blob: e1257e556e48e63b9eb2592d3182ab84aa03cb3a [file] [log] [blame]
Ben Hutchings8ceee662008-04-27 12:55:59 +01001/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
22#include "net_driver.h"
23#include "gmii.h"
24#include "ethtool.h"
25#include "tx.h"
26#include "rx.h"
27#include "efx.h"
28#include "mdio_10g.h"
29#include "falcon.h"
30#include "workarounds.h"
31#include "mac.h"
32
33#define EFX_MAX_MTU (9 * 1024)
34
35/* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
39 */
40static struct workqueue_struct *refill_workqueue;
41
42/**************************************************************************
43 *
44 * Configurable values
45 *
46 *************************************************************************/
47
48/*
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
50 *
51 * This sets the default for new devices. It can be controlled later
52 * using ethtool.
53 */
54static int lro = 1;
55module_param(lro, int, 0644);
56MODULE_PARM_DESC(lro, "Large receive offload acceleration");
57
58/*
59 * Use separate channels for TX and RX events
60 *
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
63 *
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
65 * is not written
66 */
67static unsigned int separate_tx_and_rx_channels = 1;
68
69/* This is the weight assigned to each of the (per-channel) virtual
70 * NAPI devices.
71 */
72static int napi_weight = 64;
73
74/* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
77 */
78unsigned int efx_monitor_interval = 1 * HZ;
79
80/* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
82 */
83static unsigned int monitor_reset = 1;
84
85/* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
91 */
92static unsigned int allow_bad_hwaddr;
93
94/* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
96 *
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
99 */
100static unsigned int rx_irq_mod_usec = 60;
101
102/* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
104 *
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
110 */
111static unsigned int tx_irq_mod_usec = 150;
112
113/* This is the first interrupt mode to try out of:
114 * 0 => MSI-X
115 * 1 => MSI
116 * 2 => legacy
117 */
118static unsigned int interrupt_mode;
119
120/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
123 *
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
126 */
127static unsigned int rss_cpus;
128module_param(rss_cpus, uint, 0444);
129MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
130
131/**************************************************************************
132 *
133 * Utility functions and prototypes
134 *
135 *************************************************************************/
136static void efx_remove_channel(struct efx_channel *channel);
137static void efx_remove_port(struct efx_nic *efx);
138static void efx_fini_napi(struct efx_nic *efx);
139static void efx_fini_channels(struct efx_nic *efx);
140
141#define EFX_ASSERT_RESET_SERIALISED(efx) \
142 do { \
143 if ((efx->state == STATE_RUNNING) || \
144 (efx->state == STATE_RESETTING)) \
145 ASSERT_RTNL(); \
146 } while (0)
147
148/**************************************************************************
149 *
150 * Event queue processing
151 *
152 *************************************************************************/
153
154/* Process channel's event queue
155 *
156 * This function is responsible for processing the event queue of a
157 * single channel. The caller must guarantee that this function will
158 * never be concurrently called more than once on the same channel,
159 * though different channels may be being processed concurrently.
160 */
161static inline int efx_process_channel(struct efx_channel *channel, int rx_quota)
162{
163 int rxdmaqs;
164 struct efx_rx_queue *rx_queue;
165
166 if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
167 !channel->enabled))
168 return rx_quota;
169
170 rxdmaqs = falcon_process_eventq(channel, &rx_quota);
171
172 /* Deliver last RX packet. */
173 if (channel->rx_pkt) {
174 __efx_rx_packet(channel, channel->rx_pkt,
175 channel->rx_pkt_csummed);
176 channel->rx_pkt = NULL;
177 }
178
179 efx_flush_lro(channel);
180 efx_rx_strategy(channel);
181
182 /* Refill descriptor rings as necessary */
183 rx_queue = &channel->efx->rx_queue[0];
184 while (rxdmaqs) {
185 if (rxdmaqs & 0x01)
186 efx_fast_push_rx_descriptors(rx_queue);
187 rx_queue++;
188 rxdmaqs >>= 1;
189 }
190
191 return rx_quota;
192}
193
194/* Mark channel as finished processing
195 *
196 * Note that since we will not receive further interrupts for this
197 * channel before we finish processing and call the eventq_read_ack()
198 * method, there is no need to use the interrupt hold-off timers.
199 */
200static inline void efx_channel_processed(struct efx_channel *channel)
201{
Ben Hutchings5b9e2072008-05-16 21:18:14 +0100202 /* The interrupt handler for this channel may set work_pending
203 * as soon as we acknowledge the events we've seen. Make sure
204 * it's cleared before then. */
Ben Hutchings8ceee662008-04-27 12:55:59 +0100205 channel->work_pending = 0;
Ben Hutchings5b9e2072008-05-16 21:18:14 +0100206 smp_wmb();
207
Ben Hutchings8ceee662008-04-27 12:55:59 +0100208 falcon_eventq_read_ack(channel);
209}
210
211/* NAPI poll handler
212 *
213 * NAPI guarantees serialisation of polls of the same device, which
214 * provides the guarantee required by efx_process_channel().
215 */
216static int efx_poll(struct napi_struct *napi, int budget)
217{
218 struct efx_channel *channel =
219 container_of(napi, struct efx_channel, napi_str);
220 struct net_device *napi_dev = channel->napi_dev;
221 int unused;
222 int rx_packets;
223
224 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
225 channel->channel, raw_smp_processor_id());
226
227 unused = efx_process_channel(channel, budget);
228 rx_packets = (budget - unused);
229
230 if (rx_packets < budget) {
231 /* There is no race here; although napi_disable() will
232 * only wait for netif_rx_complete(), this isn't a problem
233 * since efx_channel_processed() will have no effect if
234 * interrupts have already been disabled.
235 */
236 netif_rx_complete(napi_dev, napi);
237 efx_channel_processed(channel);
238 }
239
240 return rx_packets;
241}
242
243/* Process the eventq of the specified channel immediately on this CPU
244 *
245 * Disable hardware generated interrupts, wait for any existing
246 * processing to finish, then directly poll (and ack ) the eventq.
247 * Finally reenable NAPI and interrupts.
248 *
249 * Since we are touching interrupts the caller should hold the suspend lock
250 */
251void efx_process_channel_now(struct efx_channel *channel)
252{
253 struct efx_nic *efx = channel->efx;
254
255 BUG_ON(!channel->used_flags);
256 BUG_ON(!channel->enabled);
257
258 /* Disable interrupts and wait for ISRs to complete */
259 falcon_disable_interrupts(efx);
260 if (efx->legacy_irq)
261 synchronize_irq(efx->legacy_irq);
262 if (channel->has_interrupt && channel->irq)
263 synchronize_irq(channel->irq);
264
265 /* Wait for any NAPI processing to complete */
266 napi_disable(&channel->napi_str);
267
268 /* Poll the channel */
Ben Hutchings91ad7572008-05-16 21:14:27 +0100269 efx_process_channel(channel, efx->type->evq_size);
Ben Hutchings8ceee662008-04-27 12:55:59 +0100270
271 /* Ack the eventq. This may cause an interrupt to be generated
272 * when they are reenabled */
273 efx_channel_processed(channel);
274
275 napi_enable(&channel->napi_str);
276 falcon_enable_interrupts(efx);
277}
278
279/* Create event queue
280 * Event queue memory allocations are done only once. If the channel
281 * is reset, the memory buffer will be reused; this guards against
282 * errors during channel reset and also simplifies interrupt handling.
