blob: 4e680f87a75f739729427a4b6027714e1c7f93f5 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
Rusty Lynch73649da2005-06-23 00:09:23 -070030 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
31 * Added function return probes functionality
Linus Torvalds1da177e2005-04-16 15:20:36 -070032 */
33
34#include <linux/config.h>
35#include <linux/kprobes.h>
36#include <linux/ptrace.h>
37#include <linux/spinlock.h>
38#include <linux/string.h>
39#include <linux/slab.h>
40#include <linux/preempt.h>
41#include <linux/moduleloader.h>
Rusty Lynch7e1048b2005-06-23 00:09:25 -070042#include <asm/cacheflush.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070043#include <asm/pgtable.h>
44#include <asm/kdebug.h>
45
46static DECLARE_MUTEX(kprobe_mutex);
47
Linus Torvalds1da177e2005-04-16 15:20:36 -070048static struct kprobe *current_kprobe;
49static unsigned long kprobe_status, kprobe_old_rflags, kprobe_saved_rflags;
Prasanna S Panchamukhiaa3d7e32005-06-23 00:09:37 -070050static struct kprobe *kprobe_prev;
51static unsigned long kprobe_status_prev, kprobe_old_rflags_prev, kprobe_saved_rflags_prev;
Linus Torvalds1da177e2005-04-16 15:20:36 -070052static struct pt_regs jprobe_saved_regs;
53static long *jprobe_saved_rsp;
54static kprobe_opcode_t *get_insn_slot(void);
55static void free_insn_slot(kprobe_opcode_t *slot);
56void jprobe_return_end(void);
57
58/* copy of the kernel stack at the probe fire time */
59static kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE];
60
61/*
62 * returns non-zero if opcode modifies the interrupt flag.
63 */
64static inline int is_IF_modifier(kprobe_opcode_t *insn)
65{
66 switch (*insn) {
67 case 0xfa: /* cli */
68 case 0xfb: /* sti */
69 case 0xcf: /* iret/iretd */
70 case 0x9d: /* popf/popfd */
71 return 1;
72 }
73
74 if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
75 return 1;
76 return 0;
77}
78
79int arch_prepare_kprobe(struct kprobe *p)
80{
81 /* insn: must be on special executable page on x86_64. */
82 up(&kprobe_mutex);
83 p->ainsn.insn = get_insn_slot();
84 down(&kprobe_mutex);
85 if (!p->ainsn.insn) {
86 return -ENOMEM;
87 }
88 return 0;
89}
90
91/*
92 * Determine if the instruction uses the %rip-relative addressing mode.
93 * If it does, return the address of the 32-bit displacement word.
94 * If not, return null.
95 */
96static inline s32 *is_riprel(u8 *insn)
97{
98#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
99 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
100 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
101 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
102 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
103 << (row % 64))
104 static const u64 onebyte_has_modrm[256 / 64] = {
105 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
106 /* ------------------------------- */
107 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
108 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
109 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
110 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
111 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
112 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
113 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
114 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
115 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
116 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
117 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
118 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
119 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
120 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
121 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
122 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
123 /* ------------------------------- */
124 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
125 };
126 static const u64 twobyte_has_modrm[256 / 64] = {
127 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
128 /* ------------------------------- */
129 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
130 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
131 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
132 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
133 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
134 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
135 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
136 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
137 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
138 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
139 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
140 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
141 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
142 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
143 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
144 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
145 /* ------------------------------- */
146 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
147 };
148#undef W
149 int need_modrm;
150
151 /* Skip legacy instruction prefixes. */
152 while (1) {
153 switch (*insn) {
154 case 0x66:
155 case 0x67:
156 case 0x2e:
157 case 0x3e:
158 case 0x26:
159 case 0x64:
160 case 0x65:
161 case 0x36:
162 case 0xf0:
163 case 0xf3:
164 case 0xf2:
165 ++insn;
166 continue;
167 }
168 break;
169 }
170
171 /* Skip REX instruction prefix. */
172 if ((*insn & 0xf0) == 0x40)
173 ++insn;
174
175 if (*insn == 0x0f) { /* Two-byte opcode. */
176 ++insn;
177 need_modrm = test_bit(*insn, twobyte_has_modrm);
178 } else { /* One-byte opcode. */
179 need_modrm = test_bit(*insn, onebyte_has_modrm);
180 }
181
182 if (need_modrm) {
183 u8 modrm = *++insn;
184 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
185 /* Displacement follows ModRM byte. */
186 return (s32 *) ++insn;
187 }
188 }
189
190 /* No %rip-relative addressing mode here. */
191 return NULL;
192}
193
194void arch_copy_kprobe(struct kprobe *p)
195{
196 s32 *ripdisp;
197 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
198 ripdisp = is_riprel(p->ainsn.insn);
199 if (ripdisp) {
200 /*
201 * The copied instruction uses the %rip-relative
202 * addressing mode. Adjust the displacement for the
203 * difference between the original location of this
204 * instruction and the location of the copy that will
205 * actually be run. The tricky bit here is making sure
206 * that the sign extension happens correctly in this
207 * calculation, since we need a signed 32-bit result to
208 * be sign-extended to 64 bits when it's added to the
209 * %rip value and yield the same 64-bit result that the
210 * sign-extension of the original signed 32-bit
211 * displacement would have given.
