huge pages use the old page table lock */ |
| 232 | if (!huge) |
| 233 | assert_pte_locked(mm, addr); |
| 234 | |
| 235 | #ifdef CONFIG_PPC_STD_MMU_64 |
| 236 | if (old & _PAGE_HASHPTE) |
| 237 | hpte_need_flush(mm, addr, ptep, old, huge); |
| 238 | #endif |
| 239 | |
| 240 | return old; |
| 241 | } |
| 242 | |
| 243 | static inline int __ptep_test_and_clear_young(struct mm_struct *mm, |
| 244 | unsigned long addr, pte_t *ptep) |
| 245 | { |
| 246 | unsigned long old; |
| 247 | |
| 248 | if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) |
| 249 | return 0; |
| 250 | old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); |
| 251 | return (old & _PAGE_ACCESSED) != 0; |
| 252 | } |
| 253 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| 254 | #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ |
| 255 | ({ \ |
| 256 | int __r; \ |
| 257 | __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ |
| 258 | __r; \ |
| 259 | }) |
| 260 | |
| 261 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| 262 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| 263 | pte_t *ptep) |
| 264 | { |
| 265 | |
| 266 | if ((pte_val(*ptep) & _PAGE_RW) == 0) |
| 267 | return; |
| 268 | |
| 269 | pte_update(mm, addr, ptep, _PAGE_RW, 0, 0); |
| 270 | } |
| 271 | |
| 272 | static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, |
| 273 | unsigned long addr, pte_t *ptep) |
| 274 | { |
| 275 | if ((pte_val(*ptep) & _PAGE_RW) == 0) |
| 276 | return; |
| 277 | |
| 278 | pte_update(mm, addr, ptep, _PAGE_RW, 0, 1); |
| 279 | } |
| 280 | |
| 281 | /* |
| 282 | * We currently remove entries from the hashtable regardless of whether |
| 283 | * the entry was young or dirty. The generic routines only flush if the |
| 284 | * entry was young or dirty which is not good enough. |
| 285 | * |
| 286 | * We should be more intelligent about this but for the moment we override |
| 287 | * these functions and force a tlb flush unconditionally |
| 288 | */ |
| 289 | #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| 290 | #define ptep_clear_flush_young(__vma, __address, __ptep) \ |
| 291 | ({ \ |
| 292 | int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ |
| 293 | __ptep); \ |
| 294 | __young; \ |
| 295 | }) |
| 296 | |
| 297 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| 298 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
| 299 | unsigned long addr, pte_t *ptep) |
| 300 | { |
| 301 | unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); |
| 302 | return __pte(old); |
| 303 | } |
| 304 | |
| 305 | static inline void pte_clear(struct mm_struct *mm, unsigned long addr, |
| 306 | pte_t * ptep) |
| 307 | { |
| 308 | pte_update(mm, addr, ptep, ~0UL, 0, 0); |
| 309 | } |
| 310 | |
| 311 | |
| 312 | /* Set the dirty and/or accessed bits atomically in a linux PTE, this |
| 313 | * function doesn't need to flush the hash entry |
| 314 | */ |
| 315 | static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry) |
| 316 | { |
| 317 | unsigned long bits = pte_val(entry) & |
| 318 | (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); |
| 319 | |
| 320 | #ifdef PTE_ATOMIC_UPDATES |
| 321 | unsigned long old, tmp; |
| 322 | |
| 323 | __asm__ __volatile__( |
| 324 | "1: ldarx %0,0,%4\n\ |
| 325 | andi. %1,%0,%6\n\ |
| 326 | bne- 1b \n\ |
| 327 | or %0,%3,%0\n\ |
| 328 | stdcx. %0,0,%4\n\ |
| 329 | bne- 1b" |
| 330 | :"=&r" (old), "=&r" (tmp), "=m" (*ptep) |
| 331 | :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) |
| 332 | :"cc"); |
| 333 | #else |
| 334 | unsigned long old = pte_val(*ptep); |
| 335 | *ptep = __pte(old | bits); |
| 336 | #endif |
| 337 | } |
| 338 | |
| 339 | #define __HAVE_ARCH_PTE_SAME |