283 */
284static int efx_probe_eventq(struct efx_channel *channel)
285{
286 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
287
288 return falcon_probe_eventq(channel);
289}
290
291/* Prepare channel's event queue */
292static int efx_init_eventq(struct efx_channel *channel)
293{
294 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
295
296 channel->eventq_read_ptr = 0;
297
298 return falcon_init_eventq(channel);
299}
300
301static void efx_fini_eventq(struct efx_channel *channel)
302{
303 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
304
305 falcon_fini_eventq(channel);
306}
307
308static void efx_remove_eventq(struct efx_channel *channel)
309{
310 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
311
312 falcon_remove_eventq(channel);
313}
314
315/**************************************************************************
316 *
317 * Channel handling
318 *
319 *************************************************************************/
320
Ben Hutchings8ceee662008-04-27 12:55:59 +0100321static int efx_probe_channel(struct efx_channel *channel)
322{
323 struct efx_tx_queue *tx_queue;
324 struct efx_rx_queue *rx_queue;
325 int rc;
326
327 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
328
329 rc = efx_probe_eventq(channel);
330 if (rc)
331 goto fail1;
332
333 efx_for_each_channel_tx_queue(tx_queue, channel) {
334 rc = efx_probe_tx_queue(tx_queue);
335 if (rc)
336 goto fail2;
337 }
338
339 efx_for_each_channel_rx_queue(rx_queue, channel) {
340 rc = efx_probe_rx_queue(rx_queue);
341 if (rc)
342 goto fail3;
343 }
344
345 channel->n_rx_frm_trunc = 0;
346
347 return 0;
348
349 fail3:
350 efx_for_each_channel_rx_queue(rx_queue, channel)
351 efx_remove_rx_queue(rx_queue);
352 fail2:
353 efx_for_each_channel_tx_queue(tx_queue, channel)
354 efx_remove_tx_queue(tx_queue);
355 fail1:
356 return rc;
357}
358
359
360/* Channels are shutdown and reinitialised whilst the NIC is running
361 * to propagate configuration changes (mtu, checksum offload), or
362 * to clear hardware error conditions
363 */
364static int efx_init_channels(struct efx_nic *efx)
365{
366 struct efx_tx_queue *tx_queue;
367 struct efx_rx_queue *rx_queue;
368 struct efx_channel *channel;
369 int rc = 0;
370
Ben Hutchingsf7f13b02008-05-16 21:15:06 +0100371 /* Calculate the rx buffer allocation parameters required to
372 * support the current MTU, including padding for header
373 * alignment and overruns.
374 */
375 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
376 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
377 efx->type->rx_buffer_padding);
378 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
Ben Hutchings8ceee662008-04-27 12:55:59 +0100379
380 /* Initialise the channels */
381 efx_for_each_channel(channel, efx) {
382 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
383
384 rc = efx_init_eventq(channel);
385 if (rc)
386 goto err;
387
388 efx_for_each_channel_tx_queue(tx_queue, channel) {
389 rc = efx_init_tx_queue(tx_queue);
390 if (rc)
391 goto err;
392 }
393
394 /* The rx buffer allocation strategy is MTU dependent */
395 efx_rx_strategy(channel);
396
397 efx_for_each_channel_rx_queue(rx_queue, channel) {
398 rc = efx_init_rx_queue(rx_queue);
399 if (rc)
400 goto err;
401 }
402
403 WARN_ON(channel->rx_pkt != NULL);
404 efx_rx_strategy(channel);
405 }
406
407 return 0;
408
409 err:
410 EFX_ERR(efx, "failed to initialise channel %d\n",
411 channel ? channel->channel : -1);
412 efx_fini_channels(efx);
413 return rc;
414}
415
416/* This enables event queue processing and packet transmission.
417 *
418 * Note that this function is not allowed to fail, since that would
419 * introduce too much complexity into the suspend/resume path.
420 */
421static void efx_start_channel(struct efx_channel *channel)
422{
423 struct efx_rx_queue *rx_queue;
424
425 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
426
427 if (!(channel->efx->net_dev->flags & IFF_UP))
428 netif_napi_add(channel->napi_dev, &channel->napi_str,
429 efx_poll, napi_weight);
430
Ben Hutchings5b9e2072008-05-16 21:18:14 +0100431 /* The interrupt handler for this channel may set work_pending
432 * as soon as we enable it. Make sure it's cleared before
433 * then. Similarly, make sure it sees the enabled flag set. */
Ben Hutchings8ceee662008-04-27 12:55:59 +0100434 channel->work_pending = 0;
435 channel->enabled = 1;
Ben Hutchings5b9e2072008-05-16 21:18:14 +0100436 smp_wmb();
Ben Hutchings8ceee662008-04-27 12:55:59 +0100437
438 napi_enable(&channel->napi_str);
439
440 /* Load up RX descriptors */
441 efx_for_each_channel_rx_queue(rx_queue, channel)
442 efx_fast_push_rx_descriptors(rx_queue);
443}
444
445/* This disables event queue processing and packet transmission.
446 * This function does not guarantee that all queue processing
447 * (e.g. RX refill) is complete.
448 */
449static void efx_stop_channel(struct efx_channel *channel)
450{
451 struct efx_rx_queue *rx_queue;
452
453 if (!channel->enabled)
454 return;
455
456 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
457
458 channel->enabled = 0;
459 napi_disable(&channel->napi_str);
460
461 /* Ensure that any worker threads have exited or will be no-ops */
462 efx_for_each_channel_rx_queue(rx_queue, channel) {
463 spin_lock_bh(&rx_queue->add_lock);
464 spin_unlock_bh(&rx_queue->add_lock);
465 }
466}
467
468static void efx_fini_channels(struct efx_nic *efx)
469{
470 struct efx_channel *channel;
471 struct efx_tx_queue *tx_queue;
472 struct efx_rx_queue *rx_queue;
473
474 EFX_ASSERT_RESET_SERIALISED(efx);
475 BUG_ON(efx->port_enabled);
476
477 efx_for_each_channel(channel, efx) {
478 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
479
480 efx_for_each_channel_rx_queue(rx_queue, channel)
481 efx_fini_rx_queue(rx_queue);
482 efx_for_each_channel_tx_queue(tx_queue, channel)
483 efx_fini_tx_queue(tx_queue);
484 }
485
486 /* Do the event queues last so that we can handle flush events
487 * for all DMA queues. */
488 efx_for_each_channel(channel, efx) {
489 EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
490
491 efx_fini_eventq(channel);
492 }
493}
494
495static void efx_remove_channel(struct efx_channel *channel)
496{
497 struct efx_tx_queue *tx_queue;
498 struct efx_rx_queue *rx_queue;
499
500 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
501
502 efx_for_each_channel_rx_queue(rx_queue, channel)
503 efx_remove_rx_queue(rx_queue);
504 efx_for_each_channel_tx_queue(tx_queue, channel)
505 efx_remove_tx_queue(tx_queue);
506 efx_remove_eventq(channel);
507
508 channel->used_flags = 0;
509}
510
511void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
512{
513 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
514}
515
516/**************************************************************************
517 *
518 * Port handling
519 *
520 **************************************************************************/
521
522/* This ensures that the kernel is kept informed (via
523 * netif_carrier_on/off) of the link status, and also maintains the
524 * link status's stop on the port's TX queue.
525 */
526static void efx_link_status_changed(struct efx_nic *efx)
527{
528 int carrier_ok;
529
530 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
531 * that no events are triggered between unregister_netdev() and the
532 * driver unloading. A more general condition is that NETDEV_CHANGE
533 * can only be generated between NETDEV_UP and NETDEV_DOWN */
534 if (!netif_running(efx->net_dev))
535 return;
536
537 carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0;
538 if (efx->link_up != carrier_ok) {
539 efx->n_link_state_changes++;
540
541 if (efx->link_up)
542 netif_carrier_on(efx->net_dev);
543 else
544 netif_carrier_off(efx->net_dev);
545 }
546
547 /* Status message for kernel log */
548 if (efx->link_up) {
549 struct mii_if_info *gmii = &efx->mii;
550 unsigned adv, lpa;
551 /* NONE here means direct XAUI from the controller, with no
552 * MDIO-attached device we can query. */
553 if (efx->phy_type != PHY_TYPE_NONE) {
554 adv = gmii_advertised(gmii);
555 lpa = gmii_lpa(gmii);
556 } else {
557 lpa = GM_LPA_10000 | LPA_DUPLEX;
558 adv = lpa;
559 }
560 EFX_INFO(efx, "link up at %dMbps %s-duplex "
561 "(adv %04x lpa %04x) (MTU %d)%s\n",
562 (efx->link_options & GM_LPA_10000 ? 10000 :
563 (efx->link_options & GM_LPA_1000 ? 1000 :
564 (efx->link_options & GM_LPA_100 ? 100 :
565 10))),
566 (efx->link_options & GM_LPA_DUPLEX ?
