blob: 69af0cd6472402d304f123e629f37af3aeec7bc6 [file] [log] [blame]
Amir Goldsteindae1e522011-06-27 19:40:50 -04001/*
2 * linux/fs/ext4/indirect.c
3 *
4 * from
5 *
6 * linux/fs/ext4/inode.c
7 *
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
12 *
13 * from
14 *
15 * linux/fs/minix/inode.c
16 *
17 * Copyright (C) 1991, 1992 Linus Torvalds
18 *
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
21 */
22
Kent Overstreeta27bb332013-05-07 16:19:08 -070023#include <linux/aio.h>
Amir Goldsteindae1e522011-06-27 19:40:50 -040024#include "ext4_jbd2.h"
25#include "truncate.h"
26
27#include <trace/events/ext4.h>
28
29typedef struct {
30 __le32 *p;
31 __le32 key;
32 struct buffer_head *bh;
33} Indirect;
34
35static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
36{
37 p->key = *(p->p = v);
38 p->bh = bh;
39}
40
41/**
42 * ext4_block_to_path - parse the block number into array of offsets
43 * @inode: inode in question (we are only interested in its superblock)
44 * @i_block: block number to be parsed
45 * @offsets: array to store the offsets in
46 * @boundary: set this non-zero if the referred-to block is likely to be
47 * followed (on disk) by an indirect block.
48 *
49 * To store the locations of file's data ext4 uses a data structure common
50 * for UNIX filesystems - tree of pointers anchored in the inode, with
51 * data blocks at leaves and indirect blocks in intermediate nodes.
52 * This function translates the block number into path in that tree -
53 * return value is the path length and @offsets[n] is the offset of
54 * pointer to (n+1)th node in the nth one. If @block is out of range
55 * (negative or too large) warning is printed and zero returned.
56 *
57 * Note: function doesn't find node addresses, so no IO is needed. All
58 * we need to know is the capacity of indirect blocks (taken from the
59 * inode->i_sb).
60 */
61
62/*
63 * Portability note: the last comparison (check that we fit into triple
64 * indirect block) is spelled differently, because otherwise on an
65 * architecture with 32-bit longs and 8Kb pages we might get into trouble
66 * if our filesystem had 8Kb blocks. We might use long long, but that would
67 * kill us on x86. Oh, well, at least the sign propagation does not matter -
68 * i_block would have to be negative in the very beginning, so we would not
69 * get there at all.
70 */
71
72static int ext4_block_to_path(struct inode *inode,
73 ext4_lblk_t i_block,
74 ext4_lblk_t offsets[4], int *boundary)
75{
76 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
77 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
78 const long direct_blocks = EXT4_NDIR_BLOCKS,
79 indirect_blocks = ptrs,
80 double_blocks = (1 << (ptrs_bits * 2));
81 int n = 0;
82 int final = 0;
83
84 if (i_block < direct_blocks) {
85 offsets[n++] = i_block;
86 final = direct_blocks;
87 } else if ((i_block -= direct_blocks) < indirect_blocks) {
88 offsets[n++] = EXT4_IND_BLOCK;
89 offsets[n++] = i_block;
90 final = ptrs;
91 } else if ((i_block -= indirect_blocks) < double_blocks) {
92 offsets[n++] = EXT4_DIND_BLOCK;
93 offsets[n++] = i_block >> ptrs_bits;
94 offsets[n++] = i_block & (ptrs - 1);
95 final = ptrs;
96 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
97 offsets[n++] = EXT4_TIND_BLOCK;
98 offsets[n++] = i_block >> (ptrs_bits * 2);
99 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
100 offsets[n++] = i_block & (ptrs - 1);
101 final = ptrs;
102 } else {
103 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
104 i_block + direct_blocks +
105 indirect_blocks + double_blocks, inode->i_ino);
106 }
107 if (boundary)
108 *boundary = final - 1 - (i_block & (ptrs - 1));
109 return n;
110}
111
112/**
113 * ext4_get_branch - read the chain of indirect blocks leading to data
114 * @inode: inode in question
115 * @depth: depth of the chain (1 - direct pointer, etc.)
116 * @offsets: offsets of pointers in inode/indirect blocks
117 * @chain: place to store the result
118 * @err: here we store the error value
119 *
120 * Function fills the array of triples <key, p, bh> and returns %NULL
121 * if everything went OK or the pointer to the last filled triple
122 * (incomplete one) otherwise. Upon the return chain[i].key contains
123 * the number of (i+1)-th block in the chain (as it is stored in memory,
124 * i.e. little-endian 32-bit), chain[i].p contains the address of that
125 * number (it points into struct inode for i==0 and into the bh->b_data
126 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
127 * block for i>0 and NULL for i==0. In other words, it holds the block
128 * numbers of the chain, addresses they were taken from (and where we can
129 * verify that chain did not change) and buffer_heads hosting these
130 * numbers.
131 *
132 * Function stops when it stumbles upon zero pointer (absent block)
133 * (pointer to last triple returned, *@err == 0)
134 * or when it gets an IO error reading an indirect block
135 * (ditto, *@err == -EIO)
136 * or when it reads all @depth-1 indirect blocks successfully and finds
137 * the whole chain, all way to the data (returns %NULL, *err == 0).
138 *
139 * Need to be called with
140 * down_read(&EXT4_I(inode)->i_data_sem)
141 */
142static Indirect *ext4_get_branch(struct inode *inode, int depth,
143 ext4_lblk_t *offsets,
144 Indirect chain[4], int *err)
145{
146 struct super_block *sb = inode->i_sb;
147 Indirect *p = chain;
148 struct buffer_head *bh;
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500149 int ret = -EIO;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400150
151 *err = 0;
152 /* i_data is not going away, no lock needed */
153 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
154 if (!p->key)
155 goto no_block;
156 while (--depth) {
157 bh = sb_getblk(sb, le32_to_cpu(p->key));
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500158 if (unlikely(!bh)) {
159 ret = -ENOMEM;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400160 goto failure;
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500161 }
Amir Goldsteindae1e522011-06-27 19:40:50 -0400162
163 if (!bh_uptodate_or_lock(bh)) {
164 if (bh_submit_read(bh) < 0) {
165 put_bh(bh);
166 goto failure;
167 }
168 /* validate block references */
169 if (ext4_check_indirect_blockref(inode, bh)) {
170 put_bh(bh);
171 goto failure;
172 }
173 }
174
175 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
176 /* Reader: end */
177 if (!p->key)
178 goto no_block;
179 }
180 return NULL;
181
182failure:
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500183 *err = ret;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400184no_block:
185 return p;
186}
187
188/**
189 * ext4_find_near - find a place for allocation with sufficient locality
190 * @inode: owner
191 * @ind: descriptor of indirect block.
192 *
193 * This function returns the preferred place for block allocation.
194 * It is used when heuristic for sequential allocation fails.
195 * Rules are:
196 * + if there is a block to the left of our position - allocate near it.
197 * + if pointer will live in indirect block - allocate near that block.