212 */
213 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
214 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
215 *ripdisp = disp;
216 }
Rusty Lynch7e1048b2005-06-23 00:09:25 -0700217 p->opcode = *p->addr;
218}
219
220void arch_arm_kprobe(struct kprobe *p)
221{
222 *p->addr = BREAKPOINT_INSTRUCTION;
223 flush_icache_range((unsigned long) p->addr,
224 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
225}
226
227void arch_disarm_kprobe(struct kprobe *p)
228{
229 *p->addr = p->opcode;
230 flush_icache_range((unsigned long) p->addr,
231 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700232}
233
234void arch_remove_kprobe(struct kprobe *p)
235{
236 up(&kprobe_mutex);
237 free_insn_slot(p->ainsn.insn);
238 down(&kprobe_mutex);
239}
240
Prasanna S Panchamukhiaa3d7e32005-06-23 00:09:37 -0700241static inline void save_previous_kprobe(void)
242{
243 kprobe_prev = current_kprobe;
244 kprobe_status_prev = kprobe_status;
245 kprobe_old_rflags_prev = kprobe_old_rflags;
246 kprobe_saved_rflags_prev = kprobe_saved_rflags;
247}
248
249static inline void restore_previous_kprobe(void)
250{
251 current_kprobe = kprobe_prev;
252 kprobe_status = kprobe_status_prev;
253 kprobe_old_rflags = kprobe_old_rflags_prev;
254 kprobe_saved_rflags = kprobe_saved_rflags_prev;
255}
256
257static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs)
258{
259 current_kprobe = p;
260 kprobe_saved_rflags = kprobe_old_rflags
261 = (regs->eflags & (TF_MASK | IF_MASK));
262 if (is_IF_modifier(p->ainsn.insn))
263 kprobe_saved_rflags &= ~IF_MASK;
264}
265
Linus Torvalds1da177e2005-04-16 15:20:36 -0700266static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
267{
268 regs->eflags |= TF_MASK;
269 regs->eflags &= ~IF_MASK;
270 /*single step inline if the instruction is an int3*/
271 if (p->opcode == BREAKPOINT_INSTRUCTION)
272 regs->rip = (unsigned long)p->addr;
273 else
274 regs->rip = (unsigned long)p->ainsn.insn;
275}
276
Rusty Lynch73649da2005-06-23 00:09:23 -0700277struct task_struct *arch_get_kprobe_task(void *ptr)
278{
279 return ((struct thread_info *) (((unsigned long) ptr) &
280 (~(THREAD_SIZE -1))))->task;
281}
282
283void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs)
284{
285 unsigned long *sara = (unsigned long *)regs->rsp;
286 struct kretprobe_instance *ri;
287 static void *orig_ret_addr;
288
289 /*
290 * Save the return address when the return probe hits
291 * the first time, and use it to populate the (krprobe
292 * instance)->ret_addr for subsequent return probes at
293 * the same addrress since stack address would have
294 * the kretprobe_trampoline by then.