567 "full" : "half"),
568 adv, lpa,
569 efx->net_dev->mtu,
570 (efx->promiscuous ? " [PROMISC]" : ""));
571 } else {
572 EFX_INFO(efx, "link down\n");
573 }
574
575}
576
577/* This call reinitialises the MAC to pick up new PHY settings. The
578 * caller must hold the mac_lock */
579static void __efx_reconfigure_port(struct efx_nic *efx)
580{
581 WARN_ON(!mutex_is_locked(&efx->mac_lock));
582
583 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
584 raw_smp_processor_id());
585
586 falcon_reconfigure_xmac(efx);
587
588 /* Inform kernel of loss/gain of carrier */
589 efx_link_status_changed(efx);
590}
591
592/* Reinitialise the MAC to pick up new PHY settings, even if the port is
593 * disabled. */
594void efx_reconfigure_port(struct efx_nic *efx)
595{
596 EFX_ASSERT_RESET_SERIALISED(efx);
597
598 mutex_lock(&efx->mac_lock);
599 __efx_reconfigure_port(efx);
600 mutex_unlock(&efx->mac_lock);
601}
602
603/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
604 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
605 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
606static void efx_reconfigure_work(struct work_struct *data)
607{
608 struct efx_nic *efx = container_of(data, struct efx_nic,
609 reconfigure_work);
610
611 mutex_lock(&efx->mac_lock);
612 if (efx->port_enabled)
613 __efx_reconfigure_port(efx);
614 mutex_unlock(&efx->mac_lock);
615}
616
617static int efx_probe_port(struct efx_nic *efx)
618{
619 int rc;
620
621 EFX_LOG(efx, "create port\n");
622
623 /* Connect up MAC/PHY operations table and read MAC address */
624 rc = falcon_probe_port(efx);
625 if (rc)
626 goto err;
627
628 /* Sanity check MAC address */
629 if (is_valid_ether_addr(efx->mac_address)) {
630 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
631 } else {
632 DECLARE_MAC_BUF(mac);
633
634 EFX_ERR(efx, "invalid MAC address %s\n",
635 print_mac(mac, efx->mac_address));
636 if (!allow_bad_hwaddr) {
637 rc = -EINVAL;
638 goto err;
639 }
640 random_ether_addr(efx->net_dev->dev_addr);
641 EFX_INFO(efx, "using locally-generated MAC %s\n",
642 print_mac(mac, efx->net_dev->dev_addr));
643 }
644
645 return 0;
646
647 err:
648 efx_remove_port(efx);
649 return rc;
650}
651
652static int efx_init_port(struct efx_nic *efx)
653{
654 int rc;
655
656 EFX_LOG(efx, "init port\n");
657
658 /* Initialise the MAC and PHY */
659 rc = falcon_init_xmac(efx);
660 if (rc)
661 return rc;
662
663 efx->port_initialized = 1;
664
665 /* Reconfigure port to program MAC registers */
666 falcon_reconfigure_xmac(efx);
667
668 return 0;
669}
670
671/* Allow efx_reconfigure_port() to be scheduled, and close the window
672 * between efx_stop_port and efx_flush_all whereby a previously scheduled
673 * efx_reconfigure_port() may have been cancelled */
674static void efx_start_port(struct efx_nic *efx)
675{
676 EFX_LOG(efx, "start port\n");
677 BUG_ON(efx->port_enabled);
678
679 mutex_lock(&efx->mac_lock);
680 efx->port_enabled = 1;
681 __efx_reconfigure_port(efx);
682 mutex_unlock(&efx->mac_lock);
683}
684
685/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
686 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
687 * efx_reconfigure_work can still be scheduled via NAPI processing
688 * until efx_flush_all() is called */
689static void efx_stop_port(struct efx_nic *efx)
690{
691 EFX_LOG(efx, "stop port\n");
692
693 mutex_lock(&efx->mac_lock);
694 efx->port_enabled = 0;
695 mutex_unlock(&efx->mac_lock);
696
697 /* Serialise against efx_set_multicast_list() */
Ben Hutchings55668612008-05-16 21:16:10 +0100698 if (efx_dev_registered(efx)) {
Ben Hutchings8ceee662008-04-27 12:55:59 +0100699 netif_tx_lock_bh(efx->net_dev);
David S. Millere308a5d2008-07-15 00:13:44 -0700700 netif_addr_lock(efx->net_dev);
701 netif_addr_unlock(efx->net_dev);
Ben Hutchings8ceee662008-04-27 12:55:59 +0100702 netif_tx_unlock_bh(efx->net_dev);
703 }
704}
705
706static void efx_fini_port(struct efx_nic *efx)
707{
708 EFX_LOG(efx, "shut down port\n");
709
710 if (!efx->port_initialized)
711 return;
712
713 falcon_fini_xmac(efx);
714 efx->port_initialized = 0;
715
716 efx->link_up = 0;
717 efx_link_status_changed(efx);
718}
719
720static void efx_remove_port(struct efx_nic *efx)
721{
722 EFX_LOG(efx, "destroying port\n");
723
724 falcon_remove_port(efx);
725}
726
727/**************************************************************************
728 *
729 * NIC handling
730 *
731 **************************************************************************/
732
733/* This configures the PCI device to enable I/O and DMA. */
734static int efx_init_io(struct efx_nic *efx)
735{
736 struct pci_dev *pci_dev = efx->pci_dev;
737 dma_addr_t dma_mask = efx->type->max_dma_mask;
738 int rc;
739
740 EFX_LOG(efx, "initialising I/O\n");
741
742 rc = pci_enable_device(pci_dev);
743 if (rc) {
744 EFX_ERR(efx, "failed to enable PCI device\n");
745 goto fail1;
746 }
747
748 pci_set_master(pci_dev);
749
750 /* Set the PCI DMA mask. Try all possibilities from our
751 * genuine mask down to 32 bits, because some architectures
752 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
753 * masks event though they reject 46 bit masks.
754 */
755 while (dma_mask > 0x7fffffffUL) {
756 if (pci_dma_supported(pci_dev, dma_mask) &&
757 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
758 break;
759 dma_mask >>= 1;
760 }
761 if (rc) {
762 EFX_ERR(efx, "could not find a suitable DMA mask\n");
763 goto fail2;
764 }
765 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
766 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
767 if (rc) {
768 /* pci_set_consistent_dma_mask() is not *allowed* to
769 * fail with a mask that pci_set_dma_mask() accepted,
770 * but just in case...