198 * + if pointer will live in inode - allocate in the same
199 * cylinder group.
200 *
201 * In the latter case we colour the starting block by the callers PID to
202 * prevent it from clashing with concurrent allocations for a different inode
203 * in the same block group. The PID is used here so that functionally related
204 * files will be close-by on-disk.
205 *
206 * Caller must make sure that @ind is valid and will stay that way.
207 */
208static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
209{
210 struct ext4_inode_info *ei = EXT4_I(inode);
211 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
212 __le32 *p;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400213
214 /* Try to find previous block */
215 for (p = ind->p - 1; p >= start; p--) {
216 if (*p)
217 return le32_to_cpu(*p);
218 }
219
220 /* No such thing, so let's try location of indirect block */
221 if (ind->bh)
222 return ind->bh->b_blocknr;
223
224 /*
225 * It is going to be referred to from the inode itself? OK, just put it
226 * into the same cylinder group then.
227 */
Eric Sandeenf86186b2011-06-28 10:01:31 -0400228 return ext4_inode_to_goal_block(inode);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400229}
230
231/**
232 * ext4_find_goal - find a preferred place for allocation.
233 * @inode: owner
234 * @block: block we want
235 * @partial: pointer to the last triple within a chain
236 *
237 * Normally this function find the preferred place for block allocation,
238 * returns it.
239 * Because this is only used for non-extent files, we limit the block nr
240 * to 32 bits.
241 */
242static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
243 Indirect *partial)
244{
245 ext4_fsblk_t goal;
246
247 /*
248 * XXX need to get goal block from mballoc's data structures
249 */
250
251 goal = ext4_find_near(inode, partial);
252 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
253 return goal;
254}
255
256/**
257 * ext4_blks_to_allocate - Look up the block map and count the number
258 * of direct blocks need to be allocated for the given branch.
259 *
260 * @branch: chain of indirect blocks
261 * @k: number of blocks need for indirect blocks
262 * @blks: number of data blocks to be mapped.
263 * @blocks_to_boundary: the offset in the indirect block
264 *
265 * return the total number of blocks to be allocate, including the
266 * direct and indirect blocks.
267 */
268static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
269 int blocks_to_boundary)
270{
271 unsigned int count = 0;
272
273 /*
274 * Simple case, [t,d]Indirect block(s) has not allocated yet
275 * then it's clear blocks on that path have not allocated
276 */
277 if (k > 0) {
278 /* right now we don't handle cross boundary allocation */
279 if (blks < blocks_to_boundary + 1)
280 count += blks;
281 else
282 count += blocks_to_boundary + 1;
283 return count;
284 }
285
286 count++;
287 while (count < blks && count <= blocks_to_boundary &&
288 le32_to_cpu(*(branch[0].p + count)) == 0) {
289 count++;
290 }
291 return count;
292}
293
294/**
Amir Goldsteindae1e522011-06-27 19:40:50 -0400295 * ext4_alloc_branch - allocate and set up a chain of blocks.
296 * @handle: handle for this transaction
297 * @inode: owner
298 * @indirect_blks: number of allocated indirect blocks
299 * @blks: number of allocated direct blocks
300 * @goal: preferred place for allocation
301 * @offsets: offsets (in the blocks) to store the pointers to next.
302 * @branch: place to store the chain in.
303 *
304 * This function allocates blocks, zeroes out all but the last one,
305 * links them into chain and (if we are synchronous) writes them to disk.
306 * In other words, it prepares a branch that can be spliced onto the
307 * inode. It stores the information about that chain in the branch[], in
308 * the same format as ext4_get_branch() would do. We are calling it after
309 * we had read the existing part of chain and partial points to the last
310 * triple of that (one with zero ->key). Upon the exit we have the same
311 * picture as after the successful ext4_get_block(), except that in one
312 * place chain is disconnected - *branch->p is still zero (we did not
313 * set the last link), but branch->key contains the number that should
314 * be placed into *branch->p to fill that gap.
315 *
316 * If allocation fails we free all blocks we've allocated (and forget
317 * their buffer_heads) and return the error value the from failed
318 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
319 * as described above and return 0.
320 */
Theodore Ts'oa5211002014-09-04 18:06:25 -0400321static int ext4_alloc_branch(handle_t *handle,
322 struct ext4_allocation_request *ar,
323 int indirect_blks, ext4_lblk_t *offsets,
324 Indirect *branch)
Amir Goldsteindae1e522011-06-27 19:40:50 -0400325{
Theodore Ts'o781f1432013-04-03 12:43:17 -0400326 struct buffer_head * bh;
327 ext4_fsblk_t b, new_blocks[4];
328 __le32 *p;
329 int i, j, err, len = 1;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400330
Theodore Ts'o781f1432013-04-03 12:43:17 -0400331 for (i = 0; i <= indirect_blks; i++) {
332 if (i == indirect_blks) {
Theodore Ts'oa5211002014-09-04 18:06:25 -0400333 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
Theodore Ts'o781f1432013-04-03 12:43:17 -0400334 } else
Theodore Ts'oa5211002014-09-04 18:06:25 -0400335 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
336 ar->inode, ar->goal, 0, NULL, &err);
Theodore Ts'o781f1432013-04-03 12:43:17 -0400337 if (err) {
338 i--;
339 goto failed;
340 }
341 branch[i].key = cpu_to_le32(new_blocks[i]);
342 if (i == 0)
343 continue;
344
Theodore Ts'oa5211002014-09-04 18:06:25 -0400345 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400346 if (unlikely(!bh)) {
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500347 err = -ENOMEM;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400348 goto failed;
349 }
Amir Goldsteindae1e522011-06-27 19:40:50 -0400350 lock_buffer(bh);
351 BUFFER_TRACE(bh, "call get_create_access");
352 err = ext4_journal_get_create_access(handle, bh);
353 if (err) {
Amir Goldsteindae1e522011-06-27 19:40:50 -0400354 unlock_buffer(bh);
355 goto failed;
356 }
357
Theodore Ts'o781f1432013-04-03 12:43:17 -0400358 memset(bh->b_data, 0, bh->b_size);
359 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
360 b = new_blocks[i];
361
362 if (i == indirect_blks)
Theodore Ts'oa5211002014-09-04 18:06:25 -0400363 len = ar->len;
Theodore Ts'o781f1432013-04-03 12:43:17 -0400364 for (j = 0; j < len; j++)
365 *p++ = cpu_to_le32(b++);
366
Amir Goldsteindae1e522011-06-27 19:40:50 -0400367 BUFFER_TRACE(bh, "marking uptodate");
368 set_buffer_uptodate(bh);
369 unlock_buffer(bh);
370
371 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
Theodore Ts'oa5211002014-09-04 18:06:25 -0400372 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400373 if (err)
374 goto failed;
375 }
Theodore Ts'o781f1432013-04-03 12:43:17 -0400376 return 0;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400377failed:
Theodore Ts'o781f1432013-04-03 12:43:17 -0400378 for (; i >= 0; i--) {
Jan Karac5c7b8d2014-06-15 23:46:28 -0400379 /*
380 * We want to ext4_forget() only freshly allocated indirect
381 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and
382 * buffer at branch[0].bh is indirect block / inode already
383 * existing before ext4_alloc_branch() was called.
