blob: 30836578c1cc92b31dc7fc244f7605c63c28c159 [file] [log] [blame]
Ben Hutchings8e730c12009-11-29 15:14:45 +00001/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
Ben Hutchings906bb262009-11-29 15:16:19 +00004 * Copyright 2006-2009 Solarflare Communications Inc.
Ben Hutchings8e730c12009-11-29 15:14:45 +00005 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/pci.h>
14#include <linux/module.h>
15#include <linux/seq_file.h>
16#include "net_driver.h"
17#include "bitfield.h"
18#include "efx.h"
19#include "nic.h"
20#include "regs.h"
21#include "io.h"
22#include "workarounds.h"
23
24/**************************************************************************
25 *
26 * Configurable values
27 *
28 **************************************************************************
29 */
30
31/* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
36 * goes idle.
37 */
38#define TX_DC_ENTRIES 16
39#define TX_DC_ENTRIES_ORDER 1
40
41#define RX_DC_ENTRIES 64
42#define RX_DC_ENTRIES_ORDER 3
43
44/* RX FIFO XOFF watermark
45 *
46 * When the amount of the RX FIFO increases used increases past this
47 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
48 * This also has an effect on RX/TX arbitration
49 */
50int efx_nic_rx_xoff_thresh = -1;
51module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
52MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
53
54/* RX FIFO XON watermark
55 *
56 * When the amount of the RX FIFO used decreases below this
57 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
58 * This also has an effect on RX/TX arbitration
59 */
60int efx_nic_rx_xon_thresh = -1;
61module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
62MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
63
64/* If EFX_MAX_INT_ERRORS internal errors occur within
65 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
66 * disable it.
67 */
68#define EFX_INT_ERROR_EXPIRE 3600
69#define EFX_MAX_INT_ERRORS 5
70
71/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
72 */
73#define EFX_FLUSH_INTERVAL 10
74#define EFX_FLUSH_POLL_COUNT 100
75
76/* Size and alignment of special buffers (4KB) */
77#define EFX_BUF_SIZE 4096
78
79/* Depth of RX flush request fifo */
80#define EFX_RX_FLUSH_COUNT 4
81
Steve Hodgson90d683a2010-06-01 11:19:39 +000082/* Generated event code for efx_generate_test_event() */
83#define EFX_CHANNEL_MAGIC_TEST(_channel) \
Steve Hodgsond730dc52010-06-01 11:19:09 +000084 (0x00010100 + (_channel)->channel)
85
Steve Hodgson90d683a2010-06-01 11:19:39 +000086/* Generated event code for efx_generate_fill_event() */
87#define EFX_CHANNEL_MAGIC_FILL(_channel) \
88 (0x00010200 + (_channel)->channel)
89
Ben Hutchings8e730c12009-11-29 15:14:45 +000090/**************************************************************************
91 *
92 * Solarstorm hardware access
93 *
94 **************************************************************************/
95
96static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
97 unsigned int index)
98{
99 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
100 value, index);
101}
102
103/* Read the current event from the event queue */
104static inline efx_qword_t *efx_event(struct efx_channel *channel,
105 unsigned int index)
106{
107 return (((efx_qword_t *) (channel->eventq.addr)) + index);
108}
109
110/* See if an event is present
111 *
112 * We check both the high and low dword of the event for all ones. We
113 * wrote all ones when we cleared the event, and no valid event can
114 * have all ones in either its high or low dwords. This approach is
115 * robust against reordering.
116 *
117 * Note that using a single 64-bit comparison is incorrect; even
118 * though the CPU read will be atomic, the DMA write may not be.
119 */
120static inline int efx_event_present(efx_qword_t *event)
121{
122 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
123 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
124}
125
126static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
127 const efx_oword_t *mask)
128{
129 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
130 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
131}
132
133int efx_nic_test_registers(struct efx_nic *efx,
134 const struct efx_nic_register_test *regs,
135 size_t n_regs)
136{
137 unsigned address = 0, i, j;
138 efx_oword_t mask, imask, original, reg, buf;
139
140 /* Falcon should be in loopback to isolate the XMAC from the PHY */
141 WARN_ON(!LOOPBACK_INTERNAL(efx));
142
143 for (i = 0; i < n_regs; ++i) {
144 address = regs[i].address;
145 mask = imask = regs[i].mask;
146 EFX_INVERT_OWORD(imask);
147
148 efx_reado(efx, &original, address);
149
150 /* bit sweep on and off */
151 for (j = 0; j < 128; j++) {
152 if (!EFX_EXTRACT_OWORD32(mask, j, j))
153 continue;
154
155 /* Test this testable bit can be set in isolation */
156 EFX_AND_OWORD(reg, original, mask);
157 EFX_SET_OWORD32(reg, j, j, 1);
158
159 efx_writeo(efx, &reg, address);
160 efx_reado(efx, &buf, address);
161
162 if (efx_masked_compare_oword(&reg, &buf, &mask))
163 goto fail;
164
165 /* Test this testable bit can be cleared in isolation */
166 EFX_OR_OWORD(reg, original, mask);
167 EFX_SET_OWORD32(reg, j, j, 0);
168
169 efx_writeo(efx, &reg, address);
170 efx_reado(efx, &buf, address);
171
172 if (efx_masked_compare_oword(&reg, &buf, &mask))
173 goto fail;
174 }
175
176 efx_writeo(efx, &original, address);
177 }
178
179 return 0;
180
181fail:
Ben Hutchings62776d02010-06-23 11:30:07 +0000182 netif_err(efx, hw, efx->net_dev,
183 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
184 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
185 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
Ben Hutchings8e730c12009-11-29 15:14:45 +0000186 return -EIO;
187}
188
189/**************************************************************************
190 *
191 * Special buffer handling
192 * Special buffers are used for event queues and the TX and RX
193 * descriptor rings.
194 *
195 *************************************************************************/
196
197/*
198 * Initialise a special buffer
199 *
200 * This will define a buffer (previously allocated via
201 * efx_alloc_special_buffer()) in the buffer table, allowing
202 * it to be used for event queues, descriptor rings etc.
203 */
204static void
205efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
206{
207 efx_qword_t buf_desc;
208 int index;
209 dma_addr_t dma_addr;
210 int i;
211
212 EFX_BUG_ON_PARANOID(!buffer->addr);
213
214 /* Write buffer descriptors to NIC */
215 for (i = 0; i < buffer->entries; i++) {
216 index = buffer->index + i;
217 dma_addr = buffer->dma_addr + (i * 4096);
Ben Hutchings62776d02010-06-23 11:30:07 +0000218 netif_dbg(efx, probe, efx->net_dev,
219 "mapping special buffer %d at %llx\n",
220 index, (unsigned long long)dma_addr);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000221 EFX_POPULATE_QWORD_3(buf_desc,
222 FRF_AZ_BUF_ADR_REGION, 0,
223 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
224 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
225 efx_write_buf_tbl(efx, &buf_desc, index);
226 }
227}
228
229/* Unmaps a buffer and clears the buffer table entries */
230static void
231efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
232{
233 efx_oword_t buf_tbl_upd;
234 unsigned int start = buffer->index;
235 unsigned int end = (buffer->index + buffer->entries - 1);
236
237 if (!buffer->entries)
238 return;
239
Ben Hutchings62776d02010-06-23 11:30:07 +0000240 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
241 buffer->index, buffer->index + buffer->entries - 1);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000242
243 EFX_POPULATE_OWORD_4(buf_tbl_upd,
244 FRF_AZ_BUF_UPD_CMD, 0,
245 FRF_AZ_BUF_CLR_CMD, 1,
246 FRF_AZ_BUF_CLR_END_ID, end,
247 FRF_AZ_BUF_CLR_START_ID, start);
248 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
249}
250
251/*
252 * Allocate a new special buffer
253 *
254 * This allocates memory for a new buffer, clears it and allocates a
255 * new buffer ID range. It does not write into the buffer table.
256 *
257 * This call will allocate 4KB buffers, since 8KB buffers can't be
258 * used for event queues and descriptor rings.