295 */
296 if (((void*) *sara) != kretprobe_trampoline)
297 orig_ret_addr = (void*) *sara;
298
299 if ((ri = get_free_rp_inst(rp)) != NULL) {
300 ri->rp = rp;
301 ri->stack_addr = sara;
302 ri->ret_addr = orig_ret_addr;
303 add_rp_inst(ri);
304 /* Replace the return addr with trampoline addr */
305 *sara = (unsigned long) &kretprobe_trampoline;
306 } else {
307 rp->nmissed++;
308 }
309}
310
311void arch_kprobe_flush_task(struct task_struct *tk)
312{
313 struct kretprobe_instance *ri;
314 while ((ri = get_rp_inst_tsk(tk)) != NULL) {
315 *((unsigned long *)(ri->stack_addr)) =
316 (unsigned long) ri->ret_addr;
317 recycle_rp_inst(ri);
318 }
319}
320
Linus Torvalds1da177e2005-04-16 15:20:36 -0700321/*
322 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
323 * remain disabled thorough out this function.
324 */
325int kprobe_handler(struct pt_regs *regs)
326{
327 struct kprobe *p;
328 int ret = 0;
329 kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
330
331 /* We're in an interrupt, but this is clear and BUG()-safe. */
332 preempt_disable();
333
334 /* Check we're not actually recursing */
335 if (kprobe_running()) {
336 /* We *are* holding lock here, so this is safe.
337 Disarm the probe we just hit, and ignore it. */
338 p = get_kprobe(addr);
339 if (p) {
340 if (kprobe_status == KPROBE_HIT_SS) {
341 regs->eflags &= ~TF_MASK;
342 regs->eflags |= kprobe_saved_rflags;
343 unlock_kprobes();
344 goto no_kprobe;
Prasanna S Panchamukhiaa3d7e32005-06-23 00:09:37 -0700345 } else if (kprobe_status == KPROBE_HIT_SSDONE) {
346 /* TODO: Provide re-entrancy from
347 * post_kprobes_handler() and avoid exception
348 * stack corruption while single-stepping on
349 * the instruction of the new probe.
350 */
351 arch_disarm_kprobe(p);
352 regs->rip = (unsigned long)p->addr;
353 ret = 1;
354 } else {
355 /* We have reentered the kprobe_handler(), since
356 * another probe was hit while within the
357 * handler. We here save the original kprobe
358 * variables and just single step on instruction
359 * of the new probe without calling any user
360 * handlers.
361 */
362 save_previous_kprobe();
363 set_current_kprobe(p, regs);
364 p->nmissed++;
365 prepare_singlestep(p, regs);
366 kprobe_status = KPROBE_REENTER;
367 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700368 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700369 } else {
370 p = current_kprobe;
371 if (p->break_handler && p->break_handler(p, regs)) {
372 goto ss_probe;
373 }
374 }
375 /* If it's not ours, can't be delete race, (we hold lock). */
376 goto no_kprobe;
377 }
378
379 lock_kprobes();
380 p = get_kprobe(addr);
381 if (!p) {
382 unlock_kprobes();
383 if (*addr != BREAKPOINT_INSTRUCTION) {
384 /*
385 * The breakpoint instruction was removed right
386 * after we hit it. Another cpu has removed
387 * either a probepoint or a debugger breakpoint
388 * at this address. In either case, no further
389 * handling of this interrupt is appropriate.
390 */
391 ret = 1;
392 }
393 /* Not one of ours: let kernel handle it */
394 goto no_kprobe;
395 }
396
397 kprobe_status = KPROBE_HIT_ACTIVE;
Prasanna S Panchamukhiaa3d7e32005-06-23 00:09:37 -0700398 set_current_kprobe(p, regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399
400 if (p->pre_handler && p->pre_handler(p, regs))
401 /* handler has already set things up, so skip ss setup */
402 return 1;
403
404ss_probe:
405 prepare_singlestep(p, regs);
406 kprobe_status = KPROBE_HIT_SS;
407 return 1;
408
409no_kprobe:
410 preempt_enable_no_resched();
411 return ret;
412}
413
414/*
Rusty Lynch73649da2005-06-23 00:09:23 -0700415 * For function-return probes, init_kprobes() establishes a probepoint
416 * here. When a retprobed function returns, this probe is hit and
417 * trampoline_probe_handler() runs, calling the kretprobe's handler.
418 */
419 void kretprobe_trampoline_holder(void)
420 {
421 asm volatile ( ".global kretprobe_trampoline\n"
422 "kretprobe_trampoline: \n"
423 "nop\n");
424 }
425
426/*
427 * Called when we hit the probe point at kretprobe_trampoline
428 */
429int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
430{
431 struct task_struct *tsk;
432 struct kretprobe_instance *ri;
433 struct hlist_head *head;
434 struct hlist_node *node;
435 unsigned long *sara = (unsigned long *)regs->rsp - 1;
436
437 tsk = arch_get_kprobe_task(sara);
438 head = kretprobe_inst_table_head(tsk);
439
440 hlist_for_each_entry(ri, node, head, hlist) {
441 if (ri->stack_addr == sara && ri->rp) {
442 if (ri->rp->handler)
443 ri->rp->handler(ri, regs);
444 }
445 }
446 return 0;
447}
448
449void trampoline_post_handler(struct kprobe *p, struct pt_regs *regs,
450 unsigned long flags)
451{
452 struct kretprobe_instance *ri;
453 /* RA already popped */
454 unsigned long *sara = ((unsigned long *)regs->rsp) - 1;
455
456 while ((ri = get_rp_inst(sara))) {
457 regs->rip = (unsigned long)ri->ret_addr;
458 recycle_rp_inst(ri);
459 }
460 regs->eflags &= ~TF_MASK;
461}
462
463/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700464 * Called after single-stepping. p->addr is the address of the
465 * instruction whose first byte has been replaced by the "int 3"
466 * instruction. To avoid the SMP problems that can occur when we
467 * temporarily put back the original opcode to single-step, we
468 * single-stepped a copy of the instruction. The address of this
469 * copy is p->ainsn.insn.
470 *
471 * This function prepares to return from the post-single-step
472 * interrupt. We have to fix up the stack as follows:
473 *
474 * 0) Except in the case of absolute or indirect jump or call instructions,
475 * the new rip is relative to the copied instruction. We need to make
476 * it relative to the original instruction.
477 *
478 * 1) If the single-stepped instruction was pushfl, then the TF and IF
479 * flags are set in the just-pushed eflags, and may need to be cleared.
480 *
481 * 2) If the single-stepped instruction was a call, the return address
482 * that is atop the stack is the address following the copied instruction.
483 * We need to make it the address following the original instruction.
484 */
485static void resume_execution(struct kprobe *p, struct pt_regs *regs)
486{
487 unsigned long *tos = (unsigned long *)regs->rsp;
488 unsigned long next_rip = 0;
489 unsigned long copy_rip = (unsigned long)p->ainsn.insn;
490 unsigned long orig_rip = (unsigned long)p->addr;
491 kprobe_opcode_t *insn = p->ainsn.insn;
492
493 /*skip the REX prefix*/
494 if (*insn >= 0x40 && *insn <= 0x4f)
495 insn++;
496
497 switch (*insn) {
498 case 0x9c: /* pushfl */
499 *tos &= ~(TF_MASK | IF_MASK);
500 *tos |= kprobe_old_rflags;
501 break;
Prasanna S Panchamukhi0b9e2ca2005-05-05 16:15:40 -0700502 case 0xc3: /* ret/lret */
503 case 0xcb:
504 case 0xc2:
505 case 0xca:
506 regs->eflags &= ~TF_MASK;
507 /* rip is already adjusted, no more changes required*/
508 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 case 0xe8: /* call relative - Fix return addr */
510 *tos = orig_rip + (*tos - copy_rip);
511 break;
512 case 0xff:
513 if ((*insn & 0x30) == 0x10) {
514 /* call absolute, indirect */
515 /* Fix return addr; rip is correct. */
516 next_rip = regs->rip;
517 *tos = orig_rip + (*tos - copy_rip);
518 } else if (((*insn & 0x31) == 0x20) || /* jmp near, absolute indirect */
519 ((*insn & 0x31) == 0x21)) { /* jmp far, absolute indirect */
520 /* rip is correct. */
521 next_rip = regs->rip;
522 }
523 break;
524 case 0xea: /* jmp absolute -- rip is correct */
525 next_rip = regs->rip;
526 break;
527 default:
528 break;
529 }
530
531 regs->eflags &= ~TF_MASK;
532 if (next_rip) {
533 regs->rip = next_rip;
534 } else {
535 regs->rip = orig_rip + (regs->rip - copy_rip);
536 }
537}
538
539/*
540 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
541 * remain disabled thoroughout this function. And we hold kprobe lock.
542 */
543int post_kprobe_handler(struct pt_regs *regs)
544{
545 if (!kprobe_running())
546 return 0;
547
Prasanna S Panchamukhiaa3d7e32005-06-23 00:09:37 -0700548 if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) {
549 kprobe_status = KPROBE_HIT_SSDONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700550 current_kprobe->post_handler(current_kprobe, regs, 0);
Prasanna S Panchamukhiaa3d7e32005-06-23 00:09:37 -0700551 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700552
Rusty Lynch73649da2005-06-23 00:09:23 -0700553 if (current_kprobe->post_handler != trampoline_post_handler)
554 resume_execution(current_kprobe, regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700555 regs->eflags |= kprobe_saved_rflags;
556
Prasanna S Panchamukhiaa3d7e32005-06-23 00:09:37 -0700557 /* Restore the original saved kprobes variables and continue. */
558 if (kprobe_status == KPROBE_REENTER) {
559 restore_previous_kprobe();
560 goto out;
561 } else {
562 unlock_kprobes();
563 }
564out:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700565 preempt_enable_no_resched();
566
567 /*
568 * if somebody else is singlestepping across a probe point, eflags
569 * will have TF set, in which case, continue the remaining processing
570 * of do_debug, as if this is not a probe hit.
571 */
572 if (regs->eflags & TF_MASK)
573 return 0;
574
575 return 1;
576}
577
578/* Interrupts disabled, kprobe_lock held. */
579int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
580{
581 if (current_kprobe->fault_handler
582 && current_kprobe->fault_handler(current_kprobe, regs, trapnr))
583 return 1;
584
585 if (kprobe_status & KPROBE_HIT_SS) {
586 resume_execution(current_kprobe, regs);
587 regs->eflags |= kprobe_old_rflags;
588
589 unlock_kprobes();
590 preempt_enable_no_resched();
591 }
592 return 0;
593}
594
595/*
596 * Wrapper routine for handling exceptions.
597 */
598int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
599 void *data)
600{
601 struct die_args *args = (struct die_args *)data;
602 switch (val) {
603 case DIE_INT3:
604 if (kprobe_handler(args->regs))
605 return NOTIFY_STOP;
606 break;
607 case DIE_DEBUG:
608 if (post_kprobe_handler(args->regs))
609 return NOTIFY_STOP;
610 break;
611 case DIE_GPF:
612 if (kprobe_running() &&
613 kprobe_fault_handler(args->regs, args->trapnr))
614 return NOTIFY_STOP;
615 break;
616 case DIE_PAGE_FAULT:
617 if (kprobe_running() &&
618 kprobe_fault_handler(args->regs, args->trapnr))
619 return NOTIFY_STOP;
620 break;
621 default:
622 break;
623 }
624 return NOTIFY_DONE;
625}
626
627int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
628{
629 struct jprobe *jp = container_of(p, struct jprobe, kp);
630 unsigned long addr;
631
632 jprobe_saved_regs = *regs;
633 jprobe_saved_rsp = (long *) regs->rsp;
634 addr = (unsigned long)jprobe_saved_rsp;
635 /*
636 * As Linus pointed out, gcc assumes that the callee
637 * owns the argument space and could overwrite it, e.g.
638 * tailcall optimization. So, to be absolutely safe
639 * we also save and restore enough stack bytes to cover
640 * the argument area.
641 */
642 memcpy(jprobes_stack, (kprobe_opcode_t *) addr, MIN_STACK_SIZE(addr));
643 regs->eflags &= ~IF_MASK;
644 regs->rip = (unsigned long)(jp->entry);
645 return 1;
646}
647
648void jprobe_return(void)
649{
650 preempt_enable_no_resched();
651 asm volatile (" xchg %%rbx,%%rsp \n"
652 " int3 \n"
653 " .globl jprobe_return_end \n"
654 " jprobe_return_end: \n"
655 " nop \n"::"b"
656 (jprobe_saved_rsp):"memory");
657}
658
659int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
660{
661 u8 *addr = (u8 *) (regs->rip - 1);
662 unsigned long stack_addr = (unsigned long)jprobe_saved_rsp;
663 struct jprobe *jp = container_of(p, struct jprobe, kp);
664
665 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
666 if ((long *)regs->rsp != jprobe_saved_rsp) {
667 struct pt_regs *saved_regs =
668 container_of(jprobe_saved_rsp, struct pt_regs, rsp);
669 printk("current rsp %p does not match saved rsp %p\n",
670 (long *)regs->rsp, jprobe_saved_rsp);
671 printk("Saved registers for jprobe %p\n", jp);
672 show_registers(saved_regs);
673 printk("Current registers\n");
674 show_registers(regs);
675 BUG();
676 }
677 *regs = jprobe_saved_regs;
678 memcpy((kprobe_opcode_t *) stack_addr, jprobes_stack,
679 MIN_STACK_SIZE(stack_addr));
680 return 1;
681 }
682 return 0;
683}
684
685/*
686 * kprobe->ainsn.insn points to the copy of the instruction to be single-stepped.
687 * By default on x86_64, pages we get from kmalloc or vmalloc are not
688 * executable. Single-stepping an instruction on such a page yields an
689 * oops. So instead of storing the instruction copies in their respective
690 * kprobe objects, we allocate a page, map it executable, and store all the
691 * instruction copies there. (We can allocate additional pages if somebody
692 * inserts a huge number of probes.) Each page can hold up to INSNS_PER_PAGE
693 * instruction slots, each of which is MAX_INSN_SIZE*sizeof(kprobe_opcode_t)
694 * bytes.
695 */
696#define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE*sizeof(kprobe_opcode_t)))
697struct kprobe_insn_page {
698 struct hlist_node hlist;
699 kprobe_opcode_t *insns; /* page of instruction slots */
700 char slot_used[INSNS_PER_PAGE];
701 int nused;
702};
703
704static struct hlist_head kprobe_insn_pages;
705
706/**
707 * get_insn_slot() - Find a slot on an executable page for an instruction.
708 * We allocate an executable page if there's no room on existing ones.
709 */
710static kprobe_opcode_t *get_insn_slot(void)
711{
712 struct kprobe_insn_page *kip;
713 struct hlist_node *pos;
714
715 hlist_for_each(pos, &kprobe_insn_pages) {
716 kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
717 if (kip->nused < INSNS_PER_PAGE) {
718 int i;
719 for (i = 0; i < INSNS_PER_PAGE; i++) {
720 if (!kip->slot_used[i]) {
721 kip->slot_used[i] = 1;
722 kip->nused++;
723 return kip->insns + (i*MAX_INSN_SIZE);
724 }
725 }
726 /* Surprise! No unused slots. Fix kip->nused. */
727 kip->nused = INSNS_PER_PAGE;
728 }
729 }
730
731 /* All out of space. Need to allocate a new page. Use slot 0.*/
732 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
733 if (!kip) {
734 return NULL;
735 }
736
737 /*
738 * For the %rip-relative displacement fixups to be doable, we
739 * need our instruction copy to be within +/- 2GB of any data it
740 * might access via %rip. That is, within 2GB of where the
741 * kernel image and loaded module images reside. So we allocate
742 * a page in the module loading area.
743 */
744 kip->insns = module_alloc(PAGE_SIZE);
745 if (!kip->insns) {
746 kfree(kip);
747 return NULL;
748 }
749 INIT_HLIST_NODE(&kip->hlist);
750 hlist_add_head(&kip->hlist, &kprobe_insn_pages);
751 memset(kip->slot_used, 0, INSNS_PER_PAGE);
752 kip->slot_used[0] = 1;
753 kip->nused = 1;
754 return kip->insns;
755}
756
757/**
758 * free_insn_slot() - Free instruction slot obtained from get_insn_slot().
759 */
760static void free_insn_slot(kprobe_opcode_t *slot)
761{
762 struct kprobe_insn_page *kip;
763 struct hlist_node *pos;
764
765 hlist_for_each(pos, &kprobe_insn_pages) {
766 kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
767 if (kip->insns <= slot
768 && slot < kip->insns+(INSNS_PER_PAGE*MAX_INSN_SIZE)) {
769 int i = (slot - kip->insns) / MAX_INSN_SIZE;
770 kip->slot_used[i] = 0;
771 kip->nused--;
772 if (kip->nused == 0) {
773 /*
774 * Page is no longer in use. Free it unless
775 * it's the last one. We keep the last one
776 * so as not to have to set it up again the
777 * next time somebody inserts a probe.
778 */
779 hlist_del(&kip->hlist);
780 if (hlist_empty(&kprobe_insn_pages)) {
781 INIT_HLIST_NODE(&kip->hlist);
782 hlist_add_head(&kip->hlist,
783 &kprobe_insn_pages);
784 } else {
785 module_free(NULL, kip->insns);
786 kfree(kip);
787 }
788 }
789 return;
790 }
791 }
792}