384 */
385 if (i > 0 && i != indirect_blks && branch[i].bh)
Theodore Ts'oa5211002014-09-04 18:06:25 -0400386 ext4_forget(handle, 1, ar->inode, branch[i].bh,
Theodore Ts'o781f1432013-04-03 12:43:17 -0400387 branch[i].bh->b_blocknr);
Theodore Ts'oa5211002014-09-04 18:06:25 -0400388 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
389 (i == indirect_blks) ? ar->len : 1, 0);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400390 }
Amir Goldsteindae1e522011-06-27 19:40:50 -0400391 return err;
392}
393
394/**
395 * ext4_splice_branch - splice the allocated branch onto inode.
396 * @handle: handle for this transaction
397 * @inode: owner
398 * @block: (logical) number of block we are adding
399 * @chain: chain of indirect blocks (with a missing link - see
400 * ext4_alloc_branch)
401 * @where: location of missing link
402 * @num: number of indirect blocks we are adding
403 * @blks: number of direct blocks we are adding
404 *
405 * This function fills the missing link and does all housekeeping needed in
406 * inode (->i_blocks, etc.). In case of success we end up with the full
407 * chain to new block and return 0.
408 */
Theodore Ts'oa5211002014-09-04 18:06:25 -0400409static int ext4_splice_branch(handle_t *handle,
410 struct ext4_allocation_request *ar,
411 Indirect *where, int num)
Amir Goldsteindae1e522011-06-27 19:40:50 -0400412{
413 int i;
414 int err = 0;
415 ext4_fsblk_t current_block;
416
417 /*
418 * If we're splicing into a [td]indirect block (as opposed to the
419 * inode) then we need to get write access to the [td]indirect block
420 * before the splice.
421 */
422 if (where->bh) {
423 BUFFER_TRACE(where->bh, "get_write_access");
424 err = ext4_journal_get_write_access(handle, where->bh);
425 if (err)
426 goto err_out;
427 }
428 /* That's it */
429
430 *where->p = where->key;
431
432 /*
433 * Update the host buffer_head or inode to point to more just allocated
434 * direct blocks blocks
435 */
Theodore Ts'oa5211002014-09-04 18:06:25 -0400436 if (num == 0 && ar->len > 1) {
Amir Goldsteindae1e522011-06-27 19:40:50 -0400437 current_block = le32_to_cpu(where->key) + 1;
Theodore Ts'oa5211002014-09-04 18:06:25 -0400438 for (i = 1; i < ar->len; i++)
Amir Goldsteindae1e522011-06-27 19:40:50 -0400439 *(where->p + i) = cpu_to_le32(current_block++);
440 }
441
442 /* We are done with atomic stuff, now do the rest of housekeeping */
443 /* had we spliced it onto indirect block? */
444 if (where->bh) {
445 /*
446 * If we spliced it onto an indirect block, we haven't
447 * altered the inode. Note however that if it is being spliced
448 * onto an indirect block at the very end of the file (the
449 * file is growing) then we *will* alter the inode to reflect
450 * the new i_size. But that is not done here - it is done in
451 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
452 */
453 jbd_debug(5, "splicing indirect only\n");
454 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
Theodore Ts'oa5211002014-09-04 18:06:25 -0400455 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400456 if (err)
457 goto err_out;
458 } else {
459 /*
460 * OK, we spliced it into the inode itself on a direct block.
461 */
Theodore Ts'oa5211002014-09-04 18:06:25 -0400462 ext4_mark_inode_dirty(handle, ar->inode);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400463 jbd_debug(5, "splicing direct\n");
464 }
465 return err;
466
467err_out:
468 for (i = 1; i <= num; i++) {
469 /*
470 * branch[i].bh is newly allocated, so there is no
471 * need to revoke the block, which is why we don't
472 * need to set EXT4_FREE_BLOCKS_METADATA.
473 */
Theodore Ts'oa5211002014-09-04 18:06:25 -0400474 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
Amir Goldsteindae1e522011-06-27 19:40:50 -0400475 EXT4_FREE_BLOCKS_FORGET);
476 }
Theodore Ts'oa5211002014-09-04 18:06:25 -0400477 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
478 ar->len, 0);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400479
480 return err;
481}
482
483/*
484 * The ext4_ind_map_blocks() function handles non-extents inodes
485 * (i.e., using the traditional indirect/double-indirect i_blocks
486 * scheme) for ext4_map_blocks().
487 *
488 * Allocation strategy is simple: if we have to allocate something, we will
489 * have to go the whole way to leaf. So let's do it before attaching anything
490 * to tree, set linkage between the newborn blocks, write them if sync is
491 * required, recheck the path, free and repeat if check fails, otherwise
492 * set the last missing link (that will protect us from any truncate-generated
493 * removals - all blocks on the path are immune now) and possibly force the
494 * write on the parent block.
495 * That has a nice additional property: no special recovery from the failed
496 * allocations is needed - we simply release blocks and do not touch anything
497 * reachable from inode.
498 *
499 * `handle' can be NULL if create == 0.
500 *
501 * return > 0, # of blocks mapped or allocated.
502 * return = 0, if plain lookup failed.
503 * return < 0, error case.
504 *
505 * The ext4_ind_get_blocks() function should be called with
506 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
507 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
508 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
509 * blocks.
510 */
511int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
512 struct ext4_map_blocks *map,
513 int flags)
514{
Theodore Ts'oa5211002014-09-04 18:06:25 -0400515 struct ext4_allocation_request ar;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400516 int err = -EIO;
517 ext4_lblk_t offsets[4];
518 Indirect chain[4];
519 Indirect *partial;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400520 int indirect_blks;
521 int blocks_to_boundary = 0;
522 int depth;
523 int count = 0;
524 ext4_fsblk_t first_block = 0;
525
526 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
527 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
528 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
529 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
530 &blocks_to_boundary);
531
532 if (depth == 0)
533 goto out;
534
535 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
536
537 /* Simplest case - block found, no allocation needed */
538 if (!partial) {
539 first_block = le32_to_cpu(chain[depth - 1].key);
540 count++;
541 /*map more blocks*/
542 while (count < map->m_len && count <= blocks_to_boundary) {
543 ext4_fsblk_t blk;
544
545 blk = le32_to_cpu(*(chain[depth-1].p + count));
546
547 if (blk == first_block + count)
548 count++;
549 else
550 break;
551 }
552 goto got_it;
553 }
554
555 /* Next simple case - plain lookup or failed read of indirect block */
556 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
557 goto cleanup;
558
559 /*
560 * Okay, we need to do block allocation.