259 */
260static int efx_alloc_special_buffer(struct efx_nic *efx,
261 struct efx_special_buffer *buffer,
262 unsigned int len)
263{
264 len = ALIGN(len, EFX_BUF_SIZE);
265
266 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
267 &buffer->dma_addr);
268 if (!buffer->addr)
269 return -ENOMEM;
270 buffer->len = len;
271 buffer->entries = len / EFX_BUF_SIZE;
272 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
273
274 /* All zeros is a potentially valid event so memset to 0xff */
275 memset(buffer->addr, 0xff, len);
276
277 /* Select new buffer ID */
278 buffer->index = efx->next_buffer_table;
279 efx->next_buffer_table += buffer->entries;
280
Ben Hutchings62776d02010-06-23 11:30:07 +0000281 netif_dbg(efx, probe, efx->net_dev,
282 "allocating special buffers %d-%d at %llx+%x "
283 "(virt %p phys %llx)\n", buffer->index,
284 buffer->index + buffer->entries - 1,
285 (u64)buffer->dma_addr, len,
286 buffer->addr, (u64)virt_to_phys(buffer->addr));
Ben Hutchings8e730c12009-11-29 15:14:45 +0000287
288 return 0;
289}
290
291static void
292efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
293{
294 if (!buffer->addr)
295 return;
296
Ben Hutchings62776d02010-06-23 11:30:07 +0000297 netif_dbg(efx, hw, efx->net_dev,
298 "deallocating special buffers %d-%d at %llx+%x "
299 "(virt %p phys %llx)\n", buffer->index,
300 buffer->index + buffer->entries - 1,
301 (u64)buffer->dma_addr, buffer->len,
302 buffer->addr, (u64)virt_to_phys(buffer->addr));
Ben Hutchings8e730c12009-11-29 15:14:45 +0000303
304 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
305 buffer->dma_addr);
306 buffer->addr = NULL;
307 buffer->entries = 0;
308}
309
310/**************************************************************************
311 *
312 * Generic buffer handling
313 * These buffers are used for interrupt status and MAC stats
314 *
315 **************************************************************************/
316
317int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
318 unsigned int len)
319{
320 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
321 &buffer->dma_addr);
322 if (!buffer->addr)
323 return -ENOMEM;
324 buffer->len = len;
325 memset(buffer->addr, 0, len);
326 return 0;
327}
328
329void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
330{
331 if (buffer->addr) {
332 pci_free_consistent(efx->pci_dev, buffer->len,
333 buffer->addr, buffer->dma_addr);
334 buffer->addr = NULL;
335 }
336}
337
338/**************************************************************************
339 *
340 * TX path
341 *
342 **************************************************************************/
343
344/* Returns a pointer to the specified transmit descriptor in the TX
345 * descriptor queue belonging to the specified channel.
346 */
347static inline efx_qword_t *
348efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
349{
350 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
351}
352
353/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
354static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
355{
356 unsigned write_ptr;
357 efx_dword_t reg;
358
359 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
360 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
361 efx_writed_page(tx_queue->efx, &reg,
362 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
363}
364
365
366/* For each entry inserted into the software descriptor ring, create a
367 * descriptor in the hardware TX descriptor ring (in host memory), and
368 * write a doorbell.
369 */
370void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
371{
372
373 struct efx_tx_buffer *buffer;
374 efx_qword_t *txd;
375 unsigned write_ptr;
376
377 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
378
379 do {
380 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
381 buffer = &tx_queue->buffer[write_ptr];
382 txd = efx_tx_desc(tx_queue, write_ptr);
383 ++tx_queue->write_count;
384
385 /* Create TX descriptor ring entry */
386 EFX_POPULATE_QWORD_4(*txd,
387 FSF_AZ_TX_KER_CONT, buffer->continuation,
388 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
389 FSF_AZ_TX_KER_BUF_REGION, 0,
390 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
391 } while (tx_queue->write_count != tx_queue->insert_count);
392
393 wmb(); /* Ensure descriptors are written before they are fetched */
394 efx_notify_tx_desc(tx_queue);
395}
396
397/* Allocate hardware resources for a TX queue */
398int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
399{
400 struct efx_nic *efx = tx_queue->efx;
401 BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
402 EFX_TXQ_SIZE & EFX_TXQ_MASK);
403 return efx_alloc_special_buffer(efx, &tx_queue->txd,
404 EFX_TXQ_SIZE * sizeof(efx_qword_t));
405}
406
407void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
408{
409 efx_oword_t tx_desc_ptr;
410 struct efx_nic *efx = tx_queue->efx;
411
412 tx_queue->flushed = FLUSH_NONE;
413
414 /* Pin TX descriptor ring */
415 efx_init_special_buffer(efx, &tx_queue->txd);
416
417 /* Push TX descriptor ring to card */
418 EFX_POPULATE_OWORD_10(tx_desc_ptr,
419 FRF_AZ_TX_DESCQ_EN, 1,
420 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
421 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
422 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
423 FRF_AZ_TX_DESCQ_EVQ_ID,
424 tx_queue->channel->channel,
425 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
426 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
427 FRF_AZ_TX_DESCQ_SIZE,
428 __ffs(tx_queue->txd.entries),
429 FRF_AZ_TX_DESCQ_TYPE, 0,
430 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
431
432 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
Ben Hutchingsa4900ac2010-04-28 09:30:43 +0000433 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
Ben Hutchings8e730c12009-11-29 15:14:45 +0000434 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
435 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
436 !csum);
437 }
438
439 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
440 tx_queue->queue);
441
442 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
443 efx_oword_t reg;
444
445 /* Only 128 bits in this register */
Ben Hutchingsa4900ac2010-04-28 09:30:43 +0000446 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000447
448 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
Ben Hutchingsa4900ac2010-04-28 09:30:43 +0000449 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
Ben Hutchings8e730c12009-11-29 15:14:45 +0000450 clear_bit_le(tx_queue->queue, (void *)&reg);
451 else
452 set_bit_le(tx_queue->queue, (void *)&reg);
453 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
454 }
455}
456
457static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
458{
459 struct efx_nic *efx = tx_queue->efx;
460 efx_oword_t tx_flush_descq;
461
462 tx_queue->flushed = FLUSH_PENDING;
463
464 /* Post a flush command */
465 EFX_POPULATE_OWORD_2(tx_flush_descq,
466 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
467 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
468 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
469}
470
471void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
472{
473 struct efx_nic *efx = tx_queue->efx;
474 efx_oword_t tx_desc_ptr;
475
476 /* The queue should have been flushed */
477 WARN_ON(tx_queue->flushed != FLUSH_DONE);
478
479 /* Remove TX descriptor ring from card */
480 EFX_ZERO_OWORD(tx_desc_ptr);
481 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
482 tx_queue->queue);
483
484 /* Unpin TX descriptor ring */
485 efx_fini_special_buffer(efx, &tx_queue->txd);
486}
487
488/* Free buffers backing TX queue */
489void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
490{
491 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
492}
493
494/**************************************************************************
495 *
496 * RX path
497 *
498 **************************************************************************/
499
500/* Returns a pointer to the specified descriptor in the RX descriptor queue */
501static inline efx_qword_t *
502efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
503{
504 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
505}
506
507/* This creates an entry in the RX descriptor queue */
508static inline void
509efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
510{
511 struct efx_rx_buffer *rx_buf;
512 efx_qword_t *rxd;
513
514 rxd = efx_rx_desc(rx_queue, index);
515 rx_buf = efx_rx_buffer(rx_queue, index);
516 EFX_POPULATE_QWORD_3(*rxd,
517 FSF_AZ_RX_KER_BUF_SIZE,
518 rx_buf->len -
519 rx_queue->efx->type->rx_buffer_padding,
520 FSF_AZ_RX_KER_BUF_REGION, 0,
521 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
522}
523
524/* This writes to the RX_DESC_WPTR register for the specified receive
525 * descriptor ring.
