blob: 86c1bf0bba9ea19bc0f38cdb98adfd76769ef053 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Olaf Weber3e57ecf2006-06-09 14:48:12 +10002 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
Nathan Scott7b718762005-11-02 14:58:39 +11003 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Nathan Scotta844f452005-11-02 14:38:42 +110021#include "xfs_bit.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110023#include "xfs_inum.h"
24#include "xfs_imap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070029#include "xfs_dir2.h"
30#include "xfs_dmapi.h"
31#include "xfs_mount.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include "xfs_bmap_btree.h"
Nathan Scotta844f452005-11-02 14:38:42 +110033#include "xfs_alloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include "xfs_ialloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include "xfs_dir2_sf.h"
Nathan Scotta844f452005-11-02 14:38:42 +110036#include "xfs_attr_sf.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include "xfs_dinode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070038#include "xfs_inode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include "xfs_buf_item.h"
Nathan Scotta844f452005-11-02 14:38:42 +110040#include "xfs_inode_item.h"
41#include "xfs_btree.h"
42#include "xfs_alloc.h"
43#include "xfs_ialloc.h"
44#include "xfs_bmap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#include "xfs_rw.h"
46#include "xfs_error.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include "xfs_utils.h"
48#include "xfs_dir2_trace.h"
49#include "xfs_quota.h"
50#include "xfs_mac.h"
51#include "xfs_acl.h"
52
53
54kmem_zone_t *xfs_ifork_zone;
55kmem_zone_t *xfs_inode_zone;
56kmem_zone_t *xfs_chashlist_zone;
57
58/*
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
61 */
62#define XFS_ITRUNC_MAX_EXTENTS 2
63
64STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68
69
70#ifdef DEBUG
71/*
72 * Make sure that the extents in the given memory buffer
73 * are valid.
74 */
75STATIC void
76xfs_validate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110077 xfs_ifork_t *ifp,
Linus Torvalds1da177e2005-04-16 15:20:36 -070078 int nrecs,
79 int disk,
80 xfs_exntfmt_t fmt)
81{
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110082 xfs_bmbt_rec_t *ep;
Linus Torvalds1da177e2005-04-16 15:20:36 -070083 xfs_bmbt_irec_t irec;
84 xfs_bmbt_rec_t rec;
85 int i;
86
87 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110088 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -070089 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
90 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
91 if (disk)
92 xfs_bmbt_disk_get_all(&rec, &irec);
93 else
94 xfs_bmbt_get_all(&rec, &irec);
95 if (fmt == XFS_EXTFMT_NOSTATE)
96 ASSERT(irec.br_state == XFS_EXT_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -070097 }
98}
99#else /* DEBUG */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100100#define xfs_validate_extents(ifp, nrecs, disk, fmt)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700101#endif /* DEBUG */
102
103/*
104 * Check that none of the inode's in the buffer have a next
105 * unlinked field of 0.
106 */
107#if defined(DEBUG)
108void
109xfs_inobp_check(
110 xfs_mount_t *mp,
111 xfs_buf_t *bp)
112{
113 int i;
114 int j;
115 xfs_dinode_t *dip;
116
117 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
118
119 for (i = 0; i < j; i++) {
120 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
121 i * mp->m_sb.sb_inodesize);
122 if (!dip->di_next_unlinked) {
123 xfs_fs_cmn_err(CE_ALERT, mp,
124 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
125 bp);
126 ASSERT(dip->di_next_unlinked);
127 }
128 }
129}
130#endif
131
132/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700133 * This routine is called to map an inode number within a file
134 * system to the buffer containing the on-disk version of the
135 * inode. It returns a pointer to the buffer containing the
136 * on-disk inode in the bpp parameter, and in the dip parameter
137 * it returns a pointer to the on-disk inode within that buffer.
138 *
139 * If a non-zero error is returned, then the contents of bpp and
140 * dipp are undefined.
141 *
142 * Use xfs_imap() to determine the size and location of the
143 * buffer to read from disk.
144 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000145STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146xfs_inotobp(
147 xfs_mount_t *mp,
148 xfs_trans_t *tp,
149 xfs_ino_t ino,
150 xfs_dinode_t **dipp,
151 xfs_buf_t **bpp,
152 int *offset)
153{
154 int di_ok;
155 xfs_imap_t imap;
156 xfs_buf_t *bp;
157 int error;
158 xfs_dinode_t *dip;
159
160 /*
Nathan Scottc41564b2006-03-29 08:55:14 +1000161 * Call the space management code to find the location of the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162 * inode on disk.
163 */
164 imap.im_blkno = 0;
165 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
166 if (error != 0) {
167 cmn_err(CE_WARN,
168 "xfs_inotobp: xfs_imap() returned an "
169 "error %d on %s. Returning error.", error, mp->m_fsname);
170 return error;
171 }
172
173 /*
174 * If the inode number maps to a block outside the bounds of the
175 * file system then return NULL rather than calling read_buf
176 * and panicing when we get an error from the driver.
177 */
178 if ((imap.im_blkno + imap.im_len) >
179 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
180 cmn_err(CE_WARN,
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100181 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700182 "of the file system %s. Returning EINVAL.",
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100183 (unsigned long long)imap.im_blkno,
184 imap.im_len, mp->m_fsname);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700185 return XFS_ERROR(EINVAL);
186 }
187
188 /*
189 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
190 * default to just a read_buf() call.
191 */
192 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
193 (int)imap.im_len, XFS_BUF_LOCK, &bp);
194
195 if (error) {
196 cmn_err(CE_WARN,
197 "xfs_inotobp: xfs_trans_read_buf() returned an "
198 "error %d on %s. Returning error.", error, mp->m_fsname);
199 return error;
200 }
201 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
202 di_ok =
203 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
204 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
205 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
206 XFS_RANDOM_ITOBP_INOTOBP))) {
207 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
208 xfs_trans_brelse(tp, bp);
209 cmn_err(CE_WARN,
210 "xfs_inotobp: XFS_TEST_ERROR() returned an "
211 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
212 return XFS_ERROR(EFSCORRUPTED);
213 }
214
215 xfs_inobp_check(mp, bp);
216
217 /*
218 * Set *dipp to point to the on-disk inode in the buffer.
219 */
220 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
221 *bpp = bp;
222 *offset = imap.im_boffset;
223 return 0;
224}
225
226
227/*
228 * This routine is called to map an inode to the buffer containing
229 * the on-disk version of the inode. It returns a pointer to the
230 * buffer containing the on-disk inode in the bpp parameter, and in
231 * the dip parameter it returns a pointer to the on-disk inode within
232 * that buffer.
233 *
234 * If a non-zero error is returned, then the contents of bpp and
235 * dipp are undefined.
236 *
237 * If the inode is new and has not yet been initialized, use xfs_imap()
238 * to determine the size and location of the buffer to read from disk.
239 * If the inode has already been mapped to its buffer and read in once,
240 * then use the mapping information stored in the inode rather than
241 * calling xfs_imap(). This allows us to avoid the overhead of looking
242 * at the inode btree for small block file systems (see xfs_dilocate()).
243 * We can tell whether the inode has been mapped in before by comparing
244 * its disk block address to 0. Only uninitialized inodes will have
245 * 0 for the disk block address.
246 */
247int
248xfs_itobp(
249 xfs_mount_t *mp,
250 xfs_trans_t *tp,
251 xfs_inode_t *ip,
252 xfs_dinode_t **dipp,
253 xfs_buf_t **bpp,
Nathan Scottb12dd342006-03-17 17:26:04 +1100254 xfs_daddr_t bno,
255 uint imap_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700256{
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000257 xfs_imap_t imap;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258 xfs_buf_t *bp;
259 int error;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700260 int i;
261 int ni;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700262
263 if (ip->i_blkno == (xfs_daddr_t)0) {
264 /*
265 * Call the space management code to find the location of the
266 * inode on disk.
267 */
268 imap.im_blkno = bno;
Nathan Scottb12dd342006-03-17 17:26:04 +1100269 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
270 XFS_IMAP_LOOKUP | imap_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700271 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700272
273 /*
274 * If the inode number maps to a block outside the bounds
275 * of the file system then return NULL rather than calling
276 * read_buf and panicing when we get an error from the
277 * driver.
278 */
279 if ((imap.im_blkno + imap.im_len) >
280 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
281#ifdef DEBUG
282 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
283 "(imap.im_blkno (0x%llx) "
284 "+ imap.im_len (0x%llx)) > "
285 " XFS_FSB_TO_BB(mp, "
286 "mp->m_sb.sb_dblocks) (0x%llx)",
287 (unsigned long long) imap.im_blkno,
288 (unsigned long long) imap.im_len,
289 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
290#endif /* DEBUG */
291 return XFS_ERROR(EINVAL);
292 }
293
294 /*
295 * Fill in the fields in the inode that will be used to
296 * map the inode to its buffer from now on.
297 */
298 ip->i_blkno = imap.im_blkno;
299 ip->i_len = imap.im_len;
300 ip->i_boffset = imap.im_boffset;
301 } else {
302 /*
303 * We've already mapped the inode once, so just use the
304 * mapping that we saved the first time.
305 */
306 imap.im_blkno = ip->i_blkno;
307 imap.im_len = ip->i_len;
308 imap.im_boffset = ip->i_boffset;
309 }
310 ASSERT(bno == 0 || bno == imap.im_blkno);
311
312 /*
313 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
314 * default to just a read_buf() call.
315 */
316 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
317 (int)imap.im_len, XFS_BUF_LOCK, &bp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700318 if (error) {
319#ifdef DEBUG
320 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
321 "xfs_trans_read_buf() returned error %d, "
322 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
323 error, (unsigned long long) imap.im_blkno,
324 (unsigned long long) imap.im_len);
325#endif /* DEBUG */
326 return error;
327 }
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000328
Linus Torvalds1da177e2005-04-16 15:20:36 -0700329 /*
330 * Validate the magic number and version of every inode in the buffer
331 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000332 * No validation is done here in userspace (xfs_repair).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700333 */
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000334#if !defined(__KERNEL__)
335 ni = 0;
336#elif defined(DEBUG)
Nathan Scottb12dd342006-03-17 17:26:04 +1100337 ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 :
338 (BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog);
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000339#else /* usual case */
Nathan Scottb12dd342006-03-17 17:26:04 +1100340 ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341#endif
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000342
Linus Torvalds1da177e2005-04-16 15:20:36 -0700343 for (i = 0; i < ni; i++) {
344 int di_ok;
345 xfs_dinode_t *dip;
346
347 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
348 (i << mp->m_sb.sb_inodelog));
349 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
350 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
351 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
352 XFS_RANDOM_ITOBP_INOTOBP))) {
353#ifdef DEBUG
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000354 if (!(imap_flags & XFS_IMAP_BULKSTAT))
355 cmn_err(CE_ALERT,
356 "Device %s - bad inode magic/vsn "
357 "daddr %lld #%d (magic=%x)",
Nathan Scottb6574522006-06-09 15:29:40 +1000358 XFS_BUFTARG_NAME(mp->m_ddev_targp),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700359 (unsigned long long)imap.im_blkno, i,
360 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
361#endif
362 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
363 mp, dip);
364 xfs_trans_brelse(tp, bp);
365 return XFS_ERROR(EFSCORRUPTED);
366 }
367 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700368
369 xfs_inobp_check(mp, bp);
370
371 /*
372 * Mark the buffer as an inode buffer now that it looks good
373 */
374 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
375
376 /*
377 * Set *dipp to point to the on-disk inode in the buffer.
378 */
379 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
380 *bpp = bp;
381 return 0;
382}
383
384/*
385 * Move inode type and inode format specific information from the
386 * on-disk inode to the in-core inode. For fifos, devs, and sockets
387 * this means set if_rdev to the proper value. For files, directories,
388 * and symlinks this means to bring in the in-line data or extent
389 * pointers. For a file in B-tree format, only the root is immediately
390 * brought in-core. The rest will be in-lined in if_extents when it
391 * is first referenced (see xfs_iread_extents()).
392 */
393STATIC int
394xfs_iformat(
395 xfs_inode_t *ip,
396 xfs_dinode_t *dip)
397{
398 xfs_attr_shortform_t *atp;
399 int size;
400 int error;
401 xfs_fsize_t di_size;
402 ip->i_df.if_ext_max =
403 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
404 error = 0;
405
406 if (unlikely(
407 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
408 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
409 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100410 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
411 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700412 (unsigned long long)ip->i_ino,
413 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
414 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
415 (unsigned long long)
416 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
417 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
418 ip->i_mount, dip);
419 return XFS_ERROR(EFSCORRUPTED);
420 }
421
422 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100423 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
424 "corrupt dinode %Lu, forkoff = 0x%x.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425 (unsigned long long)ip->i_ino,
426 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
427 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
428 ip->i_mount, dip);
429 return XFS_ERROR(EFSCORRUPTED);
430 }
431
432 switch (ip->i_d.di_mode & S_IFMT) {
433 case S_IFIFO:
434 case S_IFCHR:
435 case S_IFBLK:
436 case S_IFSOCK:
437 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
438 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
439 ip->i_mount, dip);
440 return XFS_ERROR(EFSCORRUPTED);
441 }
442 ip->i_d.di_size = 0;
443 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
444 break;
445
446 case S_IFREG:
447 case S_IFLNK:
448 case S_IFDIR:
449 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
450 case XFS_DINODE_FMT_LOCAL:
451 /*
452 * no local regular files yet
453 */
454 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100455 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
456 "corrupt inode %Lu "
457 "(local format for regular file).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458 (unsigned long long) ip->i_ino);
459 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
460 XFS_ERRLEVEL_LOW,
461 ip->i_mount, dip);
462 return XFS_ERROR(EFSCORRUPTED);
463 }
464
465 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
466 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100467 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
468 "corrupt inode %Lu "
469 "(bad size %Ld for local inode).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700470 (unsigned long long) ip->i_ino,
471 (long long) di_size);
472 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
473 XFS_ERRLEVEL_LOW,
474 ip->i_mount, dip);
475 return XFS_ERROR(EFSCORRUPTED);
476 }
477
478 size = (int)di_size;
479 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
480 break;
481 case XFS_DINODE_FMT_EXTENTS:
482 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
483 break;
484 case XFS_DINODE_FMT_BTREE:
485 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
486 break;
487 default:
488 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
489 ip->i_mount);
490 return XFS_ERROR(EFSCORRUPTED);
491 }
492 break;
493
494 default:
495 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
496 return XFS_ERROR(EFSCORRUPTED);
497 }
498 if (error) {
499 return error;
500 }
501 if (!XFS_DFORK_Q(dip))
502 return 0;
503 ASSERT(ip->i_afp == NULL);
504 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
505 ip->i_afp->if_ext_max =
506 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
507 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
508 case XFS_DINODE_FMT_LOCAL:
509 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
Nathan Scott3b244aa2006-03-17 17:29:25 +1100510 size = be16_to_cpu(atp->hdr.totsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700511 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
512 break;
513 case XFS_DINODE_FMT_EXTENTS:
514 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
515 break;
516 case XFS_DINODE_FMT_BTREE:
517 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
518 break;
519 default:
520 error = XFS_ERROR(EFSCORRUPTED);
521 break;
522 }
523 if (error) {
524 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
525 ip->i_afp = NULL;
526 xfs_idestroy_fork(ip, XFS_DATA_FORK);
527 }
528 return error;
529}
530
531/*
532 * The file is in-lined in the on-disk inode.
533 * If it fits into if_inline_data, then copy
534 * it there, otherwise allocate a buffer for it
535 * and copy the data there. Either way, set
536 * if_data to point at the data.
537 * If we allocate a buffer for the data, make
538 * sure that its size is a multiple of 4 and
539 * record the real size in i_real_bytes.
540 */
541STATIC int
542xfs_iformat_local(
543 xfs_inode_t *ip,
544 xfs_dinode_t *dip,
545 int whichfork,
546 int size)
547{
548 xfs_ifork_t *ifp;
549 int real_size;
550
551 /*
552 * If the size is unreasonable, then something
553 * is wrong and we just bail out rather than crash in
554 * kmem_alloc() or memcpy() below.
555 */
556 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100557 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
558 "corrupt inode %Lu "
559 "(bad size %d for local fork, size = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700560 (unsigned long long) ip->i_ino, size,
561 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
562 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
563 ip->i_mount, dip);
564 return XFS_ERROR(EFSCORRUPTED);
565 }
566 ifp = XFS_IFORK_PTR(ip, whichfork);
567 real_size = 0;
568 if (size == 0)
569 ifp->if_u1.if_data = NULL;
570 else if (size <= sizeof(ifp->if_u2.if_inline_data))
571 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
572 else {
573 real_size = roundup(size, 4);
574 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
575 }
576 ifp->if_bytes = size;
577 ifp->if_real_bytes = real_size;
578 if (size)
579 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
580 ifp->if_flags &= ~XFS_IFEXTENTS;
581 ifp->if_flags |= XFS_IFINLINE;
582 return 0;
583}
584
585/*
586 * The file consists of a set of extents all
587 * of which fit into the on-disk inode.
588 * If there are few enough extents to fit into
589 * the if_inline_ext, then copy them there.
590 * Otherwise allocate a buffer for them and copy
591 * them into it. Either way, set if_extents
592 * to point at the extents.
593 */
594STATIC int
595xfs_iformat_extents(
596 xfs_inode_t *ip,
597 xfs_dinode_t *dip,
598 int whichfork)
599{
600 xfs_bmbt_rec_t *ep, *dp;
601 xfs_ifork_t *ifp;
602 int nex;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700603 int size;
604 int i;
605
606 ifp = XFS_IFORK_PTR(ip, whichfork);
607 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
608 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
609
610 /*
611 * If the number of extents is unreasonable, then something
612 * is wrong and we just bail out rather than crash in
613 * kmem_alloc() or memcpy() below.
614 */
615 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100616 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
617 "corrupt inode %Lu ((a)extents = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700618 (unsigned long long) ip->i_ino, nex);
619 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
620 ip->i_mount, dip);
621 return XFS_ERROR(EFSCORRUPTED);
622 }
623
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100624 ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700625 if (nex == 0)
626 ifp->if_u1.if_extents = NULL;
627 else if (nex <= XFS_INLINE_EXTS)
628 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100629 else
630 xfs_iext_add(ifp, 0, nex);
631
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632 ifp->if_bytes = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700633 if (size) {
634 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100635 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
636 for (i = 0; i < nex; i++, dp++) {
637 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
639 ARCH_CONVERT);
640 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
641 ARCH_CONVERT);
642 }
643 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
644 whichfork);
645 if (whichfork != XFS_DATA_FORK ||
646 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
647 if (unlikely(xfs_check_nostate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100648 ifp, 0, nex))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700649 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
650 XFS_ERRLEVEL_LOW,
651 ip->i_mount);
652 return XFS_ERROR(EFSCORRUPTED);
653 }
654 }
655 ifp->if_flags |= XFS_IFEXTENTS;
656 return 0;
657}
658
659/*
660 * The file has too many extents to fit into
661 * the inode, so they are in B-tree format.