771 */
772 EFX_ERR(efx, "failed to set consistent DMA mask\n");
773 goto fail2;
774 }
775
776 efx->membase_phys = pci_resource_start(efx->pci_dev,
777 efx->type->mem_bar);
778 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
779 if (rc) {
780 EFX_ERR(efx, "request for memory BAR failed\n");
781 rc = -EIO;
782 goto fail3;
783 }
784 efx->membase = ioremap_nocache(efx->membase_phys,
785 efx->type->mem_map_size);
786 if (!efx->membase) {
Ben Hutchings086ea352008-05-16 21:17:06 +0100787 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
788 efx->type->mem_bar,
789 (unsigned long long)efx->membase_phys,
Ben Hutchings8ceee662008-04-27 12:55:59 +0100790 efx->type->mem_map_size);
791 rc = -ENOMEM;
792 goto fail4;
793 }
Ben Hutchings086ea352008-05-16 21:17:06 +0100794 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
795 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
796 efx->type->mem_map_size, efx->membase);
Ben Hutchings8ceee662008-04-27 12:55:59 +0100797
798 return 0;
799
800 fail4:
801 release_mem_region(efx->membase_phys, efx->type->mem_map_size);
802 fail3:
Ben Hutchings2c118e02008-05-16 21:15:29 +0100803 efx->membase_phys = 0;
Ben Hutchings8ceee662008-04-27 12:55:59 +0100804 fail2:
805 pci_disable_device(efx->pci_dev);
806 fail1:
807 return rc;
808}
809
810static void efx_fini_io(struct efx_nic *efx)
811{
812 EFX_LOG(efx, "shutting down I/O\n");
813
814 if (efx->membase) {
815 iounmap(efx->membase);
816 efx->membase = NULL;
817 }
818
819 if (efx->membase_phys) {
820 pci_release_region(efx->pci_dev, efx->type->mem_bar);
Ben Hutchings2c118e02008-05-16 21:15:29 +0100821 efx->membase_phys = 0;
Ben Hutchings8ceee662008-04-27 12:55:59 +0100822 }
823
824 pci_disable_device(efx->pci_dev);
825}
826
827/* Probe the number and type of interrupts we are able to obtain. */
828static void efx_probe_interrupts(struct efx_nic *efx)
829{
830 int max_channel = efx->type->phys_addr_channels - 1;
831 struct msix_entry xentries[EFX_MAX_CHANNELS];
832 int rc, i;
833
834 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
835 BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX));
836
837 efx->rss_queues = rss_cpus ? rss_cpus : num_online_cpus();
838 efx->rss_queues = min(efx->rss_queues, max_channel + 1);
839 efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS);
840
841 /* Request maximum number of MSI interrupts, and fill out
842 * the channel interrupt information the allowed allocation */
843 for (i = 0; i < efx->rss_queues; i++)
844 xentries[i].entry = i;
845 rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues);
846 if (rc > 0) {
847 EFX_BUG_ON_PARANOID(rc >= efx->rss_queues);
848 efx->rss_queues = rc;
849 rc = pci_enable_msix(efx->pci_dev, xentries,
850 efx->rss_queues);
851 }
852
853 if (rc == 0) {
854 for (i = 0; i < efx->rss_queues; i++) {
855 efx->channel[i].has_interrupt = 1;
856 efx->channel[i].irq = xentries[i].vector;
857 }
858 } else {
859 /* Fall back to single channel MSI */
860 efx->interrupt_mode = EFX_INT_MODE_MSI;
861 EFX_ERR(efx, "could not enable MSI-X\n");
862 }
863 }
864
865 /* Try single interrupt MSI */
866 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
867 efx->rss_queues = 1;
868 rc = pci_enable_msi(efx->pci_dev);
869 if (rc == 0) {
870 efx->channel[0].irq = efx->pci_dev->irq;
871 efx->channel[0].has_interrupt = 1;
872 } else {
873 EFX_ERR(efx, "could not enable MSI\n");
874 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
875 }
876 }
877
878 /* Assume legacy interrupts */
879 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
880 efx->rss_queues = 1;
881 /* Every channel is interruptible */
882 for (i = 0; i < EFX_MAX_CHANNELS; i++)
883 efx->channel[i].has_interrupt = 1;
884 efx->legacy_irq = efx->pci_dev->irq;
885 }
886}
887
888static void efx_remove_interrupts(struct efx_nic *efx)
889{
890 struct efx_channel *channel;
891
892 /* Remove MSI/MSI-X interrupts */
893 efx_for_each_channel_with_interrupt(channel, efx)
894 channel->irq = 0;
895 pci_disable_msi(efx->pci_dev);
896 pci_disable_msix(efx->pci_dev);
897
898 /* Remove legacy interrupt */
899 efx->legacy_irq = 0;
900}
901
902/* Select number of used resources
903 * Should be called after probe_interrupts()
904 */
905static void efx_select_used(struct efx_nic *efx)
906{
907 struct efx_tx_queue *tx_queue;
908 struct efx_rx_queue *rx_queue;
909 int i;
910
911 /* TX queues. One per port per channel with TX capability
912 * (more than one per port won't work on Linux, due to out
913 * of order issues... but will be fine on Solaris)
914 */
915 tx_queue = &efx->tx_queue[0];
916
917 /* Perform this for each channel with TX capabilities.
918 * At the moment, we only support a single TX queue
919 */
920 tx_queue->used = 1;
921 if ((!EFX_INT_MODE_USE_MSI(efx)) && separate_tx_and_rx_channels)
922 tx_queue->channel = &efx->channel[1];
923 else
924 tx_queue->channel = &efx->channel[0];
925 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
926 tx_queue++;
927
928 /* RX queues. Each has a dedicated channel. */
929 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
930 rx_queue = &efx->rx_queue[i];
931
932 if (i < efx->rss_queues) {
933 rx_queue->used = 1;
934 /* If we allow multiple RX queues per channel
935 * we need to decide that here
936 */
937 rx_queue->channel = &efx->channel[rx_queue->queue];
938 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
939 rx_queue++;
940 }
941 }
942}
943
944static int efx_probe_nic(struct efx_nic *efx)
945{
946 int rc;
947
948 EFX_LOG(efx, "creating NIC\n");
949
950 /* Carry out hardware-type specific initialisation */
951 rc = falcon_probe_nic(efx);
952 if (rc)
953 return rc;
954
955 /* Determine the number of channels and RX queues by trying to hook
956 * in MSI-X interrupts. */
957 efx_probe_interrupts(efx);
958
959 /* Determine number of RX queues and TX queues */
960 efx_select_used(efx);
961
962 /* Initialise the interrupt moderation settings */
963 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
964
965 return 0;
966}
967
968static void efx_remove_nic(struct efx_nic *efx)
969{
970 EFX_LOG(efx, "destroying NIC\n");
971
972 efx_remove_interrupts(efx);
973 falcon_remove_nic(efx);
974}
975
976/**************************************************************************
977 *
978 * NIC startup/shutdown
979 *
980 *************************************************************************/
981
982static int efx_probe_all(struct efx_nic *efx)
983{
984 struct efx_channel *channel;
985 int rc;
986
987 /* Create NIC */
988 rc = efx_probe_nic(efx);
989 if (rc) {
990 EFX_ERR(efx, "failed to create NIC\n");
991 goto fail1;
992 }
993
994 /* Create port */
995 rc = efx_probe_port(efx);
996 if (rc) {
997 EFX_ERR(efx, "failed to create port\n");
998 goto fail2;
999 }
1000
1001 /* Create channels */
1002 efx_for_each_channel(channel, efx) {
1003 rc = efx_probe_channel(channel);
1004 if (rc) {
1005 EFX_ERR(efx, "failed to create channel %d\n",
1006 channel->channel);
1007 goto fail3;
1008 }
1009 }
1010
1011 return 0;
1012
1013 fail3:
1014 efx_for_each_channel(channel, efx)
1015 efx_remove_channel(channel);
1016 efx_remove_port(efx);
1017 fail2:
1018 efx_remove_nic(efx);
1019 fail1:
1020 return rc;
1021}
1022
1023/* Called after previous invocation(s) of efx_stop_all, restarts the
1024 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1025 * and ensures that the port is scheduled to be reconfigured.
1026 * This function is safe to call multiple times when the NIC is in any
1027 * state. */
1028static void efx_start_all(struct efx_nic *efx)
1029{
1030 struct efx_channel *channel;
1031
1032 EFX_ASSERT_RESET_SERIALISED(efx);
1033
1034 /* Check that it is appropriate to restart the interface. All
1035 * of these flags are safe to read under just the rtnl lock */
1036 if (efx->port_enabled)
1037 return;
1038 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1039 return;
Ben Hutchings55668612008-05-16 21:16:10 +01001040 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
Ben Hutchings8ceee662008-04-27 12:55:59 +01001041 return;
1042
1043 /* Mark the port as enabled so port reconfigurations can start, then
1044 * restart the transmit interface early so the watchdog timer stops */
1045 efx_start_port(efx);
1046 efx_wake_queue(efx);
1047
1048 efx_for_each_channel(channel, efx)
1049 efx_start_channel(channel);
1050
1051 falcon_enable_interrupts(efx);
1052
1053 /* Start hardware monitor if we're in RUNNING */
1054 if (efx->state == STATE_RUNNING)
1055 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1056 efx_monitor_interval);
1057}
1058
1059/* Flush all delayed work. Should only be called when no more delayed work
1060 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1061 * since we're holding the rtnl_lock at this point. */
1062static void efx_flush_all(struct efx_nic *efx)
1063{
1064 struct efx_rx_queue *rx_queue;
1065
1066 /* Make sure the hardware monitor is stopped */
1067 cancel_delayed_work_sync(&efx->monitor_work);
1068
1069 /* Ensure that all RX slow refills are complete. */
Ben Hutchingsb3475642008-05-16 21:15:49 +01001070 efx_for_each_rx_queue(rx_queue, efx)
Ben Hutchings8ceee662008-04-27 12:55:59 +01001071 cancel_delayed_work_sync(&rx_queue->work);
Ben Hutchings8ceee662008-04-27 12:55:59 +01001072
1073 /* Stop scheduled port reconfigurations */
1074 cancel_work_sync(&efx->reconfigure_work);
1075
1076}
1077
1078/* Quiesce hardware and software without bringing the link down.