526 */
527void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
528{
529 efx_dword_t reg;
530 unsigned write_ptr;
531
532 while (rx_queue->notified_count != rx_queue->added_count) {
533 efx_build_rx_desc(rx_queue,
534 rx_queue->notified_count &
535 EFX_RXQ_MASK);
536 ++rx_queue->notified_count;
537 }
538
539 wmb();
540 write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
541 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
542 efx_writed_page(rx_queue->efx, &reg,
543 FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
544}
545
546int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
547{
548 struct efx_nic *efx = rx_queue->efx;
549 BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
550 EFX_RXQ_SIZE & EFX_RXQ_MASK);
551 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
552 EFX_RXQ_SIZE * sizeof(efx_qword_t));
553}
554
555void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
556{
557 efx_oword_t rx_desc_ptr;
558 struct efx_nic *efx = rx_queue->efx;
559 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
560 bool iscsi_digest_en = is_b0;
561
Ben Hutchings62776d02010-06-23 11:30:07 +0000562 netif_dbg(efx, hw, efx->net_dev,
563 "RX queue %d ring in special buffers %d-%d\n",
564 rx_queue->queue, rx_queue->rxd.index,
565 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000566
567 rx_queue->flushed = FLUSH_NONE;
568
569 /* Pin RX descriptor ring */
570 efx_init_special_buffer(efx, &rx_queue->rxd);
571
572 /* Push RX descriptor ring to card */
573 EFX_POPULATE_OWORD_10(rx_desc_ptr,
574 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
575 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
576 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
577 FRF_AZ_RX_DESCQ_EVQ_ID,
578 rx_queue->channel->channel,
579 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
580 FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
581 FRF_AZ_RX_DESCQ_SIZE,
582 __ffs(rx_queue->rxd.entries),
583 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
584 /* For >=B0 this is scatter so disable */
585 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
586 FRF_AZ_RX_DESCQ_EN, 1);
587 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
588 rx_queue->queue);
589}
590
591static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
592{
593 struct efx_nic *efx = rx_queue->efx;
594 efx_oword_t rx_flush_descq;
595
596 rx_queue->flushed = FLUSH_PENDING;
597
598 /* Post a flush command */
599 EFX_POPULATE_OWORD_2(rx_flush_descq,
600 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
601 FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
602 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
603}
604
605void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
606{
607 efx_oword_t rx_desc_ptr;
608 struct efx_nic *efx = rx_queue->efx;
609
610 /* The queue should already have been flushed */
611 WARN_ON(rx_queue->flushed != FLUSH_DONE);
612
613 /* Remove RX descriptor ring from card */
614 EFX_ZERO_OWORD(rx_desc_ptr);
615 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
616 rx_queue->queue);
617
618 /* Unpin RX descriptor ring */
619 efx_fini_special_buffer(efx, &rx_queue->rxd);
620}
621
622/* Free buffers backing RX queue */
623void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
624{
625 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
626}
627
628/**************************************************************************
629 *
630 * Event queue processing
631 * Event queues are processed by per-channel tasklets.
632 *
633 **************************************************************************/
634
635/* Update a channel's event queue's read pointer (RPTR) register
636 *
637 * This writes the EVQ_RPTR_REG register for the specified channel's
638 * event queue.
Ben Hutchings8e730c12009-11-29 15:14:45 +0000639 */
640void efx_nic_eventq_read_ack(struct efx_channel *channel)
641{
642 efx_dword_t reg;
643 struct efx_nic *efx = channel->efx;
644
645 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
646 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
647 channel->channel);
648}
649
650/* Use HW to insert a SW defined event */
651void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
652{
653 efx_oword_t drv_ev_reg;
654
655 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
656 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
657 drv_ev_reg.u32[0] = event->u32[0];
658 drv_ev_reg.u32[1] = event->u32[1];
659 drv_ev_reg.u32[2] = 0;
660 drv_ev_reg.u32[3] = 0;
661 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
662 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
663}
664
665/* Handle a transmit completion event
666 *
667 * The NIC batches TX completion events; the message we receive is of
668 * the form "complete all TX events up to this index".
669 */
Ben Hutchingsfa236e12010-04-28 09:29:42 +0000670static int
Ben Hutchings8e730c12009-11-29 15:14:45 +0000671efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
672{
673 unsigned int tx_ev_desc_ptr;
674 unsigned int tx_ev_q_label;
675 struct efx_tx_queue *tx_queue;
676 struct efx_nic *efx = channel->efx;
Ben Hutchingsfa236e12010-04-28 09:29:42 +0000677 int tx_packets = 0;
Ben Hutchings8e730c12009-11-29 15:14:45 +0000678
679 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
680 /* Transmit completion */
681 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
682 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
683 tx_queue = &efx->tx_queue[tx_ev_q_label];
Ben Hutchingsfa236e12010-04-28 09:29:42 +0000684 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
685 EFX_TXQ_MASK);
686 channel->irq_mod_score += tx_packets;
Ben Hutchings8e730c12009-11-29 15:14:45 +0000687 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
688 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
689 /* Rewrite the FIFO write pointer */
690 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
691 tx_queue = &efx->tx_queue[tx_ev_q_label];
692
693 if (efx_dev_registered(efx))
694 netif_tx_lock(efx->net_dev);
695 efx_notify_tx_desc(tx_queue);
696 if (efx_dev_registered(efx))
697 netif_tx_unlock(efx->net_dev);
698 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
699 EFX_WORKAROUND_10727(efx)) {
700 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
701 } else {
Ben Hutchings62776d02010-06-23 11:30:07 +0000702 netif_err(efx, tx_err, efx->net_dev,
703 "channel %d unexpected TX event "
704 EFX_QWORD_FMT"\n", channel->channel,
705 EFX_QWORD_VAL(*event));
Ben Hutchings8e730c12009-11-29 15:14:45 +0000706 }
Ben Hutchingsfa236e12010-04-28 09:29:42 +0000707
708 return tx_packets;
Ben Hutchings8e730c12009-11-29 15:14:45 +0000709}
710
711/* Detect errors included in the rx_evt_pkt_ok bit. */
712static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
713 const efx_qword_t *event,
714 bool *rx_ev_pkt_ok,
715 bool *discard)
716{
717 struct efx_nic *efx = rx_queue->efx;
718 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
719 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
720 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
721 bool rx_ev_other_err, rx_ev_pause_frm;
722 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
723 unsigned rx_ev_pkt_type;
724
725 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
726 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
727 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
728 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
729 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
730 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
731 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
732 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
733 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
734 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
735 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
736 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
737 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
738 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
739 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
740
741 /* Every error apart from tobe_disc and pause_frm */
742 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
743 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
744 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
745
746 /* Count errors that are not in MAC stats. Ignore expected
747 * checksum errors during self-test. */
748 if (rx_ev_frm_trunc)
749 ++rx_queue->channel->n_rx_frm_trunc;
750 else if (rx_ev_tobe_disc)
751 ++rx_queue->channel->n_rx_tobe_disc;
752 else if (!efx->loopback_selftest) {
753 if (rx_ev_ip_hdr_chksum_err)
754 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
755 else if (rx_ev_tcp_udp_chksum_err)
756 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
757 }
758
759 /* The frame must be discarded if any of these are true. */
760 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
761 rx_ev_tobe_disc | rx_ev_pause_frm);
762
763 /* TOBE_DISC is expected on unicast mismatches; don't print out an
764 * error message. FRM_TRUNC indicates RXDP dropped the packet due
765 * to a FIFO overflow.
766 */
767#ifdef EFX_ENABLE_DEBUG
Ben Hutchings62776d02010-06-23 11:30:07 +0000768 if (rx_ev_other_err && net_ratelimit()) {
769 netif_dbg(efx, rx_err, efx->net_dev,
770 " RX queue %d unexpected RX event "
771 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
772 rx_queue->queue, EFX_QWORD_VAL(*event),
773 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
774 rx_ev_ip_hdr_chksum_err ?
775 " [IP_HDR_CHKSUM_ERR]" : "",
776 rx_ev_tcp_udp_chksum_err ?
777 " [TCP_UDP_CHKSUM_ERR]" : "",
778 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
779 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
780 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
781 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
782 rx_ev_pause_frm ? " [PAUSE]" : "");
Ben Hutchings8e730c12009-11-29 15:14:45 +0000783 }
784#endif
785}
786
787/* Handle receive events that are not in-order. */
788static void
789efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
790{
791 struct efx_nic *efx = rx_queue->efx;
792 unsigned expected, dropped;
793
794 expected = rx_queue->removed_count & EFX_RXQ_MASK;
795 dropped = (index - expected) & EFX_RXQ_MASK;
Ben Hutchings62776d02010-06-23 11:30:07 +0000796 netif_info(efx, rx_err, efx->net_dev,
797 "dropped %d events (index=%d expected=%d)\n",
798 dropped, index, expected);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000799
800 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
801 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
802}
803
804/* Handle a packet received event
805 *
806 * The NIC gives a "discard" flag if it's a unicast packet with the
807 * wrong destination address
808 * Also "is multicast" and "matches multicast filter" flags can be used to
809 * discard non-matching multicast packets.
810 */
811static void
812efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
813{
814 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
815 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
816 unsigned expected_ptr;
817 bool rx_ev_pkt_ok, discard = false, checksummed;
818 struct efx_rx_queue *rx_queue;
819 struct efx_nic *efx = channel->efx;
820
821 /* Basic packet information */
822 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
823 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
824 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
825 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
826 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
827 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
828 channel->channel);
829
830 rx_queue = &efx->rx_queue[channel->channel];
831
832 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
833 expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
834 if (unlikely(rx_ev_desc_ptr != expected_ptr))
835 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
836
837 if (likely(rx_ev_pkt_ok)) {
838 /* If packet is marked as OK and packet type is TCP/IP or
839 * UDP/IP, then we can rely on the hardware checksum.