662 * Allocate a buffer for the root of the B-tree
663 * and copy the root into it. The i_extents
664 * field will remain NULL until all of the
665 * extents are read in (when they are needed).
666 */
667STATIC int
668xfs_iformat_btree(
669 xfs_inode_t *ip,
670 xfs_dinode_t *dip,
671 int whichfork)
672{
673 xfs_bmdr_block_t *dfp;
674 xfs_ifork_t *ifp;
675 /* REFERENCED */
676 int nrecs;
677 int size;
678
679 ifp = XFS_IFORK_PTR(ip, whichfork);
680 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
681 size = XFS_BMAP_BROOT_SPACE(dfp);
682 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
683
684 /*
685 * blow out if -- fork has less extents than can fit in
686 * fork (fork shouldn't be a btree format), root btree
687 * block has more records than can fit into the fork,
688 * or the number of extents is greater than the number of
689 * blocks.
690 */
691 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
692 || XFS_BMDR_SPACE_CALC(nrecs) >
693 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
694 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100695 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
696 "corrupt inode %Lu (btree).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700697 (unsigned long long) ip->i_ino);
698 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
699 ip->i_mount);
700 return XFS_ERROR(EFSCORRUPTED);
701 }
702
703 ifp->if_broot_bytes = size;
704 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
705 ASSERT(ifp->if_broot != NULL);
706 /*
707 * Copy and convert from the on-disk structure
708 * to the in-memory structure.
709 */
710 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
711 ifp->if_broot, size);
712 ifp->if_flags &= ~XFS_IFEXTENTS;
713 ifp->if_flags |= XFS_IFBROOT;
714
715 return 0;
716}
717
718/*
719 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
720 * and native format
721 *
722 * buf = on-disk representation
723 * dip = native representation
724 * dir = direction - +ve -> disk to native
725 * -ve -> native to disk
726 */
727void
728xfs_xlate_dinode_core(
729 xfs_caddr_t buf,
730 xfs_dinode_core_t *dip,
731 int dir)
732{
733 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
734 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
735 xfs_arch_t arch = ARCH_CONVERT;
736
737 ASSERT(dir);
738
739 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
740 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
741 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
742 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
743 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
744 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
745 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
746 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
747 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
748
749 if (dir > 0) {
750 memcpy(mem_core->di_pad, buf_core->di_pad,
751 sizeof(buf_core->di_pad));
752 } else {
753 memcpy(buf_core->di_pad, mem_core->di_pad,
754 sizeof(buf_core->di_pad));
755 }
756
757 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
758
759 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
760 dir, arch);
761 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
762 dir, arch);
763 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
764 dir, arch);
765 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
766 dir, arch);
767 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
768 dir, arch);
769 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
770 dir, arch);
771 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
772 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
773 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
774 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
775 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
776 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
777 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
778 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
779 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
780 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
781 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
782}
783
784STATIC uint
785_xfs_dic2xflags(
Linus Torvalds1da177e2005-04-16 15:20:36 -0700786 __uint16_t di_flags)
787{
788 uint flags = 0;
789
790 if (di_flags & XFS_DIFLAG_ANY) {
791 if (di_flags & XFS_DIFLAG_REALTIME)
792 flags |= XFS_XFLAG_REALTIME;
793 if (di_flags & XFS_DIFLAG_PREALLOC)
794 flags |= XFS_XFLAG_PREALLOC;
795 if (di_flags & XFS_DIFLAG_IMMUTABLE)
796 flags |= XFS_XFLAG_IMMUTABLE;
797 if (di_flags & XFS_DIFLAG_APPEND)
798 flags |= XFS_XFLAG_APPEND;
799 if (di_flags & XFS_DIFLAG_SYNC)
800 flags |= XFS_XFLAG_SYNC;
801 if (di_flags & XFS_DIFLAG_NOATIME)
802 flags |= XFS_XFLAG_NOATIME;
803 if (di_flags & XFS_DIFLAG_NODUMP)
804 flags |= XFS_XFLAG_NODUMP;
805 if (di_flags & XFS_DIFLAG_RTINHERIT)
806 flags |= XFS_XFLAG_RTINHERIT;
807 if (di_flags & XFS_DIFLAG_PROJINHERIT)
808 flags |= XFS_XFLAG_PROJINHERIT;
809 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
810 flags |= XFS_XFLAG_NOSYMLINKS;
Nathan Scottdd9f4382006-01-11 15:28:28 +1100811 if (di_flags & XFS_DIFLAG_EXTSIZE)
812 flags |= XFS_XFLAG_EXTSIZE;
813 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
814 flags |= XFS_XFLAG_EXTSZINHERIT;
Barry Naujokd3446ea2006-06-09 14:54:19 +1000815 if (di_flags & XFS_DIFLAG_NODEFRAG)
816 flags |= XFS_XFLAG_NODEFRAG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700817 }
818
819 return flags;
820}
821
822uint
823xfs_ip2xflags(
824 xfs_inode_t *ip)
825{
826 xfs_dinode_core_t *dic = &ip->i_d;
827
Nathan Scotta916e2b2006-06-09 17:12:17 +1000828 return _xfs_dic2xflags(dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700830}
831
832uint
833xfs_dic2xflags(
834 xfs_dinode_core_t *dic)
835{
Nathan Scotta916e2b2006-06-09 17:12:17 +1000836 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700838}
839
840/*
841 * Given a mount structure and an inode number, return a pointer
Nathan Scottc41564b2006-03-29 08:55:14 +1000842 * to a newly allocated in-core inode corresponding to the given
Linus Torvalds1da177e2005-04-16 15:20:36 -0700843 * inode number.
844 *
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
847 */
848int
849xfs_iread(
850 xfs_mount_t *mp,
851 xfs_trans_t *tp,
852 xfs_ino_t ino,
853 xfs_inode_t **ipp,
854 xfs_daddr_t bno)
855{
856 xfs_buf_t *bp;
857 xfs_dinode_t *dip;
858 xfs_inode_t *ip;
859 int error;
860
861 ASSERT(xfs_inode_zone != NULL);
862
863 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
864 ip->i_ino = ino;
865 ip->i_mount = mp;
866
867 /*
868 * Get pointer's to the on-disk inode and the buffer containing it.
869 * If the inode number refers to a block outside the file system
870 * then xfs_itobp() will return NULL. In this case we should
871 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
872 * know that this is a new incore inode.
873 */
Nathan Scottb12dd342006-03-17 17:26:04 +1100874 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0);
875 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700876 kmem_zone_free(xfs_inode_zone, ip);
877 return error;
878 }
879
880 /*
881 * Initialize inode's trace buffers.
882 * Do this before xfs_iformat in case it adds entries.
883 */
884#ifdef XFS_BMAP_TRACE
885 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
886#endif
887#ifdef XFS_BMBT_TRACE
888 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
889#endif
890#ifdef XFS_RW_TRACE
891 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
892#endif
893#ifdef XFS_ILOCK_TRACE
894 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
895#endif
896#ifdef XFS_DIR2_TRACE
897 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
898#endif
899
900 /*
901 * If we got something that isn't an inode it means someone
902 * (nfs or dmi) has a stale handle.
903 */
904 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
905 kmem_zone_free(xfs_inode_zone, ip);
906 xfs_trans_brelse(tp, bp);
907#ifdef DEBUG
908 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
909 "dip->di_core.di_magic (0x%x) != "
910 "XFS_DINODE_MAGIC (0x%x)",
911 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
912 XFS_DINODE_MAGIC);
913#endif /* DEBUG */
914 return XFS_ERROR(EINVAL);
915 }
916
917 /*
918 * If the on-disk inode is already linked to a directory
919 * entry, copy all of the inode into the in-core inode.
920 * xfs_iformat() handles copying in the inode format
921 * specific information.
922 * Otherwise, just get the truly permanent information.
923 */
924 if (dip->di_core.di_mode) {
925 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
926 &(ip->i_d), 1);
927 error = xfs_iformat(ip, dip);
928 if (error) {
929 kmem_zone_free(xfs_inode_zone, ip);
930 xfs_trans_brelse(tp, bp);
931#ifdef DEBUG
932 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
933 "xfs_iformat() returned error %d",
934 error);
935#endif /* DEBUG */
936 return error;
937 }
938 } else {
939 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
940 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
941 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
942 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
943 /*
944 * Make sure to pull in the mode here as well in
945 * case the inode is released without being used.
946 * This ensures that xfs_inactive() will see that
947 * the inode is already free and not try to mess
948 * with the uninitialized part of it.
949 */
950 ip->i_d.di_mode = 0;
951 /*
952 * Initialize the per-fork minima and maxima for a new
953 * inode here. xfs_iformat will do it for old inodes.
954 */
955 ip->i_df.if_ext_max =
956 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
957 }
958
959 INIT_LIST_HEAD(&ip->i_reclaim);
960
961 /*
962 * The inode format changed when we moved the link count and
963 * made it 32 bits long. If this is an old format inode,
964 * convert it in memory to look like a new one. If it gets
965 * flushed to disk we will convert back before flushing or
966 * logging it. We zero out the new projid field and the old link
967 * count field. We'll handle clearing the pad field (the remains
968 * of the old uuid field) when we actually convert the inode to
969 * the new format. We don't change the version number so that we
970 * can distinguish this from a real new format inode.
971 */
972 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
973 ip->i_d.di_nlink = ip->i_d.di_onlink;
974 ip->i_d.di_onlink = 0;
975 ip->i_d.di_projid = 0;
976 }
977
978 ip->i_delayed_blks = 0;
979
980 /*
981 * Mark the buffer containing the inode as something to keep
982 * around for a while. This helps to keep recently accessed
983 * meta-data in-core longer.
984 */
985 XFS_BUF_SET_REF(bp, XFS_INO_REF);
986
987 /*
988 * Use xfs_trans_brelse() to release the buffer containing the
989 * on-disk inode, because it was acquired with xfs_trans_read_buf()
990 * in xfs_itobp() above. If tp is NULL, this is just a normal
991 * brelse(). If we're within a transaction, then xfs_trans_brelse()
992 * will only release the buffer if it is not dirty within the
993 * transaction. It will be OK to release the buffer in this case,
994 * because inodes on disk are never destroyed and we will be
995 * locking the new in-core inode before putting it in the hash
996 * table where other processes can find it. Thus we don't have
997 * to worry about the inode being changed just because we released
998 * the buffer.
999 */
1000 xfs_trans_brelse(tp, bp);
1001 *ipp = ip;
1002 return 0;
1003}
1004
1005/*
1006 * Read in extents from a btree-format inode.
1007 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1008 */
1009int
1010xfs_iread_extents(
1011 xfs_trans_t *tp,
1012 xfs_inode_t *ip,
1013 int whichfork)
1014{
1015 int error;
1016 xfs_ifork_t *ifp;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001017 xfs_extnum_t nextents;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001018 size_t size;
1019
1020 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1021 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1022 ip->i_mount);
1023 return XFS_ERROR(EFSCORRUPTED);
1024 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001025 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1026 size = nextents * sizeof(xfs_bmbt_rec_t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027 ifp = XFS_IFORK_PTR(ip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001028
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029 /*
1030 * We know that the size is valid (it's checked in iformat_btree)
1031 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 ifp->if_lastex = NULLEXTNUM;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001033 ifp->if_bytes = ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034 ifp->if_flags |= XFS_IFEXTENTS;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001035 xfs_iext_add(ifp, 0, nextents);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001036 error = xfs_bmap_read_extents(tp, ip, whichfork);
1037 if (error) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001038 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039 ifp->if_flags &= ~XFS_IFEXTENTS;
1040 return error;
1041 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001042 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001043 return 0;
1044}
1045
1046/*
1047 * Allocate an inode on disk and return a copy of its in-core version.
1048 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1049 * appropriately within the inode. The uid and gid for the inode are
1050 * set according to the contents of the given cred structure.
1051 *
1052 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1053 * has a free inode available, call xfs_iget()
1054 * to obtain the in-core version of the allocated inode. Finally,
1055 * fill in the inode and log its initial contents. In this case,
1056 * ialloc_context would be set to NULL and call_again set to false.
1057 *
1058 * If xfs_dialloc() does not have an available inode,
1059 * it will replenish its supply by doing an allocation. Since we can
1060 * only do one allocation within a transaction without deadlocks, we
1061 * must commit the current transaction before returning the inode itself.
1062 * In this case, therefore, we will set call_again to true and return.
1063 * The caller should then commit the current transaction, start a new
1064 * transaction, and call xfs_ialloc() again to actually get the inode.
1065 *
1066 * To ensure that some other process does not grab the inode that
1067 * was allocated during the first call to xfs_ialloc(), this routine
1068 * also returns the [locked] bp pointing to the head of the freelist
1069 * as ialloc_context. The caller should hold this buffer across
1070 * the commit and pass it back into this routine on the second call.
1071 */
1072int
1073xfs_ialloc(
1074 xfs_trans_t *tp,
1075 xfs_inode_t *pip,
1076 mode_t mode,
Nathan Scott31b084a2005-05-05 13:25:00 -07001077 xfs_nlink_t nlink,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001078 xfs_dev_t rdev,
1079 cred_t *cr,
1080 xfs_prid_t prid,
1081 int okalloc,
1082 xfs_buf_t **ialloc_context,
1083 boolean_t *call_again,
1084 xfs_inode_t **ipp)
1085{
1086 xfs_ino_t ino;
1087 xfs_inode_t *ip;
Nathan Scott67fcaa72006-06-09 17:00:52 +10001088 bhv_vnode_t *vp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001089 uint flags;
1090 int error;
1091
1092 /*
1093 * Call the space management code to pick
1094 * the on-disk inode to be allocated.
1095 */
1096 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1097 ialloc_context, call_again, &ino);
1098 if (error != 0) {
1099 return error;
1100 }
1101 if (*call_again || ino == NULLFSINO) {
1102 *ipp = NULL;
1103 return 0;
1104 }
1105 ASSERT(*ialloc_context == NULL);
1106
1107 /*
1108 * Get the in-core inode with the lock held exclusively.
1109 * This is because we're setting fields here we need
1110 * to prevent others from looking at until we're done.
1111 */
1112 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1113 IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1114 if (error != 0) {
1115 return error;
1116 }
1117 ASSERT(ip != NULL);
1118
1119 vp = XFS_ITOV(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001120 ip->i_d.di_mode = (__uint16_t)mode;
1121 ip->i_d.di_onlink = 0;
1122 ip->i_d.di_nlink = nlink;
1123 ASSERT(ip->i_d.di_nlink == nlink);
1124 ip->i_d.di_uid = current_fsuid(cr);
1125 ip->i_d.di_gid = current_fsgid(cr);
1126 ip->i_d.di_projid = prid;
1127 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1128
1129 /*
1130 * If the superblock version is up to where we support new format
1131 * inodes and this is currently an old format inode, then change
1132 * the inode version number now. This way we only do the conversion
1133 * here rather than here and in the flush/logging code.
1134 */
1135 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1136 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1137 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1138 /*
1139 * We've already zeroed the old link count, the projid field,
1140 * and the pad field.
1141 */
1142 }
1143
1144 /*
1145 * Project ids won't be stored on disk if we are using a version 1 inode.
1146 */
1147 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1148 xfs_bump_ino_vers2(tp, ip);
1149
1150 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1151 ip->i_d.di_gid = pip->i_d.di_gid;
1152 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1153 ip->i_d.di_mode |= S_ISGID;
1154 }
1155 }
1156
1157 /*
1158 * If the group ID of the new file does not match the effective group
1159 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1160 * (and only if the irix_sgid_inherit compatibility variable is set).
1161 */
1162 if ((irix_sgid_inherit) &&
1163 (ip->i_d.di_mode & S_ISGID) &&
1164 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1165 ip->i_d.di_mode &= ~S_ISGID;
1166 }
1167
1168 ip->i_d.di_size = 0;
1169 ip->i_d.di_nextents = 0;
1170 ASSERT(ip->i_d.di_nblocks == 0);
1171 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1172 /*
1173 * di_gen will have been taken care of in xfs_iread.
1174 */
1175 ip->i_d.di_extsize = 0;
1176 ip->i_d.di_dmevmask = 0;
1177 ip->i_d.di_dmstate = 0;
1178 ip->i_d.di_flags = 0;
1179 flags = XFS_ILOG_CORE;
1180 switch (mode & S_IFMT) {
1181 case S_IFIFO:
1182 case S_IFCHR:
1183 case S_IFBLK:
1184 case S_IFSOCK:
1185 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1186 ip->i_df.if_u2.if_rdev = rdev;
1187 ip->i_df.if_flags = 0;
1188 flags |= XFS_ILOG_DEV;
1189 break;
1190 case S_IFREG:
1191 case S_IFDIR:
1192 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
Nathan Scott365ca832005-06-21 15:39:12 +10001193 uint di_flags = 0;
1194
1195 if ((mode & S_IFMT) == S_IFDIR) {
1196 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1197 di_flags |= XFS_DIFLAG_RTINHERIT;
Nathan Scottdd9f4382006-01-11 15:28:28 +11001198 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1199 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1200 ip->i_d.di_extsize = pip->i_d.di_extsize;
1201 }
1202 } else if ((mode & S_IFMT) == S_IFREG) {
Nathan Scott365ca832005-06-21 15:39:12 +10001203 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1204 di_flags |= XFS_DIFLAG_REALTIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001205 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1206 }
Nathan Scottdd9f4382006-01-11 15:28:28 +11001207 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1208 di_flags |= XFS_DIFLAG_EXTSIZE;
1209 ip->i_d.di_extsize = pip->i_d.di_extsize;
1210 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001211 }
1212 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1213 xfs_inherit_noatime)
Nathan Scott365ca832005-06-21 15:39:12 +10001214 di_flags |= XFS_DIFLAG_NOATIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001215 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1216 xfs_inherit_nodump)
Nathan Scott365ca832005-06-21 15:39:12 +10001217 di_flags |= XFS_DIFLAG_NODUMP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001218 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1219 xfs_inherit_sync)
Nathan Scott365ca832005-06-21 15:39:12 +10001220 di_flags |= XFS_DIFLAG_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001221 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1222 xfs_inherit_nosymlinks)
Nathan Scott365ca832005-06-21 15:39:12 +10001223 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1224 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1225 di_flags |= XFS_DIFLAG_PROJINHERIT;
Barry Naujokd3446ea2006-06-09 14:54:19 +10001226 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1227 xfs_inherit_nodefrag)
1228 di_flags |= XFS_DIFLAG_NODEFRAG;
Nathan Scott365ca832005-06-21 15:39:12 +10001229 ip->i_d.di_flags |= di_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001230 }
1231 /* FALLTHROUGH */
1232 case S_IFLNK:
1233 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1234 ip->i_df.if_flags = XFS_IFEXTENTS;
1235 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1236 ip->i_df.if_u1.if_extents = NULL;
1237 break;
1238 default:
1239 ASSERT(0);
1240 }
1241 /*
1242 * Attribute fork settings for new inode.