1079 * Safe to call multiple times, when the nic and interface is in any
1080 * state. The caller is guaranteed to subsequently be in a position
1081 * to modify any hardware and software state they see fit without
1082 * taking locks. */
1083static void efx_stop_all(struct efx_nic *efx)
1084{
1085 struct efx_channel *channel;
1086
1087 EFX_ASSERT_RESET_SERIALISED(efx);
1088
1089 /* port_enabled can be read safely under the rtnl lock */
1090 if (!efx->port_enabled)
1091 return;
1092
1093 /* Disable interrupts and wait for ISR to complete */
1094 falcon_disable_interrupts(efx);
1095 if (efx->legacy_irq)
1096 synchronize_irq(efx->legacy_irq);
Ben Hutchingsb3475642008-05-16 21:15:49 +01001097 efx_for_each_channel_with_interrupt(channel, efx) {
Ben Hutchings8ceee662008-04-27 12:55:59 +01001098 if (channel->irq)
1099 synchronize_irq(channel->irq);
Ben Hutchingsb3475642008-05-16 21:15:49 +01001100 }
Ben Hutchings8ceee662008-04-27 12:55:59 +01001101
1102 /* Stop all NAPI processing and synchronous rx refills */
1103 efx_for_each_channel(channel, efx)
1104 efx_stop_channel(channel);
1105
1106 /* Stop all asynchronous port reconfigurations. Since all
1107 * event processing has already been stopped, there is no
1108 * window to loose phy events */
1109 efx_stop_port(efx);
1110
1111 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1112 efx_flush_all(efx);
1113
1114 /* Isolate the MAC from the TX and RX engines, so that queue
1115 * flushes will complete in a timely fashion. */
1116 falcon_deconfigure_mac_wrapper(efx);
1117 falcon_drain_tx_fifo(efx);
1118
1119 /* Stop the kernel transmit interface late, so the watchdog
1120 * timer isn't ticking over the flush */
1121 efx_stop_queue(efx);
Ben Hutchings55668612008-05-16 21:16:10 +01001122 if (efx_dev_registered(efx)) {
Ben Hutchings8ceee662008-04-27 12:55:59 +01001123 netif_tx_lock_bh(efx->net_dev);
1124 netif_tx_unlock_bh(efx->net_dev);
1125 }
1126}
1127
1128static void efx_remove_all(struct efx_nic *efx)
1129{
1130 struct efx_channel *channel;
1131
1132 efx_for_each_channel(channel, efx)
1133 efx_remove_channel(channel);
1134 efx_remove_port(efx);
1135 efx_remove_nic(efx);
1136}
1137
1138/* A convinience function to safely flush all the queues */
1139int efx_flush_queues(struct efx_nic *efx)
1140{
1141 int rc;
1142
1143 EFX_ASSERT_RESET_SERIALISED(efx);
1144
1145 efx_stop_all(efx);
1146
1147 efx_fini_channels(efx);
1148 rc = efx_init_channels(efx);
1149 if (rc) {
1150 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1151 return rc;
1152 }
1153
1154 efx_start_all(efx);
1155
1156 return 0;
1157}
1158
1159/**************************************************************************
1160 *
1161 * Interrupt moderation
1162 *
1163 **************************************************************************/
1164
1165/* Set interrupt moderation parameters */
1166void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1167{
1168 struct efx_tx_queue *tx_queue;
1169 struct efx_rx_queue *rx_queue;
1170
1171 EFX_ASSERT_RESET_SERIALISED(efx);
1172
1173 efx_for_each_tx_queue(tx_queue, efx)
1174 tx_queue->channel->irq_moderation = tx_usecs;
1175
1176 efx_for_each_rx_queue(rx_queue, efx)
1177 rx_queue->channel->irq_moderation = rx_usecs;
1178}
1179
1180/**************************************************************************
1181 *
1182 * Hardware monitor
1183 *
1184 **************************************************************************/
1185
1186/* Run periodically off the general workqueue. Serialised against
1187 * efx_reconfigure_port via the mac_lock */
1188static void efx_monitor(struct work_struct *data)
1189{
1190 struct efx_nic *efx = container_of(data, struct efx_nic,
1191 monitor_work.work);
1192 int rc = 0;
1193
1194 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1195 raw_smp_processor_id());
1196
1197
1198 /* If the mac_lock is already held then it is likely a port
1199 * reconfiguration is already in place, which will likely do
1200 * most of the work of check_hw() anyway. */
1201 if (!mutex_trylock(&efx->mac_lock)) {
1202 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1203 efx_monitor_interval);
1204 return;
1205 }
1206
1207 if (efx->port_enabled)
1208 rc = falcon_check_xmac(efx);
1209 mutex_unlock(&efx->mac_lock);
1210
1211 if (rc) {
1212 if (monitor_reset) {
1213 EFX_ERR(efx, "hardware monitor detected a fault: "
1214 "triggering reset\n");
1215 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1216 } else {
1217 EFX_ERR(efx, "hardware monitor detected a fault, "
1218 "skipping reset\n");
1219 }
1220 }
1221
1222 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1223 efx_monitor_interval);
1224}
1225
1226/**************************************************************************
1227 *
1228 * ioctls
1229 *
1230 *************************************************************************/
1231
1232/* Net device ioctl
1233 * Context: process, rtnl_lock() held.
1234 */
1235static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1236{
1237 struct efx_nic *efx = net_dev->priv;
1238
1239 EFX_ASSERT_RESET_SERIALISED(efx);
1240
1241 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1242}
1243
1244/**************************************************************************
1245 *
1246 * NAPI interface
1247 *
1248 **************************************************************************/
1249
1250static int efx_init_napi(struct efx_nic *efx)
1251{
1252 struct efx_channel *channel;
1253 int rc;
1254
1255 efx_for_each_channel(channel, efx) {
1256 channel->napi_dev = efx->net_dev;
1257 rc = efx_lro_init(&channel->lro_mgr, efx);
1258 if (rc)
1259 goto err;
1260 }
1261 return 0;
1262 err:
1263 efx_fini_napi(efx);
1264 return rc;
1265}
1266
1267static void efx_fini_napi(struct efx_nic *efx)
1268{
1269 struct efx_channel *channel;
1270
1271 efx_for_each_channel(channel, efx) {
1272 efx_lro_fini(&channel->lro_mgr);
1273 channel->napi_dev = NULL;
1274 }
1275}
1276
1277/**************************************************************************
1278 *
1279 * Kernel netpoll interface
1280 *
1281 *************************************************************************/
1282
1283#ifdef CONFIG_NET_POLL_CONTROLLER
1284
1285/* Although in the common case interrupts will be disabled, this is not
1286 * guaranteed. However, all our work happens inside the NAPI callback,
1287 * so no locking is required.
1288 */
1289static void efx_netpoll(struct net_device *net_dev)
1290{
1291 struct efx_nic *efx = net_dev->priv;
1292 struct efx_channel *channel;
1293
1294 efx_for_each_channel_with_interrupt(channel, efx)
1295 efx_schedule_channel(channel);
1296}
1297
1298#endif
1299
1300/**************************************************************************
1301 *
1302 * Kernel net device interface
1303 *
1304 *************************************************************************/
1305
1306/* Context: process, rtnl_lock() held. */
1307static int efx_net_open(struct net_device *net_dev)
1308{
1309 struct efx_nic *efx = net_dev->priv;
1310 EFX_ASSERT_RESET_SERIALISED(efx);
1311
1312 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1313 raw_smp_processor_id());
1314
1315 efx_start_all(efx);
1316 return 0;
1317}
1318
1319/* Context: process, rtnl_lock() held.
1320 * Note that the kernel will ignore our return code; this method
1321 * should really be a void.
1322 */
1323static int efx_net_stop(struct net_device *net_dev)
1324{
1325 struct efx_nic *efx = net_dev->priv;
1326 int rc;
1327
1328 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1329 raw_smp_processor_id());
1330
1331 /* Stop the device and flush all the channels */
1332 efx_stop_all(efx);
1333 efx_fini_channels(efx);
1334 rc = efx_init_channels(efx);
1335 if (rc)
1336 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1337
1338 return 0;
1339}
1340
Ben Hutchings5b9e2072008-05-16 21:18:14 +01001341/* Context: process, dev_base_lock or RTNL held, non-blocking. */
Ben Hutchings8ceee662008-04-27 12:55:59 +01001342static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1343{
1344 struct efx_nic *efx = net_dev->priv;
1345 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1346 struct net_device_stats *stats = &net_dev->stats;
1347
Ben Hutchings5b9e2072008-05-16 21:18:14 +01001348 /* Update stats if possible, but do not wait if another thread
1349 * is updating them (or resetting the NIC); slightly stale
1350 * stats are acceptable.
1351 */
Ben Hutchings8ceee662008-04-27 12:55:59 +01001352 if (!spin_trylock(&efx->stats_lock))
1353 return stats;
1354 if (efx->state == STATE_RUNNING) {
1355 falcon_update_stats_xmac(efx);
1356 falcon_update_nic_stats(efx);
1357 }
1358 spin_unlock(&efx->stats_lock);
1359
1360 stats->rx_packets = mac_stats->rx_packets;
1361 stats->tx_packets = mac_stats->tx_packets;
1362 stats->rx_bytes = mac_stats->rx_bytes;
1363 stats->tx_bytes = mac_stats->tx_bytes;
1364 stats->multicast = mac_stats->rx_multicast;
1365 stats->collisions = mac_stats->tx_collision;
1366 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1367 mac_stats->rx_length_error);
1368 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1369 stats->rx_crc_errors = mac_stats->rx_bad;
1370 stats->rx_frame_errors = mac_stats->rx_align_error;
1371 stats->rx_fifo_errors = mac_stats->rx_overflow;
1372 stats->rx_missed_errors = mac_stats->rx_missed;
1373 stats->tx_window_errors = mac_stats->tx_late_collision;
1374
1375 stats->rx_errors = (stats->rx_length_errors +
1376 stats->rx_over_errors +
1377 stats->rx_crc_errors +
1378 stats->rx_frame_errors +
1379 stats->rx_fifo_errors +
1380 stats->rx_missed_errors +
1381 mac_stats->rx_symbol_error);
1382 stats->tx_errors = (stats->tx_window_errors +
1383 mac_stats->tx_bad);
1384
1385 return stats;
1386}
1387
1388/* Context: netif_tx_lock held, BHs disabled. */
1389static void efx_watchdog(struct net_device *net_dev)
1390{
1391 struct efx_nic *efx = net_dev->priv;
1392
1393 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1394 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1395 monitor_reset ? "resetting channels" : "skipping reset");
1396
1397 if (monitor_reset)
1398 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1399}
1400
1401
1402/* Context: process, rtnl_lock() held. */
1403static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1404{
1405 struct efx_nic *efx = net_dev->priv;
1406 int rc = 0;
1407
1408 EFX_ASSERT_RESET_SERIALISED(efx);
1409
1410 if (new_mtu > EFX_MAX_MTU)
1411 return -EINVAL;
1412
1413 efx_stop_all(efx);
1414
1415 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1416
1417 efx_fini_channels(efx);
1418 net_dev->mtu = new_mtu;
1419 rc = efx_init_channels(efx);
1420 if (rc)
1421 goto fail;
1422
1423 efx_start_all(efx);
1424 return rc;
1425
1426 fail:
1427 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1428 return rc;
1429}
1430
1431static int efx_set_mac_address(struct net_device *net_dev, void *data)
1432{
1433 struct efx_nic *efx = net_dev->priv;
1434 struct sockaddr *addr = data;
1435 char *new_addr = addr->sa_data;
1436
1437 EFX_ASSERT_RESET_SERIALISED(efx);
1438
1439 if (!is_valid_ether_addr(new_addr)) {
1440 DECLARE_MAC_BUF(mac);
1441 EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
1442 print_mac(mac, new_addr));
1443 return -EINVAL;
1444 }
1445
1446 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1447
1448 /* Reconfigure the MAC */
1449 efx_reconfigure_port(efx);
1450
1451 return 0;
1452}
1453
1454/* Context: netif_tx_lock held, BHs disabled. */
1455static void efx_set_multicast_list(struct net_device *net_dev)
1456{
1457 struct efx_nic *efx = net_dev->priv;
1458 struct dev_mc_list *mc_list = net_dev->mc_list;
1459 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1460 int promiscuous;
1461 u32 crc;
1462 int bit;
1463 int i;
1464
1465 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
1466 promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0;
1467 if (efx->promiscuous != promiscuous) {
1468 efx->promiscuous = promiscuous;
1469 /* Close the window between efx_stop_port() and efx_flush_all()
1470 * by only queuing work when the port is enabled. */
1471 if (efx->port_enabled)
1472 queue_work(efx->workqueue, &efx->reconfigure_work);
1473 }
1474
1475 /* Build multicast hash table */
1476 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1477 memset(mc_hash, 0xff, sizeof(*mc_hash));
1478 } else {
1479 memset(mc_hash, 0x00, sizeof(*mc_hash));
1480 for (i = 0; i < net_dev->mc_count; i++) {
1481 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1482 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1483 set_bit_le(bit, mc_hash->byte);
1484 mc_list = mc_list->next;
1485 }
1486 }
1487
1488 /* Create and activate new global multicast hash table */
1489 falcon_set_multicast_hash(efx);
1490}
1491
1492static int efx_netdev_event(struct notifier_block *this,
1493 unsigned long event, void *ptr)
1494{
Ben Hutchingsd3208b52008-05-16 21:20:00 +01001495 struct net_device *net_dev = ptr;
Ben Hutchings8ceee662008-04-27 12:55:59 +01001496
1497 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
1498 struct efx_nic *efx = net_dev->priv;
1499
1500 strcpy(efx->name, net_dev->name);
1501 }
1502
1503 return NOTIFY_DONE;
1504}
1505
1506static struct notifier_block efx_netdev_notifier = {
1507 .notifier_call = efx_netdev_event,
1508};
1509
1510static int efx_register_netdev(struct efx_nic *efx)
1511{
1512 struct net_device *net_dev = efx->net_dev;
1513 int rc;
1514
1515 net_dev->watchdog_timeo = 5 * HZ;
1516 net_dev->irq = efx->pci_dev->irq;
1517 net_dev->open = efx_net_open;
1518 net_dev->stop = efx_net_stop;
1519 net_dev->get_stats = efx_net_stats;
1520 net_dev->tx_timeout = &efx_watchdog;
1521 net_dev->hard_start_xmit = efx_hard_start_xmit;
1522 net_dev->do_ioctl = efx_ioctl;
1523 net_dev->change_mtu = efx_change_mtu;
1524 net_dev->set_mac_address = efx_set_mac_address;
1525 net_dev->set_multicast_list = efx_set_multicast_list;
1526#ifdef CONFIG_NET_POLL_CONTROLLER
1527 net_dev->poll_controller = efx_netpoll;
1528#endif
1529 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1530 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1531
1532 /* Always start with carrier off; PHY events will detect the link */
1533 netif_carrier_off(efx->net_dev);
1534
1535 /* Clear MAC statistics */
1536 falcon_update_stats_xmac(efx);
1537 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1538
1539 rc = register_netdev(net_dev);
1540 if (rc) {
1541 EFX_ERR(efx, "could not register net dev\n");
1542 return rc;
1543 }
1544 strcpy(efx->name, net_dev->name);
1545
1546 return 0;
1547}
1548
1549static void efx_unregister_netdev(struct efx_nic *efx)
1550{
1551 struct efx_tx_queue *tx_queue;