840 */
841 checksummed =
842 likely(efx->rx_checksum_enabled) &&
843 (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
844 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
845 } else {
846 efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
847 checksummed = false;
848 }
849
850 /* Detect multicast packets that didn't match the filter */
851 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
852 if (rx_ev_mcast_pkt) {
853 unsigned int rx_ev_mcast_hash_match =
854 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
855
856 if (unlikely(!rx_ev_mcast_hash_match)) {
857 ++channel->n_rx_mcast_mismatch;
858 discard = true;
859 }
860 }
861
862 channel->irq_mod_score += 2;
863
864 /* Handle received packet */
865 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
866 checksummed, discard);
867}
868
Steve Hodgson90d683a2010-06-01 11:19:39 +0000869static void
870efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
871{
872 struct efx_nic *efx = channel->efx;
873 unsigned code;
874
875 code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
876 if (code == EFX_CHANNEL_MAGIC_TEST(channel))
877 ++channel->magic_count;
878 else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
879 /* The queue must be empty, so we won't receive any rx
880 * events, so efx_process_channel() won't refill the
881 * queue. Refill it here */
882 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
883 else
Ben Hutchings62776d02010-06-23 11:30:07 +0000884 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
885 "generated event "EFX_QWORD_FMT"\n",
886 channel->channel, EFX_QWORD_VAL(*event));
Steve Hodgson90d683a2010-06-01 11:19:39 +0000887}
888
Ben Hutchings8e730c12009-11-29 15:14:45 +0000889/* Global events are basically PHY events */
890static void
891efx_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
892{
893 struct efx_nic *efx = channel->efx;
894 bool handled = false;
895
896 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
897 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
898 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
899 /* Ignored */
900 handled = true;
901 }
902
903 if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
904 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
905 efx->xmac_poll_required = true;
906 handled = true;
907 }
908
909 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
910 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
911 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
Ben Hutchings62776d02010-06-23 11:30:07 +0000912 netif_err(efx, rx_err, efx->net_dev,
913 "channel %d seen global RX_RESET event. Resetting.\n",
914 channel->channel);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000915
916 atomic_inc(&efx->rx_reset);
917 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
918 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
919 handled = true;
920 }
921
922 if (!handled)
Ben Hutchings62776d02010-06-23 11:30:07 +0000923 netif_err(efx, hw, efx->net_dev,
924 "channel %d unknown global event "
925 EFX_QWORD_FMT "\n", channel->channel,
926 EFX_QWORD_VAL(*event));
Ben Hutchings8e730c12009-11-29 15:14:45 +0000927}
928
929static void
930efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
931{
932 struct efx_nic *efx = channel->efx;
933 unsigned int ev_sub_code;
934 unsigned int ev_sub_data;
935
936 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
937 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
938
939 switch (ev_sub_code) {
940 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
Ben Hutchings62776d02010-06-23 11:30:07 +0000941 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
942 channel->channel, ev_sub_data);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000943 break;
944 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
Ben Hutchings62776d02010-06-23 11:30:07 +0000945 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
946 channel->channel, ev_sub_data);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000947 break;
948 case FSE_AZ_EVQ_INIT_DONE_EV:
Ben Hutchings62776d02010-06-23 11:30:07 +0000949 netif_dbg(efx, hw, efx->net_dev,
950 "channel %d EVQ %d initialised\n",
951 channel->channel, ev_sub_data);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000952 break;
953 case FSE_AZ_SRM_UPD_DONE_EV:
Ben Hutchings62776d02010-06-23 11:30:07 +0000954 netif_vdbg(efx, hw, efx->net_dev,
955 "channel %d SRAM update done\n", channel->channel);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000956 break;
957 case FSE_AZ_WAKE_UP_EV:
Ben Hutchings62776d02010-06-23 11:30:07 +0000958 netif_vdbg(efx, hw, efx->net_dev,
959 "channel %d RXQ %d wakeup event\n",
960 channel->channel, ev_sub_data);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000961 break;
962 case FSE_AZ_TIMER_EV:
Ben Hutchings62776d02010-06-23 11:30:07 +0000963 netif_vdbg(efx, hw, efx->net_dev,
964 "channel %d RX queue %d timer expired\n",
965 channel->channel, ev_sub_data);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000966 break;
967 case FSE_AA_RX_RECOVER_EV:
Ben Hutchings62776d02010-06-23 11:30:07 +0000968 netif_err(efx, rx_err, efx->net_dev,
969 "channel %d seen DRIVER RX_RESET event. "
Ben Hutchings8e730c12009-11-29 15:14:45 +0000970 "Resetting.\n", channel->channel);
971 atomic_inc(&efx->rx_reset);
972 efx_schedule_reset(efx,
973 EFX_WORKAROUND_6555(efx) ?
974 RESET_TYPE_RX_RECOVERY :
975 RESET_TYPE_DISABLE);
976 break;
977 case FSE_BZ_RX_DSC_ERROR_EV:
Ben Hutchings62776d02010-06-23 11:30:07 +0000978 netif_err(efx, rx_err, efx->net_dev,
979 "RX DMA Q %d reports descriptor fetch error."
980 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000981 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
982 break;
983 case FSE_BZ_TX_DSC_ERROR_EV:
Ben Hutchings62776d02010-06-23 11:30:07 +0000984 netif_err(efx, tx_err, efx->net_dev,
985 "TX DMA Q %d reports descriptor fetch error."
986 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000987 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
988 break;
989 default:
Ben Hutchings62776d02010-06-23 11:30:07 +0000990 netif_vdbg(efx, hw, efx->net_dev,
991 "channel %d unknown driver event code %d "
992 "data %04x\n", channel->channel, ev_sub_code,
993 ev_sub_data);
Ben Hutchings8e730c12009-11-29 15:14:45 +0000994 break;
995 }
996}
997
Ben Hutchingsfa236e12010-04-28 09:29:42 +0000998int efx_nic_process_eventq(struct efx_channel *channel, int budget)
Ben Hutchings8e730c12009-11-29 15:14:45 +0000999{
1000 unsigned int read_ptr;
1001 efx_qword_t event, *p_event;
1002 int ev_code;
Ben Hutchingsfa236e12010-04-28 09:29:42 +00001003 int tx_packets = 0;
1004 int spent = 0;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001005
1006 read_ptr = channel->eventq_read_ptr;
1007
Ben Hutchingsfa236e12010-04-28 09:29:42 +00001008 for (;;) {
Ben Hutchings8e730c12009-11-29 15:14:45 +00001009 p_event = efx_event(channel, read_ptr);
1010 event = *p_event;
1011
1012 if (!efx_event_present(&event))
1013 /* End of events */
1014 break;
1015
Ben Hutchings62776d02010-06-23 11:30:07 +00001016 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1017 "channel %d event is "EFX_QWORD_FMT"\n",
1018 channel->channel, EFX_QWORD_VAL(event));
Ben Hutchings8e730c12009-11-29 15:14:45 +00001019
1020 /* Clear this event by marking it all ones */
1021 EFX_SET_QWORD(*p_event);
1022
Ben Hutchingsfa236e12010-04-28 09:29:42 +00001023 /* Increment read pointer */
1024 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1025
Ben Hutchings8e730c12009-11-29 15:14:45 +00001026 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1027
1028 switch (ev_code) {
1029 case FSE_AZ_EV_CODE_RX_EV:
1030 efx_handle_rx_event(channel, &event);
Ben Hutchingsfa236e12010-04-28 09:29:42 +00001031 if (++spent == budget)
1032 goto out;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001033 break;
1034 case FSE_AZ_EV_CODE_TX_EV:
Ben Hutchingsfa236e12010-04-28 09:29:42 +00001035 tx_packets += efx_handle_tx_event(channel, &event);
1036 if (tx_packets >= EFX_TXQ_SIZE) {
1037 spent = budget;
1038 goto out;
1039 }
Ben Hutchings8e730c12009-11-29 15:14:45 +00001040 break;
1041 case FSE_AZ_EV_CODE_DRV_GEN_EV:
Steve Hodgson90d683a2010-06-01 11:19:39 +00001042 efx_handle_generated_event(channel, &event);
Ben Hutchings8e730c12009-11-29 15:14:45 +00001043 break;
1044 case FSE_AZ_EV_CODE_GLOBAL_EV:
1045 efx_handle_global_event(channel, &event);
1046 break;
1047 case FSE_AZ_EV_CODE_DRIVER_EV:
1048 efx_handle_driver_event(channel, &event);
1049 break;
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001050 case FSE_CZ_EV_CODE_MCDI_EV:
1051 efx_mcdi_process_event(channel, &event);
1052 break;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001053 default:
Ben Hutchings62776d02010-06-23 11:30:07 +00001054 netif_err(channel->efx, hw, channel->efx->net_dev,
1055 "channel %d unknown event type %d (data "
1056 EFX_QWORD_FMT ")\n", channel->channel,
1057 ev_code, EFX_QWORD_VAL(event));
Ben Hutchings8e730c12009-11-29 15:14:45 +00001058 }