1243 */
1244 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1245 ip->i_d.di_anextents = 0;
1246
1247 /*
1248 * Log the new values stuffed into the inode.
1249 */
1250 xfs_trans_log_inode(tp, ip, flags);
1251
Nathan Scottb83bd132006-06-09 16:48:30 +10001252 /* now that we have an i_mode we can setup inode ops and unlock */
1253 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001254
1255 *ipp = ip;
1256 return 0;
1257}
1258
1259/*
1260 * Check to make sure that there are no blocks allocated to the
1261 * file beyond the size of the file. We don't check this for
1262 * files with fixed size extents or real time extents, but we
1263 * at least do it for regular files.
1264 */
1265#ifdef DEBUG
1266void
1267xfs_isize_check(
1268 xfs_mount_t *mp,
1269 xfs_inode_t *ip,
1270 xfs_fsize_t isize)
1271{
1272 xfs_fileoff_t map_first;
1273 int nimaps;
1274 xfs_bmbt_irec_t imaps[2];
1275
1276 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1277 return;
1278
Nathan Scottdd9f4382006-01-11 15:28:28 +11001279 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001280 return;
1281
1282 nimaps = 2;
1283 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1284 /*
1285 * The filesystem could be shutting down, so bmapi may return
1286 * an error.
1287 */
1288 if (xfs_bmapi(NULL, ip, map_first,
1289 (XFS_B_TO_FSB(mp,
1290 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1291 map_first),
1292 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001293 NULL, NULL))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001294 return;
1295 ASSERT(nimaps == 1);
1296 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1297}
1298#endif /* DEBUG */
1299
1300/*
1301 * Calculate the last possible buffered byte in a file. This must
1302 * include data that was buffered beyond the EOF by the write code.
1303 * This also needs to deal with overflowing the xfs_fsize_t type
1304 * which can happen for sizes near the limit.
1305 *
1306 * We also need to take into account any blocks beyond the EOF. It
1307 * may be the case that they were buffered by a write which failed.
1308 * In that case the pages will still be in memory, but the inode size
1309 * will never have been updated.
1310 */
1311xfs_fsize_t
1312xfs_file_last_byte(
1313 xfs_inode_t *ip)
1314{
1315 xfs_mount_t *mp;
1316 xfs_fsize_t last_byte;
1317 xfs_fileoff_t last_block;
1318 xfs_fileoff_t size_last_block;
1319 int error;
1320
1321 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1322
1323 mp = ip->i_mount;
1324 /*
1325 * Only check for blocks beyond the EOF if the extents have
1326 * been read in. This eliminates the need for the inode lock,
1327 * and it also saves us from looking when it really isn't
1328 * necessary.
1329 */
1330 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1331 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1332 XFS_DATA_FORK);
1333 if (error) {
1334 last_block = 0;
1335 }
1336 } else {
1337 last_block = 0;
1338 }
1339 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1340 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1341
1342 last_byte = XFS_FSB_TO_B(mp, last_block);
1343 if (last_byte < 0) {
1344 return XFS_MAXIOFFSET(mp);
1345 }
1346 last_byte += (1 << mp->m_writeio_log);
1347 if (last_byte < 0) {
1348 return XFS_MAXIOFFSET(mp);
1349 }
1350 return last_byte;
1351}
1352
1353#if defined(XFS_RW_TRACE)
1354STATIC void
1355xfs_itrunc_trace(
1356 int tag,
1357 xfs_inode_t *ip,
1358 int flag,
1359 xfs_fsize_t new_size,
1360 xfs_off_t toss_start,
1361 xfs_off_t toss_finish)
1362{
1363 if (ip->i_rwtrace == NULL) {
1364 return;
1365 }
1366
1367 ktrace_enter(ip->i_rwtrace,
1368 (void*)((long)tag),
1369 (void*)ip,
1370 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1371 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1372 (void*)((long)flag),
1373 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1374 (void*)(unsigned long)(new_size & 0xffffffff),
1375 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1376 (void*)(unsigned long)(toss_start & 0xffffffff),
1377 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1378 (void*)(unsigned long)(toss_finish & 0xffffffff),
1379 (void*)(unsigned long)current_cpu(),
Yingping Luf1fdc842006-03-22 12:44:15 +11001380 (void*)(unsigned long)current_pid(),
1381 (void*)NULL,
1382 (void*)NULL,
1383 (void*)NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001384}
1385#else
1386#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1387#endif
1388
1389/*
1390 * Start the truncation of the file to new_size. The new size
1391 * must be smaller than the current size. This routine will
1392 * clear the buffer and page caches of file data in the removed
1393 * range, and xfs_itruncate_finish() will remove the underlying
1394 * disk blocks.
1395 *
1396 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1397 * must NOT have the inode lock held at all. This is because we're
1398 * calling into the buffer/page cache code and we can't hold the
1399 * inode lock when we do so.
1400 *
David Chinner38e22992006-03-22 12:47:15 +11001401 * We need to wait for any direct I/Os in flight to complete before we
1402 * proceed with the truncate. This is needed to prevent the extents
1403 * being read or written by the direct I/Os from being removed while the
1404 * I/O is in flight as there is no other method of synchronising
1405 * direct I/O with the truncate operation. Also, because we hold
1406 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1407 * started until the truncate completes and drops the lock. Essentially,
1408 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1409 * between direct I/Os and the truncate operation.
1410 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001411 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1412 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1413 * in the case that the caller is locking things out of order and
1414 * may not be able to call xfs_itruncate_finish() with the inode lock
1415 * held without dropping the I/O lock. If the caller must drop the
1416 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1417 * must be called again with all the same restrictions as the initial
1418 * call.
1419 */
1420void
1421xfs_itruncate_start(
1422 xfs_inode_t *ip,
1423 uint flags,
1424 xfs_fsize_t new_size)
1425{
1426 xfs_fsize_t last_byte;
1427 xfs_off_t toss_start;
1428 xfs_mount_t *mp;
Nathan Scott67fcaa72006-06-09 17:00:52 +10001429 bhv_vnode_t *vp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001430
1431 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1432 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1433 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1434 (flags == XFS_ITRUNC_MAYBE));
1435
1436 mp = ip->i_mount;
1437 vp = XFS_ITOV(ip);
Yingping Lu9fa80462006-03-22 12:44:35 +11001438
1439 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1440
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441 /*
Nathan Scott67fcaa72006-06-09 17:00:52 +10001442 * Call toss_pages or flushinval_pages to get rid of pages
Linus Torvalds1da177e2005-04-16 15:20:36 -07001443 * overlapping the region being removed. We have to use
Nathan Scott67fcaa72006-06-09 17:00:52 +10001444 * the less efficient flushinval_pages in the case that the
Linus Torvalds1da177e2005-04-16 15:20:36 -07001445 * caller may not be able to finish the truncate without
1446 * dropping the inode's I/O lock. Make sure
1447 * to catch any pages brought in by buffers overlapping
1448 * the EOF by searching out beyond the isize by our
1449 * block size. We round new_size up to a block boundary
1450 * so that we don't toss things on the same block as
1451 * new_size but before it.
1452 *
Nathan Scott67fcaa72006-06-09 17:00:52 +10001453 * Before calling toss_page or flushinval_pages, make sure to
Linus Torvalds1da177e2005-04-16 15:20:36 -07001454 * call remapf() over the same region if the file is mapped.
1455 * This frees up mapped file references to the pages in the
Nathan Scott67fcaa72006-06-09 17:00:52 +10001456 * given range and for the flushinval_pages case it ensures
Linus Torvalds1da177e2005-04-16 15:20:36 -07001457 * that we get the latest mapped changes flushed out.
1458 */
1459 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1460 toss_start = XFS_FSB_TO_B(mp, toss_start);
1461 if (toss_start < 0) {
1462 /*
1463 * The place to start tossing is beyond our maximum
1464 * file size, so there is no way that the data extended
1465 * out there.
1466 */
1467 return;
1468 }
1469 last_byte = xfs_file_last_byte(ip);
1470 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1471 last_byte);
1472 if (last_byte > toss_start) {
1473 if (flags & XFS_ITRUNC_DEFINITE) {
Nathan Scott67fcaa72006-06-09 17:00:52 +10001474 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001475 } else {
Nathan Scott67fcaa72006-06-09 17:00:52 +10001476 bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477 }
1478 }
1479
1480#ifdef DEBUG
1481 if (new_size == 0) {
1482 ASSERT(VN_CACHED(vp) == 0);
1483 }
1484#endif
1485}
1486
1487/*
1488 * Shrink the file to the given new_size. The new
1489 * size must be smaller than the current size.
1490 * This will free up the underlying blocks
1491 * in the removed range after a call to xfs_itruncate_start()
1492 * or xfs_atruncate_start().
1493 *
1494 * The transaction passed to this routine must have made
1495 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1496 * This routine may commit the given transaction and
1497 * start new ones, so make sure everything involved in
1498 * the transaction is tidy before calling here.
1499 * Some transaction will be returned to the caller to be
1500 * committed. The incoming transaction must already include
1501 * the inode, and both inode locks must be held exclusively.
1502 * The inode must also be "held" within the transaction. On
1503 * return the inode will be "held" within the returned transaction.
1504 * This routine does NOT require any disk space to be reserved
1505 * for it within the transaction.
1506 *
1507 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1508 * and it indicates the fork which is to be truncated. For the
1509 * attribute fork we only support truncation to size 0.
1510 *
1511 * We use the sync parameter to indicate whether or not the first
1512 * transaction we perform might have to be synchronous. For the attr fork,
1513 * it needs to be so if the unlink of the inode is not yet known to be
1514 * permanent in the log. This keeps us from freeing and reusing the
1515 * blocks of the attribute fork before the unlink of the inode becomes
1516 * permanent.
1517 *
1518 * For the data fork, we normally have to run synchronously if we're
1519 * being called out of the inactive path or we're being called
1520 * out of the create path where we're truncating an existing file.
1521 * Either way, the truncate needs to be sync so blocks don't reappear
1522 * in the file with altered data in case of a crash. wsync filesystems
1523 * can run the first case async because anything that shrinks the inode
1524 * has to run sync so by the time we're called here from inactive, the
1525 * inode size is permanently set to 0.
1526 *
1527 * Calls from the truncate path always need to be sync unless we're
1528 * in a wsync filesystem and the file has already been unlinked.
1529 *
1530 * The caller is responsible for correctly setting the sync parameter.
1531 * It gets too hard for us to guess here which path we're being called
1532 * out of just based on inode state.
1533 */
1534int
1535xfs_itruncate_finish(
1536 xfs_trans_t **tp,
1537 xfs_inode_t *ip,
1538 xfs_fsize_t new_size,
1539 int fork,
1540 int sync)
1541{
1542 xfs_fsblock_t first_block;
1543 xfs_fileoff_t first_unmap_block;
1544 xfs_fileoff_t last_block;
1545 xfs_filblks_t unmap_len=0;
1546 xfs_mount_t *mp;
1547 xfs_trans_t *ntp;
1548 int done;
1549 int committed;
1550 xfs_bmap_free_t free_list;
1551 int error;
1552
1553 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1554 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1555 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1556 ASSERT(*tp != NULL);
1557 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1558 ASSERT(ip->i_transp == *tp);
1559 ASSERT(ip->i_itemp != NULL);
1560 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1561
1562
1563 ntp = *tp;
1564 mp = (ntp)->t_mountp;
1565 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1566
1567 /*
1568 * We only support truncating the entire attribute fork.
1569 */
1570 if (fork == XFS_ATTR_FORK) {
1571 new_size = 0LL;
1572 }
1573 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1574 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1575 /*
1576 * The first thing we do is set the size to new_size permanently
1577 * on disk. This way we don't have to worry about anyone ever
1578 * being able to look at the data being freed even in the face
1579 * of a crash. What we're getting around here is the case where
1580 * we free a block, it is allocated to another file, it is written
1581 * to, and then we crash. If the new data gets written to the
1582 * file but the log buffers containing the free and reallocation
1583 * don't, then we'd end up with garbage in the blocks being freed.
1584 * As long as we make the new_size permanent before actually
1585 * freeing any blocks it doesn't matter if they get writtten to.
1586 *
1587 * The callers must signal into us whether or not the size
1588 * setting here must be synchronous. There are a few cases
1589 * where it doesn't have to be synchronous. Those cases
1590 * occur if the file is unlinked and we know the unlink is
1591 * permanent or if the blocks being truncated are guaranteed
1592 * to be beyond the inode eof (regardless of the link count)
1593 * and the eof value is permanent. Both of these cases occur
1594 * only on wsync-mounted filesystems. In those cases, we're
1595 * guaranteed that no user will ever see the data in the blocks
1596 * that are being truncated so the truncate can run async.
1597 * In the free beyond eof case, the file may wind up with
1598 * more blocks allocated to it than it needs if we crash
1599 * and that won't get fixed until the next time the file
1600 * is re-opened and closed but that's ok as that shouldn't
1601 * be too many blocks.
1602 *
1603 * However, we can't just make all wsync xactions run async
1604 * because there's one call out of the create path that needs
1605 * to run sync where it's truncating an existing file to size
1606 * 0 whose size is > 0.
1607 *
1608 * It's probably possible to come up with a test in this
1609 * routine that would correctly distinguish all the above
1610 * cases from the values of the function parameters and the
1611 * inode state but for sanity's sake, I've decided to let the
1612 * layers above just tell us. It's simpler to correctly figure
1613 * out in the layer above exactly under what conditions we
1614 * can run async and I think it's easier for others read and
1615 * follow the logic in case something has to be changed.
1616 * cscope is your friend -- rcc.
1617 *
1618 * The attribute fork is much simpler.
1619 *
1620 * For the attribute fork we allow the caller to tell us whether
1621 * the unlink of the inode that led to this call is yet permanent
1622 * in the on disk log. If it is not and we will be freeing extents
1623 * in this inode then we make the first transaction synchronous
1624 * to make sure that the unlink is permanent by the time we free
1625 * the blocks.
1626 */
1627 if (fork == XFS_DATA_FORK) {
1628 if (ip->i_d.di_nextents > 0) {
1629 ip->i_d.di_size = new_size;
1630 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1631 }
1632 } else if (sync) {
1633 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1634 if (ip->i_d.di_anextents > 0)
1635 xfs_trans_set_sync(ntp);
1636 }
1637 ASSERT(fork == XFS_DATA_FORK ||
1638 (fork == XFS_ATTR_FORK &&
1639 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1640 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1641
1642 /*
1643 * Since it is possible for space to become allocated beyond
1644 * the end of the file (in a crash where the space is allocated
1645 * but the inode size is not yet updated), simply remove any
1646 * blocks which show up between the new EOF and the maximum
1647 * possible file size. If the first block to be removed is
1648 * beyond the maximum file size (ie it is the same as last_block),
1649 * then there is nothing to do.
1650 */
1651 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1652 ASSERT(first_unmap_block <= last_block);
1653 done = 0;
1654 if (last_block == first_unmap_block) {
1655 done = 1;
1656 } else {
1657 unmap_len = last_block - first_unmap_block + 1;
1658 }
1659 while (!done) {
1660 /*
1661 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1662 * will tell us whether it freed the entire range or
1663 * not. If this is a synchronous mount (wsync),
1664 * then we can tell bunmapi to keep all the
1665 * transactions asynchronous since the unlink
1666 * transaction that made this inode inactive has
1667 * already hit the disk. There's no danger of
1668 * the freed blocks being reused, there being a
1669 * crash, and the reused blocks suddenly reappearing
1670 * in this file with garbage in them once recovery
1671 * runs.
1672 */
1673 XFS_BMAP_INIT(&free_list, &first_block);
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001674 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1675 first_unmap_block, unmap_len,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001676 XFS_BMAPI_AFLAG(fork) |
1677 (sync ? 0 : XFS_BMAPI_ASYNC),
1678 XFS_ITRUNC_MAX_EXTENTS,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001679 &first_block, &free_list,
1680 NULL, &done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001681 if (error) {
1682 /*
1683 * If the bunmapi call encounters an error,
1684 * return to the caller where the transaction
1685 * can be properly aborted. We just need to
1686 * make sure we're not holding any resources
1687 * that we were not when we came in.
1688 */
1689 xfs_bmap_cancel(&free_list);
1690 return error;
1691 }
1692
1693 /*
1694 * Duplicate the transaction that has the permanent
1695 * reservation and commit the old transaction.
1696 */
1697 error = xfs_bmap_finish(tp, &free_list, first_block,
1698 &committed);
1699 ntp = *tp;
1700 if (error) {
1701 /*
1702 * If the bmap finish call encounters an error,
1703 * return to the caller where the transaction
1704 * can be properly aborted. We just need to
1705 * make sure we're not holding any resources
1706 * that we were not when we came in.
1707 *
1708 * Aborting from this point might lose some
1709 * blocks in the file system, but oh well.
1710 */
1711 xfs_bmap_cancel(&free_list);
1712 if (committed) {
1713 /*
1714 * If the passed in transaction committed
1715 * in xfs_bmap_finish(), then we want to
1716 * add the inode to this one before returning.
1717 * This keeps things simple for the higher
1718 * level code, because it always knows that
1719 * the inode is locked and held in the
1720 * transaction that returns to it whether
1721 * errors occur or not. We don't mark the
1722 * inode dirty so that this transaction can
1723 * be easily aborted if possible.
1724 */
1725 xfs_trans_ijoin(ntp, ip,
1726 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1727 xfs_trans_ihold(ntp, ip);
1728 }
1729 return error;
1730 }
1731
1732 if (committed) {
1733 /*
1734 * The first xact was committed,
1735 * so add the inode to the new one.
1736 * Mark it dirty so it will be logged
1737 * and moved forward in the log as
1738 * part of every commit.
1739 */
1740 xfs_trans_ijoin(ntp, ip,
1741 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1742 xfs_trans_ihold(ntp, ip);
1743 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1744 }
1745 ntp = xfs_trans_dup(ntp);
1746 (void) xfs_trans_commit(*tp, 0, NULL);
1747 *tp = ntp;
1748 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1749 XFS_TRANS_PERM_LOG_RES,
1750 XFS_ITRUNCATE_LOG_COUNT);
1751 /*
1752 * Add the inode being truncated to the next chained
1753 * transaction.