| 340 | #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) |
| 341 | |
| 342 | #define pte_ERROR(e) \ |
| 343 | pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) |
| 344 | #define pmd_ERROR(e) \ |
| 345 | pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) |
| 346 | #define pgd_ERROR(e) \ |
| 347 | pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| 348 | |
| 349 | /* Encode and de-code a swap entry */ |
| 350 | #define MAX_SWAPFILES_CHECK() do { \ |
| 351 | BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ |
| 352 | /* \ |
| 353 | * Don't have overlapping bits with _PAGE_HPTEFLAGS \ |
| 354 | * We filter HPTEFLAGS on set_pte. \ |
| 355 | */ \ |
| 356 | BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \ |
| 357 | } while (0) |
| 358 | /* |
| 359 | * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT; |
| 360 | */ |
| 361 | #define SWP_TYPE_BITS 5 |
| 362 | #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \ |
| 363 | & ((1UL << SWP_TYPE_BITS) - 1)) |
| 364 | #define __swp_offset(x) ((x).val >> PTE_RPN_SHIFT) |
| 365 | #define __swp_entry(type, offset) ((swp_entry_t) { \ |
| 366 | ((type) << _PAGE_BIT_SWAP_TYPE) \ |
| 367 | | ((offset) << PTE_RPN_SHIFT) }) |
| 368 | |
| 369 | #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) |
| 370 | #define __swp_entry_to_pte(x) __pte((x).val) |
| 371 | |
| 372 | void pgtable_cache_add(unsigned shift, void (*ctor)(void *)); |
| 373 | void pgtable_cache_init(void); |
| 374 | #endif /* __ASSEMBLY__ */ |
| 375 | |
| 376 | /* |
| 377 | * THP pages can't be special. So use the _PAGE_SPECIAL |
| 378 | */ |
| 379 | #define _PAGE_SPLITTING _PAGE_SPECIAL |
| 380 | |
| 381 | /* |
| 382 | * We need to differentiate between explicit huge page and THP huge |
| 383 | * page, since THP huge page also need to track real subpage details |
| 384 | */ |
| 385 | #define _PAGE_THP_HUGE _PAGE_4K_PFN |
| 386 | |
| 387 | /* |
| 388 | * set of bits not changed in pmd_modify. |
| 389 | */ |
| 390 | #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \ |
| 391 | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \ |
| 392 | _PAGE_THP_HUGE) |
| 393 | |
| 394 | #ifndef __ASSEMBLY__ |
| 395 | /* |
| 396 | * The linux hugepage PMD now include the pmd entries followed by the address |
| 397 | * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits. |
| 398 | * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per |
| 399 | * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and |
| 400 | * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t. |
| 401 | * |
| 402 | * The last three bits are intentionally left to zero. This memory location |
| 403 | * are also used as normal page PTE pointers. So if we have any pointers |
| 404 | * left around while we collapse a hugepage, we need to make sure |
| 405 | * _PAGE_PRESENT bit of that is zero when we look at them |
| 406 | */ |
| 407 | static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index) |
| 408 | { |
| 409 | return (hpte_slot_array[index] >> 3) & 0x1; |
| 410 | } |
| 411 | |
| 412 | static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array, |
| 413 | int index) |
| 414 | { |
| 415 | return hpte_slot_array[index] >> 4; |
| 416 | } |
| 417 | |
| 418 | static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array, |
| 419 | unsigned int index, unsigned int hidx) |
| 420 | { |
| 421 | hpte_slot_array[index] = hidx << 4 | 0x1 << 3; |
| 422 | } |
| 423 | |
| 424 | struct page *realmode_pfn_to_page(unsigned long pfn); |
| 425 | |
| 426 | static inline char *get_hpte_slot_array(pmd_t *pmdp) |
| 427 | { |
| 428 | /* |
| 429 | * The hpte hindex is stored in the pgtable whose address is in the |