Ben Hutchingsfa236e12010-04-28 09:29:42 +00001059 }
Ben Hutchings8e730c12009-11-29 15:14:45 +00001060
Ben Hutchingsfa236e12010-04-28 09:29:42 +00001061out:
Ben Hutchings8e730c12009-11-29 15:14:45 +00001062 channel->eventq_read_ptr = read_ptr;
Ben Hutchingsfa236e12010-04-28 09:29:42 +00001063 return spent;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001064}
1065
1066
1067/* Allocate buffer table entries for event queue */
1068int efx_nic_probe_eventq(struct efx_channel *channel)
1069{
1070 struct efx_nic *efx = channel->efx;
1071 BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1072 EFX_EVQ_SIZE & EFX_EVQ_MASK);
1073 return efx_alloc_special_buffer(efx, &channel->eventq,
1074 EFX_EVQ_SIZE * sizeof(efx_qword_t));
1075}
1076
1077void efx_nic_init_eventq(struct efx_channel *channel)
1078{
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001079 efx_oword_t reg;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001080 struct efx_nic *efx = channel->efx;
1081
Ben Hutchings62776d02010-06-23 11:30:07 +00001082 netif_dbg(efx, hw, efx->net_dev,
1083 "channel %d event queue in special buffers %d-%d\n",
1084 channel->channel, channel->eventq.index,
1085 channel->eventq.index + channel->eventq.entries - 1);
Ben Hutchings8e730c12009-11-29 15:14:45 +00001086
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001087 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1088 EFX_POPULATE_OWORD_3(reg,
1089 FRF_CZ_TIMER_Q_EN, 1,
1090 FRF_CZ_HOST_NOTIFY_MODE, 0,
1091 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1092 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1093 }
1094
Ben Hutchings8e730c12009-11-29 15:14:45 +00001095 /* Pin event queue buffer */
1096 efx_init_special_buffer(efx, &channel->eventq);
1097
1098 /* Fill event queue with all ones (i.e. empty events) */
1099 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1100
1101 /* Push event queue to card */
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001102 EFX_POPULATE_OWORD_3(reg,
Ben Hutchings8e730c12009-11-29 15:14:45 +00001103 FRF_AZ_EVQ_EN, 1,
1104 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1105 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001106 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
Ben Hutchings8e730c12009-11-29 15:14:45 +00001107 channel->channel);
1108
1109 efx->type->push_irq_moderation(channel);
1110}
1111
1112void efx_nic_fini_eventq(struct efx_channel *channel)
1113{
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001114 efx_oword_t reg;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001115 struct efx_nic *efx = channel->efx;
1116
1117 /* Remove event queue from card */
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001118 EFX_ZERO_OWORD(reg);
1119 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
Ben Hutchings8e730c12009-11-29 15:14:45 +00001120 channel->channel);
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001121 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1122 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
Ben Hutchings8e730c12009-11-29 15:14:45 +00001123
1124 /* Unpin event queue */
1125 efx_fini_special_buffer(efx, &channel->eventq);
1126}
1127
1128/* Free buffers backing event queue */
1129void efx_nic_remove_eventq(struct efx_channel *channel)
1130{
1131 efx_free_special_buffer(channel->efx, &channel->eventq);
1132}
1133
1134
Steve Hodgsond730dc52010-06-01 11:19:09 +00001135void efx_nic_generate_test_event(struct efx_channel *channel)
Ben Hutchings8e730c12009-11-29 15:14:45 +00001136{
Steve Hodgson90d683a2010-06-01 11:19:39 +00001137 unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
1138 efx_qword_t test_event;
1139
1140 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1141 FSE_AZ_EV_CODE_DRV_GEN_EV,
1142 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1143 efx_generate_event(channel, &test_event);
1144}
1145
1146void efx_nic_generate_fill_event(struct efx_channel *channel)
1147{
1148 unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
Ben Hutchings8e730c12009-11-29 15:14:45 +00001149 efx_qword_t test_event;
1150
1151 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1152 FSE_AZ_EV_CODE_DRV_GEN_EV,
1153 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1154 efx_generate_event(channel, &test_event);
1155}
1156
1157/**************************************************************************
1158 *
1159 * Flush handling
1160 *
1161 **************************************************************************/
1162
1163
1164static void efx_poll_flush_events(struct efx_nic *efx)
1165{
1166 struct efx_channel *channel = &efx->channel[0];
1167 struct efx_tx_queue *tx_queue;
1168 struct efx_rx_queue *rx_queue;
1169 unsigned int read_ptr = channel->eventq_read_ptr;
1170 unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1171
1172 do {
1173 efx_qword_t *event = efx_event(channel, read_ptr);
1174 int ev_code, ev_sub_code, ev_queue;
1175 bool ev_failed;
1176
1177 if (!efx_event_present(event))
1178 break;
1179
1180 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1181 ev_sub_code = EFX_QWORD_FIELD(*event,
1182 FSF_AZ_DRIVER_EV_SUBCODE);
1183 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1184 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1185 ev_queue = EFX_QWORD_FIELD(*event,
1186 FSF_AZ_DRIVER_EV_SUBDATA);
Ben Hutchingsa4900ac2010-04-28 09:30:43 +00001187 if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
Ben Hutchings8e730c12009-11-29 15:14:45 +00001188 tx_queue = efx->tx_queue + ev_queue;
1189 tx_queue->flushed = FLUSH_DONE;
1190 }
1191 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1192 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1193 ev_queue = EFX_QWORD_FIELD(
1194 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1195 ev_failed = EFX_QWORD_FIELD(
1196 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
Ben Hutchingsa4900ac2010-04-28 09:30:43 +00001197 if (ev_queue < efx->n_rx_channels) {
Ben Hutchings8e730c12009-11-29 15:14:45 +00001198 rx_queue = efx->rx_queue + ev_queue;
1199 rx_queue->flushed =
1200 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1201 }
1202 }
1203
1204 /* We're about to destroy the queue anyway, so
1205 * it's ok to throw away every non-flush event */
1206 EFX_SET_QWORD(*event);
1207
1208 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1209 } while (read_ptr != end_ptr);
1210
1211 channel->eventq_read_ptr = read_ptr;
1212}
1213
1214/* Handle tx and rx flushes at the same time, since they run in
1215 * parallel in the hardware and there's no reason for us to
1216 * serialise them */
1217int efx_nic_flush_queues(struct efx_nic *efx)
1218{
1219 struct efx_rx_queue *rx_queue;
1220 struct efx_tx_queue *tx_queue;
1221 int i, tx_pending, rx_pending;
1222
1223 /* If necessary prepare the hardware for flushing */
1224 efx->type->prepare_flush(efx);
1225
1226 /* Flush all tx queues in parallel */
1227 efx_for_each_tx_queue(tx_queue, efx)
1228 efx_flush_tx_queue(tx_queue);
1229
1230 /* The hardware supports four concurrent rx flushes, each of which may
1231 * need to be retried if there is an outstanding descriptor fetch */
1232 for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1233 rx_pending = tx_pending = 0;
1234 efx_for_each_rx_queue(rx_queue, efx) {
1235 if (rx_queue->flushed == FLUSH_PENDING)
1236 ++rx_pending;
1237 }
1238 efx_for_each_rx_queue(rx_queue, efx) {
1239 if (rx_pending == EFX_RX_FLUSH_COUNT)
1240 break;
1241 if (rx_queue->flushed == FLUSH_FAILED ||
1242 rx_queue->flushed == FLUSH_NONE) {
1243 efx_flush_rx_queue(rx_queue);
1244 ++rx_pending;
1245 }
1246 }
1247 efx_for_each_tx_queue(tx_queue, efx) {
1248 if (tx_queue->flushed != FLUSH_DONE)
1249 ++tx_pending;
1250 }
1251
1252 if (rx_pending == 0 && tx_pending == 0)
1253 return 0;
1254
1255 msleep(EFX_FLUSH_INTERVAL);
1256 efx_poll_flush_events(efx);
1257 }
1258
1259 /* Mark the queues as all flushed. We're going to return failure
1260 * leading to a reset, or fake up success anyway */
1261 efx_for_each_tx_queue(tx_queue, efx) {
1262 if (tx_queue->flushed != FLUSH_DONE)
Ben Hutchings62776d02010-06-23 11:30:07 +00001263 netif_err(efx, hw, efx->net_dev,
1264 "tx queue %d flush command timed out\n",
1265 tx_queue->queue);
Ben Hutchings8e730c12009-11-29 15:14:45 +00001266 tx_queue->flushed = FLUSH_DONE;
1267 }
1268 efx_for_each_rx_queue(rx_queue, efx) {
1269 if (rx_queue->flushed != FLUSH_DONE)
Ben Hutchings62776d02010-06-23 11:30:07 +00001270 netif_err(efx, hw, efx->net_dev,
1271 "rx queue %d flush command timed out\n",
1272 rx_queue->queue);
Ben Hutchings8e730c12009-11-29 15:14:45 +00001273 rx_queue->flushed = FLUSH_DONE;
1274 }
1275
Ben Hutchings8e730c12009-11-29 15:14:45 +00001276 return -ETIMEDOUT;
1277}
1278
1279/**************************************************************************
1280 *
1281 * Hardware interrupts
1282 * The hardware interrupt handler does very little work; all the event
1283 * queue processing is carried out by per-channel tasklets.
1284 *
1285 **************************************************************************/
1286
1287/* Enable/disable/generate interrupts */
1288static inline void efx_nic_interrupts(struct efx_nic *efx,
1289 bool enabled, bool force)
1290{
1291 efx_oword_t int_en_reg_ker;
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001292
1293 EFX_POPULATE_OWORD_3(int_en_reg_ker,
Steve Hodgson63695452010-04-28 09:27:36 +00001294 FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
Ben Hutchings8e730c12009-11-29 15:14:45 +00001295 FRF_AZ_KER_INT_KER, force,
1296 FRF_AZ_DRV_INT_EN_KER, enabled);
1297 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1298}
1299
1300void efx_nic_enable_interrupts(struct efx_nic *efx)
1301{
1302 struct efx_channel *channel;
1303
1304 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1305 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1306
1307 /* Enable interrupts */
1308 efx_nic_interrupts(efx, true, false);
1309
1310 /* Force processing of all the channels to get the EVQ RPTRs up to
1311 date */
1312 efx_for_each_channel(channel, efx)
1313 efx_schedule_channel(channel);
1314}
1315
1316void efx_nic_disable_interrupts(struct efx_nic *efx)
1317{
1318 /* Disable interrupts */
1319 efx_nic_interrupts(efx, false, false);
1320}
1321
1322/* Generate a test interrupt
1323 * Interrupt must already have been enabled, otherwise nasty things
1324 * may happen.
1325 */
1326void efx_nic_generate_interrupt(struct efx_nic *efx)
1327{
1328 efx_nic_interrupts(efx, true, true);
1329}
1330
1331/* Process a fatal interrupt
1332 * Disable bus mastering ASAP and schedule a reset
1333 */
1334irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1335{
1336 struct falcon_nic_data *nic_data = efx->nic_data;
1337 efx_oword_t *int_ker = efx->irq_status.addr;
1338 efx_oword_t fatal_intr;
1339 int error, mem_perr;
1340
1341 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1342 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1343
Ben Hutchings62776d02010-06-23 11:30:07 +00001344 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1345 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1346 EFX_OWORD_VAL(fatal_intr),
1347 error ? "disabling bus mastering" : "no recognised error");
Ben Hutchings8e730c12009-11-29 15:14:45 +00001348
1349 /* If this is a memory parity error dump which blocks are offending */
Steve Hodgson97e1eaa2010-04-28 09:28:52 +00001350 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1351 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
Ben Hutchings8e730c12009-11-29 15:14:45 +00001352 if (mem_perr) {
1353 efx_oword_t reg;
1354 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
Ben Hutchings62776d02010-06-23 11:30:07 +00001355 netif_err(efx, hw, efx->net_dev,
1356 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1357 EFX_OWORD_VAL(reg));
Ben Hutchings8e730c12009-11-29 15:14:45 +00001358 }
1359
1360 /* Disable both devices */
1361 pci_clear_master(efx->pci_dev);
1362 if (efx_nic_is_dual_func(efx))
1363 pci_clear_master(nic_data->pci_dev2);
1364 efx_nic_disable_interrupts(efx);
1365
1366 /* Count errors and reset or disable the NIC accordingly */
1367 if (efx->int_error_count == 0 ||
1368 time_after(jiffies, efx->int_error_expire)) {
1369 efx->int_error_count = 0;
1370 efx->int_error_expire =
1371 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1372 }
1373 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
Ben Hutchings62776d02010-06-23 11:30:07 +00001374 netif_err(efx, hw, efx->net_dev,
1375 "SYSTEM ERROR - reset scheduled\n");
Ben Hutchings8e730c12009-11-29 15:14:45 +00001376 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1377 } else {
Ben Hutchings62776d02010-06-23 11:30:07 +00001378 netif_err(efx, hw, efx->net_dev,
1379 "SYSTEM ERROR - max number of errors seen."
1380 "NIC will be disabled\n");
Ben Hutchings8e730c12009-11-29 15:14:45 +00001381 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1382 }
Steve Hodgson63695452010-04-28 09:27:36 +00001383
Ben Hutchings8e730c12009-11-29 15:14:45 +00001384 return IRQ_HANDLED;
1385}
1386
1387/* Handle a legacy interrupt
1388 * Acknowledges the interrupt and schedule event queue processing.
1389 */
1390static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1391{
1392 struct efx_nic *efx = dev_id;
1393 efx_oword_t *int_ker = efx->irq_status.addr;
1394 irqreturn_t result = IRQ_NONE;
1395 struct efx_channel *channel;
1396 efx_dword_t reg;
1397 u32 queues;
1398 int syserr;
1399
1400 /* Read the ISR which also ACKs the interrupts */
1401 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1402 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1403
1404 /* Check to see if we have a serious error condition */
Steve Hodgson63695452010-04-28 09:27:36 +00001405 if (queues & (1U << efx->fatal_irq_level)) {
1406 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1407 if (unlikely(syserr))
1408 return efx_nic_fatal_interrupt(efx);
1409 }
Ben Hutchings8e730c12009-11-29 15:14:45 +00001410
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001411 if (queues != 0) {
1412 if (EFX_WORKAROUND_15783(efx))
1413 efx->irq_zero_count = 0;
1414
1415 /* Schedule processing of any interrupting queues */
1416 efx_for_each_channel(channel, efx) {
1417 if (queues & 1)
Ben Hutchings8e730c12009-11-29 15:14:45 +00001418 efx_schedule_channel(channel);
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001419 queues >>= 1;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001420 }
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001421 result = IRQ_HANDLED;
1422
Steve Hodgson41b7e4c2010-04-28 09:28:27 +00001423 } else if (EFX_WORKAROUND_15783(efx)) {
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001424 efx_qword_t *event;
1425
Steve Hodgson41b7e4c2010-04-28 09:28:27 +00001426 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1427 * because this might be a shared interrupt. */
1428 if (efx->irq_zero_count++ == 0)
1429 result = IRQ_HANDLED;
1430
1431 /* Ensure we schedule or rearm all event queues */
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001432 efx_for_each_channel(channel, efx) {
1433 event = efx_event(channel, channel->eventq_read_ptr);
1434 if (efx_event_present(event))
1435 efx_schedule_channel(channel);
Steve Hodgson41b7e4c2010-04-28 09:28:27 +00001436 else
1437 efx_nic_eventq_read_ack(channel);
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001438 }
Ben Hutchings8e730c12009-11-29 15:14:45 +00001439 }
1440
1441 if (result == IRQ_HANDLED) {
1442 efx->last_irq_cpu = raw_smp_processor_id();
Ben Hutchings62776d02010-06-23 11:30:07 +00001443 netif_vdbg(efx, intr, efx->net_dev,
1444 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1445 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
Ben Hutchings8e730c12009-11-29 15:14:45 +00001446 }
1447
1448 return result;
1449}
1450
1451/* Handle an MSI interrupt
1452 *
1453 * Handle an MSI hardware interrupt. This routine schedules event
1454 * queue processing. No interrupt acknowledgement cycle is necessary.
1455 * Also, we never need to check that the interrupt is for us, since
1456 * MSI interrupts cannot be shared.
1457 */
1458static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1459{
1460 struct efx_channel *channel = dev_id;
1461 struct efx_nic *efx = channel->efx;
1462 efx_oword_t *int_ker = efx->irq_status.addr;
1463 int syserr;
1464
1465 efx->last_irq_cpu = raw_smp_processor_id();
Ben Hutchings62776d02010-06-23 11:30:07 +00001466 netif_vdbg(efx, intr, efx->net_dev,
1467 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1468 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
Ben Hutchings8e730c12009-11-29 15:14:45 +00001469
1470 /* Check to see if we have a serious error condition */
Steve Hodgson63695452010-04-28 09:27:36 +00001471 if (channel->channel == efx->fatal_irq_level) {
1472 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1473 if (unlikely(syserr))
1474 return efx_nic_fatal_interrupt(efx);
1475 }
Ben Hutchings8e730c12009-11-29 15:14:45 +00001476
1477 /* Schedule processing of the channel */
1478 efx_schedule_channel(channel);
1479
1480 return IRQ_HANDLED;
1481}
1482
1483
1484/* Setup RSS indirection table.
1485 * This maps from the hash value of the packet to RXQ
1486 */
1487static void efx_setup_rss_indir_table(struct efx_nic *efx)
1488{
1489 int i = 0;
1490 unsigned long offset;
1491 efx_dword_t dword;
1492
1493 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1494 return;
1495
1496 for (offset = FR_BZ_RX_INDIRECTION_TBL;
1497 offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1498 offset += 0x10) {
1499 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
Ben Hutchingsa4900ac2010-04-28 09:30:43 +00001500 i % efx->n_rx_channels);
Ben Hutchings8e730c12009-11-29 15:14:45 +00001501 efx_writed(efx, &dword, offset);
1502 i++;
1503 }
1504}
1505
1506/* Hook interrupt handler(s)
1507 * Try MSI and then legacy interrupts.
1508 */
1509int efx_nic_init_interrupt(struct efx_nic *efx)
1510{
1511 struct efx_channel *channel;
1512 int rc;
1513
1514 if (!EFX_INT_MODE_USE_MSI(efx)) {
1515 irq_handler_t handler;
1516 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1517 handler = efx_legacy_interrupt;
1518 else
1519 handler = falcon_legacy_interrupt_a1;
1520
1521 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1522 efx->name, efx);
1523 if (rc) {
Ben Hutchings62776d02010-06-23 11:30:07 +00001524 netif_err(efx, drv, efx->net_dev,
1525 "failed to hook legacy IRQ %d\n",
1526 efx->pci_dev->irq);
Ben Hutchings8e730c12009-11-29 15:14:45 +00001527 goto fail1;
1528 }
1529 return 0;
1530 }
1531
1532 /* Hook MSI or MSI-X interrupt */
1533 efx_for_each_channel(channel, efx) {
1534 rc = request_irq(channel->irq, efx_msi_interrupt,
1535 IRQF_PROBE_SHARED, /* Not shared */
1536 channel->name, channel);
1537 if (rc) {
Ben Hutchings62776d02010-06-23 11:30:07 +00001538 netif_err(efx, drv, efx->net_dev,
1539 "failed to hook IRQ %d\n", channel->irq);
Ben Hutchings8e730c12009-11-29 15:14:45 +00001540 goto fail2;
1541 }
1542 }
1543
1544 return 0;
1545
1546 fail2:
1547 efx_for_each_channel(channel, efx)
1548 free_irq(channel->irq, channel);
1549 fail1:
1550 return rc;
1551}
1552
1553void efx_nic_fini_interrupt(struct efx_nic *efx)
1554{
1555 struct efx_channel *channel;
1556 efx_oword_t reg;
1557
1558 /* Disable MSI/MSI-X interrupts */
1559 efx_for_each_channel(channel, efx) {
1560 if (channel->irq)
1561 free_irq(channel->irq, channel);
1562 }
1563
1564 /* ACK legacy interrupt */
1565 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1566 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1567 else
1568 falcon_irq_ack_a1(efx);
1569
1570 /* Disable legacy interrupt */
1571 if (efx->legacy_irq)
1572 free_irq(efx->legacy_irq, efx);
1573}
1574
1575u32 efx_nic_fpga_ver(struct efx_nic *efx)
1576{
1577 efx_oword_t altera_build;
1578 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1579 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1580}
1581
1582void efx_nic_init_common(struct efx_nic *efx)
1583{
1584 efx_oword_t temp;
1585
1586 /* Set positions of descriptor caches in SRAM. */
1587 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1588 efx->type->tx_dc_base / 8);
1589 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1590 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1591 efx->type->rx_dc_base / 8);
1592 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1593
1594 /* Set TX descriptor cache size. */
1595 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1596 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1597 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1598
1599 /* Set RX descriptor cache size. Set low watermark to size-8, as
1600 * this allows most efficient prefetching.
1601 */
1602 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1603 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1604 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1605 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1606 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1607
1608 /* Program INT_KER address */
1609 EFX_POPULATE_OWORD_2(temp,
1610 FRF_AZ_NORM_INT_VEC_DIS_KER,
1611 EFX_INT_MODE_USE_MSI(efx),
1612 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1613 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1614
Steve Hodgson63695452010-04-28 09:27:36 +00001615 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1616 /* Use an interrupt level unused by event queues */
1617 efx->fatal_irq_level = 0x1f;
1618 else
1619 /* Use a valid MSI-X vector */
1620 efx->fatal_irq_level = 0;
1621
Ben Hutchings8e730c12009-11-29 15:14:45 +00001622 /* Enable all the genuinely fatal interrupts. (They are still
1623 * masked by the overall interrupt mask, controlled by
1624 * falcon_interrupts()).
1625 *
1626 * Note: All other fatal interrupts are enabled
1627 */
1628 EFX_POPULATE_OWORD_3(temp,
1629 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1630 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1631 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
Steve Hodgsonb17424b2010-04-28 09:25:22 +00001632 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1633 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
Ben Hutchings8e730c12009-11-29 15:14:45 +00001634 EFX_INVERT_OWORD(temp);
1635 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1636
1637 efx_setup_rss_indir_table(efx);
1638
1639 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1640 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1641 */
1642 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1643 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1644 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1645 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1646 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
1647 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1648 /* Enable SW_EV to inherit in char driver - assume harmless here */
1649 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1650 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1651 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
Ben Hutchings286d47b2009-12-23 13:49:13 +00001652 /* Disable hardware watchdog which can misfire */
1653 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
Ben Hutchings8e730c12009-11-29 15:14:45 +00001654 /* Squash TX of packets of 16 bytes or less */
1655 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1656 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1657 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1658}
Ben Hutchings5b98c1b2010-06-21 03:06:53 +00001659
1660/* Register dump */
1661
1662#define REGISTER_REVISION_A 1
1663#define REGISTER_REVISION_B 2
1664#define REGISTER_REVISION_C 3
1665#define REGISTER_REVISION_Z 3 /* latest revision */
1666
1667struct efx_nic_reg {
1668 u32 offset:24;
1669 u32 min_revision:2, max_revision:2;
1670};
1671
1672#define REGISTER(name, min_rev, max_rev) { \
1673 FR_ ## min_rev ## max_rev ## _ ## name, \
1674 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1675}
1676#define REGISTER_AA(name) REGISTER(name, A, A)
1677#define REGISTER_AB(name) REGISTER(name, A, B)
1678#define REGISTER_AZ(name) REGISTER(name, A, Z)
1679#define REGISTER_BB(name) REGISTER(name, B, B)
1680#define REGISTER_BZ(name) REGISTER(name, B, Z)
1681#define REGISTER_CZ(name) REGISTER(name, C, Z)
1682
1683static const struct efx_nic_reg efx_nic_regs[] = {
1684 REGISTER_AZ(ADR_REGION),
1685 REGISTER_AZ(INT_EN_KER),
1686 REGISTER_BZ(INT_EN_CHAR),
1687 REGISTER_AZ(INT_ADR_KER),
1688 REGISTER_BZ(INT_ADR_CHAR),
1689 /* INT_ACK_KER is WO */
1690 /* INT_ISR0 is RC */
1691 REGISTER_AZ(HW_INIT),
1692 REGISTER_CZ(USR_EV_CFG),
1693 REGISTER_AB(EE_SPI_HCMD),
1694 REGISTER_AB(EE_SPI_HADR),
1695 REGISTER_AB(EE_SPI_HDATA),
1696 REGISTER_AB(EE_BASE_PAGE),
1697 REGISTER_AB(EE_VPD_CFG0),
1698 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1699 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1700 /* PCIE_CORE_INDIRECT is indirect */
1701 REGISTER_AB(NIC_STAT),
1702 REGISTER_AB(GPIO_CTL),
1703 REGISTER_AB(GLB_CTL),
1704 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1705 REGISTER_BZ(DP_CTRL),
1706 REGISTER_AZ(MEM_STAT),
1707 REGISTER_AZ(CS_DEBUG),
1708 REGISTER_AZ(ALTERA_BUILD),
1709 REGISTER_AZ(CSR_SPARE),
1710 REGISTER_AB(PCIE_SD_CTL0123),
1711 REGISTER_AB(PCIE_SD_CTL45),
1712 REGISTER_AB(PCIE_PCS_CTL_STAT),
1713 /* DEBUG_DATA_OUT is not used */
1714 /* DRV_EV is WO */
1715 REGISTER_AZ(EVQ_CTL),
1716 REGISTER_AZ(EVQ_CNT1),
1717 REGISTER_AZ(EVQ_CNT2),
1718 REGISTER_AZ(BUF_TBL_CFG),
1719 REGISTER_AZ(SRM_RX_DC_CFG),
1720 REGISTER_AZ(SRM_TX_DC_CFG),
1721 REGISTER_AZ(SRM_CFG),
1722 /* BUF_TBL_UPD is WO */
1723 REGISTER_AZ(SRM_UPD_EVQ),
1724 REGISTER_AZ(SRAM_PARITY),
1725 REGISTER_AZ(RX_CFG),
1726 REGISTER_BZ(RX_FILTER_CTL),
1727 /* RX_FLUSH_DESCQ is WO */
1728 REGISTER_AZ(RX_DC_CFG),
1729 REGISTER_AZ(RX_DC_PF_WM),
1730 REGISTER_BZ(RX_RSS_TKEY),
1731 /* RX_NODESC_DROP is RC */
1732 REGISTER_AA(RX_SELF_RST),
1733 /* RX_DEBUG, RX_PUSH_DROP are not used */
1734 REGISTER_CZ(RX_RSS_IPV6_REG1),
1735 REGISTER_CZ(RX_RSS_IPV6_REG2),
1736 REGISTER_CZ(RX_RSS_IPV6_REG3),
1737 /* TX_FLUSH_DESCQ is WO */
1738 REGISTER_AZ(TX_DC_CFG),
1739 REGISTER_AA(TX_CHKSM_CFG),
1740 REGISTER_AZ(TX_CFG),
1741 /* TX_PUSH_DROP is not used */
1742 REGISTER_AZ(TX_RESERVED),
1743 REGISTER_BZ(TX_PACE),
1744 /* TX_PACE_DROP_QID is RC */
1745 REGISTER_BB(TX_VLAN),
1746 REGISTER_BZ(TX_IPFIL_PORTEN),
1747 REGISTER_AB(MD_TXD),
1748 REGISTER_AB(MD_RXD),
1749 REGISTER_AB(MD_CS),
1750 REGISTER_AB(MD_PHY_ADR),
1751 REGISTER_AB(MD_ID),
1752 /* MD_STAT is RC */
1753 REGISTER_AB(MAC_STAT_DMA),
1754 REGISTER_AB(MAC_CTRL),
1755 REGISTER_BB(GEN_MODE),
1756 REGISTER_AB(MAC_MC_HASH_REG0),
1757 REGISTER_AB(MAC_MC_HASH_REG1),
1758 REGISTER_AB(GM_CFG1),
1759 REGISTER_AB(GM_CFG2),
1760 /* GM_IPG and GM_HD are not used */
1761 REGISTER_AB(GM_MAX_FLEN),
1762 /* GM_TEST is not used */
1763 REGISTER_AB(GM_ADR1),
1764 REGISTER_AB(GM_ADR2),
1765 REGISTER_AB(GMF_CFG0),
1766 REGISTER_AB(GMF_CFG1),
1767 REGISTER_AB(GMF_CFG2),
1768 REGISTER_AB(GMF_CFG3),
1769 REGISTER_AB(GMF_CFG4),
1770 REGISTER_AB(GMF_CFG5),
1771 REGISTER_BB(TX_SRC_MAC_CTL),
1772 REGISTER_AB(XM_ADR_LO),
1773 REGISTER_AB(XM_ADR_HI),
1774 REGISTER_AB(XM_GLB_CFG),
1775 REGISTER_AB(XM_TX_CFG),
1776 REGISTER_AB(XM_RX_CFG),
1777 REGISTER_AB(XM_MGT_INT_MASK),
1778 REGISTER_AB(XM_FC),
1779 REGISTER_AB(XM_PAUSE_TIME),
1780 REGISTER_AB(XM_TX_PARAM),
1781 REGISTER_AB(XM_RX_PARAM),
1782 /* XM_MGT_INT_MSK (note no 'A') is RC */
1783 REGISTER_AB(XX_PWR_RST),
1784 REGISTER_AB(XX_SD_CTL),
1785 REGISTER_AB(XX_TXDRV_CTL),
1786 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1787 /* XX_CORE_STAT is partly RC */
1788};
1789
1790struct efx_nic_reg_table {
1791 u32 offset:24;
1792 u32 min_revision:2, max_revision:2;
1793 u32 step:6, rows:21;
1794};
1795
1796#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1797 offset, \
1798 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1799 step, rows \
1800}
1801#define REGISTER_TABLE(name, min_rev, max_rev) \
1802 REGISTER_TABLE_DIMENSIONS( \
1803 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1804 min_rev, max_rev, \
1805 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1806 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1807#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1808#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1809#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1810#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1811#define REGISTER_TABLE_BB_CZ(name) \
1812 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1813 FR_BZ_ ## name ## _STEP, \
1814 FR_BB_ ## name ## _ROWS), \
1815 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1816 FR_BZ_ ## name ## _STEP, \
1817 FR_CZ_ ## name ## _ROWS)
1818#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1819
1820static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1821 /* DRIVER is not used */
1822 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1823 REGISTER_TABLE_BB(TX_IPFIL_TBL),
1824 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1825 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1826 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1827 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1828 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1829 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1830 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1831 /* The register buffer is allocated with slab, so we can't
1832 * reasonably read all of the buffer table (up to 8MB!).
1833 * However this driver will only use a few entries. Reading
1834 * 1K entries allows for some expansion of queue count and
1835 * size before we need to change the version. */
1836 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1837 A, A, 8, 1024),
1838 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1839 B, Z, 8, 1024),
1840 /* RX_FILTER_TBL{0,1} is huge and not used by this driver */
1841 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1842 REGISTER_TABLE_BB_CZ(TIMER_TBL),
1843 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1844 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1845 /* TX_FILTER_TBL0 is huge and not used by this driver */
1846 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1847 REGISTER_TABLE_CZ(MC_TREG_SMEM),
1848 /* MSIX_PBA_TABLE is not mapped */
1849 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1850};
1851
1852size_t efx_nic_get_regs_len(struct efx_nic *efx)
1853{
1854 const struct efx_nic_reg *reg;
1855 const struct efx_nic_reg_table *table;
1856 size_t len = 0;
1857
1858 for (reg = efx_nic_regs;
1859 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1860 reg++)
1861 if (efx->type->revision >= reg->min_revision &&
1862 efx->type->revision <= reg->max_revision)
1863 len += sizeof(efx_oword_t);
1864
1865 for (table = efx_nic_reg_tables;
1866 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1867 table++)
1868 if (efx->type->revision >= table->min_revision &&
1869 efx->type->revision <= table->max_revision)
1870 len += table->rows * min_t(size_t, table->step, 16);
1871
1872 return len;
1873}
1874
1875void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1876{
1877 const struct efx_nic_reg *reg;
1878 const struct efx_nic_reg_table *table;
1879
1880 for (reg = efx_nic_regs;
1881 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1882 reg++) {
1883 if (efx->type->revision >= reg->min_revision &&
1884 efx->type->revision <= reg->max_revision) {
1885 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1886 buf += sizeof(efx_oword_t);
1887 }
1888 }
1889
1890 for (table = efx_nic_reg_tables;
1891 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1892 table++) {
1893 size_t size, i;
1894
1895 if (!(efx->type->revision >= table->min_revision &&
1896 efx->type->revision <= table->max_revision))
1897 continue;
1898
1899 size = min_t(size_t, table->step, 16);
1900
1901 for (i = 0; i < table->rows; i++) {
1902 switch (table->step) {
1903 case 4: /* 32-bit register or SRAM */
1904 efx_readd_table(efx, buf, table->offset, i);
1905 break;
1906 case 8: /* 64-bit SRAM */
1907 efx_sram_readq(efx,
1908 efx->membase + table->offset,
1909 buf, i);
1910 break;
1911 case 16: /* 128-bit register */
1912 efx_reado_table(efx, buf, table->offset, i);
1913 break;
1914 case 32: /* 128-bit register, interleaved */
1915 efx_reado_table(efx, buf, table->offset, 2 * i);
1916 break;
1917 default:
1918 WARN_ON(1);
1919 return;
1920 }
1921 buf += size;
1922 }
1923 }
1924}