blob: bb0ee2dd2d805db3e34d52b291c0b4b14856c0a7 [file] [log] [blame]
Eliezer Tamira2fbb9e2007-11-15 20:09:02 +02001/* bnx2x_init.h: Broadcom Everest network driver.
2 *
Eliezer Tamire8717a42008-02-28 11:57:29 -08003 * Copyright (c) 2007-2008 Broadcom Corporation
Eliezer Tamira2fbb9e2007-11-15 20:09:02 +02004 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
Eilon Greenstein24e3fce2008-06-12 14:30:28 -07009 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
Eliezer Tamira2fbb9e2007-11-15 20:09:02 +020011 */
12
13#ifndef BNX2X_INIT_H
14#define BNX2X_INIT_H
15
16#define COMMON 0x1
17#define PORT0 0x2
18#define PORT1 0x4
19
20#define INIT_EMULATION 0x1
21#define INIT_FPGA 0x2
22#define INIT_ASIC 0x4
23#define INIT_HARDWARE 0x7
24
25#define STORM_INTMEM_SIZE (0x5800 / 4)
26#define TSTORM_INTMEM_ADDR 0x1a0000
27#define CSTORM_INTMEM_ADDR 0x220000
28#define XSTORM_INTMEM_ADDR 0x2a0000
29#define USTORM_INTMEM_ADDR 0x320000
30
31
32/* Init operation types and structures */
33
34#define OP_RD 0x1 /* read single register */
35#define OP_WR 0x2 /* write single register */
36#define OP_IW 0x3 /* write single register using mailbox */
37#define OP_SW 0x4 /* copy a string to the device */
38#define OP_SI 0x5 /* copy a string using mailbox */
39#define OP_ZR 0x6 /* clear memory */
40#define OP_ZP 0x7 /* unzip then copy with DMAE */
41#define OP_WB 0x8 /* copy a string using DMAE */
42
43struct raw_op {
44 u32 op :8;
45 u32 offset :24;
46 u32 raw_data;
47};
48
49struct op_read {
50 u32 op :8;
51 u32 offset :24;
52 u32 pad;
53};
54
55struct op_write {
56 u32 op :8;
57 u32 offset :24;
58 u32 val;
59};
60
61struct op_string_write {
62 u32 op :8;
63 u32 offset :24;
64#ifdef __LITTLE_ENDIAN
65 u16 data_off;
66 u16 data_len;
67#else /* __BIG_ENDIAN */
68 u16 data_len;
69 u16 data_off;
70#endif
71};
72
73struct op_zero {
74 u32 op :8;
75 u32 offset :24;
76 u32 len;
77};
78
79union init_op {
80 struct op_read read;
81 struct op_write write;
82 struct op_string_write str_wr;
83 struct op_zero zero;
84 struct raw_op raw;
85};
86
87#include "bnx2x_init_values.h"
88
89static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
Eliezer Tamira2fbb9e2007-11-15 20:09:02 +020090static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
91
92static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
93 u32 len)
94{
95 int i;
96
97 for (i = 0; i < len; i++) {
98 REG_WR(bp, addr + i*4, data[i]);
99 if (!(i % 10000)) {
100 touch_softlockup_watchdog();
101 cpu_relax();
102 }
103 }
104}
105
Eliezer Tamira2fbb9e2007-11-15 20:09:02 +0200106static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
107 u16 len)
108{
109 int i;
110
111 for (i = 0; i < len; i++) {
112 REG_WR_IND(bp, addr + i*4, data[i]);
113 if (!(i % 10000)) {
114 touch_softlockup_watchdog();
115 cpu_relax();
116 }
117 }
118}
119
120static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
121 u32 len, int gunzip)
122{
123 int offset = 0;
124
125 if (gunzip) {
126 int rc;
127#ifdef __BIG_ENDIAN
128 int i, size;
129 u32 *temp;
130
131 temp = kmalloc(len, GFP_KERNEL);
132 size = (len / 4) + ((len % 4) ? 1 : 0);