| 430 | * second half of the PMD |
| 431 | * |
| 432 | * Order this load with the test for pmd_trans_huge in the caller |
| 433 | */ |
| 434 | smp_rmb(); |
| 435 | return *(char **)(pmdp + PTRS_PER_PMD); |
| 436 | |
| 437 | |
| 438 | } |
| 439 | |
| 440 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 441 | extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr, |
| 442 | pmd_t *pmdp, unsigned long old_pmd); |
| 443 | extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot); |
| 444 | extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot); |
| 445 | extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot); |
| 446 | extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, |
| 447 | pmd_t *pmdp, pmd_t pmd); |
| 448 | extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, |
| 449 | pmd_t *pmd); |
| 450 | /* |
| 451 | * |
| 452 | * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs |
| 453 | * page. The hugetlbfs page table walking and mangling paths are totally |
| 454 | * separated form the core VM paths and they're differentiated by |
| 455 | * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run. |
| 456 | * |
| 457 | * pmd_trans_huge() is defined as false at build time if |
| 458 | * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build |
| 459 | * time in such case. |
| 460 | * |
| 461 | * For ppc64 we need to differntiate from explicit hugepages from THP, because |
| 462 | * for THP we also track the subpage details at the pmd level. We don't do |
| 463 | * that for explicit huge pages. |
| 464 | * |
| 465 | */ |
| 466 | static inline int pmd_trans_huge(pmd_t pmd) |
| 467 | { |
| 468 | /* |
| 469 | * leaf pte for huge page, bottom two bits != 00 |
| 470 | */ |
| 471 | return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE); |
| 472 | } |
| 473 | |
| 474 | static inline int pmd_trans_splitting(pmd_t pmd) |
| 475 | { |
| 476 | if (pmd_trans_huge(pmd)) |
| 477 | return pmd_val(pmd) & _PAGE_SPLITTING; |
| 478 | return 0; |
| 479 | } |
| 480 | |
| 481 | extern int has_transparent_hugepage(void); |
| 482 | #else |
| 483 | static inline void hpte_do_hugepage_flush(struct mm_struct *mm, |
| 484 | unsigned long addr, pmd_t *pmdp, |
| 485 | unsigned long old_pmd) |
| 486 | { |
| 487 | |
| 488 | WARN(1, "%s called with THP disabled\n", __func__); |
| 489 | } |
| 490 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 491 | |
| 492 | static inline int pmd_large(pmd_t pmd) |
| 493 | { |
| 494 | /* |
| 495 | * leaf pte for huge page, bottom two bits != 00 |
| 496 | */ |
| 497 | return ((pmd_val(pmd) & 0x3) != 0x0); |
| 498 | } |
| 499 | |
| 500 | static inline pte_t pmd_pte(pmd_t pmd) |
| 501 | { |
| 502 | return __pte(pmd_val(pmd)); |
| 503 | } |
| 504 | |
| 505 | static inline pmd_t pte_pmd(pte_t pte) |
| 506 | { |
| 507 | return __pmd(pte_val(pte)); |
| 508 | } |
| 509 | |
| 510 | static inline pte_t *pmdp_ptep(pmd_t *pmd) |
| 511 | { |
| 512 | return (pte_t *)pmd; |
| 513 | } |
| 514 | |
| 515 | #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd)) |
| 516 | #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) |
| 517 | #define pmd_young(pmd) pte_young(pmd_pte(pmd)) |
| 518 | #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) |
| 519 | #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) |
| 520 | #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) |
| 521 | #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) |
| 522 | #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) |
| 523 | |
| 524 | #define __HAVE_ARCH_PMD_WRITE |
| 525 | #define pmd_write(pmd) pte_write(pmd_pte(pmd)) |
| 526 | |
| 527 | static inline pmd_t pmd_mkhuge(pmd_t pmd) |
| 528 | { |