1754 */
1755 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1756 xfs_trans_ihold(ntp, ip);
1757 if (error)
1758 return (error);
1759 }
1760 /*
1761 * Only update the size in the case of the data fork, but
1762 * always re-log the inode so that our permanent transaction
1763 * can keep on rolling it forward in the log.
1764 */
1765 if (fork == XFS_DATA_FORK) {
1766 xfs_isize_check(mp, ip, new_size);
1767 ip->i_d.di_size = new_size;
1768 }
1769 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1770 ASSERT((new_size != 0) ||
1771 (fork == XFS_ATTR_FORK) ||
1772 (ip->i_delayed_blks == 0));
1773 ASSERT((new_size != 0) ||
1774 (fork == XFS_ATTR_FORK) ||
1775 (ip->i_d.di_nextents == 0));
1776 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1777 return 0;
1778}
1779
1780
1781/*
1782 * xfs_igrow_start
1783 *
1784 * Do the first part of growing a file: zero any data in the last
1785 * block that is beyond the old EOF. We need to do this before
1786 * the inode is joined to the transaction to modify the i_size.
1787 * That way we can drop the inode lock and call into the buffer
1788 * cache to get the buffer mapping the EOF.
1789 */
1790int
1791xfs_igrow_start(
1792 xfs_inode_t *ip,
1793 xfs_fsize_t new_size,
1794 cred_t *credp)
1795{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796 int error;
1797
1798 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1799 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1800 ASSERT(new_size > ip->i_d.di_size);
1801
Linus Torvalds1da177e2005-04-16 15:20:36 -07001802 /*
1803 * Zero any pages that may have been created by
1804 * xfs_write_file() beyond the end of the file
1805 * and any blocks between the old and new file sizes.
1806 */
Eric Sandeen24ee8082006-01-11 15:34:32 +11001807 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1808 ip->i_d.di_size, new_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001809 return error;
1810}
1811
1812/*
1813 * xfs_igrow_finish
1814 *
1815 * This routine is called to extend the size of a file.
1816 * The inode must have both the iolock and the ilock locked
1817 * for update and it must be a part of the current transaction.
1818 * The xfs_igrow_start() function must have been called previously.
1819 * If the change_flag is not zero, the inode change timestamp will
1820 * be updated.
1821 */
1822void
1823xfs_igrow_finish(
1824 xfs_trans_t *tp,
1825 xfs_inode_t *ip,
1826 xfs_fsize_t new_size,
1827 int change_flag)
1828{
1829 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1830 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1831 ASSERT(ip->i_transp == tp);
1832 ASSERT(new_size > ip->i_d.di_size);
1833
1834 /*
1835 * Update the file size. Update the inode change timestamp
1836 * if change_flag set.
1837 */
1838 ip->i_d.di_size = new_size;
1839 if (change_flag)
1840 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1841 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1842
1843}
1844
1845
1846/*
1847 * This is called when the inode's link count goes to 0.
1848 * We place the on-disk inode on a list in the AGI. It
1849 * will be pulled from this list when the inode is freed.
1850 */
1851int
1852xfs_iunlink(
1853 xfs_trans_t *tp,
1854 xfs_inode_t *ip)
1855{
1856 xfs_mount_t *mp;
1857 xfs_agi_t *agi;
1858 xfs_dinode_t *dip;
1859 xfs_buf_t *agibp;
1860 xfs_buf_t *ibp;
1861 xfs_agnumber_t agno;
1862 xfs_daddr_t agdaddr;
1863 xfs_agino_t agino;
1864 short bucket_index;
1865 int offset;
1866 int error;
1867 int agi_ok;
1868
1869 ASSERT(ip->i_d.di_nlink == 0);
1870 ASSERT(ip->i_d.di_mode != 0);
1871 ASSERT(ip->i_transp == tp);
1872
1873 mp = tp->t_mountp;
1874
1875 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1876 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1877
1878 /*
1879 * Get the agi buffer first. It ensures lock ordering
1880 * on the list.
1881 */
1882 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1883 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1884 if (error) {
1885 return error;
1886 }
1887 /*
1888 * Validate the magic number of the agi block.
1889 */
1890 agi = XFS_BUF_TO_AGI(agibp);
1891 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001892 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1893 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001894 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1895 XFS_RANDOM_IUNLINK))) {
1896 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1897 xfs_trans_brelse(tp, agibp);
1898 return XFS_ERROR(EFSCORRUPTED);
1899 }
1900 /*
1901 * Get the index into the agi hash table for the
1902 * list this inode will go on.
1903 */
1904 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1905 ASSERT(agino != 0);
1906 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1907 ASSERT(agi->agi_unlinked[bucket_index]);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001908 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001909
Christoph Hellwig16259e72005-11-02 15:11:25 +11001910 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001911 /*
1912 * There is already another inode in the bucket we need
1913 * to add ourselves to. Add us at the front of the list.
1914 * Here we put the head pointer into our next pointer,
1915 * and then we fall through to point the head at us.
1916 */
Nathan Scottb12dd342006-03-17 17:26:04 +11001917 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918 if (error) {
1919 return error;
1920 }
1921 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1922 ASSERT(dip->di_next_unlinked);
1923 /* both on-disk, don't endian flip twice */
1924 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1925 offset = ip->i_boffset +
1926 offsetof(xfs_dinode_t, di_next_unlinked);
1927 xfs_trans_inode_buf(tp, ibp);
1928 xfs_trans_log_buf(tp, ibp, offset,
1929 (offset + sizeof(xfs_agino_t) - 1));
1930 xfs_inobp_check(mp, ibp);
1931 }
1932
1933 /*
1934 * Point the bucket head pointer at the inode being inserted.
1935 */
1936 ASSERT(agino != 0);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001937 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001938 offset = offsetof(xfs_agi_t, agi_unlinked) +
1939 (sizeof(xfs_agino_t) * bucket_index);
1940 xfs_trans_log_buf(tp, agibp, offset,
1941 (offset + sizeof(xfs_agino_t) - 1));
1942 return 0;
1943}
1944
1945/*
1946 * Pull the on-disk inode from the AGI unlinked list.
1947 */
1948STATIC int
1949xfs_iunlink_remove(
1950 xfs_trans_t *tp,
1951 xfs_inode_t *ip)
1952{
1953 xfs_ino_t next_ino;
1954 xfs_mount_t *mp;
1955 xfs_agi_t *agi;
1956 xfs_dinode_t *dip;
1957 xfs_buf_t *agibp;
1958 xfs_buf_t *ibp;
1959 xfs_agnumber_t agno;
1960 xfs_daddr_t agdaddr;
1961 xfs_agino_t agino;
1962 xfs_agino_t next_agino;
1963 xfs_buf_t *last_ibp;
Nathan Scott6fdf8cc2006-06-28 10:13:52 +10001964 xfs_dinode_t *last_dip = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001965 short bucket_index;
Nathan Scott6fdf8cc2006-06-28 10:13:52 +10001966 int offset, last_offset = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001967 int error;
1968 int agi_ok;
1969
1970 /*
1971 * First pull the on-disk inode from the AGI unlinked list.
1972 */
1973 mp = tp->t_mountp;
1974
1975 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1976 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1977
1978 /*
1979 * Get the agi buffer first. It ensures lock ordering
1980 * on the list.
1981 */
1982 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1983 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1984 if (error) {
1985 cmn_err(CE_WARN,
1986 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1987 error, mp->m_fsname);
1988 return error;
1989 }
1990 /*
1991 * Validate the magic number of the agi block.
1992 */
1993 agi = XFS_BUF_TO_AGI(agibp);
1994 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001995 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1996 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001997 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1998 XFS_RANDOM_IUNLINK_REMOVE))) {
1999 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2000 mp, agi);
2001 xfs_trans_brelse(tp, agibp);
2002 cmn_err(CE_WARN,
2003 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2004 mp->m_fsname);
2005 return XFS_ERROR(EFSCORRUPTED);
2006 }
2007 /*
2008 * Get the index into the agi hash table for the
2009 * list this inode will go on.
2010 */
2011 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2012 ASSERT(agino != 0);
2013 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
Christoph Hellwig16259e72005-11-02 15:11:25 +11002014 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002015 ASSERT(agi->agi_unlinked[bucket_index]);
2016
Christoph Hellwig16259e72005-11-02 15:11:25 +11002017 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002018 /*
2019 * We're at the head of the list. Get the inode's
2020 * on-disk buffer to see if there is anyone after us
2021 * on the list. Only modify our next pointer if it
2022 * is not already NULLAGINO. This saves us the overhead
2023 * of dealing with the buffer when there is no need to
2024 * change it.
2025 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002026 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002027 if (error) {
2028 cmn_err(CE_WARN,
2029 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2030 error, mp->m_fsname);
2031 return error;
2032 }
2033 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2034 ASSERT(next_agino != 0);
2035 if (next_agino != NULLAGINO) {
2036 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2037 offset = ip->i_boffset +
2038 offsetof(xfs_dinode_t, di_next_unlinked);
2039 xfs_trans_inode_buf(tp, ibp);
2040 xfs_trans_log_buf(tp, ibp, offset,
2041 (offset + sizeof(xfs_agino_t) - 1));
2042 xfs_inobp_check(mp, ibp);
2043 } else {
2044 xfs_trans_brelse(tp, ibp);
2045 }
2046 /*
2047 * Point the bucket head pointer at the next inode.
2048 */
2049 ASSERT(next_agino != 0);
2050 ASSERT(next_agino != agino);
Christoph Hellwig16259e72005-11-02 15:11:25 +11002051 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052 offset = offsetof(xfs_agi_t, agi_unlinked) +
2053 (sizeof(xfs_agino_t) * bucket_index);
2054 xfs_trans_log_buf(tp, agibp, offset,
2055 (offset + sizeof(xfs_agino_t) - 1));
2056 } else {
2057 /*
2058 * We need to search the list for the inode being freed.
2059 */
Christoph Hellwig16259e72005-11-02 15:11:25 +11002060 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061 last_ibp = NULL;
2062 while (next_agino != agino) {
2063 /*
2064 * If the last inode wasn't the one pointing to
2065 * us, then release its buffer since we're not
2066 * going to do anything with it.
2067 */
2068 if (last_ibp != NULL) {
2069 xfs_trans_brelse(tp, last_ibp);
2070 }
2071 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2072 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2073 &last_ibp, &last_offset);
2074 if (error) {
2075 cmn_err(CE_WARN,
2076 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2077 error, mp->m_fsname);
2078 return error;
2079 }
2080 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2081 ASSERT(next_agino != NULLAGINO);
2082 ASSERT(next_agino != 0);
2083 }
2084 /*
2085 * Now last_ibp points to the buffer previous to us on
2086 * the unlinked list. Pull us from the list.
2087 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002088 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002089 if (error) {
2090 cmn_err(CE_WARN,
2091 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2092 error, mp->m_fsname);
2093 return error;
2094 }
2095 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2096 ASSERT(next_agino != 0);
2097 ASSERT(next_agino != agino);
2098 if (next_agino != NULLAGINO) {
2099 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2100 offset = ip->i_boffset +
2101 offsetof(xfs_dinode_t, di_next_unlinked);
2102 xfs_trans_inode_buf(tp, ibp);
2103 xfs_trans_log_buf(tp, ibp, offset,
2104 (offset + sizeof(xfs_agino_t) - 1));
2105 xfs_inobp_check(mp, ibp);
2106 } else {
2107 xfs_trans_brelse(tp, ibp);
2108 }
2109 /*
2110 * Point the previous inode on the list to the next inode.
2111 */
2112 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2113 ASSERT(next_agino != 0);
2114 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2115 xfs_trans_inode_buf(tp, last_ibp);
2116 xfs_trans_log_buf(tp, last_ibp, offset,
2117 (offset + sizeof(xfs_agino_t) - 1));
2118 xfs_inobp_check(mp, last_ibp);
2119 }
2120 return 0;
2121}
2122
2123static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2124{
2125 return (((ip->i_itemp == NULL) ||
2126 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2127 (ip->i_update_core == 0));
2128}
2129
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002130STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002131xfs_ifree_cluster(
2132 xfs_inode_t *free_ip,
2133 xfs_trans_t *tp,
2134 xfs_ino_t inum)
2135{
2136 xfs_mount_t *mp = free_ip->i_mount;
2137 int blks_per_cluster;
2138 int nbufs;
2139 int ninodes;
2140 int i, j, found, pre_flushed;
2141 xfs_daddr_t blkno;
2142 xfs_buf_t *bp;
2143 xfs_ihash_t *ih;
2144 xfs_inode_t *ip, **ip_found;
2145 xfs_inode_log_item_t *iip;
2146 xfs_log_item_t *lip;
2147 SPLDECL(s);
2148
2149 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2150 blks_per_cluster = 1;
2151 ninodes = mp->m_sb.sb_inopblock;
2152 nbufs = XFS_IALLOC_BLOCKS(mp);
2153 } else {
2154 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2155 mp->m_sb.sb_blocksize;
2156 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2157 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2158 }
2159
2160 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2161
2162 for (j = 0; j < nbufs; j++, inum += ninodes) {
2163 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2164 XFS_INO_TO_AGBNO(mp, inum));
2165
2166
2167 /*
2168 * Look for each inode in memory and attempt to lock it,
2169 * we can be racing with flush and tail pushing here.
2170 * any inode we get the locks on, add to an array of
2171 * inode items to process later.
2172 *
2173 * The get the buffer lock, we could beat a flush
2174 * or tail pushing thread to the lock here, in which
2175 * case they will go looking for the inode buffer
2176 * and fail, we need some other form of interlock
2177 * here.
2178 */
2179 found = 0;
2180 for (i = 0; i < ninodes; i++) {
2181 ih = XFS_IHASH(mp, inum + i);
2182 read_lock(&ih->ih_lock);
2183 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2184 if (ip->i_ino == inum + i)
2185 break;
2186 }
2187
2188 /* Inode not in memory or we found it already,
2189 * nothing to do
2190 */
2191 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2192 read_unlock(&ih->ih_lock);
2193 continue;
2194 }
2195
2196 if (xfs_inode_clean(ip)) {
2197 read_unlock(&ih->ih_lock);
2198 continue;
2199 }
2200
2201 /* If we can get the locks then add it to the
2202 * list, otherwise by the time we get the bp lock
2203 * below it will already be attached to the
2204 * inode buffer.
2205 */
2206
2207 /* This inode will already be locked - by us, lets
2208 * keep it that way.
2209 */
2210
2211 if (ip == free_ip) {
2212 if (xfs_iflock_nowait(ip)) {
2213 ip->i_flags |= XFS_ISTALE;
2214
2215 if (xfs_inode_clean(ip)) {
2216 xfs_ifunlock(ip);
2217 } else {
2218 ip_found[found++] = ip;
2219 }
2220 }
2221 read_unlock(&ih->ih_lock);
2222 continue;
2223 }
2224
2225 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2226 if (xfs_iflock_nowait(ip)) {
2227 ip->i_flags |= XFS_ISTALE;
2228
2229 if (xfs_inode_clean(ip)) {
2230 xfs_ifunlock(ip);
2231 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2232 } else {
2233 ip_found[found++] = ip;
2234 }
2235 } else {
2236 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2237 }
2238 }
2239
2240 read_unlock(&ih->ih_lock);
2241 }
2242
2243 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2244 mp->m_bsize * blks_per_cluster,
2245 XFS_BUF_LOCK);
2246
2247 pre_flushed = 0;
2248 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2249 while (lip) {
2250 if (lip->li_type == XFS_LI_INODE) {
2251 iip = (xfs_inode_log_item_t *)lip;
2252 ASSERT(iip->ili_logged == 1);
2253 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2254 AIL_LOCK(mp,s);
2255 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2256 AIL_UNLOCK(mp, s);
2257 iip->ili_inode->i_flags |= XFS_ISTALE;
2258 pre_flushed++;
2259 }
2260 lip = lip->li_bio_list;
2261 }
2262
2263 for (i = 0; i < found; i++) {
2264 ip = ip_found[i];
2265 iip = ip->i_itemp;
2266
2267 if (!iip) {
2268 ip->i_update_core = 0;
2269 xfs_ifunlock(ip);
2270 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2271 continue;
2272 }
2273
2274 iip->ili_last_fields = iip->ili_format.ilf_fields;
2275 iip->ili_format.ilf_fields = 0;
2276 iip->ili_logged = 1;
2277 AIL_LOCK(mp,s);
2278 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2279 AIL_UNLOCK(mp, s);
2280
2281 xfs_buf_attach_iodone(bp,
2282 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2283 xfs_istale_done, (xfs_log_item_t *)iip);
2284 if (ip != free_ip) {
2285 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2286 }
2287 }
2288
2289 if (found || pre_flushed)
2290 xfs_trans_stale_inode_buf(tp, bp);
2291 xfs_trans_binval(tp, bp);
2292 }
2293
2294 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2295}
2296
2297/*
2298 * This is called to return an inode to the inode free list.
2299 * The inode should already be truncated to 0 length and have
2300 * no pages associated with it. This routine also assumes that
2301 * the inode is already a part of the transaction.
2302 *
2303 * The on-disk copy of the inode will have been added to the list
2304 * of unlinked inodes in the AGI. We need to remove the inode from
2305 * that list atomically with respect to freeing it here.
2306 */
2307int
2308xfs_ifree(
2309 xfs_trans_t *tp,
2310 xfs_inode_t *ip,
2311 xfs_bmap_free_t *flist)
2312{
2313 int error;
2314 int delete;
2315 xfs_ino_t first_ino;
2316
2317 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2318 ASSERT(ip->i_transp == tp);
2319 ASSERT(ip->i_d.di_nlink == 0);
2320 ASSERT(ip->i_d.di_nextents == 0);
2321 ASSERT(ip->i_d.di_anextents == 0);
2322 ASSERT((ip->i_d.di_size == 0) ||
2323 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2324 ASSERT(ip->i_d.di_nblocks == 0);
2325
2326 /*
2327 * Pull the on-disk inode from the AGI unlinked list.
2328 */
2329 error = xfs_iunlink_remove(tp, ip);
2330 if (error != 0) {
2331 return error;
2332 }
2333
2334 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2335 if (error != 0) {
2336 return error;
2337 }
2338 ip->i_d.di_mode = 0; /* mark incore inode as free */
2339 ip->i_d.di_flags = 0;
2340 ip->i_d.di_dmevmask = 0;
2341 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2342 ip->i_df.if_ext_max =
2343 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2344 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2345 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2346 /*
2347 * Bump the generation count so no one will be confused
2348 * by reincarnations of this inode.
2349 */
2350 ip->i_d.di_gen++;
2351 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2352
2353 if (delete) {
2354 xfs_ifree_cluster(ip, tp, first_ino);
2355 }
2356
2357 return 0;
2358}
2359
2360/*
2361 * Reallocate the space for if_broot based on the number of records
2362 * being added or deleted as indicated in rec_diff. Move the records
2363 * and pointers in if_broot to fit the new size. When shrinking this
2364 * will eliminate holes between the records and pointers created by
2365 * the caller. When growing this will create holes to be filled in
2366 * by the caller.