561 */
Theodore Ts'obab08ab2011-09-09 18:36:51 -0400562 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
563 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
564 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
565 "non-extent mapped inodes with bigalloc");
566 return -ENOSPC;
567 }
568
Theodore Ts'oa5211002014-09-04 18:06:25 -0400569 /* Set up for the direct block allocation */
570 memset(&ar, 0, sizeof(ar));
571 ar.inode = inode;
572 ar.logical = map->m_lblk;
573 if (S_ISREG(inode->i_mode))
574 ar.flags = EXT4_MB_HINT_DATA;
575
576 ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400577
578 /* the number of blocks need to allocate for [d,t]indirect blocks */
579 indirect_blks = (chain + depth) - partial - 1;
580
581 /*
582 * Next look up the indirect map to count the totoal number of
583 * direct blocks to allocate for this branch.
584 */
Theodore Ts'oa5211002014-09-04 18:06:25 -0400585 ar.len = ext4_blks_to_allocate(partial, indirect_blks,
586 map->m_len, blocks_to_boundary);
587
Amir Goldsteindae1e522011-06-27 19:40:50 -0400588 /*
589 * Block out ext4_truncate while we alter the tree
590 */
Theodore Ts'oa5211002014-09-04 18:06:25 -0400591 err = ext4_alloc_branch(handle, &ar, indirect_blks,
Amir Goldsteindae1e522011-06-27 19:40:50 -0400592 offsets + (partial - chain), partial);
593
594 /*
595 * The ext4_splice_branch call will free and forget any buffers
596 * on the new chain if there is a failure, but that risks using
597 * up transaction credits, especially for bitmaps where the
598 * credits cannot be returned. Can we handle this somehow? We
599 * may need to return -EAGAIN upwards in the worst case. --sct
600 */
601 if (!err)
Theodore Ts'oa5211002014-09-04 18:06:25 -0400602 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400603 if (err)
604 goto cleanup;
605
606 map->m_flags |= EXT4_MAP_NEW;
607
608 ext4_update_inode_fsync_trans(handle, inode, 1);
Theodore Ts'oa5211002014-09-04 18:06:25 -0400609 count = ar.len;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400610got_it:
611 map->m_flags |= EXT4_MAP_MAPPED;
612 map->m_pblk = le32_to_cpu(chain[depth-1].key);
613 map->m_len = count;
614 if (count > blocks_to_boundary)
615 map->m_flags |= EXT4_MAP_BOUNDARY;
616 err = count;
617 /* Clean up and exit */
618 partial = chain + depth - 1; /* the whole chain */
619cleanup:
620 while (partial > chain) {
621 BUFFER_TRACE(partial->bh, "call brelse");
622 brelse(partial->bh);
623 partial--;
624 }
625out:
Theodore Ts'o21ddd562013-07-01 08:12:40 -0400626 trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400627 return err;
628}
629
630/*
631 * O_DIRECT for ext3 (or indirect map) based files
632 *
633 * If the O_DIRECT write will extend the file then add this inode to the
634 * orphan list. So recovery will truncate it back to the original size
635 * if the machine crashes during the write.
636 *
637 * If the O_DIRECT write is intantiating holes inside i_size and the machine
638 * crashes then stale disk data _may_ be exposed inside the file. But current
639 * VFS code falls back into buffered path in that case so we are safe.
640 */
641ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
Al Viro16b1f052014-03-04 22:14:00 -0500642 struct iov_iter *iter, loff_t offset)
Amir Goldsteindae1e522011-06-27 19:40:50 -0400643{
644 struct file *file = iocb->ki_filp;
645 struct inode *inode = file->f_mapping->host;
646 struct ext4_inode_info *ei = EXT4_I(inode);
647 handle_t *handle;
648 ssize_t ret;
649 int orphan = 0;
Al Viroa6cbcd42014-03-04 22:38:00 -0500650 size_t count = iov_iter_count(iter);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400651 int retries = 0;
652
653 if (rw == WRITE) {
654 loff_t final_size = offset + count;
655
656 if (final_size > inode->i_size) {
657 /* Credits for sb + inode write */
Theodore Ts'o9924a922013-02-08 21:59:22 -0500658 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400659 if (IS_ERR(handle)) {
660 ret = PTR_ERR(handle);
661 goto out;
662 }
663 ret = ext4_orphan_add(handle, inode);
664 if (ret) {
665 ext4_journal_stop(handle);
666 goto out;
667 }
668 orphan = 1;
669 ei->i_disksize = inode->i_size;
670 ext4_journal_stop(handle);
671 }
672 }
673
674retry:
Jiaying Zhangdccaf332011-08-19 19:13:32 -0400675 if (rw == READ && ext4_should_dioread_nolock(inode)) {
Dmitry Monakhov17335dc2012-09-29 00:41:21 -0400676 /*
677 * Nolock dioread optimization may be dynamically disabled
678 * via ext4_inode_block_unlocked_dio(). Check inode's state
679 * while holding extra i_dio_count ref.
680 */
681 atomic_inc(&inode->i_dio_count);
682 smp_mb();
683 if (unlikely(ext4_test_inode_state(inode,
684 EXT4_STATE_DIOREAD_LOCK))) {
685 inode_dio_done(inode);
686 goto locked;
687 }
Amir Goldsteindae1e522011-06-27 19:40:50 -0400688 ret = __blockdev_direct_IO(rw, iocb, inode,
Al Viro31b14032014-03-05 01:33:16 -0500689 inode->i_sb->s_bdev, iter, offset,
Amir Goldsteindae1e522011-06-27 19:40:50 -0400690 ext4_get_block, NULL, NULL, 0);
Dmitry Monakhov17335dc2012-09-29 00:41:21 -0400691 inode_dio_done(inode);
Jiaying Zhangdccaf332011-08-19 19:13:32 -0400692 } else {
Dmitry Monakhov17335dc2012-09-29 00:41:21 -0400693locked:
Al Viro31b14032014-03-05 01:33:16 -0500694 ret = blockdev_direct_IO(rw, iocb, inode, iter,
695 offset, ext4_get_block);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400696
697 if (unlikely((rw & WRITE) && ret < 0)) {
698 loff_t isize = i_size_read(inode);
Al Viro16b1f052014-03-04 22:14:00 -0500699 loff_t end = offset + count;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400700
701 if (end > isize)
702 ext4_truncate_failed_write(inode);
703 }
704 }
705 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
706 goto retry;
707
708 if (orphan) {
709 int err;
710
711 /* Credits for sb + inode write */
Theodore Ts'o9924a922013-02-08 21:59:22 -0500712 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400713 if (IS_ERR(handle)) {
714 /* This is really bad luck. We've written the data
715 * but cannot extend i_size. Bail out and pretend
716 * the write failed... */
717 ret = PTR_ERR(handle);
718 if (inode->i_nlink)
719 ext4_orphan_del(NULL, inode);
720
721 goto out;
722 }
723 if (inode->i_nlink)
724 ext4_orphan_del(handle, inode);
725 if (ret > 0) {
726 loff_t end = offset + ret;
727 if (end > inode->i_size) {
728 ei->i_disksize = end;
729 i_size_write(inode, end);
730 /*
731 * We're going to return a positive `ret'
732 * here due to non-zero-length I/O, so there's
733 * no way of reporting error returns from
734 * ext4_mark_inode_dirty() to userspace. So
735 * ignore it.