| 529 | /* Do nothing, mk_pmd() does this part. */ |
| 530 | return pmd; |
| 531 | } |
| 532 | |
| 533 | static inline pmd_t pmd_mknotpresent(pmd_t pmd) |
| 534 | { |
| 535 | pmd_val(pmd) &= ~_PAGE_PRESENT; |
| 536 | return pmd; |
| 537 | } |
| 538 | |
| 539 | static inline pmd_t pmd_mksplitting(pmd_t pmd) |
| 540 | { |
| 541 | pmd_val(pmd) |= _PAGE_SPLITTING; |
| 542 | return pmd; |
| 543 | } |
| 544 | |
| 545 | #define __HAVE_ARCH_PMD_SAME |
| 546 | static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) |
| 547 | { |
| 548 | return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0); |
| 549 | } |
| 550 | |
| 551 | #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS |
| 552 | extern int pmdp_set_access_flags(struct vm_area_struct *vma, |
| 553 | unsigned long address, pmd_t *pmdp, |
| 554 | pmd_t entry, int dirty); |
| 555 | |
| 556 | extern unsigned long pmd_hugepage_update(struct mm_struct *mm, |
| 557 | unsigned long addr, |
| 558 | pmd_t *pmdp, |
| 559 | unsigned long clr, |
| 560 | unsigned long set); |
| 561 | |
| 562 | static inline int __pmdp_test_and_clear_young(struct mm_struct *mm, |
| 563 | unsigned long addr, pmd_t *pmdp) |
| 564 | { |
| 565 | unsigned long old; |
| 566 | |
| 567 | if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) |
| 568 | return 0; |
| 569 | old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0); |
| 570 | return ((old & _PAGE_ACCESSED) != 0); |
| 571 | } |
| 572 | |
| 573 | #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG |
| 574 | extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| 575 | unsigned long address, pmd_t *pmdp); |
| 576 | #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH |
| 577 | extern int pmdp_clear_flush_young(struct vm_area_struct *vma, |
| 578 | unsigned long address, pmd_t *pmdp); |
| 579 | |
| 580 | #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR |
| 581 | extern pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, |
| 582 | unsigned long addr, pmd_t *pmdp); |
| 583 | |
| 584 | #define __HAVE_ARCH_PMDP_SET_WRPROTECT |
| 585 | static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| 586 | pmd_t *pmdp) |
| 587 | { |
| 588 | |
| 589 | if ((pmd_val(*pmdp) & _PAGE_RW) == 0) |
| 590 | return; |
| 591 | |
| 592 | pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0); |
| 593 | } |
| 594 | |
| 595 | #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH |
| 596 | extern void pmdp_splitting_flush(struct vm_area_struct *vma, |
| 597 | unsigned long address, pmd_t *pmdp); |
| 598 | |
| 599 | extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, |
| 600 | unsigned long address, pmd_t *pmdp); |
| 601 | #define pmdp_collapse_flush pmdp_collapse_flush |
| 602 | |
| 603 | #define __HAVE_ARCH_PGTABLE_DEPOSIT |
| 604 | extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
| 605 | pgtable_t pgtable); |
| 606 | #define __HAVE_ARCH_PGTABLE_WITHDRAW |
| 607 | extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); |
| 608 | |
| 609 | #define __HAVE_ARCH_PMDP_INVALIDATE |
| 610 | extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, |
| 611 | pmd_t *pmdp); |
| 612 | |
| 613 | #define pmd_move_must_withdraw pmd_move_must_withdraw |
| 614 | struct spinlock; |
| 615 | static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, |
| 616 | struct spinlock *old_pmd_ptl) |
| 617 | { |
| 618 | /* |
| 619 | * Archs like ppc64 use pgtable to store per pmd |
| 620 | * specific information. So when we switch the pmd, |
| 621 | * we should also withdraw and deposit the pgtable |
| 622 | */ |
| 623 | return true; |
| 624 | } |
| 625 | #endif /* __ASSEMBLY__ */ |
| 626 | #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */ |