blob: 078019b5b353c916f49dd0d71087260302569c60 [file] [log] [blame]
Scott Wooda1110652010-02-25 18:09:45 -06001/*
2 * Performance event support - PowerPC classic/server specific definitions.
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/types.h>
13#include <asm/hw_irq.h>
14
15#define MAX_HWEVENTS 8
16#define MAX_EVENT_ALTERNATIVES 8
17#define MAX_LIMITED_HWCOUNTERS 2
18
19/*
20 * This struct provides the constants and functions needed to
21 * describe the PMU on a particular POWER-family CPU.
22 */
23struct power_pmu {
24 const char *name;
25 int n_counter;
26 int max_alternatives;
27 unsigned long add_fields;
28 unsigned long test_adder;
29 int (*compute_mmcr)(u64 events[], int n_ev,
30 unsigned int hwc[], unsigned long mmcr[]);
31 int (*get_constraint)(u64 event_id, unsigned long *mskp,
32 unsigned long *valp);
33 int (*get_alternatives)(u64 event_id, unsigned int flags,
34 u64 alt[]);
35 void (*disable_pmc)(unsigned int pmc, unsigned long mmcr[]);
36 int (*limited_pmc_event)(u64 event_id);
37 u32 flags;
38 int n_generic;
39 int *generic_events;
40 int (*cache_events)[PERF_COUNT_HW_CACHE_MAX]
41 [PERF_COUNT_HW_CACHE_OP_MAX]
42 [PERF_COUNT_HW_CACHE_RESULT_MAX];
43};
44
45/*
46 * Values for power_pmu.flags
47 */
48#define PPMU_LIMITED_PMC5_6 1 /* PMC5/6 have limited function */
49#define PPMU_ALT_SIPR 2 /* uses alternate posn for SIPR/HV */
Benjamin Herrenschmidt1ce447b2012-03-26 20:47:34 +000050#define PPMU_NO_SIPR 4 /* no SIPR/HV in MMCRA at all */
51#define PPMU_NO_CONT_SAMPLING 8 /* no continuous sampling */
Scott Wooda1110652010-02-25 18:09:45 -060052
53/*
54 * Values for flags to get_alternatives()
55 */
56#define PPMU_LIMITED_PMC_OK 1 /* can put this on a limited PMC */
57#define PPMU_LIMITED_PMC_REQD 2 /* have to put this on a limited PMC */
58#define PPMU_ONLY_COUNT_RUN 4 /* only counting in run state */
59
60extern int register_power_pmu(struct power_pmu *);
61
62struct pt_regs;
63extern unsigned long perf_misc_flags(struct pt_regs *regs);
64extern unsigned long perf_instruction_pointer(struct pt_regs *regs);
65
Scott Wooda1110652010-02-25 18:09:45 -060066/*
67 * Only override the default definitions in include/linux/perf_event.h
68 * if we have hardware PMU support.
69 */
70#ifdef CONFIG_PPC_PERF_CTRS
71#define perf_misc_flags(regs) perf_misc_flags(regs)
72#endif
73
74/*
75 * The power_pmu.get_constraint function returns a 32/64-bit value and
76 * a 32/64-bit mask that express the constraints between this event_id and
77 * other events.
78 *
79 * The value and mask are divided up into (non-overlapping) bitfields
80 * of three different types:
81 *
82 * Select field: this expresses the constraint that some set of bits
83 * in MMCR* needs to be set to a specific value for this event_id. For a
84 * select field, the mask contains 1s in every bit of the field, and
85 * the value contains a unique value for each possible setting of the
86 * MMCR* bits. The constraint checking code will ensure that two events
87 * that set the same field in their masks have the same value in their
88 * value dwords.
89 *
90 * Add field: this expresses the constraint that there can be at most
91 * N events in a particular class. A field of k bits can be used for
92 * N <= 2^(k-1) - 1. The mask has the most significant bit of the field
93 * set (and the other bits 0), and the value has only the least significant
94 * bit of the field set. In addition, the 'add_fields' and 'test_adder'
95 * in the struct power_pmu for this processor come into play. The
96 * add_fields value contains 1 in the LSB of the field, and the
97 * test_adder contains 2^(k-1) - 1 - N in the field.
98 *
99 * NAND field: this expresses the constraint that you may not have events
100 * in all of a set of classes. (For example, on PPC970, you can't select
101 * events from the FPU, ISU and IDU simultaneously, although any two are
102 * possible.) For N classes, the field is N+1 bits wide, and each class
103 * is assigned one bit from the least-significant N bits. The mask has
104 * only the most-significant bit set, and the value has only the bit
105 * for the event_id's class set. The test_adder has the least significant
106 * bit set in the field.
107 *
108 * If an event_id is not subject to the constraint expressed by a particular
109 * field, then it will have 0 in both the mask and value for that field.
110 */