736 */
737 ext4_mark_inode_dirty(handle, inode);
738 }
739 }
740 err = ext4_journal_stop(handle);
741 if (ret == 0)
742 ret = err;
743 }
744out:
745 return ret;
746}
747
748/*
749 * Calculate the number of metadata blocks need to reserve
750 * to allocate a new block at @lblocks for non extent file based file
751 */
752int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
753{
754 struct ext4_inode_info *ei = EXT4_I(inode);
755 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
756 int blk_bits;
757
758 if (lblock < EXT4_NDIR_BLOCKS)
759 return 0;
760
761 lblock -= EXT4_NDIR_BLOCKS;
762
763 if (ei->i_da_metadata_calc_len &&
764 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
765 ei->i_da_metadata_calc_len++;
766 return 0;
767 }
768 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
769 ei->i_da_metadata_calc_len = 1;
770 blk_bits = order_base_2(lblock);
771 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
772}
773
Jan Karafa55a0e2013-06-04 12:56:55 -0400774/*
775 * Calculate number of indirect blocks touched by mapping @nrblocks logically
776 * contiguous blocks
777 */
778int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
Amir Goldsteindae1e522011-06-27 19:40:50 -0400779{
Amir Goldsteindae1e522011-06-27 19:40:50 -0400780 /*
Jan Karafa55a0e2013-06-04 12:56:55 -0400781 * With N contiguous data blocks, we need at most
782 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
783 * 2 dindirect blocks, and 1 tindirect block
Amir Goldsteindae1e522011-06-27 19:40:50 -0400784 */
Jan Karafa55a0e2013-06-04 12:56:55 -0400785 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400786}
787
788/*
789 * Truncate transactions can be complex and absolutely huge. So we need to
790 * be able to restart the transaction at a conventient checkpoint to make
791 * sure we don't overflow the journal.
792 *
Theodore Ts'o819c4922013-04-03 12:47:17 -0400793 * Try to extend this transaction for the purposes of truncation. If
Amir Goldsteindae1e522011-06-27 19:40:50 -0400794 * extend fails, we need to propagate the failure up and restart the
795 * transaction in the top-level truncate loop. --sct
Amir Goldsteindae1e522011-06-27 19:40:50 -0400796 *
797 * Returns 0 if we managed to create more room. If we can't create more
798 * room, and the transaction must be restarted we return 1.
799 */
800static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
801{
802 if (!ext4_handle_valid(handle))
803 return 0;
804 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
805 return 0;
806 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
807 return 0;
808 return 1;
809}
810
811/*
812 * Probably it should be a library function... search for first non-zero word
813 * or memcmp with zero_page, whatever is better for particular architecture.
814 * Linus?
815 */
816static inline int all_zeroes(__le32 *p, __le32 *q)
817{
818 while (p < q)
819 if (*p++)
820 return 0;
821 return 1;
822}
823
824/**
825 * ext4_find_shared - find the indirect blocks for partial truncation.
826 * @inode: inode in question
827 * @depth: depth of the affected branch
828 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
829 * @chain: place to store the pointers to partial indirect blocks
830 * @top: place to the (detached) top of branch
831 *
832 * This is a helper function used by ext4_truncate().
833 *
834 * When we do truncate() we may have to clean the ends of several
835 * indirect blocks but leave the blocks themselves alive. Block is
836 * partially truncated if some data below the new i_size is referred
837 * from it (and it is on the path to the first completely truncated
838 * data block, indeed). We have to free the top of that path along
839 * with everything to the right of the path. Since no allocation
840 * past the truncation point is possible until ext4_truncate()
841 * finishes, we may safely do the latter, but top of branch may
842 * require special attention - pageout below the truncation point
843 * might try to populate it.
844 *
845 * We atomically detach the top of branch from the tree, store the
846 * block number of its root in *@top, pointers to buffer_heads of
847 * partially truncated blocks - in @chain[].bh and pointers to
848 * their last elements that should not be removed - in
849 * @chain[].p. Return value is the pointer to last filled element
850 * of @chain.
851 *
852 * The work left to caller to do the actual freeing of subtrees:
853 * a) free the subtree starting from *@top
854 * b) free the subtrees whose roots are stored in
855 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
856 * c) free the subtrees growing from the inode past the @chain[0].
857 * (no partially truncated stuff there). */
858
859static Indirect *ext4_find_shared(struct inode *inode, int depth,
860 ext4_lblk_t offsets[4], Indirect chain[4],
861 __le32 *top)
862{
863 Indirect *partial, *p;
864 int k, err;
865
866 *top = 0;
867 /* Make k index the deepest non-null offset + 1 */
868 for (k = depth; k > 1 && !offsets[k-1]; k--)
869 ;
870 partial = ext4_get_branch(inode, k, offsets, chain, &err);
871 /* Writer: pointers */
872 if (!partial)
873 partial = chain + k-1;
874 /*
875 * If the branch acquired continuation since we've looked at it -
876 * fine, it should all survive and (new) top doesn't belong to us.
877 */
878 if (!partial->key && *partial->p)
879 /* Writer: end */
880 goto no_top;
881 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
882 ;
883 /*
884 * OK, we've found the last block that must survive. The rest of our
885 * branch should be detached before unlocking. However, if that rest
886 * of branch is all ours and does not grow immediately from the inode
887 * it's easier to cheat and just decrement partial->p.
888 */
889 if (p == chain + k - 1 && p > chain) {
890 p->p--;
891 } else {
892 *top = *p->p;
893 /* Nope, don't do this in ext4. Must leave the tree intact */
894#if 0
895 *p->p = 0;
896#endif
897 }
898 /* Writer: end */
899
900 while (partial > p) {
901 brelse(partial->bh);
902 partial--;
903 }
904no_top:
905 return partial;
906}
907
908/*
909 * Zero a number of block pointers in either an inode or an indirect block.
910 * If we restart the transaction we must again get write access to the
911 * indirect block for further modification.
912 *
913 * We release `count' blocks on disk, but (last - first) may be greater
914 * than `count' because there can be holes in there.
915 *
916 * Return 0 on success, 1 on invalid block range
917 * and < 0 on fatal error.