2367 *
2368 * The caller must not request to add more records than would fit in
2369 * the on-disk inode root. If the if_broot is currently NULL, then
2370 * if we adding records one will be allocated. The caller must also
2371 * not request that the number of records go below zero, although
2372 * it can go to zero.
2373 *
2374 * ip -- the inode whose if_broot area is changing
2375 * ext_diff -- the change in the number of records, positive or negative,
2376 * requested for the if_broot array.
2377 */
2378void
2379xfs_iroot_realloc(
2380 xfs_inode_t *ip,
2381 int rec_diff,
2382 int whichfork)
2383{
2384 int cur_max;
2385 xfs_ifork_t *ifp;
2386 xfs_bmbt_block_t *new_broot;
2387 int new_max;
2388 size_t new_size;
2389 char *np;
2390 char *op;
2391
2392 /*
2393 * Handle the degenerate case quietly.
2394 */
2395 if (rec_diff == 0) {
2396 return;
2397 }
2398
2399 ifp = XFS_IFORK_PTR(ip, whichfork);
2400 if (rec_diff > 0) {
2401 /*
2402 * If there wasn't any memory allocated before, just
2403 * allocate it now and get out.
2404 */
2405 if (ifp->if_broot_bytes == 0) {
2406 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2407 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2408 KM_SLEEP);
2409 ifp->if_broot_bytes = (int)new_size;
2410 return;
2411 }
2412
2413 /*
2414 * If there is already an existing if_broot, then we need
2415 * to realloc() it and shift the pointers to their new
2416 * location. The records don't change location because
2417 * they are kept butted up against the btree block header.
2418 */
2419 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2420 new_max = cur_max + rec_diff;
2421 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2422 ifp->if_broot = (xfs_bmbt_block_t *)
2423 kmem_realloc(ifp->if_broot,
2424 new_size,
2425 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2426 KM_SLEEP);
2427 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2428 ifp->if_broot_bytes);
2429 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2430 (int)new_size);
2431 ifp->if_broot_bytes = (int)new_size;
2432 ASSERT(ifp->if_broot_bytes <=
2433 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2434 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2435 return;
2436 }
2437
2438 /*
2439 * rec_diff is less than 0. In this case, we are shrinking the
2440 * if_broot buffer. It must already exist. If we go to zero
2441 * records, just get rid of the root and clear the status bit.
2442 */
2443 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2444 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2445 new_max = cur_max + rec_diff;
2446 ASSERT(new_max >= 0);
2447 if (new_max > 0)
2448 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2449 else
2450 new_size = 0;
2451 if (new_size > 0) {
2452 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2453 /*
2454 * First copy over the btree block header.
2455 */
2456 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2457 } else {
2458 new_broot = NULL;
2459 ifp->if_flags &= ~XFS_IFBROOT;
2460 }
2461
2462 /*
2463 * Only copy the records and pointers if there are any.
2464 */
2465 if (new_max > 0) {
2466 /*
2467 * First copy the records.
2468 */
2469 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2470 ifp->if_broot_bytes);
2471 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2472 (int)new_size);
2473 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2474
2475 /*
2476 * Then copy the pointers.
2477 */
2478 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2479 ifp->if_broot_bytes);
2480 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2481 (int)new_size);
2482 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2483 }
2484 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2485 ifp->if_broot = new_broot;
2486 ifp->if_broot_bytes = (int)new_size;
2487 ASSERT(ifp->if_broot_bytes <=
2488 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2489 return;
2490}
2491
2492
2493/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002494 * This is called when the amount of space needed for if_data
2495 * is increased or decreased. The change in size is indicated by
2496 * the number of bytes that need to be added or deleted in the
2497 * byte_diff parameter.
2498 *
2499 * If the amount of space needed has decreased below the size of the
2500 * inline buffer, then switch to using the inline buffer. Otherwise,
2501 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2502 * to what is needed.
2503 *
2504 * ip -- the inode whose if_data area is changing
2505 * byte_diff -- the change in the number of bytes, positive or negative,
2506 * requested for the if_data array.
2507 */
2508void
2509xfs_idata_realloc(
2510 xfs_inode_t *ip,
2511 int byte_diff,
2512 int whichfork)
2513{
2514 xfs_ifork_t *ifp;
2515 int new_size;
2516 int real_size;
2517
2518 if (byte_diff == 0) {
2519 return;
2520 }
2521
2522 ifp = XFS_IFORK_PTR(ip, whichfork);
2523 new_size = (int)ifp->if_bytes + byte_diff;
2524 ASSERT(new_size >= 0);
2525
2526 if (new_size == 0) {
2527 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2528 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2529 }
2530 ifp->if_u1.if_data = NULL;
2531 real_size = 0;
2532 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2533 /*
2534 * If the valid extents/data can fit in if_inline_ext/data,
2535 * copy them from the malloc'd vector and free it.
2536 */
2537 if (ifp->if_u1.if_data == NULL) {
2538 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2539 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2540 ASSERT(ifp->if_real_bytes != 0);
2541 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2542 new_size);
2543 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2544 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2545 }
2546 real_size = 0;
2547 } else {
2548 /*
2549 * Stuck with malloc/realloc.
2550 * For inline data, the underlying buffer must be
2551 * a multiple of 4 bytes in size so that it can be
2552 * logged and stay on word boundaries. We enforce
2553 * that here.
2554 */
2555 real_size = roundup(new_size, 4);
2556 if (ifp->if_u1.if_data == NULL) {
2557 ASSERT(ifp->if_real_bytes == 0);
2558 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2559 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2560 /*
2561 * Only do the realloc if the underlying size
2562 * is really changing.
2563 */
2564 if (ifp->if_real_bytes != real_size) {
2565 ifp->if_u1.if_data =
2566 kmem_realloc(ifp->if_u1.if_data,
2567 real_size,
2568 ifp->if_real_bytes,
2569 KM_SLEEP);
2570 }
2571 } else {
2572 ASSERT(ifp->if_real_bytes == 0);
2573 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2574 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2575 ifp->if_bytes);
2576 }
2577 }
2578 ifp->if_real_bytes = real_size;
2579 ifp->if_bytes = new_size;
2580 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2581}
2582
2583
2584
2585
2586/*
2587 * Map inode to disk block and offset.
2588 *
2589 * mp -- the mount point structure for the current file system
2590 * tp -- the current transaction
2591 * ino -- the inode number of the inode to be located
2592 * imap -- this structure is filled in with the information necessary
2593 * to retrieve the given inode from disk
2594 * flags -- flags to pass to xfs_dilocate indicating whether or not
2595 * lookups in the inode btree were OK or not
2596 */
2597int
2598xfs_imap(
2599 xfs_mount_t *mp,
2600 xfs_trans_t *tp,
2601 xfs_ino_t ino,
2602 xfs_imap_t *imap,
2603 uint flags)
2604{
2605 xfs_fsblock_t fsbno;
2606 int len;
2607 int off;
2608 int error;
2609
2610 fsbno = imap->im_blkno ?
2611 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2612 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2613 if (error != 0) {
2614 return error;
2615 }
2616 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2617 imap->im_len = XFS_FSB_TO_BB(mp, len);
2618 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2619 imap->im_ioffset = (ushort)off;
2620 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2621 return 0;
2622}
2623
2624void
2625xfs_idestroy_fork(
2626 xfs_inode_t *ip,
2627 int whichfork)
2628{
2629 xfs_ifork_t *ifp;
2630
2631 ifp = XFS_IFORK_PTR(ip, whichfork);
2632 if (ifp->if_broot != NULL) {
2633 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2634 ifp->if_broot = NULL;
2635 }
2636
2637 /*
2638 * If the format is local, then we can't have an extents
2639 * array so just look for an inline data array. If we're
2640 * not local then we may or may not have an extents list,
2641 * so check and free it up if we do.
2642 */
2643 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2644 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2645 (ifp->if_u1.if_data != NULL)) {
2646 ASSERT(ifp->if_real_bytes != 0);
2647 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2648 ifp->if_u1.if_data = NULL;
2649 ifp->if_real_bytes = 0;
2650 }
2651 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11002652 ((ifp->if_flags & XFS_IFEXTIREC) ||
2653 ((ifp->if_u1.if_extents != NULL) &&
2654 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002655 ASSERT(ifp->if_real_bytes != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002656 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002657 }
2658 ASSERT(ifp->if_u1.if_extents == NULL ||
2659 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2660 ASSERT(ifp->if_real_bytes == 0);
2661 if (whichfork == XFS_ATTR_FORK) {
2662 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2663 ip->i_afp = NULL;
2664 }
2665}
2666
2667/*
2668 * This is called free all the memory associated with an inode.
2669 * It must free the inode itself and any buffers allocated for
2670 * if_extents/if_data and if_broot. It must also free the lock
2671 * associated with the inode.
2672 */
2673void
2674xfs_idestroy(
2675 xfs_inode_t *ip)
2676{
2677
2678 switch (ip->i_d.di_mode & S_IFMT) {
2679 case S_IFREG:
2680 case S_IFDIR:
2681 case S_IFLNK:
2682 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2683 break;
2684 }
2685 if (ip->i_afp)
2686 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2687 mrfree(&ip->i_lock);
2688 mrfree(&ip->i_iolock);
2689 freesema(&ip->i_flock);
2690#ifdef XFS_BMAP_TRACE
2691 ktrace_free(ip->i_xtrace);
2692#endif
2693#ifdef XFS_BMBT_TRACE
2694 ktrace_free(ip->i_btrace);
2695#endif
2696#ifdef XFS_RW_TRACE
2697 ktrace_free(ip->i_rwtrace);
2698#endif
2699#ifdef XFS_ILOCK_TRACE
2700 ktrace_free(ip->i_lock_trace);
2701#endif
2702#ifdef XFS_DIR2_TRACE
2703 ktrace_free(ip->i_dir_trace);
2704#endif
2705 if (ip->i_itemp) {
2706 /* XXXdpd should be able to assert this but shutdown
2707 * is leaving the AIL behind. */
2708 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2709 XFS_FORCED_SHUTDOWN(ip->i_mount));
2710 xfs_inode_item_destroy(ip);
2711 }
2712 kmem_zone_free(xfs_inode_zone, ip);
2713}
2714
2715
2716/*
2717 * Increment the pin count of the given buffer.
2718 * This value is protected by ipinlock spinlock in the mount structure.
2719 */
2720void
2721xfs_ipin(
2722 xfs_inode_t *ip)
2723{
2724 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2725
2726 atomic_inc(&ip->i_pincount);
2727}
2728
2729/*
2730 * Decrement the pin count of the given inode, and wake up
2731 * anyone in xfs_iwait_unpin() if the count goes to 0. The
Nathan Scottc41564b2006-03-29 08:55:14 +10002732 * inode must have been previously pinned with a call to xfs_ipin().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002733 */
2734void
2735xfs_iunpin(
2736 xfs_inode_t *ip)
2737{
2738 ASSERT(atomic_read(&ip->i_pincount) > 0);
2739
2740 if (atomic_dec_and_test(&ip->i_pincount)) {
David Chinner58829e42006-04-11 15:11:20 +10002741 /*
2742 * If the inode is currently being reclaimed, the
2743 * linux inode _and_ the xfs vnode may have been
2744 * freed so we cannot reference either of them safely.
2745 * Hence we should not try to do anything to them
2746 * if the xfs inode is currently in the reclaim
2747 * path.
2748 *
2749 * However, we still need to issue the unpin wakeup
2750 * call as the inode reclaim may be blocked waiting for
2751 * the inode to become unpinned.
2752 */
2753 if (!(ip->i_flags & (XFS_IRECLAIM|XFS_IRECLAIMABLE))) {
Nathan Scott67fcaa72006-06-09 17:00:52 +10002754 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002755
David Chinner58829e42006-04-11 15:11:20 +10002756 /* make sync come back and flush this inode */
2757 if (vp) {
2758 struct inode *inode = vn_to_inode(vp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002759
David Chinner71425082006-06-09 14:55:52 +10002760 if (!(inode->i_state &
2761 (I_NEW|I_FREEING|I_CLEAR)))
David Chinner58829e42006-04-11 15:11:20 +10002762 mark_inode_dirty_sync(inode);
2763 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002764 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002765 wake_up(&ip->i_ipin_wait);
2766 }
2767}
2768
2769/*
2770 * This is called to wait for the given inode to be unpinned.
2771 * It will sleep until this happens. The caller must have the
2772 * inode locked in at least shared mode so that the buffer cannot
2773 * be subsequently pinned once someone is waiting for it to be
2774 * unpinned.
2775 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002776STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002777xfs_iunpin_wait(
2778 xfs_inode_t *ip)
2779{
2780 xfs_inode_log_item_t *iip;
2781 xfs_lsn_t lsn;
2782
2783 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2784
2785 if (atomic_read(&ip->i_pincount) == 0) {
2786 return;
2787 }
2788
2789 iip = ip->i_itemp;
2790 if (iip && iip->ili_last_lsn) {
2791 lsn = iip->ili_last_lsn;
2792 } else {
2793 lsn = (xfs_lsn_t)0;
2794 }
2795
2796 /*
2797 * Give the log a push so we don't wait here too long.
2798 */
2799 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2800
2801 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2802}
2803
2804
2805/*
2806 * xfs_iextents_copy()
2807 *
2808 * This is called to copy the REAL extents (as opposed to the delayed
2809 * allocation extents) from the inode into the given buffer. It
2810 * returns the number of bytes copied into the buffer.
2811 *
2812 * If there are no delayed allocation extents, then we can just
2813 * memcpy() the extents into the buffer. Otherwise, we need to
2814 * examine each extent in turn and skip those which are delayed.
2815 */
2816int
2817xfs_iextents_copy(
2818 xfs_inode_t *ip,
2819 xfs_bmbt_rec_t *buffer,
2820 int whichfork)
2821{
2822 int copied;
2823 xfs_bmbt_rec_t *dest_ep;
2824 xfs_bmbt_rec_t *ep;
2825#ifdef XFS_BMAP_TRACE
2826 static char fname[] = "xfs_iextents_copy";
2827#endif
2828 int i;
2829 xfs_ifork_t *ifp;
2830 int nrecs;
2831 xfs_fsblock_t start_block;
2832
2833 ifp = XFS_IFORK_PTR(ip, whichfork);
2834 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2835 ASSERT(ifp->if_bytes > 0);
2836
2837 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2838 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2839 ASSERT(nrecs > 0);
2840
2841 /*
2842 * There are some delayed allocation extents in the
2843 * inode, so copy the extents one at a time and skip
2844 * the delayed ones. There must be at least one
2845 * non-delayed extent.
2846 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002847 dest_ep = buffer;
2848 copied = 0;
2849 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002850 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002851 start_block = xfs_bmbt_get_startblock(ep);
2852 if (ISNULLSTARTBLOCK(start_block)) {
2853 /*
2854 * It's a delayed allocation extent, so skip it.
2855 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002856 continue;
2857 }
2858
2859 /* Translate to on disk format */
2860 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2861 (__uint64_t*)&dest_ep->l0);
2862 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2863 (__uint64_t*)&dest_ep->l1);
2864 dest_ep++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002865 copied++;
2866 }
2867 ASSERT(copied != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002868 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002869
2870 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2871}
2872
2873/*
2874 * Each of the following cases stores data into the same region
2875 * of the on-disk inode, so only one of them can be valid at
2876 * any given time. While it is possible to have conflicting formats
2877 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2878 * in EXTENTS format, this can only happen when the fork has
2879 * changed formats after being modified but before being flushed.
2880 * In these cases, the format always takes precedence, because the
2881 * format indicates the current state of the fork.
2882 */
2883/*ARGSUSED*/
2884STATIC int
2885xfs_iflush_fork(
2886 xfs_inode_t *ip,
2887 xfs_dinode_t *dip,
2888 xfs_inode_log_item_t *iip,
2889 int whichfork,
2890 xfs_buf_t *bp)
2891{
2892 char *cp;
2893 xfs_ifork_t *ifp;
2894 xfs_mount_t *mp;
2895#ifdef XFS_TRANS_DEBUG
2896 int first;
2897#endif
2898 static const short brootflag[2] =
2899 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2900 static const short dataflag[2] =
2901 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2902 static const short extflag[2] =
2903 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2904
2905 if (iip == NULL)
2906 return 0;
2907 ifp = XFS_IFORK_PTR(ip, whichfork);
2908 /*
2909 * This can happen if we gave up in iformat in an error path,
2910 * for the attribute fork.
2911 */
2912 if (ifp == NULL) {
2913 ASSERT(whichfork == XFS_ATTR_FORK);
2914 return 0;
2915 }
2916 cp = XFS_DFORK_PTR(dip, whichfork);
2917 mp = ip->i_mount;
2918 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2919 case XFS_DINODE_FMT_LOCAL:
2920 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2921 (ifp->if_bytes > 0)) {
2922 ASSERT(ifp->if_u1.if_data != NULL);
2923 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2924 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2925 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002926 break;
2927
2928 case XFS_DINODE_FMT_EXTENTS:
2929 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2930 !(iip->ili_format.ilf_fields & extflag[whichfork]));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002931 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2932 (ifp->if_bytes == 0));
2933 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2934 (ifp->if_bytes > 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002935 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2936 (ifp->if_bytes > 0)) {
2937 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2938 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2939 whichfork);
2940 }
2941 break;
2942
2943 case XFS_DINODE_FMT_BTREE:
2944 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2945 (ifp->if_broot_bytes > 0)) {
2946 ASSERT(ifp->if_broot != NULL);
2947 ASSERT(ifp->if_broot_bytes <=
2948 (XFS_IFORK_SIZE(ip, whichfork) +
2949 XFS_BROOT_SIZE_ADJ));
2950 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2951 (xfs_bmdr_block_t *)cp,
2952 XFS_DFORK_SIZE(dip, mp, whichfork));
2953 }
2954 break;
2955
2956 case XFS_DINODE_FMT_DEV:
2957 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2958 ASSERT(whichfork == XFS_DATA_FORK);
2959 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2960 }
2961 break;
2962
2963 case XFS_DINODE_FMT_UUID:
2964 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2965 ASSERT(whichfork == XFS_DATA_FORK);
2966 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2967 sizeof(uuid_t));
2968 }
2969 break;
2970
2971 default:
2972 ASSERT(0);
2973 break;
2974 }
2975
2976 return 0;
2977}
2978
2979/*
2980 * xfs_iflush() will write a modified inode's changes out to the
2981 * inode's on disk home. The caller must have the inode lock held
2982 * in at least shared mode and the inode flush semaphore must be
2983 * held as well. The inode lock will still be held upon return from
2984 * the call and the caller is free to unlock it.
2985 * The inode flush lock will be unlocked when the inode reaches the disk.
2986 * The flags indicate how the inode's buffer should be written out.
2987 */
2988int
2989xfs_iflush(
2990 xfs_inode_t *ip,
2991 uint flags)
2992{
2993 xfs_inode_log_item_t *iip;
2994 xfs_buf_t *bp;
2995 xfs_dinode_t *dip;
2996 xfs_mount_t *mp;
2997 int error;
2998 /* REFERENCED */
2999 xfs_chash_t *ch;
3000 xfs_inode_t *iq;
3001 int clcount; /* count of inodes clustered */
3002 int bufwasdelwri;
3003 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3004 SPLDECL(s);
3005
3006 XFS_STATS_INC(xs_iflush_count);
3007
3008 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
Al Viro0d8fee32006-06-19 08:41:30 +10003009 ASSERT(issemalocked(&(ip->i_flock)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003010 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3011 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3012
3013 iip = ip->i_itemp;
3014 mp = ip->i_mount;
3015
3016 /*
3017 * If the inode isn't dirty, then just release the inode
3018 * flush lock and do nothing.
3019 */
3020 if ((ip->i_update_core == 0) &&
3021 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3022 ASSERT((iip != NULL) ?
3023 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3024 xfs_ifunlock(ip);
3025 return 0;
3026 }
3027
3028 /*
3029 * We can't flush the inode until it is unpinned, so
3030 * wait for it. We know noone new can pin it, because
3031 * we are holding the inode lock shared and you need
3032 * to hold it exclusively to pin the inode.
3033 */
3034 xfs_iunpin_wait(ip);
3035
3036 /*
3037 * This may have been unpinned because the filesystem is shutting
3038 * down forcibly. If that's the case we must not write this inode
3039 * to disk, because the log record didn't make it to disk!
3040 */
3041 if (XFS_FORCED_SHUTDOWN(mp)) {
3042 ip->i_update_core = 0;
3043 if (iip)
3044 iip->ili_format.ilf_fields = 0;
3045 xfs_ifunlock(ip);
3046 return XFS_ERROR(EIO);
3047 }
3048
3049 /*
3050 * Get the buffer containing the on-disk inode.
3051 */
Nathan Scottb12dd342006-03-17 17:26:04 +11003052 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3053 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003054 xfs_ifunlock(ip);
3055 return error;
3056 }
3057
3058 /*
3059 * Decide how buffer will be flushed out. This is done before
3060 * the call to xfs_iflush_int because this field is zeroed by it.
3061 */
3062 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3063 /*
3064 * Flush out the inode buffer according to the directions
3065 * of the caller. In the cases where the caller has given
3066 * us a choice choose the non-delwri case. This is because
3067 * the inode is in the AIL and we need to get it out soon.
3068 */
3069 switch (flags) {
3070 case XFS_IFLUSH_SYNC:
3071 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3072 flags = 0;
3073 break;
3074 case XFS_IFLUSH_ASYNC:
3075 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3076 flags = INT_ASYNC;
3077 break;
3078 case XFS_IFLUSH_DELWRI:
3079 flags = INT_DELWRI;
3080 break;
3081 default:
3082 ASSERT(0);
3083 flags = 0;
3084 break;
3085 }
3086 } else {
3087 switch (flags) {
3088 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3089 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3090 case XFS_IFLUSH_DELWRI:
3091 flags = INT_DELWRI;
3092 break;
3093 case XFS_IFLUSH_ASYNC:
3094 flags = INT_ASYNC;
3095 break;
3096 case XFS_IFLUSH_SYNC:
3097 flags = 0;
3098 break;
3099 default:
3100 ASSERT(0);
3101 flags = 0;
3102 break;
3103 }
3104 }
3105
3106 /*
3107 * First flush out the inode that xfs_iflush was called with.
3108 */
3109 error = xfs_iflush_int(ip, bp);
3110 if (error) {
3111 goto corrupt_out;
3112 }
3113
3114 /*
3115 * inode clustering:
3116 * see if other inodes can be gathered into this write
3117 */
3118
3119 ip->i_chash->chl_buf = bp;
3120
3121 ch = XFS_CHASH(mp, ip->i_blkno);
3122 s = mutex_spinlock(&ch->ch_lock);
3123
3124 clcount = 0;
3125 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3126 /*
3127 * Do an un-protected check to see if the inode is dirty and
3128 * is a candidate for flushing. These checks will be repeated
3129 * later after the appropriate locks are acquired.
3130 */
3131 iip = iq->i_itemp;
3132 if ((iq->i_update_core == 0) &&
3133 ((iip == NULL) ||
3134 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3135 xfs_ipincount(iq) == 0) {
3136 continue;
3137 }
3138
3139 /*
3140 * Try to get locks. If any are unavailable,
3141 * then this inode cannot be flushed and is skipped.
3142 */
3143
3144 /* get inode locks (just i_lock) */
3145 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3146 /* get inode flush lock */
3147 if (xfs_iflock_nowait(iq)) {
3148 /* check if pinned */
3149 if (xfs_ipincount(iq) == 0) {
3150 /* arriving here means that
3151 * this inode can be flushed.
3152 * first re-check that it's
3153 * dirty
3154 */
3155 iip = iq->i_itemp;
3156 if ((iq->i_update_core != 0)||
3157 ((iip != NULL) &&
3158 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3159 clcount++;
3160 error = xfs_iflush_int(iq, bp);
3161 if (error) {
3162 xfs_iunlock(iq,
3163 XFS_ILOCK_SHARED);
3164 goto cluster_corrupt_out;
3165 }
3166 } else {
3167 xfs_ifunlock(iq);
3168 }
3169 } else {
3170 xfs_ifunlock(iq);
3171 }
3172 }
3173 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3174 }
3175 }
3176 mutex_spinunlock(&ch->ch_lock, s);
3177
3178 if (clcount) {
3179 XFS_STATS_INC(xs_icluster_flushcnt);
3180 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3181 }
3182
3183 /*
3184 * If the buffer is pinned then push on the log so we won't
3185 * get stuck waiting in the write for too long.
3186 */
3187 if (XFS_BUF_ISPINNED(bp)){
3188 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3189 }
3190
3191 if (flags & INT_DELWRI) {
3192 xfs_bdwrite(mp, bp);
3193 } else if (flags & INT_ASYNC) {
3194 xfs_bawrite(mp, bp);
3195 } else {
3196 error = xfs_bwrite(mp, bp);
3197 }
3198 return error;
3199
3200corrupt_out:
3201 xfs_buf_relse(bp);
Nathan Scott7d04a332006-06-09 14:58:38 +10003202 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003203 xfs_iflush_abort(ip);
3204 /*
3205 * Unlocks the flush lock
3206 */
3207 return XFS_ERROR(EFSCORRUPTED);
3208
3209cluster_corrupt_out:
3210 /* Corruption detected in the clustering loop. Invalidate the
3211 * inode buffer and shut down the filesystem.
3212 */
3213 mutex_spinunlock(&ch->ch_lock, s);
3214
3215 /*
3216 * Clean up the buffer. If it was B_DELWRI, just release it --
3217 * brelse can handle it with no problems. If not, shut down the
3218 * filesystem before releasing the buffer.
3219 */
3220 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3221 xfs_buf_relse(bp);
3222 }
3223
Nathan Scott7d04a332006-06-09 14:58:38 +10003224 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003225
3226 if(!bufwasdelwri) {
3227 /*
3228 * Just like incore_relse: if we have b_iodone functions,
3229 * mark the buffer as an error and call them. Otherwise
3230 * mark it as stale and brelse.
3231 */
3232 if (XFS_BUF_IODONE_FUNC(bp)) {
3233 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3234 XFS_BUF_UNDONE(bp);
3235 XFS_BUF_STALE(bp);
3236 XFS_BUF_SHUT(bp);
3237 XFS_BUF_ERROR(bp,EIO);
3238 xfs_biodone(bp);
3239 } else {
3240 XFS_BUF_STALE(bp);
3241 xfs_buf_relse(bp);
3242 }
3243 }
3244
3245 xfs_iflush_abort(iq);
3246 /*
3247 * Unlocks the flush lock
3248 */
3249 return XFS_ERROR(EFSCORRUPTED);
3250}
3251
3252
3253STATIC int
3254xfs_iflush_int(
3255 xfs_inode_t *ip,
3256 xfs_buf_t *bp)
3257{
3258 xfs_inode_log_item_t *iip;
3259 xfs_dinode_t *dip;
3260 xfs_mount_t *mp;
3261#ifdef XFS_TRANS_DEBUG
3262 int first;
3263#endif
3264 SPLDECL(s);
3265
3266 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
Al Viro0d8fee32006-06-19 08:41:30 +10003267 ASSERT(issemalocked(&(ip->i_flock)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003268 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3269 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3270
3271 iip = ip->i_itemp;
3272 mp = ip->i_mount;
3273
3274
3275 /*
3276 * If the inode isn't dirty, then just release the inode
3277 * flush lock and do nothing.
3278 */
3279 if ((ip->i_update_core == 0) &&
3280 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3281 xfs_ifunlock(ip);
3282 return 0;
3283 }
3284
3285 /* set *dip = inode's place in the buffer */
3286 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3287
3288 /*
3289 * Clear i_update_core before copying out the data.
3290 * This is for coordination with our timestamp updates
3291 * that don't hold the inode lock. They will always
3292 * update the timestamps BEFORE setting i_update_core,
3293 * so if we clear i_update_core after they set it we
3294 * are guaranteed to see their updates to the timestamps.
3295 * I believe that this depends on strongly ordered memory
3296 * semantics, but we have that. We use the SYNCHRONIZE
3297 * macro to make sure that the compiler does not reorder
3298 * the i_update_core access below the data copy below.
3299 */
3300 ip->i_update_core = 0;
3301 SYNCHRONIZE();
3302
Christoph Hellwig42fe2b12006-01-11 15:35:17 +11003303 /*
3304 * Make sure to get the latest atime from the Linux inode.
3305 */
3306 xfs_synchronize_atime(ip);
3307
Linus Torvalds1da177e2005-04-16 15:20:36 -07003308 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3309 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3310 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3311 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3312 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3313 goto corrupt_out;
3314 }
3315 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3316 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3317 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3318 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3319 ip->i_ino, ip, ip->i_d.di_magic);
3320 goto corrupt_out;
3321 }
3322 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3323 if (XFS_TEST_ERROR(
3324 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3325 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3326 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3327 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3328 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3329 ip->i_ino, ip);
3330 goto corrupt_out;
3331 }
3332 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3333 if (XFS_TEST_ERROR(
3334 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3335 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3336 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3337 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3338 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3339 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3340 ip->i_ino, ip);
3341 goto corrupt_out;
3342 }
3343 }
3344 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3345 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3346 XFS_RANDOM_IFLUSH_5)) {
3347 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3348 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3349 ip->i_ino,
3350 ip->i_d.di_nextents + ip->i_d.di_anextents,
3351 ip->i_d.di_nblocks,
3352 ip);
3353 goto corrupt_out;
3354 }
3355 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3356 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3357 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3358 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3359 ip->i_ino, ip->i_d.di_forkoff, ip);
3360 goto corrupt_out;
3361 }
3362 /*
3363 * bump the flush iteration count, used to detect flushes which
3364 * postdate a log record during recovery.
3365 */
3366
3367 ip->i_d.di_flushiter++;
3368
3369 /*
3370 * Copy the dirty parts of the inode into the on-disk
3371 * inode. We always copy out the core of the inode,
3372 * because if the inode is dirty at all the core must
3373 * be.
3374 */
3375 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3376
3377 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3378 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3379 ip->i_d.di_flushiter = 0;
3380
3381 /*
3382 * If this is really an old format inode and the superblock version
3383 * has not been updated to support only new format inodes, then
3384 * convert back to the old inode format. If the superblock version
3385 * has been updated, then make the conversion permanent.
3386 */
3387 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3388 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3389 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3390 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3391 /*
3392 * Convert it back.
3393 */
3394 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3395 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3396 } else {
3397 /*
3398 * The superblock version has already been bumped,
3399 * so just make the conversion to the new inode
3400 * format permanent.
3401 */
3402 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3403 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3404 ip->i_d.di_onlink = 0;
3405 dip->di_core.di_onlink = 0;
3406 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3407 memset(&(dip->di_core.di_pad[0]), 0,
3408 sizeof(dip->di_core.di_pad));
3409 ASSERT(ip->i_d.di_projid == 0);
3410 }
3411 }
3412
3413 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3414 goto corrupt_out;
3415 }
3416
3417 if (XFS_IFORK_Q(ip)) {
3418 /*
3419 * The only error from xfs_iflush_fork is on the data fork.
3420 */
3421 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3422 }
3423 xfs_inobp_check(mp, bp);
3424
3425 /*
3426 * We've recorded everything logged in the inode, so we'd
3427 * like to clear the ilf_fields bits so we don't log and
3428 * flush things unnecessarily. However, we can't stop
3429 * logging all this information until the data we've copied
3430 * into the disk buffer is written to disk. If we did we might
3431 * overwrite the copy of the inode in the log with all the
3432 * data after re-logging only part of it, and in the face of
3433 * a crash we wouldn't have all the data we need to recover.
3434 *
3435 * What we do is move the bits to the ili_last_fields field.
3436 * When logging the inode, these bits are moved back to the
3437 * ilf_fields field. In the xfs_iflush_done() routine we
3438 * clear ili_last_fields, since we know that the information
3439 * those bits represent is permanently on disk. As long as
3440 * the flush completes before the inode is logged again, then
3441 * both ilf_fields and ili_last_fields will be cleared.
3442 *
3443 * We can play with the ilf_fields bits here, because the inode
3444 * lock must be held exclusively in order to set bits there
3445 * and the flush lock protects the ili_last_fields bits.
3446 * Set ili_logged so the flush done
3447 * routine can tell whether or not to look in the AIL.
3448 * Also, store the current LSN of the inode so that we can tell
3449 * whether the item has moved in the AIL from xfs_iflush_done().
3450 * In order to read the lsn we need the AIL lock, because
3451 * it is a 64 bit value that cannot be read atomically.
3452 */
3453 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3454 iip->ili_last_fields = iip->ili_format.ilf_fields;
3455 iip->ili_format.ilf_fields = 0;
3456 iip->ili_logged = 1;
3457
3458 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3459 AIL_LOCK(mp,s);
3460 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3461 AIL_UNLOCK(mp, s);
3462
3463 /*
3464 * Attach the function xfs_iflush_done to the inode's
3465 * buffer. This will remove the inode from the AIL
3466 * and unlock the inode's flush lock when the inode is
3467 * completely written to disk.
3468 */
3469 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3470 xfs_iflush_done, (xfs_log_item_t *)iip);
3471
3472 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3473 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3474 } else {
3475 /*
3476 * We're flushing an inode which is not in the AIL and has
3477 * not been logged but has i_update_core set. For this
3478 * case we can use a B_DELWRI flush and immediately drop
3479 * the inode flush lock because we can avoid the whole
3480 * AIL state thing. It's OK to drop the flush lock now,
3481 * because we've already locked the buffer and to do anything
3482 * you really need both.
3483 */
3484 if (iip != NULL) {
3485 ASSERT(iip->ili_logged == 0);
3486 ASSERT(iip->ili_last_fields == 0);
3487 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3488 }
3489 xfs_ifunlock(ip);
3490 }
3491
3492 return 0;
3493
3494corrupt_out:
3495 return XFS_ERROR(EFSCORRUPTED);
3496}
3497
3498
3499/*
Christoph Hellwigefa80272005-06-21 15:37:17 +10003500 * Flush all inactive inodes in mp.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003501 */
Christoph Hellwigefa80272005-06-21 15:37:17 +10003502void
Linus Torvalds1da177e2005-04-16 15:20:36 -07003503xfs_iflush_all(
Christoph Hellwigefa80272005-06-21 15:37:17 +10003504 xfs_mount_t *mp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003505{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003506 xfs_inode_t *ip;
Nathan Scott67fcaa72006-06-09 17:00:52 +10003507 bhv_vnode_t *vp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003508
Christoph Hellwigefa80272005-06-21 15:37:17 +10003509 again:
3510 XFS_MOUNT_ILOCK(mp);
3511 ip = mp->m_inodes;
3512 if (ip == NULL)
3513 goto out;
3514
3515 do {
3516 /* Make sure we skip markers inserted by sync */
3517 if (ip->i_mount == NULL) {
3518 ip = ip->i_mnext;
3519 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003520 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003521
Christoph Hellwigefa80272005-06-21 15:37:17 +10003522 vp = XFS_ITOV_NULL(ip);
3523 if (!vp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003524 XFS_MOUNT_IUNLOCK(mp);
Christoph Hellwigefa80272005-06-21 15:37:17 +10003525 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3526 goto again;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003527 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003528
Christoph Hellwigefa80272005-06-21 15:37:17 +10003529 ASSERT(vn_count(vp) == 0);
3530
3531 ip = ip->i_mnext;
3532 } while (ip != mp->m_inodes);
3533 out:
3534 XFS_MOUNT_IUNLOCK(mp);
3535}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003536
3537/*
3538 * xfs_iaccess: check accessibility of inode for mode.
3539 */
3540int
3541xfs_iaccess(
3542 xfs_inode_t *ip,
3543 mode_t mode,
3544 cred_t *cr)
3545{
3546 int error;
3547 mode_t orgmode = mode;
Nathan Scottec86dc02006-03-17 17:25:36 +11003548 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003549
3550 if (mode & S_IWUSR) {
3551 umode_t imode = inode->i_mode;
3552
3553 if (IS_RDONLY(inode) &&
3554 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3555 return XFS_ERROR(EROFS);
3556
3557 if (IS_IMMUTABLE(inode))
3558 return XFS_ERROR(EACCES);
3559 }
3560
3561 /*
3562 * If there's an Access Control List it's used instead of
3563 * the mode bits.
3564 */
3565 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3566 return error ? XFS_ERROR(error) : 0;
3567
3568 if (current_fsuid(cr) != ip->i_d.di_uid) {
3569 mode >>= 3;
3570 if (!in_group_p((gid_t)ip->i_d.di_gid))
3571 mode >>= 3;
3572 }
3573
3574 /*
3575 * If the DACs are ok we don't need any capability check.
3576 */
3577 if ((ip->i_d.di_mode & mode) == mode)
3578 return 0;
3579 /*
3580 * Read/write DACs are always overridable.
3581 * Executable DACs are overridable if at least one exec bit is set.
3582 */
3583 if (!(orgmode & S_IXUSR) ||
3584 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3585 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3586 return 0;
3587
3588 if ((orgmode == S_IRUSR) ||
3589 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3590 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3591 return 0;
3592#ifdef NOISE
3593 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3594#endif /* NOISE */
3595 return XFS_ERROR(EACCES);
3596 }
3597 return XFS_ERROR(EACCES);
3598}
3599
3600/*
3601 * xfs_iroundup: round up argument to next power of two
3602 */
3603uint
3604xfs_iroundup(
3605 uint v)
3606{
3607 int i;
3608 uint m;
3609
3610 if ((v & (v - 1)) == 0)
3611 return v;
3612 ASSERT((v & 0x80000000) == 0);
3613 if ((v & (v + 1)) == 0)
3614 return v + 1;
3615 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3616 if (v & m)
3617 continue;
3618 v |= m;
3619 if ((v & (v + 1)) == 0)
3620 return v + 1;
3621 }
3622 ASSERT(0);
3623 return( 0 );
3624}
3625
Linus Torvalds1da177e2005-04-16 15:20:36 -07003626#ifdef XFS_ILOCK_TRACE
3627ktrace_t *xfs_ilock_trace_buf;
3628
3629void
3630xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3631{
3632 ktrace_enter(ip->i_lock_trace,
3633 (void *)ip,
3634 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3635 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3636 (void *)ra, /* caller of ilock */
3637 (void *)(unsigned long)current_cpu(),
3638 (void *)(unsigned long)current_pid(),
3639 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3640}
3641#endif
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003642
3643/*
3644 * Return a pointer to the extent record at file index idx.
3645 */
3646xfs_bmbt_rec_t *
3647xfs_iext_get_ext(
3648 xfs_ifork_t *ifp, /* inode fork pointer */
3649 xfs_extnum_t idx) /* index of target extent */
3650{
3651 ASSERT(idx >= 0);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003652 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3653 return ifp->if_u1.if_ext_irec->er_extbuf;
3654 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3655 xfs_ext_irec_t *erp; /* irec pointer */
3656 int erp_idx = 0; /* irec index */
3657 xfs_extnum_t page_idx = idx; /* ext index in target list */
3658
3659 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3660 return &erp->er_extbuf[page_idx];
3661 } else if (ifp->if_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003662 return &ifp->if_u1.if_extents[idx];
3663 } else {
3664 return NULL;
3665 }
3666}
3667
3668/*
3669 * Insert new item(s) into the extent records for incore inode
3670 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3671 */
3672void
3673xfs_iext_insert(
3674 xfs_ifork_t *ifp, /* inode fork pointer */
3675 xfs_extnum_t idx, /* starting index of new items */
3676 xfs_extnum_t count, /* number of inserted items */
3677 xfs_bmbt_irec_t *new) /* items to insert */
3678{
3679 xfs_bmbt_rec_t *ep; /* extent record pointer */
3680 xfs_extnum_t i; /* extent record index */
3681
3682 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3683 xfs_iext_add(ifp, idx, count);
3684 for (i = idx; i < idx + count; i++, new++) {
3685 ep = xfs_iext_get_ext(ifp, i);
3686 xfs_bmbt_set_all(ep, new);
3687 }
3688}
3689
3690/*
3691 * This is called when the amount of space required for incore file
3692 * extents needs to be increased. The ext_diff parameter stores the
3693 * number of new extents being added and the idx parameter contains
3694 * the extent index where the new extents will be added. If the new
3695 * extents are being appended, then we just need to (re)allocate and
3696 * initialize the space. Otherwise, if the new extents are being
3697 * inserted into the middle of the existing entries, a bit more work
3698 * is required to make room for the new extents to be inserted. The
3699 * caller is responsible for filling in the new extent entries upon
3700 * return.
3701 */
3702void
3703xfs_iext_add(
3704 xfs_ifork_t *ifp, /* inode fork pointer */
3705 xfs_extnum_t idx, /* index to begin adding exts */
Nathan Scottc41564b2006-03-29 08:55:14 +10003706 int ext_diff) /* number of extents to add */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003707{
3708 int byte_diff; /* new bytes being added */
3709 int new_size; /* size of extents after adding */
3710 xfs_extnum_t nextents; /* number of extents in file */
3711
3712 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3713 ASSERT((idx >= 0) && (idx <= nextents));
3714 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3715 new_size = ifp->if_bytes + byte_diff;
3716 /*
3717 * If the new number of extents (nextents + ext_diff)
3718 * fits inside the inode, then continue to use the inline
3719 * extent buffer.
3720 */
3721 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3722 if (idx < nextents) {
3723 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3724 &ifp->if_u2.if_inline_ext[idx],
3725 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3726 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3727 }
3728 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3729 ifp->if_real_bytes = 0;
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003730 ifp->if_lastex = nextents + ext_diff;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003731 }
3732 /*
3733 * Otherwise use a linear (direct) extent list.
3734 * If the extents are currently inside the inode,
3735 * xfs_iext_realloc_direct will switch us from
3736 * inline to direct extent allocation mode.
3737 */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003738 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003739 xfs_iext_realloc_direct(ifp, new_size);
3740 if (idx < nextents) {
3741 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3742 &ifp->if_u1.if_extents[idx],
3743 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3744 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3745 }
3746 }
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003747 /* Indirection array */
3748 else {
3749 xfs_ext_irec_t *erp;
3750 int erp_idx = 0;
3751 int page_idx = idx;
3752
3753 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3754 if (ifp->if_flags & XFS_IFEXTIREC) {
3755 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3756 } else {
3757 xfs_iext_irec_init(ifp);
3758 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3759 erp = ifp->if_u1.if_ext_irec;
3760 }
3761 /* Extents fit in target extent page */
3762 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3763 if (page_idx < erp->er_extcount) {
3764 memmove(&erp->er_extbuf[page_idx + ext_diff],
3765 &erp->er_extbuf[page_idx],
3766 (erp->er_extcount - page_idx) *
3767 sizeof(xfs_bmbt_rec_t));
3768 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3769 }
3770 erp->er_extcount += ext_diff;
3771 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3772 }
3773 /* Insert a new extent page */
3774 else if (erp) {
3775 xfs_iext_add_indirect_multi(ifp,
3776 erp_idx, page_idx, ext_diff);
3777 }
3778 /*
3779 * If extent(s) are being appended to the last page in
3780 * the indirection array and the new extent(s) don't fit
3781 * in the page, then erp is NULL and erp_idx is set to
3782 * the next index needed in the indirection array.
3783 */
3784 else {
3785 int count = ext_diff;
3786
3787 while (count) {
3788 erp = xfs_iext_irec_new(ifp, erp_idx);
3789 erp->er_extcount = count;
3790 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3791 if (count) {
3792 erp_idx++;
3793 }
3794 }
3795 }
3796 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003797 ifp->if_bytes = new_size;
3798}
3799
3800/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003801 * This is called when incore extents are being added to the indirection
3802 * array and the new extents do not fit in the target extent list. The
3803 * erp_idx parameter contains the irec index for the target extent list
3804 * in the indirection array, and the idx parameter contains the extent
3805 * index within the list. The number of extents being added is stored
3806 * in the count parameter.
3807 *
3808 * |-------| |-------|
3809 * | | | | idx - number of extents before idx
3810 * | idx | | count |
3811 * | | | | count - number of extents being inserted at idx
3812 * |-------| |-------|
3813 * | count | | nex2 | nex2 - number of extents after idx + count
3814 * |-------| |-------|
3815 */
3816void
3817xfs_iext_add_indirect_multi(
3818 xfs_ifork_t *ifp, /* inode fork pointer */
3819 int erp_idx, /* target extent irec index */
3820 xfs_extnum_t idx, /* index within target list */
3821 int count) /* new extents being added */
3822{
3823 int byte_diff; /* new bytes being added */
3824 xfs_ext_irec_t *erp; /* pointer to irec entry */
3825 xfs_extnum_t ext_diff; /* number of extents to add */
3826 xfs_extnum_t ext_cnt; /* new extents still needed */
3827 xfs_extnum_t nex2; /* extents after idx + count */
3828 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3829 int nlists; /* number of irec's (lists) */
3830
3831 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3832 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3833 nex2 = erp->er_extcount - idx;
3834 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3835
3836 /*
3837 * Save second part of target extent list
3838 * (all extents past */
3839 if (nex2) {
3840 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3841 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3842 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3843 erp->er_extcount -= nex2;
3844 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3845 memset(&erp->er_extbuf[idx], 0, byte_diff);
3846 }
3847
3848 /*
3849 * Add the new extents to the end of the target
3850 * list, then allocate new irec record(s) and
3851 * extent buffer(s) as needed to store the rest
3852 * of the new extents.
3853 */
3854 ext_cnt = count;
3855 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3856 if (ext_diff) {
3857 erp->er_extcount += ext_diff;
3858 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3859 ext_cnt -= ext_diff;
3860 }
3861 while (ext_cnt) {
3862 erp_idx++;
3863 erp = xfs_iext_irec_new(ifp, erp_idx);
3864 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3865 erp->er_extcount = ext_diff;
3866 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3867 ext_cnt -= ext_diff;
3868 }
3869
3870 /* Add nex2 extents back to indirection array */
3871 if (nex2) {
3872 xfs_extnum_t ext_avail;
3873 int i;
3874
3875 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3876 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3877 i = 0;
3878 /*
3879 * If nex2 extents fit in the current page, append
3880 * nex2_ep after the new extents.
3881 */
3882 if (nex2 <= ext_avail) {
3883 i = erp->er_extcount;
3884 }
3885 /*
3886 * Otherwise, check if space is available in the
3887 * next page.
3888 */
3889 else if ((erp_idx < nlists - 1) &&
3890 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3891 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3892 erp_idx++;
3893 erp++;
3894 /* Create a hole for nex2 extents */
3895 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3896 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3897 }
3898 /*
3899 * Final choice, create a new extent page for
3900 * nex2 extents.
3901 */
3902 else {
3903 erp_idx++;
3904 erp = xfs_iext_irec_new(ifp, erp_idx);
3905 }
3906 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3907 kmem_free(nex2_ep, byte_diff);
3908 erp->er_extcount += nex2;
3909 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3910 }
3911}
3912
3913/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003914 * This is called when the amount of space required for incore file
3915 * extents needs to be decreased. The ext_diff parameter stores the
3916 * number of extents to be removed and the idx parameter contains
3917 * the extent index where the extents will be removed from.
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003918 *
3919 * If the amount of space needed has decreased below the linear
3920 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3921 * extent array. Otherwise, use kmem_realloc() to adjust the
3922 * size to what is needed.
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003923 */
3924void
3925xfs_iext_remove(
3926 xfs_ifork_t *ifp, /* inode fork pointer */
3927 xfs_extnum_t idx, /* index to begin removing exts */
3928 int ext_diff) /* number of extents to remove */
3929{
3930 xfs_extnum_t nextents; /* number of extents in file */
3931 int new_size; /* size of extents after removal */
3932
3933 ASSERT(ext_diff > 0);
3934 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3935 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3936
3937 if (new_size == 0) {
3938 xfs_iext_destroy(ifp);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003939 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3940 xfs_iext_remove_indirect(ifp, idx, ext_diff);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003941 } else if (ifp->if_real_bytes) {
3942 xfs_iext_remove_direct(ifp, idx, ext_diff);
3943 } else {
3944 xfs_iext_remove_inline(ifp, idx, ext_diff);
3945 }
3946 ifp->if_bytes = new_size;
3947}
3948
3949/*
3950 * This removes ext_diff extents from the inline buffer, beginning
3951 * at extent index idx.
3952 */
3953void
3954xfs_iext_remove_inline(
3955 xfs_ifork_t *ifp, /* inode fork pointer */
3956 xfs_extnum_t idx, /* index to begin removing exts */
3957 int ext_diff) /* number of extents to remove */
3958{
3959 int nextents; /* number of extents in file */
3960
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003961 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003962 ASSERT(idx < XFS_INLINE_EXTS);
3963 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3964 ASSERT(((nextents - ext_diff) > 0) &&
3965 (nextents - ext_diff) < XFS_INLINE_EXTS);
3966
3967 if (idx + ext_diff < nextents) {
3968 memmove(&ifp->if_u2.if_inline_ext[idx],
3969 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3970 (nextents - (idx + ext_diff)) *
3971 sizeof(xfs_bmbt_rec_t));
3972 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3973 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3974 } else {
3975 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3976 ext_diff * sizeof(xfs_bmbt_rec_t));
3977 }
3978}
3979
3980/*
3981 * This removes ext_diff extents from a linear (direct) extent list,
3982 * beginning at extent index idx. If the extents are being removed
3983 * from the end of the list (ie. truncate) then we just need to re-
3984 * allocate the list to remove the extra space. Otherwise, if the
3985 * extents are being removed from the middle of the existing extent
3986 * entries, then we first need to move the extent records beginning
3987 * at idx + ext_diff up in the list to overwrite the records being
3988 * removed, then remove the extra space via kmem_realloc.
3989 */
3990void
3991xfs_iext_remove_direct(
3992 xfs_ifork_t *ifp, /* inode fork pointer */
3993 xfs_extnum_t idx, /* index to begin removing exts */
3994 int ext_diff) /* number of extents to remove */
3995{
3996 xfs_extnum_t nextents; /* number of extents in file */
3997 int new_size; /* size of extents after removal */
3998
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003999 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004000 new_size = ifp->if_bytes -
4001 (ext_diff * sizeof(xfs_bmbt_rec_t));
4002 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4003
4004 if (new_size == 0) {
4005 xfs_iext_destroy(ifp);
4006 return;
4007 }
4008 /* Move extents up in the list (if needed) */
4009 if (idx + ext_diff < nextents) {
4010 memmove(&ifp->if_u1.if_extents[idx],
4011 &ifp->if_u1.if_extents[idx + ext_diff],
4012 (nextents - (idx + ext_diff)) *
4013 sizeof(xfs_bmbt_rec_t));
4014 }
4015 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4016 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4017 /*
4018 * Reallocate the direct extent list. If the extents
4019 * will fit inside the inode then xfs_iext_realloc_direct
4020 * will switch from direct to inline extent allocation
4021 * mode for us.
4022 */
4023 xfs_iext_realloc_direct(ifp, new_size);
4024 ifp->if_bytes = new_size;
4025}
4026
4027/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004028 * This is called when incore extents are being removed from the
4029 * indirection array and the extents being removed span multiple extent
4030 * buffers. The idx parameter contains the file extent index where we
4031 * want to begin removing extents, and the count parameter contains
4032 * how many extents need to be removed.
4033 *
4034 * |-------| |-------|
4035 * | nex1 | | | nex1 - number of extents before idx
4036 * |-------| | count |
4037 * | | | | count - number of extents being removed at idx
4038 * | count | |-------|
4039 * | | | nex2 | nex2 - number of extents after idx + count
4040 * |-------| |-------|
4041 */
4042void
4043xfs_iext_remove_indirect(
4044 xfs_ifork_t *ifp, /* inode fork pointer */
4045 xfs_extnum_t idx, /* index to begin removing extents */
4046 int count) /* number of extents to remove */
4047{
4048 xfs_ext_irec_t *erp; /* indirection array pointer */
4049 int erp_idx = 0; /* indirection array index */
4050 xfs_extnum_t ext_cnt; /* extents left to remove */
4051 xfs_extnum_t ext_diff; /* extents to remove in current list */
4052 xfs_extnum_t nex1; /* number of extents before idx */
4053 xfs_extnum_t nex2; /* extents after idx + count */
Nathan Scottc41564b2006-03-29 08:55:14 +10004054 int nlists; /* entries in indirection array */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004055 int page_idx = idx; /* index in target extent list */
4056
4057 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4058 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4059 ASSERT(erp != NULL);
4060 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4061 nex1 = page_idx;
4062 ext_cnt = count;
4063 while (ext_cnt) {
4064 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4065 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4066 /*
4067 * Check for deletion of entire list;
4068 * xfs_iext_irec_remove() updates extent offsets.
4069 */
4070 if (ext_diff == erp->er_extcount) {
4071 xfs_iext_irec_remove(ifp, erp_idx);
4072 ext_cnt -= ext_diff;
4073 nex1 = 0;
4074 if (ext_cnt) {
4075 ASSERT(erp_idx < ifp->if_real_bytes /
4076 XFS_IEXT_BUFSZ);
4077 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4078 nex1 = 0;
4079 continue;
4080 } else {
4081 break;
4082 }
4083 }
4084 /* Move extents up (if needed) */
4085 if (nex2) {
4086 memmove(&erp->er_extbuf[nex1],
4087 &erp->er_extbuf[nex1 + ext_diff],
4088 nex2 * sizeof(xfs_bmbt_rec_t));
4089 }
4090 /* Zero out rest of page */
4091 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4092 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4093 /* Update remaining counters */
4094 erp->er_extcount -= ext_diff;
4095 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4096 ext_cnt -= ext_diff;
4097 nex1 = 0;
4098 erp_idx++;
4099 erp++;
4100 }
4101 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4102 xfs_iext_irec_compact(ifp);
4103}
4104
4105/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004106 * Create, destroy, or resize a linear (direct) block of extents.
4107 */
4108void
4109xfs_iext_realloc_direct(
4110 xfs_ifork_t *ifp, /* inode fork pointer */
4111 int new_size) /* new size of extents */
4112{
4113 int rnew_size; /* real new size of extents */
4114
4115 rnew_size = new_size;
4116
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004117 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4118 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4119 (new_size != ifp->if_real_bytes)));
4120
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004121 /* Free extent records */
4122 if (new_size == 0) {
4123 xfs_iext_destroy(ifp);
4124 }
4125 /* Resize direct extent list and zero any new bytes */
4126 else if (ifp->if_real_bytes) {
4127 /* Check if extents will fit inside the inode */
4128 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4129 xfs_iext_direct_to_inline(ifp, new_size /
4130 (uint)sizeof(xfs_bmbt_rec_t));
4131 ifp->if_bytes = new_size;
4132 return;
4133 }
4134 if ((new_size & (new_size - 1)) != 0) {
4135 rnew_size = xfs_iroundup(new_size);
4136 }
4137 if (rnew_size != ifp->if_real_bytes) {
4138 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4139 kmem_realloc(ifp->if_u1.if_extents,
4140 rnew_size,
4141 ifp->if_real_bytes,
4142 KM_SLEEP);
4143 }
4144 if (rnew_size > ifp->if_real_bytes) {
4145 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4146 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4147 rnew_size - ifp->if_real_bytes);
4148 }
4149 }
4150 /*
4151 * Switch from the inline extent buffer to a direct
4152 * extent list. Be sure to include the inline extent
4153 * bytes in new_size.
4154 */
4155 else {
4156 new_size += ifp->if_bytes;
4157 if ((new_size & (new_size - 1)) != 0) {
4158 rnew_size = xfs_iroundup(new_size);
4159 }
4160 xfs_iext_inline_to_direct(ifp, rnew_size);
4161 }
4162 ifp->if_real_bytes = rnew_size;
4163 ifp->if_bytes = new_size;
4164}
4165
4166/*
4167 * Switch from linear (direct) extent records to inline buffer.
4168 */
4169void
4170xfs_iext_direct_to_inline(
4171 xfs_ifork_t *ifp, /* inode fork pointer */
4172 xfs_extnum_t nextents) /* number of extents in file */
4173{
4174 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4175 ASSERT(nextents <= XFS_INLINE_EXTS);
4176 /*
4177 * The inline buffer was zeroed when we switched
4178 * from inline to direct extent allocation mode,
4179 * so we don't need to clear it here.
4180 */
4181 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4182 nextents * sizeof(xfs_bmbt_rec_t));
Mandy Kirkconnellfe6c1e72006-06-09 14:51:25 +10004183 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004184 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4185 ifp->if_real_bytes = 0;
4186}
4187
4188/*
4189 * Switch from inline buffer to linear (direct) extent records.
4190 * new_size should already be rounded up to the next power of 2
4191 * by the caller (when appropriate), so use new_size as it is.
4192 * However, since new_size may be rounded up, we can't update
4193 * if_bytes here. It is the caller's responsibility to update
4194 * if_bytes upon return.
4195 */
4196void
4197xfs_iext_inline_to_direct(
4198 xfs_ifork_t *ifp, /* inode fork pointer */
4199 int new_size) /* number of extents in file */
4200{
4201 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4202 kmem_alloc(new_size, KM_SLEEP);
4203 memset(ifp->if_u1.if_extents, 0, new_size);
4204 if (ifp->if_bytes) {
4205 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4206 ifp->if_bytes);
4207 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4208 sizeof(xfs_bmbt_rec_t));
4209 }
4210 ifp->if_real_bytes = new_size;
4211}
4212
4213/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004214 * Resize an extent indirection array to new_size bytes.
4215 */
4216void
4217xfs_iext_realloc_indirect(
4218 xfs_ifork_t *ifp, /* inode fork pointer */
4219 int new_size) /* new indirection array size */
4220{
4221 int nlists; /* number of irec's (ex lists) */
4222 int size; /* current indirection array size */
4223
4224 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4225 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4226 size = nlists * sizeof(xfs_ext_irec_t);
4227 ASSERT(ifp->if_real_bytes);
4228 ASSERT((new_size >= 0) && (new_size != size));
4229 if (new_size == 0) {
4230 xfs_iext_destroy(ifp);
4231 } else {
4232 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4233 kmem_realloc(ifp->if_u1.if_ext_irec,
4234 new_size, size, KM_SLEEP);
4235 }
4236}
4237
4238/*
4239 * Switch from indirection array to linear (direct) extent allocations.
4240 */
4241void
4242xfs_iext_indirect_to_direct(
4243 xfs_ifork_t *ifp) /* inode fork pointer */
4244{
4245 xfs_bmbt_rec_t *ep; /* extent record pointer */
4246 xfs_extnum_t nextents; /* number of extents in file */
4247 int size; /* size of file extents */
4248
4249 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4250 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4251 ASSERT(nextents <= XFS_LINEAR_EXTS);
4252 size = nextents * sizeof(xfs_bmbt_rec_t);
4253
4254 xfs_iext_irec_compact_full(ifp);
4255 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4256
4257 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4258 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4259 ifp->if_flags &= ~XFS_IFEXTIREC;
4260 ifp->if_u1.if_extents = ep;
4261 ifp->if_bytes = size;
4262 if (nextents < XFS_LINEAR_EXTS) {
4263 xfs_iext_realloc_direct(ifp, size);
4264 }
4265}
4266
4267/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004268 * Free incore file extents.
4269 */
4270void
4271xfs_iext_destroy(
4272 xfs_ifork_t *ifp) /* inode fork pointer */
4273{
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004274 if (ifp->if_flags & XFS_IFEXTIREC) {
4275 int erp_idx;
4276 int nlists;
4277
4278 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4279 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4280 xfs_iext_irec_remove(ifp, erp_idx);
4281 }
4282 ifp->if_flags &= ~XFS_IFEXTIREC;
4283 } else if (ifp->if_real_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004284 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4285 } else if (ifp->if_bytes) {
4286 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4287 sizeof(xfs_bmbt_rec_t));
4288 }
4289 ifp->if_u1.if_extents = NULL;
4290 ifp->if_real_bytes = 0;
4291 ifp->if_bytes = 0;
4292}
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004293
4294/*
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004295 * Return a pointer to the extent record for file system block bno.
4296 */
4297xfs_bmbt_rec_t * /* pointer to found extent record */
4298xfs_iext_bno_to_ext(
4299 xfs_ifork_t *ifp, /* inode fork pointer */
4300 xfs_fileoff_t bno, /* block number to search for */
4301 xfs_extnum_t *idxp) /* index of target extent */
4302{
4303 xfs_bmbt_rec_t *base; /* pointer to first extent */
4304 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4305 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4306 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
Nathan Scottc41564b2006-03-29 08:55:14 +10004307 int high; /* upper boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004308 xfs_extnum_t idx = 0; /* index of target extent */
Nathan Scottc41564b2006-03-29 08:55:14 +10004309 int low; /* lower boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004310 xfs_extnum_t nextents; /* number of file extents */
4311 xfs_fileoff_t startoff = 0; /* start offset of extent */
4312
4313 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4314 if (nextents == 0) {
4315 *idxp = 0;
4316 return NULL;
4317 }
4318 low = 0;
4319 if (ifp->if_flags & XFS_IFEXTIREC) {
4320 /* Find target extent list */
4321 int erp_idx = 0;
4322 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4323 base = erp->er_extbuf;
4324 high = erp->er_extcount - 1;
4325 } else {
4326 base = ifp->if_u1.if_extents;
4327 high = nextents - 1;
4328 }
4329 /* Binary search extent records */
4330 while (low <= high) {
4331 idx = (low + high) >> 1;
4332 ep = base + idx;
4333 startoff = xfs_bmbt_get_startoff(ep);
4334 blockcount = xfs_bmbt_get_blockcount(ep);
4335 if (bno < startoff) {
4336 high = idx - 1;
4337 } else if (bno >= startoff + blockcount) {
4338 low = idx + 1;
4339 } else {
4340 /* Convert back to file-based extent index */
4341 if (ifp->if_flags & XFS_IFEXTIREC) {
4342 idx += erp->er_extoff;
4343 }
4344 *idxp = idx;
4345 return ep;
4346 }
4347 }
4348 /* Convert back to file-based extent index */
4349 if (ifp->if_flags & XFS_IFEXTIREC) {
4350 idx += erp->er_extoff;
4351 }
4352 if (bno >= startoff + blockcount) {
4353 if (++idx == nextents) {
4354 ep = NULL;
4355 } else {
4356 ep = xfs_iext_get_ext(ifp, idx);
4357 }
4358 }
4359 *idxp = idx;
4360 return ep;
4361}
4362
4363/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004364 * Return a pointer to the indirection array entry containing the
4365 * extent record for filesystem block bno. Store the index of the
4366 * target irec in *erp_idxp.
4367 */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004368xfs_ext_irec_t * /* pointer to found extent record */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004369xfs_iext_bno_to_irec(
4370 xfs_ifork_t *ifp, /* inode fork pointer */
4371 xfs_fileoff_t bno, /* block number to search for */
4372 int *erp_idxp) /* irec index of target ext list */
4373{
4374 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4375 xfs_ext_irec_t *erp_next; /* next indirection array entry */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004376 int erp_idx; /* indirection array index */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004377 int nlists; /* number of extent irec's (lists) */
4378 int high; /* binary search upper limit */
4379 int low; /* binary search lower limit */
4380
4381 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4382 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4383 erp_idx = 0;
4384 low = 0;
4385 high = nlists - 1;
4386 while (low <= high) {
4387 erp_idx = (low + high) >> 1;
4388 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4389 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4390 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4391 high = erp_idx - 1;
4392 } else if (erp_next && bno >=
4393 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4394 low = erp_idx + 1;
4395 } else {
4396 break;
4397 }
4398 }
4399 *erp_idxp = erp_idx;
4400 return erp;
4401}
4402
4403/*
4404 * Return a pointer to the indirection array entry containing the
4405 * extent record at file extent index *idxp. Store the index of the
4406 * target irec in *erp_idxp and store the page index of the target
4407 * extent record in *idxp.
4408 */
4409xfs_ext_irec_t *
4410xfs_iext_idx_to_irec(
4411 xfs_ifork_t *ifp, /* inode fork pointer */
4412 xfs_extnum_t *idxp, /* extent index (file -> page) */
4413 int *erp_idxp, /* pointer to target irec */
4414 int realloc) /* new bytes were just added */
4415{
4416 xfs_ext_irec_t *prev; /* pointer to previous irec */
4417 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4418 int erp_idx; /* indirection array index */
4419 int nlists; /* number of irec's (ex lists) */
4420 int high; /* binary search upper limit */
4421 int low; /* binary search lower limit */
4422 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4423
4424 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4425 ASSERT(page_idx >= 0 && page_idx <=
4426 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4427 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4428 erp_idx = 0;
4429 low = 0;
4430 high = nlists - 1;
4431
4432 /* Binary search extent irec's */
4433 while (low <= high) {
4434 erp_idx = (low + high) >> 1;
4435 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4436 prev = erp_idx > 0 ? erp - 1 : NULL;
4437 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4438 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4439 high = erp_idx - 1;
4440 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4441 (page_idx == erp->er_extoff + erp->er_extcount &&
4442 !realloc)) {
4443 low = erp_idx + 1;
4444 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4445 erp->er_extcount == XFS_LINEAR_EXTS) {
4446 ASSERT(realloc);
4447 page_idx = 0;
4448 erp_idx++;
4449 erp = erp_idx < nlists ? erp + 1 : NULL;
4450 break;
4451 } else {
4452 page_idx -= erp->er_extoff;
4453 break;
4454 }
4455 }
4456 *idxp = page_idx;
4457 *erp_idxp = erp_idx;
4458 return(erp);
4459}
4460
4461/*
4462 * Allocate and initialize an indirection array once the space needed
4463 * for incore extents increases above XFS_IEXT_BUFSZ.
4464 */
4465void
4466xfs_iext_irec_init(
4467 xfs_ifork_t *ifp) /* inode fork pointer */
4468{
4469 xfs_ext_irec_t *erp; /* indirection array pointer */
4470 xfs_extnum_t nextents; /* number of extents in file */
4471
4472 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4473 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4474 ASSERT(nextents <= XFS_LINEAR_EXTS);
4475
4476 erp = (xfs_ext_irec_t *)
4477 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4478
4479 if (nextents == 0) {
4480 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4481 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4482 } else if (!ifp->if_real_bytes) {
4483 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4484 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4485 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4486 }
4487 erp->er_extbuf = ifp->if_u1.if_extents;
4488 erp->er_extcount = nextents;
4489 erp->er_extoff = 0;
4490
4491 ifp->if_flags |= XFS_IFEXTIREC;
4492 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4493 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4494 ifp->if_u1.if_ext_irec = erp;
4495
4496 return;
4497}
4498
4499/*
4500 * Allocate and initialize a new entry in the indirection array.
4501 */
4502xfs_ext_irec_t *
4503xfs_iext_irec_new(
4504 xfs_ifork_t *ifp, /* inode fork pointer */
4505 int erp_idx) /* index for new irec */
4506{
4507 xfs_ext_irec_t *erp; /* indirection array pointer */
4508 int i; /* loop counter */
4509 int nlists; /* number of irec's (ex lists) */
4510
4511 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4512 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4513
4514 /* Resize indirection array */
4515 xfs_iext_realloc_indirect(ifp, ++nlists *
4516 sizeof(xfs_ext_irec_t));
4517 /*
4518 * Move records down in the array so the
4519 * new page can use erp_idx.
4520 */
4521 erp = ifp->if_u1.if_ext_irec;
4522 for (i = nlists - 1; i > erp_idx; i--) {
4523 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4524 }
4525 ASSERT(i == erp_idx);
4526
4527 /* Initialize new extent record */
4528 erp = ifp->if_u1.if_ext_irec;
4529 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4530 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4531 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4532 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4533 erp[erp_idx].er_extcount = 0;
4534 erp[erp_idx].er_extoff = erp_idx > 0 ?
4535 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4536 return (&erp[erp_idx]);
4537}
4538
4539/*
4540 * Remove a record from the indirection array.
4541 */
4542void
4543xfs_iext_irec_remove(
4544 xfs_ifork_t *ifp, /* inode fork pointer */
4545 int erp_idx) /* irec index to remove */
4546{
4547 xfs_ext_irec_t *erp; /* indirection array pointer */
4548 int i; /* loop counter */
4549 int nlists; /* number of irec's (ex lists) */
4550
4551 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4552 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4553 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4554 if (erp->er_extbuf) {
4555 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4556 -erp->er_extcount);
4557 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4558 }
4559 /* Compact extent records */
4560 erp = ifp->if_u1.if_ext_irec;
4561 for (i = erp_idx; i < nlists - 1; i++) {
4562 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4563 }
4564 /*
4565 * Manually free the last extent record from the indirection
4566 * array. A call to xfs_iext_realloc_indirect() with a size
4567 * of zero would result in a call to xfs_iext_destroy() which
4568 * would in turn call this function again, creating a nasty
4569 * infinite loop.
4570 */
4571 if (--nlists) {
4572 xfs_iext_realloc_indirect(ifp,
4573 nlists * sizeof(xfs_ext_irec_t));
4574 } else {
4575 kmem_free(ifp->if_u1.if_ext_irec,
4576 sizeof(xfs_ext_irec_t));
4577 }
4578 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4579}
4580
4581/*
4582 * This is called to clean up large amounts of unused memory allocated
4583 * by the indirection array. Before compacting anything though, verify
4584 * that the indirection array is still needed and switch back to the
4585 * linear extent list (or even the inline buffer) if possible. The
4586 * compaction policy is as follows:
4587 *
4588 * Full Compaction: Extents fit into a single page (or inline buffer)
4589 * Full Compaction: Extents occupy less than 10% of allocated space
4590 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4591 * No Compaction: Extents occupy at least 50% of allocated space
4592 */
4593void
4594xfs_iext_irec_compact(
4595 xfs_ifork_t *ifp) /* inode fork pointer */
4596{
4597 xfs_extnum_t nextents; /* number of extents in file */
4598 int nlists; /* number of irec's (ex lists) */
4599
4600 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4601 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4602 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4603
4604 if (nextents == 0) {
4605 xfs_iext_destroy(ifp);
4606 } else if (nextents <= XFS_INLINE_EXTS) {
4607 xfs_iext_indirect_to_direct(ifp);
4608 xfs_iext_direct_to_inline(ifp, nextents);
4609 } else if (nextents <= XFS_LINEAR_EXTS) {
4610 xfs_iext_indirect_to_direct(ifp);
4611 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4612 xfs_iext_irec_compact_full(ifp);
4613 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4614 xfs_iext_irec_compact_pages(ifp);
4615 }
4616}
4617
4618/*
4619 * Combine extents from neighboring extent pages.
4620 */
4621void
4622xfs_iext_irec_compact_pages(
4623 xfs_ifork_t *ifp) /* inode fork pointer */
4624{
4625 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4626 int erp_idx = 0; /* indirection array index */
4627 int nlists; /* number of irec's (ex lists) */
4628
4629 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4630 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4631 while (erp_idx < nlists - 1) {
4632 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4633 erp_next = erp + 1;
4634 if (erp_next->er_extcount <=
4635 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4636 memmove(&erp->er_extbuf[erp->er_extcount],
4637 erp_next->er_extbuf, erp_next->er_extcount *
4638 sizeof(xfs_bmbt_rec_t));
4639 erp->er_extcount += erp_next->er_extcount;
4640 /*
4641 * Free page before removing extent record
4642 * so er_extoffs don't get modified in
4643 * xfs_iext_irec_remove.
4644 */
4645 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4646 erp_next->er_extbuf = NULL;
4647 xfs_iext_irec_remove(ifp, erp_idx + 1);
4648 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4649 } else {
4650 erp_idx++;
4651 }
4652 }
4653}
4654
4655/*
4656 * Fully compact the extent records managed by the indirection array.
4657 */
4658void
4659xfs_iext_irec_compact_full(
4660 xfs_ifork_t *ifp) /* inode fork pointer */
4661{
4662 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4663 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4664 int erp_idx = 0; /* extent irec index */
4665 int ext_avail; /* empty entries in ex list */
4666 int ext_diff; /* number of exts to add */
4667 int nlists; /* number of irec's (ex lists) */
4668
4669 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4670 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4671 erp = ifp->if_u1.if_ext_irec;
4672 ep = &erp->er_extbuf[erp->er_extcount];
4673 erp_next = erp + 1;
4674 ep_next = erp_next->er_extbuf;
4675 while (erp_idx < nlists - 1) {
4676 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4677 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4678 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4679 erp->er_extcount += ext_diff;
4680 erp_next->er_extcount -= ext_diff;
4681 /* Remove next page */
4682 if (erp_next->er_extcount == 0) {
4683 /*
4684 * Free page before removing extent record
4685 * so er_extoffs don't get modified in
4686 * xfs_iext_irec_remove.
4687 */
4688 kmem_free(erp_next->er_extbuf,
4689 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4690 erp_next->er_extbuf = NULL;
4691 xfs_iext_irec_remove(ifp, erp_idx + 1);
4692 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4693 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4694 /* Update next page */
4695 } else {
4696 /* Move rest of page up to become next new page */
4697 memmove(erp_next->er_extbuf, ep_next,
4698 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4699 ep_next = erp_next->er_extbuf;
4700 memset(&ep_next[erp_next->er_extcount], 0,
4701 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4702 sizeof(xfs_bmbt_rec_t));
4703 }
4704 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4705 erp_idx++;
4706 if (erp_idx < nlists)
4707 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4708 else
4709 break;
4710 }
4711 ep = &erp->er_extbuf[erp->er_extcount];
4712 erp_next = erp + 1;
4713 ep_next = erp_next->er_extbuf;
4714 }
4715}
4716
4717/*
4718 * This is called to update the er_extoff field in the indirection
4719 * array when extents have been added or removed from one of the
4720 * extent lists. erp_idx contains the irec index to begin updating
4721 * at and ext_diff contains the number of extents that were added
4722 * or removed.
4723 */
4724void
4725xfs_iext_irec_update_extoffs(
4726 xfs_ifork_t *ifp, /* inode fork pointer */
4727 int erp_idx, /* irec index to update */
4728 int ext_diff) /* number of new extents */
4729{
4730 int i; /* loop counter */
4731 int nlists; /* number of irec's (ex lists */
4732
4733 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4734 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4735 for (i = erp_idx; i < nlists; i++) {
4736 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4737 }
4738}