133 for (i = 0; i < size; i++)
134 temp[i] = swab32(data[i]);
135 data = temp;
136#endif
137 rc = bnx2x_gunzip(bp, (u8 *)data, len);
138 if (rc) {
139 DP(NETIF_MSG_HW, "gunzip failed ! rc %d\n", rc);
140 return;
141 }
142 len = bp->gunzip_outlen;
143#ifdef __BIG_ENDIAN
144 kfree(temp);
145 for (i = 0; i < len; i++)
146 ((u32 *)bp->gunzip_buf)[i] =
147 swab32(((u32 *)bp->gunzip_buf)[i]);
148#endif
149 } else {
150 if ((len * 4) > FW_BUF_SIZE) {
151 BNX2X_ERR("LARGE DMAE OPERATION ! len 0x%x\n", len*4);
152 return;
153 }
154 memcpy(bp->gunzip_buf, data, len * 4);
155 }
156
157 while (len > DMAE_LEN32_MAX) {
158 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
159 addr + offset, DMAE_LEN32_MAX);
160 offset += DMAE_LEN32_MAX * 4;
161 len -= DMAE_LEN32_MAX;
162 }
163 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len);
164}
165
166#define INIT_MEM_WB(reg, data, reg_off, len) \
167 bnx2x_init_wr_wb(bp, reg + reg_off*4, data, len, 0)
168
169#define INIT_GUNZIP_DMAE(reg, data, reg_off, len) \
170 bnx2x_init_wr_wb(bp, reg + reg_off*4, data, len, 1)
171
172static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
173{
174 int offset = 0;
175
176 if ((len * 4) > FW_BUF_SIZE) {
177 BNX2X_ERR("LARGE DMAE OPERATION ! len 0x%x\n", len * 4);
178 return;
179 }
180 memset(bp->gunzip_buf, fill, len * 4);
181
182 while (len > DMAE_LEN32_MAX) {
183 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
184 addr + offset, DMAE_LEN32_MAX);
185 offset += DMAE_LEN32_MAX * 4;
186 len -= DMAE_LEN32_MAX;
187 }
188 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len);
189}
190
191static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
192{
193 int i;
194 union init_op *op;
195 u32 op_type, addr, len;
196 const u32 *data;
197
198 for (i = op_start; i < op_end; i++) {
199
200 op = (union init_op *)&(init_ops[i]);
201
202 op_type = op->str_wr.op;
203 addr = op->str_wr.offset;
204 len = op->str_wr.data_len;
205 data = init_data + op->str_wr.data_off;
206
207 switch (op_type) {
208 case OP_RD:
209 REG_RD(bp, addr);
210 break;
211 case OP_WR:
212 REG_WR(bp, addr, op->write.val);
213 break;
214 case OP_SW:
215 bnx2x_init_str_wr(bp, addr, data, len);
216 break;
217 case OP_WB:
218 bnx2x_init_wr_wb(bp, addr, data, len, 0);
219 break;
220 case OP_SI:
221 bnx2x_init_ind_wr(bp, addr, data, len);
222 break;
223 case OP_ZR:
224 bnx2x_init_fill(bp, addr, 0, op->zero.len);
225 break;
226 case OP_ZP:
227 bnx2x_init_wr_wb(bp, addr, data, len, 1);
228 break;
229 default:
230 BNX2X_ERR("BAD init operation!\n");
231 }
232 }
233}
234
235
236/****************************************************************************
237* PXP
238****************************************************************************/
239/*
240 * This code configures the PCI read/write arbiter
241 * which implements a wighted round robin
242 * between the virtual queues in the chip.
243 *
244 * The values were derived for each PCI max payload and max request size.
245 * since max payload and max request size are only known at run time,
246 * this is done as a separate init stage.
247 */
248
249#define NUM_WR_Q 13
250#define NUM_RD_Q 29
251#define MAX_RD_ORD 3
252#define MAX_WR_ORD 2
253
254/* configuration for one arbiter queue */
255struct arb_line {
256 int l;
257 int add;
258 int ubound;
259};
260
261/* derived configuration for each read queue for each max request size */
262static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
263 {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
264 {{4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4} },
265 {{4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3} },
266 {{8 , 3 , 6}, {16 , 3 , 11}, {16 , 3 , 11}, {16 , 3 , 11} },
267 {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
268 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
269 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
270 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
271 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
272 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
273 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
274 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
275 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
276 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
277 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
278 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
279 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
280 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
281 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
282 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
283 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
284 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
285 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
286 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
287 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
288 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
289 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
290 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
291 {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} }
292};
293
294/* derived configuration for each write queue for each max request size */
295static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
296 {{4 , 6 , 3}, {4 , 6 , 3}, {4 , 6 , 3} },
297 {{4 , 2 , 3}, {4 , 2 , 3}, {4 , 2 , 3} },
298 {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
299 {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
300 {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
301 {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
302 {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} },
303 {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
304 {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
305 {{8 , 9 , 6}, {16 , 9 , 11}, {32 , 9 , 21} },
306 {{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} },
307 {{8 , 9 , 6}, {16 , 9 , 11}, {16 , 9 , 11} },
308 {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} }
309};
310
311/* register adresses for read queues */
312static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
313 {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
314 PXP2_REG_RQ_BW_RD_UBOUND0},
315 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
316 PXP2_REG_PSWRQ_BW_UB1},
317 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
318 PXP2_REG_PSWRQ_BW_UB2},
319 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
320 PXP2_REG_PSWRQ_BW_UB3},
321 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
322 PXP2_REG_RQ_BW_RD_UBOUND4},
323 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
324 PXP2_REG_RQ_BW_RD_UBOUND5},
325 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
326 PXP2_REG_PSWRQ_BW_UB6},
327 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
328 PXP2_REG_PSWRQ_BW_UB7},
329 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
330 PXP2_REG_PSWRQ_BW_UB8},
331 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
332 PXP2_REG_PSWRQ_BW_UB9},
333 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
334 PXP2_REG_PSWRQ_BW_UB10},
335 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
336 PXP2_REG_PSWRQ_BW_UB11},
337 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
338 PXP2_REG_RQ_BW_RD_UBOUND12},
339 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
340 PXP2_REG_RQ_BW_RD_UBOUND13},
341 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
342 PXP2_REG_RQ_BW_RD_UBOUND14},
343 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
344 PXP2_REG_RQ_BW_RD_UBOUND15},
345 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
346 PXP2_REG_RQ_BW_RD_UBOUND16},
347 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
348 PXP2_REG_RQ_BW_RD_UBOUND17},
349 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
350 PXP2_REG_RQ_BW_RD_UBOUND18},
351 {PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
352 PXP2_REG_RQ_BW_RD_UBOUND19},
353 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
354 PXP2_REG_RQ_BW_RD_UBOUND20},
355 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
356 PXP2_REG_RQ_BW_RD_UBOUND22},
357 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
358 PXP2_REG_RQ_BW_RD_UBOUND23},
359 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
360 PXP2_REG_RQ_BW_RD_UBOUND24},
361 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
362 PXP2_REG_RQ_BW_RD_UBOUND25},
363 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
364 PXP2_REG_RQ_BW_RD_UBOUND26},
365 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
366 PXP2_REG_RQ_BW_RD_UBOUND27},
367 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
368 PXP2_REG_PSWRQ_BW_UB28}
369};
370
371/* register adresses for wrtie queues */
372static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
373 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
374 PXP2_REG_PSWRQ_BW_UB1},
375 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
376 PXP2_REG_PSWRQ_BW_UB2},
377 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
378 PXP2_REG_PSWRQ_BW_UB3},
379 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
380 PXP2_REG_PSWRQ_BW_UB6},
381 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
382 PXP2_REG_PSWRQ_BW_UB7},
383 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
384 PXP2_REG_PSWRQ_BW_UB8},
385 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
386 PXP2_REG_PSWRQ_BW_UB9},
387 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
388 PXP2_REG_PSWRQ_BW_UB10},
389 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
390 PXP2_REG_PSWRQ_BW_UB11},
391 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
392 PXP2_REG_PSWRQ_BW_UB28},
393 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
394 PXP2_REG_RQ_BW_WR_UBOUND29},
395 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
396 PXP2_REG_RQ_BW_WR_UBOUND30}
397};
398
399static void bnx2x_init_pxp(struct bnx2x *bp)
400{
401 int r_order, w_order;
402 u32 val, i;
403
404 pci_read_config_word(bp->pdev,
405 bp->pcie_cap + PCI_EXP_DEVCTL, (u16 *)&val);
Eliezer Tamire8717a42008-02-28 11:57:29 -0800406 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", (u16)val);
Eliezer Tamira2fbb9e2007-11-15 20:09:02 +0200407 w_order = ((val & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
408 r_order = ((val & PCI_EXP_DEVCTL_READRQ) >> 12);
409
410 if (r_order > MAX_RD_ORD) {
411 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
412 r_order, MAX_RD_ORD);
413 r_order = MAX_RD_ORD;
414 }
415 if (w_order > MAX_WR_ORD) {
416 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
417 w_order, MAX_WR_ORD);
418 w_order = MAX_WR_ORD;
419 }
420 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
421
422 for (i = 0; i < NUM_RD_Q-1; i++) {
423 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
424 REG_WR(bp, read_arb_addr[i].add,
425 read_arb_data[i][r_order].add);
426 REG_WR(bp, read_arb_addr[i].ubound,
427 read_arb_data[i][r_order].ubound);
428 }
429
430 for (i = 0; i < NUM_WR_Q-1; i++) {
431 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
432 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
433
434 REG_WR(bp, write_arb_addr[i].l,
435 write_arb_data[i][w_order].l);
436
437 REG_WR(bp, write_arb_addr[i].add,
438 write_arb_data[i][w_order].add);
439
440 REG_WR(bp, write_arb_addr[i].ubound,
441 write_arb_data[i][w_order].ubound);
442 } else {
443
444 val = REG_RD(bp, write_arb_addr[i].l);
445 REG_WR(bp, write_arb_addr[i].l,
446 val | (write_arb_data[i][w_order].l << 10));
447
448 val = REG_RD(bp, write_arb_addr[i].add);
449 REG_WR(bp, write_arb_addr[i].add,
450 val | (write_arb_data[i][w_order].add << 10));
451
452 val = REG_RD(bp, write_arb_addr[i].ubound);
453 REG_WR(bp, write_arb_addr[i].ubound,
454 val | (write_arb_data[i][w_order].ubound << 7));
455 }
456 }
457
458 val = write_arb_data[NUM_WR_Q-1][w_order].add;
459 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
460 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
461 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
462
463 val = read_arb_data[NUM_RD_Q-1][r_order].add;
464 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
465 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
466 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
467
468 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
Eliezer Tamire8717a42008-02-28 11:57:29 -0800469 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
Eliezer Tamira2fbb9e2007-11-15 20:09:02 +0200470 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
Eliezer Tamire8717a42008-02-28 11:57:29 -0800471 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
Eliezer Tamira2fbb9e2007-11-15 20:09:02 +0200472
Eliezer Tamire8717a42008-02-28 11:57:29 -0800473 if (r_order == MAX_RD_ORD)
474 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
475
476 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
Eliezer Tamira2fbb9e2007-11-15 20:09:02 +0200477 REG_WR(bp, PXP2_REG_WR_DMAE_TH, (128 << w_order)/16);
478}
479
480
481/****************************************************************************
482* CDU
483****************************************************************************/
484
485#define CDU_REGION_NUMBER_XCM_AG 2
486#define CDU_REGION_NUMBER_UCM_AG 4
487
488/**
489 * String-to-compress [31:8] = CID (all 24 bits)
490 * String-to-compress [7:4] = Region
491 * String-to-compress [3:0] = Type
492 */
493#define CDU_VALID_DATA(_cid, _region, _type) \
494 (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
495#define CDU_CRC8(_cid, _region, _type) \
496 calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
497#define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
498 (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
499#define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
500 (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
501#define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
502
503/*****************************************************************************
504 * Description:
505 * Calculates crc 8 on a word value: polynomial 0-1-2-8
506 * Code was translated from Verilog.
507 ****************************************************************************/
508static u8 calc_crc8(u32 data, u8 crc)
509{
510 u8 D[32];
511 u8 NewCRC[8];
512 u8 C[8];
513 u8 crc_res;
514 u8 i;
515
516 /* split the data into 31 bits */
517 for (i = 0; i < 32; i++) {
518 D[i] = data & 1;
519 data = data >> 1;
520 }
521
522 /* split the crc into 8 bits */
523 for (i = 0; i < 8; i++) {
524 C[i] = crc & 1;
525 crc = crc >> 1;
526 }
527
528 NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
529 D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
530 C[6] ^ C[7];
531 NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
532 D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
533 D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
534 NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
535 D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
536 C[0] ^ C[1] ^ C[4] ^ C[5];
537 NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
538 D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
539 C[1] ^ C[2] ^ C[5] ^ C[6];
540 NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
541 D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
542 C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
543 NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
544 D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
545 C[3] ^ C[4] ^ C[7];
546 NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
547 D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
548 C[5];
549 NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
550 D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
551 C[6];
552
553 crc_res = 0;
554 for (i = 0; i < 8; i++)
555 crc_res |= (NewCRC[i] << i);
556
557 return crc_res;
558}
559
560
561#endif /* BNX2X_INIT_H */
562