918 */
919static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
920 struct buffer_head *bh,
921 ext4_fsblk_t block_to_free,
922 unsigned long count, __le32 *first,
923 __le32 *last)
924{
925 __le32 *p;
Theodore Ts'o981250c2013-06-12 11:48:29 -0400926 int flags = EXT4_FREE_BLOCKS_VALIDATED;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400927 int err;
928
929 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
Theodore Ts'o981250c2013-06-12 11:48:29 -0400930 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
931 else if (ext4_should_journal_data(inode))
932 flags |= EXT4_FREE_BLOCKS_FORGET;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400933
934 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
935 count)) {
936 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
937 "blocks %llu len %lu",
938 (unsigned long long) block_to_free, count);
939 return 1;
940 }
941
942 if (try_to_extend_transaction(handle, inode)) {
943 if (bh) {
944 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
945 err = ext4_handle_dirty_metadata(handle, inode, bh);
946 if (unlikely(err))
947 goto out_err;
948 }
949 err = ext4_mark_inode_dirty(handle, inode);
950 if (unlikely(err))
951 goto out_err;
952 err = ext4_truncate_restart_trans(handle, inode,
953 ext4_blocks_for_truncate(inode));
954 if (unlikely(err))
955 goto out_err;
956 if (bh) {
957 BUFFER_TRACE(bh, "retaking write access");
958 err = ext4_journal_get_write_access(handle, bh);
959 if (unlikely(err))
960 goto out_err;
961 }
962 }
963
964 for (p = first; p < last; p++)
965 *p = 0;
966
967 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
968 return 0;
969out_err:
970 ext4_std_error(inode->i_sb, err);
971 return err;
972}
973
974/**
975 * ext4_free_data - free a list of data blocks
976 * @handle: handle for this transaction
977 * @inode: inode we are dealing with
978 * @this_bh: indirect buffer_head which contains *@first and *@last
979 * @first: array of block numbers
980 * @last: points immediately past the end of array
981 *
982 * We are freeing all blocks referred from that array (numbers are stored as
983 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
984 *
985 * We accumulate contiguous runs of blocks to free. Conveniently, if these
986 * blocks are contiguous then releasing them at one time will only affect one
987 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
988 * actually use a lot of journal space.
989 *
990 * @this_bh will be %NULL if @first and @last point into the inode's direct
991 * block pointers.
992 */
993static void ext4_free_data(handle_t *handle, struct inode *inode,
994 struct buffer_head *this_bh,
995 __le32 *first, __le32 *last)
996{
997 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
998 unsigned long count = 0; /* Number of blocks in the run */
999 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1000 corresponding to
1001 block_to_free */
1002 ext4_fsblk_t nr; /* Current block # */
1003 __le32 *p; /* Pointer into inode/ind
1004 for current block */
1005 int err = 0;
1006
1007 if (this_bh) { /* For indirect block */
1008 BUFFER_TRACE(this_bh, "get_write_access");
1009 err = ext4_journal_get_write_access(handle, this_bh);
1010 /* Important: if we can't update the indirect pointers
1011 * to the blocks, we can't free them. */
1012 if (err)
1013 return;
1014 }
1015
1016 for (p = first; p < last; p++) {
1017 nr = le32_to_cpu(*p);
1018 if (nr) {
1019 /* accumulate blocks to free if they're contiguous */
1020 if (count == 0) {
1021 block_to_free = nr;
1022 block_to_free_p = p;
1023 count = 1;
1024 } else if (nr == block_to_free + count) {
1025 count++;
1026 } else {
1027 err = ext4_clear_blocks(handle, inode, this_bh,
1028 block_to_free, count,
1029 block_to_free_p, p);
1030 if (err)
1031 break;
1032 block_to_free = nr;
1033 block_to_free_p = p;
1034 count = 1;
1035 }
1036 }
1037 }
1038
1039 if (!err && count > 0)
1040 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1041 count, block_to_free_p, p);
1042 if (err < 0)
1043 /* fatal error */
1044 return;
1045
1046 if (this_bh) {
1047 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1048
1049 /*
1050 * The buffer head should have an attached journal head at this
1051 * point. However, if the data is corrupted and an indirect
1052 * block pointed to itself, it would have been detached when
1053 * the block was cleared. Check for this instead of OOPSing.
1054 */
1055 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1056 ext4_handle_dirty_metadata(handle, inode, this_bh);
1057 else
1058 EXT4_ERROR_INODE(inode,
1059 "circular indirect block detected at "
1060 "block %llu",
1061 (unsigned long long) this_bh->b_blocknr);
1062 }
1063}
1064
1065/**
1066 * ext4_free_branches - free an array of branches
1067 * @handle: JBD handle for this transaction
1068 * @inode: inode we are dealing with
1069 * @parent_bh: the buffer_head which contains *@first and *@last
1070 * @first: array of block numbers
1071 * @last: pointer immediately past the end of array
1072 * @depth: depth of the branches to free
1073 *
1074 * We are freeing all blocks referred from these branches (numbers are
1075 * stored as little-endian 32-bit) and updating @inode->i_blocks
1076 * appropriately.
1077 */
1078static void ext4_free_branches(handle_t *handle, struct inode *inode,
1079 struct buffer_head *parent_bh,
1080 __le32 *first, __le32 *last, int depth)
1081{
1082 ext4_fsblk_t nr;
1083 __le32 *p;
1084
1085 if (ext4_handle_is_aborted(handle))
1086 return;
1087
1088 if (depth--) {
1089 struct buffer_head *bh;
1090 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1091 p = last;
1092 while (--p >= first) {
1093 nr = le32_to_cpu(*p);
1094 if (!nr)
1095 continue; /* A hole */
1096
1097 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1098 nr, 1)) {
1099 EXT4_ERROR_INODE(inode,
1100 "invalid indirect mapped "
1101 "block %lu (level %d)",
1102 (unsigned long) nr, depth);
1103 break;
1104 }
1105
1106 /* Go read the buffer for the next level down */
1107 bh = sb_bread(inode->i_sb, nr);
1108
1109 /*
1110 * A read failure? Report error and clear slot
1111 * (should be rare).
1112 */
1113 if (!bh) {
1114 EXT4_ERROR_INODE_BLOCK(inode, nr,
1115 "Read failure");
1116 continue;
1117 }
1118
1119 /* This zaps the entire block. Bottom up. */
1120 BUFFER_TRACE(bh, "free child branches");
1121 ext4_free_branches(handle, inode, bh,
1122 (__le32 *) bh->b_data,
1123 (__le32 *) bh->b_data + addr_per_block,
1124 depth);
1125 brelse(bh);
1126
1127 /*
1128 * Everything below this this pointer has been
1129 * released. Now let this top-of-subtree go.
1130 *
1131 * We want the freeing of this indirect block to be
1132 * atomic in the journal with the updating of the
1133 * bitmap block which owns it. So make some room in
1134 * the journal.
1135 *
1136 * We zero the parent pointer *after* freeing its
1137 * pointee in the bitmaps, so if extend_transaction()
1138 * for some reason fails to put the bitmap changes and
1139 * the release into the same transaction, recovery
1140 * will merely complain about releasing a free block,
1141 * rather than leaking blocks.
1142 */
1143 if (ext4_handle_is_aborted(handle))
1144 return;
1145 if (try_to_extend_transaction(handle, inode)) {
1146 ext4_mark_inode_dirty(handle, inode);
1147 ext4_truncate_restart_trans(handle, inode,
1148 ext4_blocks_for_truncate(inode));
1149 }
1150
1151 /*
1152 * The forget flag here is critical because if
1153 * we are journaling (and not doing data
1154 * journaling), we have to make sure a revoke
1155 * record is written to prevent the journal
1156 * replay from overwriting the (former)
1157 * indirect block if it gets reallocated as a
1158 * data block. This must happen in the same
1159 * transaction where the data blocks are
1160 * actually freed.
1161 */
1162 ext4_free_blocks(handle, inode, NULL, nr, 1,
1163 EXT4_FREE_BLOCKS_METADATA|
1164 EXT4_FREE_BLOCKS_FORGET);
1165
1166 if (parent_bh) {
1167 /*
1168 * The block which we have just freed is
1169 * pointed to by an indirect block: journal it
1170 */
1171 BUFFER_TRACE(parent_bh, "get_write_access");
1172 if (!ext4_journal_get_write_access(handle,
1173 parent_bh)){
1174 *p = 0;
1175 BUFFER_TRACE(parent_bh,
1176 "call ext4_handle_dirty_metadata");
1177 ext4_handle_dirty_metadata(handle,
1178 inode,
1179 parent_bh);
1180 }
1181 }
1182 }
1183 } else {
1184 /* We have reached the bottom of the tree. */
1185 BUFFER_TRACE(parent_bh, "free data blocks");
1186 ext4_free_data(handle, inode, parent_bh, first, last);
1187 }
1188}
1189
Theodore Ts'o819c4922013-04-03 12:47:17 -04001190void ext4_ind_truncate(handle_t *handle, struct inode *inode)
Amir Goldsteindae1e522011-06-27 19:40:50 -04001191{
Amir Goldsteindae1e522011-06-27 19:40:50 -04001192 struct ext4_inode_info *ei = EXT4_I(inode);
1193 __le32 *i_data = ei->i_data;
1194 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
Amir Goldsteindae1e522011-06-27 19:40:50 -04001195 ext4_lblk_t offsets[4];
1196 Indirect chain[4];
1197 Indirect *partial;
1198 __le32 nr = 0;
1199 int n = 0;
1200 ext4_lblk_t last_block, max_block;
1201 unsigned blocksize = inode->i_sb->s_blocksize;
Amir Goldsteindae1e522011-06-27 19:40:50 -04001202
1203 last_block = (inode->i_size + blocksize-1)
1204 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1205 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1206 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1207
Amir Goldsteindae1e522011-06-27 19:40:50 -04001208 if (last_block != max_block) {
1209 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1210 if (n == 0)
Theodore Ts'o819c4922013-04-03 12:47:17 -04001211 return;
Amir Goldsteindae1e522011-06-27 19:40:50 -04001212 }
1213
Zheng Liu51865fd2012-11-08 21:57:32 -05001214 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
Amir Goldsteindae1e522011-06-27 19:40:50 -04001215
1216 /*
1217 * The orphan list entry will now protect us from any crash which
1218 * occurs before the truncate completes, so it is now safe to propagate
1219 * the new, shorter inode size (held for now in i_size) into the
1220 * on-disk inode. We do this via i_disksize, which is the value which
1221 * ext4 *really* writes onto the disk inode.
1222 */
1223 ei->i_disksize = inode->i_size;
1224
1225 if (last_block == max_block) {
1226 /*
1227 * It is unnecessary to free any data blocks if last_block is
1228 * equal to the indirect block limit.
1229 */
Theodore Ts'o819c4922013-04-03 12:47:17 -04001230 return;
Amir Goldsteindae1e522011-06-27 19:40:50 -04001231 } else if (n == 1) { /* direct blocks */
1232 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1233 i_data + EXT4_NDIR_BLOCKS);
1234 goto do_indirects;
1235 }
1236
1237 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1238 /* Kill the top of shared branch (not detached) */
1239 if (nr) {
1240 if (partial == chain) {
1241 /* Shared branch grows from the inode */
1242 ext4_free_branches(handle, inode, NULL,
1243 &nr, &nr+1, (chain+n-1) - partial);
1244 *partial->p = 0;
1245 /*
1246 * We mark the inode dirty prior to restart,
1247 * and prior to stop. No need for it here.
1248 */
1249 } else {
1250 /* Shared branch grows from an indirect block */
1251 BUFFER_TRACE(partial->bh, "get_write_access");
1252 ext4_free_branches(handle, inode, partial->bh,
1253 partial->p,
1254 partial->p+1, (chain+n-1) - partial);
1255 }
1256 }
1257 /* Clear the ends of indirect blocks on the shared branch */
1258 while (partial > chain) {
1259 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1260 (__le32*)partial->bh->b_data+addr_per_block,
1261 (chain+n-1) - partial);
1262 BUFFER_TRACE(partial->bh, "call brelse");
1263 brelse(partial->bh);
1264 partial--;
1265 }
1266do_indirects:
1267 /* Kill the remaining (whole) subtrees */
1268 switch (offsets[0]) {
1269 default:
1270 nr = i_data[EXT4_IND_BLOCK];
1271 if (nr) {
1272 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1273 i_data[EXT4_IND_BLOCK] = 0;
1274 }
1275 case EXT4_IND_BLOCK:
1276 nr = i_data[EXT4_DIND_BLOCK];
1277 if (nr) {
1278 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1279 i_data[EXT4_DIND_BLOCK] = 0;
1280 }
1281 case EXT4_DIND_BLOCK:
1282 nr = i_data[EXT4_TIND_BLOCK];
1283 if (nr) {
1284 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1285 i_data[EXT4_TIND_BLOCK] = 0;
1286 }
1287 case EXT4_TIND_BLOCK:
1288 ;
1289 }
Amir Goldsteindae1e522011-06-27 19:40:50 -04001290}
1291
Lukas Czerner4f579ae2014-07-15 06:03:38 -04001292/**
1293 * ext4_ind_remove_space - remove space from the range
1294 * @handle: JBD handle for this transaction
1295 * @inode: inode we are dealing with
1296 * @start: First block to remove
1297 * @end: One block after the last block to remove (exclusive)
1298 *
1299 * Free the blocks in the defined range (end is exclusive endpoint of
1300 * range). This is used by ext4_punch_hole().