1552
1553 if (!efx->net_dev)
1554 return;
1555
1556 BUG_ON(efx->net_dev->priv != efx);
1557
1558 /* Free up any skbs still remaining. This has to happen before
1559 * we try to unregister the netdev as running their destructors
1560 * may be needed to get the device ref. count to 0. */
1561 efx_for_each_tx_queue(tx_queue, efx)
1562 efx_release_tx_buffers(tx_queue);
1563
Ben Hutchings55668612008-05-16 21:16:10 +01001564 if (efx_dev_registered(efx)) {
Ben Hutchings8ceee662008-04-27 12:55:59 +01001565 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1566 unregister_netdev(efx->net_dev);
1567 }
1568}
1569
1570/**************************************************************************
1571 *
1572 * Device reset and suspend
1573 *
1574 **************************************************************************/
1575
1576/* The final hardware and software finalisation before reset. */
1577static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1578{
1579 int rc;
1580
1581 EFX_ASSERT_RESET_SERIALISED(efx);
1582
1583 rc = falcon_xmac_get_settings(efx, ecmd);
1584 if (rc) {
1585 EFX_ERR(efx, "could not back up PHY settings\n");
1586 goto fail;
1587 }
1588
1589 efx_fini_channels(efx);
1590 return 0;
1591
1592 fail:
1593 return rc;
1594}
1595
1596/* The first part of software initialisation after a hardware reset
1597 * This function does not handle serialisation with the kernel, it
1598 * assumes the caller has done this */
1599static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1600{
1601 int rc;
1602
1603 rc = efx_init_channels(efx);
1604 if (rc)
1605 goto fail1;
1606
1607 /* Restore MAC and PHY settings. */
1608 rc = falcon_xmac_set_settings(efx, ecmd);
1609 if (rc) {
1610 EFX_ERR(efx, "could not restore PHY settings\n");
1611 goto fail2;
1612 }
1613
1614 return 0;
1615
1616 fail2:
1617 efx_fini_channels(efx);
1618 fail1:
1619 return rc;
1620}
1621
1622/* Reset the NIC as transparently as possible. Do not reset the PHY
1623 * Note that the reset may fail, in which case the card will be left
1624 * in a most-probably-unusable state.
1625 *
1626 * This function will sleep. You cannot reset from within an atomic
1627 * state; use efx_schedule_reset() instead.
1628 *
1629 * Grabs the rtnl_lock.
1630 */
1631static int efx_reset(struct efx_nic *efx)
1632{
1633 struct ethtool_cmd ecmd;
1634 enum reset_type method = efx->reset_pending;
1635 int rc;
1636
1637 /* Serialise with kernel interfaces */
1638 rtnl_lock();
1639
1640 /* If we're not RUNNING then don't reset. Leave the reset_pending
1641 * flag set so that efx_pci_probe_main will be retried */
1642 if (efx->state != STATE_RUNNING) {
1643 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1644 goto unlock_rtnl;
1645 }
1646
1647 efx->state = STATE_RESETTING;
1648 EFX_INFO(efx, "resetting (%d)\n", method);
1649
1650 /* The net_dev->get_stats handler is quite slow, and will fail
1651 * if a fetch is pending over reset. Serialise against it. */
1652 spin_lock(&efx->stats_lock);
1653 spin_unlock(&efx->stats_lock);
1654
1655 efx_stop_all(efx);
1656 mutex_lock(&efx->mac_lock);
1657
1658 rc = efx_reset_down(efx, &ecmd);
1659 if (rc)
1660 goto fail1;
1661
1662 rc = falcon_reset_hw(efx, method);
1663 if (rc) {
1664 EFX_ERR(efx, "failed to reset hardware\n");
1665 goto fail2;
1666 }
1667
1668 /* Allow resets to be rescheduled. */
1669 efx->reset_pending = RESET_TYPE_NONE;
1670
1671 /* Reinitialise bus-mastering, which may have been turned off before
1672 * the reset was scheduled. This is still appropriate, even in the
1673 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1674 * can respond to requests. */
1675 pci_set_master(efx->pci_dev);
1676
1677 /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
1678 * case so the driver can talk to external SRAM */
1679 rc = falcon_init_nic(efx);
1680 if (rc) {
1681 EFX_ERR(efx, "failed to initialise NIC\n");
1682 goto fail3;
1683 }
1684
1685 /* Leave device stopped if necessary */
1686 if (method == RESET_TYPE_DISABLE) {
1687 /* Reinitialise the device anyway so the driver unload sequence
1688 * can talk to the external SRAM */
Ben Hutchings91ad7572008-05-16 21:14:27 +01001689 falcon_init_nic(efx);
Ben Hutchings8ceee662008-04-27 12:55:59 +01001690 rc = -EIO;
1691 goto fail4;
1692 }
1693
1694 rc = efx_reset_up(efx, &ecmd);
1695 if (rc)
1696 goto fail5;
1697
1698 mutex_unlock(&efx->mac_lock);
1699 EFX_LOG(efx, "reset complete\n");
1700
1701 efx->state = STATE_RUNNING;
1702 efx_start_all(efx);
1703
1704 unlock_rtnl:
1705 rtnl_unlock();
1706 return 0;
1707
1708 fail5:
1709 fail4:
1710 fail3:
1711 fail2:
1712 fail1:
1713 EFX_ERR(efx, "has been disabled\n");
1714 efx->state = STATE_DISABLED;
1715
1716 mutex_unlock(&efx->mac_lock);
1717 rtnl_unlock();
1718 efx_unregister_netdev(efx);
1719 efx_fini_port(efx);
1720 return rc;
1721}
1722
1723/* The worker thread exists so that code that cannot sleep can
1724 * schedule a reset for later.
1725 */
1726static void efx_reset_work(struct work_struct *data)
1727{
1728 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1729
1730 efx_reset(nic);
1731}
1732
1733void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1734{
1735 enum reset_type method;
1736
1737 if (efx->reset_pending != RESET_TYPE_NONE) {
1738 EFX_INFO(efx, "quenching already scheduled reset\n");
1739 return;
1740 }
1741
1742 switch (type) {
1743 case RESET_TYPE_INVISIBLE:
1744 case RESET_TYPE_ALL:
1745 case RESET_TYPE_WORLD:
1746 case RESET_TYPE_DISABLE:
1747 method = type;
1748 break;
1749 case RESET_TYPE_RX_RECOVERY:
1750 case RESET_TYPE_RX_DESC_FETCH:
1751 case RESET_TYPE_TX_DESC_FETCH:
1752 case RESET_TYPE_TX_SKIP:
1753 method = RESET_TYPE_INVISIBLE;
1754 break;
1755 default:
1756 method = RESET_TYPE_ALL;
1757 break;
1758 }
1759
1760 if (method != type)
1761 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1762 else
1763 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1764
1765 efx->reset_pending = method;
1766
1767 queue_work(efx->workqueue, &efx->reset_work);
1768}
1769
1770/**************************************************************************
1771 *
1772 * List of NICs we support
1773 *
1774 **************************************************************************/
1775
1776/* PCI device ID table */
1777static struct pci_device_id efx_pci_table[] __devinitdata = {
1778 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1779 .driver_data = (unsigned long) &falcon_a_nic_type},
1780 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1781 .driver_data = (unsigned long) &falcon_b_nic_type},
1782 {0} /* end of list */
1783};
1784
1785/**************************************************************************
1786 *
1787 * Dummy PHY/MAC/Board operations
1788 *
1789 * Can be used where the MAC does not implement this operation
1790 * Needed so all function pointers are valid and do not have to be tested
1791 * before use
1792 *
1793 **************************************************************************/
1794int efx_port_dummy_op_int(struct efx_nic *efx)
1795{
1796 return 0;
1797}
1798void efx_port_dummy_op_void(struct efx_nic *efx) {}
1799void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {}
1800
1801static struct efx_phy_operations efx_dummy_phy_operations = {
1802 .init = efx_port_dummy_op_int,
1803 .reconfigure = efx_port_dummy_op_void,
1804 .check_hw = efx_port_dummy_op_int,
1805 .fini = efx_port_dummy_op_void,
1806 .clear_interrupt = efx_port_dummy_op_void,
1807 .reset_xaui = efx_port_dummy_op_void,
1808};
1809
1810/* Dummy board operations */
1811static int efx_nic_dummy_op_int(struct efx_nic *nic)
1812{
1813 return 0;
1814}
1815
1816static struct efx_board efx_dummy_board_info = {
1817 .init = efx_nic_dummy_op_int,
1818 .init_leds = efx_port_dummy_op_int,
1819 .set_fault_led = efx_port_dummy_op_blink,
Ben Hutchings37b5a602008-05-30 22:27:04 +01001820 .fini = efx_port_dummy_op_void,
Ben Hutchings8ceee662008-04-27 12:55:59 +01001821};
1822
1823/**************************************************************************
1824 *
1825 * Data housekeeping
1826 *
1827 **************************************************************************/
1828
1829/* This zeroes out and then fills in the invariants in a struct
1830 * efx_nic (including all sub-structures).