1301 */
1302int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1303 ext4_lblk_t start, ext4_lblk_t end)
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001304{
Lukas Czerner4f579ae2014-07-15 06:03:38 -04001305 struct ext4_inode_info *ei = EXT4_I(inode);
1306 __le32 *i_data = ei->i_data;
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001307 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
Lukas Czerner4f579ae2014-07-15 06:03:38 -04001308 ext4_lblk_t offsets[4], offsets2[4];
1309 Indirect chain[4], chain2[4];
1310 Indirect *partial, *partial2;
1311 ext4_lblk_t max_block;
1312 __le32 nr = 0, nr2 = 0;
1313 int n = 0, n2 = 0;
1314 unsigned blocksize = inode->i_sb->s_blocksize;
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001315
Lukas Czerner4f579ae2014-07-15 06:03:38 -04001316 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1317 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1318 if (end >= max_block)
1319 end = max_block;
1320 if ((start >= end) || (start > max_block))
1321 return 0;
Jan Karaa93cd4c2014-06-26 12:30:54 -04001322
Lukas Czerner4f579ae2014-07-15 06:03:38 -04001323 n = ext4_block_to_path(inode, start, offsets, NULL);
1324 n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1325
1326 BUG_ON(n > n2);
1327
1328 if ((n == 1) && (n == n2)) {
1329 /* We're punching only within direct block range */
1330 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1331 i_data + offsets2[0]);
1332 return 0;
1333 } else if (n2 > n) {
1334 /*
1335 * Start and end are on a different levels so we're going to
1336 * free partial block at start, and partial block at end of
1337 * the range. If there are some levels in between then
1338 * do_indirects label will take care of that.
1339 */
1340
1341 if (n == 1) {
1342 /*
1343 * Start is at the direct block level, free
1344 * everything to the end of the level.
1345 */
1346 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1347 i_data + EXT4_NDIR_BLOCKS);
1348 goto end_range;
1349 }
1350
1351
1352 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1353 if (nr) {
1354 if (partial == chain) {
1355 /* Shared branch grows from the inode */
1356 ext4_free_branches(handle, inode, NULL,
1357 &nr, &nr+1, (chain+n-1) - partial);
1358 *partial->p = 0;
Jan Karaa93cd4c2014-06-26 12:30:54 -04001359 } else {
Lukas Czerner4f579ae2014-07-15 06:03:38 -04001360 /* Shared branch grows from an indirect block */
1361 BUFFER_TRACE(partial->bh, "get_write_access");
1362 ext4_free_branches(handle, inode, partial->bh,
1363 partial->p,
1364 partial->p+1, (chain+n-1) - partial);
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001365 }
1366 }
Lukas Czerner4f579ae2014-07-15 06:03:38 -04001367
1368 /*
1369 * Clear the ends of indirect blocks on the shared branch
1370 * at the start of the range
1371 */
1372 while (partial > chain) {
1373 ext4_free_branches(handle, inode, partial->bh,
1374 partial->p + 1,
1375 (__le32 *)partial->bh->b_data+addr_per_block,
1376 (chain+n-1) - partial);
1377 BUFFER_TRACE(partial->bh, "call brelse");
1378 brelse(partial->bh);
1379 partial--;
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001380 }
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001381
Lukas Czerner4f579ae2014-07-15 06:03:38 -04001382end_range:
1383 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1384 if (nr2) {
1385 if (partial2 == chain2) {
1386 /*
1387 * Remember, end is exclusive so here we're at
1388 * the start of the next level we're not going
1389 * to free. Everything was covered by the start
1390 * of the range.
1391 */
1392 return 0;
1393 } else {
1394 /* Shared branch grows from an indirect block */
1395 partial2--;
1396 }
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001397 } else {
Lukas Czerner4f579ae2014-07-15 06:03:38 -04001398 /*
1399 * ext4_find_shared returns Indirect structure which
1400 * points to the last element which should not be
1401 * removed by truncate. But this is end of the range
1402 * in punch_hole so we need to point to the next element
1403 */
1404 partial2->p++;
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001405 }
Lukas Czerner4f579ae2014-07-15 06:03:38 -04001406
1407 /*
1408 * Clear the ends of indirect blocks on the shared branch
1409 * at the end of the range
1410 */
1411 while (partial2 > chain2) {
1412 ext4_free_branches(handle, inode, partial2->bh,
1413 (__le32 *)partial2->bh->b_data,
1414 partial2->p,
1415 (chain2+n2-1) - partial2);
1416 BUFFER_TRACE(partial2->bh, "call brelse");
1417 brelse(partial2->bh);
1418 partial2--;
1419 }
1420 goto do_indirects;
1421 }
1422
1423 /* Punch happened within the same level (n == n2) */
1424 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1425 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1426 /*
1427 * ext4_find_shared returns Indirect structure which
1428 * points to the last element which should not be
1429 * removed by truncate. But this is end of the range
1430 * in punch_hole so we need to point to the next element
1431 */
1432 partial2->p++;
1433 while ((partial > chain) || (partial2 > chain2)) {
1434 /* We're at the same block, so we're almost finished */
1435 if ((partial->bh && partial2->bh) &&
1436 (partial->bh->b_blocknr == partial2->bh->b_blocknr)) {
1437 if ((partial > chain) && (partial2 > chain2)) {
1438 ext4_free_branches(handle, inode, partial->bh,
1439 partial->p + 1,
1440 partial2->p,
1441 (chain+n-1) - partial);
1442 BUFFER_TRACE(partial->bh, "call brelse");
1443 brelse(partial->bh);
1444 BUFFER_TRACE(partial2->bh, "call brelse");
1445 brelse(partial2->bh);
1446 }
1447 return 0;
1448 }
1449 /*
1450 * Clear the ends of indirect blocks on the shared branch
1451 * at the start of the range
1452 */
1453 if (partial > chain) {
1454 ext4_free_branches(handle, inode, partial->bh,
1455 partial->p + 1,
1456 (__le32 *)partial->bh->b_data+addr_per_block,
1457 (chain+n-1) - partial);
1458 BUFFER_TRACE(partial->bh, "call brelse");
1459 brelse(partial->bh);
1460 partial--;
1461 }
1462 /*
1463 * Clear the ends of indirect blocks on the shared branch
1464 * at the end of the range
1465 */
1466 if (partial2 > chain2) {
1467 ext4_free_branches(handle, inode, partial2->bh,
1468 (__le32 *)partial2->bh->b_data,
1469 partial2->p,
1470 (chain2+n-1) - partial2);
1471 BUFFER_TRACE(partial2->bh, "call brelse");
1472 brelse(partial2->bh);
1473 partial2--;
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001474 }
1475 }
1476
Lukas Czerner4f579ae2014-07-15 06:03:38 -04001477do_indirects:
1478 /* Kill the remaining (whole) subtrees */
1479 switch (offsets[0]) {
1480 default:
1481 if (++n >= n2)
1482 return 0;
1483 nr = i_data[EXT4_IND_BLOCK];
1484 if (nr) {
1485 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1486 i_data[EXT4_IND_BLOCK] = 0;
1487 }
1488 case EXT4_IND_BLOCK:
1489 if (++n >= n2)
1490 return 0;
1491 nr = i_data[EXT4_DIND_BLOCK];
1492 if (nr) {
1493 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1494 i_data[EXT4_DIND_BLOCK] = 0;
1495 }
1496 case EXT4_DIND_BLOCK:
1497 if (++n >= n2)
1498 return 0;
1499 nr = i_data[EXT4_TIND_BLOCK];
1500 if (nr) {
1501 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1502 i_data[EXT4_TIND_BLOCK] = 0;
1503 }
1504 case EXT4_TIND_BLOCK:
1505 ;
1506 }
1507 return 0;
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001508}