1831 */
1832static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1833 struct pci_dev *pci_dev, struct net_device *net_dev)
1834{
1835 struct efx_channel *channel;
1836 struct efx_tx_queue *tx_queue;
1837 struct efx_rx_queue *rx_queue;
1838 int i, rc;
1839
1840 /* Initialise common structures */
1841 memset(efx, 0, sizeof(*efx));
1842 spin_lock_init(&efx->biu_lock);
1843 spin_lock_init(&efx->phy_lock);
1844 INIT_WORK(&efx->reset_work, efx_reset_work);
1845 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1846 efx->pci_dev = pci_dev;
1847 efx->state = STATE_INIT;
1848 efx->reset_pending = RESET_TYPE_NONE;
1849 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1850 efx->board_info = efx_dummy_board_info;
1851
1852 efx->net_dev = net_dev;
1853 efx->rx_checksum_enabled = 1;
1854 spin_lock_init(&efx->netif_stop_lock);
1855 spin_lock_init(&efx->stats_lock);
1856 mutex_init(&efx->mac_lock);
1857 efx->phy_op = &efx_dummy_phy_operations;
1858 efx->mii.dev = net_dev;
1859 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1860 atomic_set(&efx->netif_stop_count, 1);
1861
1862 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1863 channel = &efx->channel[i];
1864 channel->efx = efx;
1865 channel->channel = i;
1866 channel->evqnum = i;
1867 channel->work_pending = 0;
1868 }
1869 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
1870 tx_queue = &efx->tx_queue[i];
1871 tx_queue->efx = efx;
1872 tx_queue->queue = i;
1873 tx_queue->buffer = NULL;
1874 tx_queue->channel = &efx->channel[0]; /* for safety */
Ben Hutchingsb9b39b62008-05-07 12:51:12 +01001875 tx_queue->tso_headers_free = NULL;
Ben Hutchings8ceee662008-04-27 12:55:59 +01001876 }
1877 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1878 rx_queue = &efx->rx_queue[i];
1879 rx_queue->efx = efx;
1880 rx_queue->queue = i;
1881 rx_queue->channel = &efx->channel[0]; /* for safety */
1882 rx_queue->buffer = NULL;
1883 spin_lock_init(&rx_queue->add_lock);
1884 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1885 }
1886
1887 efx->type = type;
1888
1889 /* Sanity-check NIC type */
1890 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1891 (efx->type->txd_ring_mask + 1));
1892 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1893 (efx->type->rxd_ring_mask + 1));
1894 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1895 (efx->type->evq_size - 1));
1896 /* As close as we can get to guaranteeing that we don't overflow */
1897 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1898 (efx->type->txd_ring_mask + 1 +
1899 efx->type->rxd_ring_mask + 1));
1900 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1901
1902 /* Higher numbered interrupt modes are less capable! */
1903 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1904 interrupt_mode);
1905
1906 efx->workqueue = create_singlethread_workqueue("sfc_work");
1907 if (!efx->workqueue) {
1908 rc = -ENOMEM;
1909 goto fail1;
1910 }
1911
1912 return 0;
1913
1914 fail1:
1915 return rc;
1916}
1917
1918static void efx_fini_struct(struct efx_nic *efx)
1919{
1920 if (efx->workqueue) {
1921 destroy_workqueue(efx->workqueue);
1922 efx->workqueue = NULL;
1923 }
1924}
1925
1926/**************************************************************************
1927 *
1928 * PCI interface
1929 *
1930 **************************************************************************/
1931
1932/* Main body of final NIC shutdown code
1933 * This is called only at module unload (or hotplug removal).
1934 */
1935static void efx_pci_remove_main(struct efx_nic *efx)
1936{
1937 EFX_ASSERT_RESET_SERIALISED(efx);
1938
1939 /* Skip everything if we never obtained a valid membase */
1940 if (!efx->membase)
1941 return;
1942
1943 efx_fini_channels(efx);
1944 efx_fini_port(efx);
1945
1946 /* Shutdown the board, then the NIC and board state */
Ben Hutchings37b5a602008-05-30 22:27:04 +01001947 efx->board_info.fini(efx);
Ben Hutchings8ceee662008-04-27 12:55:59 +01001948 falcon_fini_interrupt(efx);
1949
1950 efx_fini_napi(efx);
1951 efx_remove_all(efx);
1952}
1953
1954/* Final NIC shutdown
1955 * This is called only at module unload (or hotplug removal).
1956 */
1957static void efx_pci_remove(struct pci_dev *pci_dev)
1958{
1959 struct efx_nic *efx;
1960
1961 efx = pci_get_drvdata(pci_dev);
1962 if (!efx)
1963 return;
1964
1965 /* Mark the NIC as fini, then stop the interface */
1966 rtnl_lock();
1967 efx->state = STATE_FINI;
1968 dev_close(efx->net_dev);
1969
1970 /* Allow any queued efx_resets() to complete */
1971 rtnl_unlock();
1972
1973 if (efx->membase == NULL)
1974 goto out;
1975
1976 efx_unregister_netdev(efx);
1977
1978 /* Wait for any scheduled resets to complete. No more will be
1979 * scheduled from this point because efx_stop_all() has been
1980 * called, we are no longer registered with driverlink, and
1981 * the net_device's have been removed. */
1982 flush_workqueue(efx->workqueue);
1983
1984 efx_pci_remove_main(efx);
1985
1986out:
1987 efx_fini_io(efx);
1988 EFX_LOG(efx, "shutdown successful\n");
1989
1990 pci_set_drvdata(pci_dev, NULL);
1991 efx_fini_struct(efx);
1992 free_netdev(efx->net_dev);
1993};
1994
1995/* Main body of NIC initialisation
1996 * This is called at module load (or hotplug insertion, theoretically).
1997 */
1998static int efx_pci_probe_main(struct efx_nic *efx)
1999{
2000 int rc;
2001
2002 /* Do start-of-day initialisation */
2003 rc = efx_probe_all(efx);
2004 if (rc)
2005 goto fail1;
2006
2007 rc = efx_init_napi(efx);
2008 if (rc)
2009 goto fail2;
2010
2011 /* Initialise the board */
2012 rc = efx->board_info.init(efx);
2013 if (rc) {
2014 EFX_ERR(efx, "failed to initialise board\n");
2015 goto fail3;
2016 }
2017
2018 rc = falcon_init_nic(efx);
2019 if (rc) {
2020 EFX_ERR(efx, "failed to initialise NIC\n");
2021 goto fail4;
2022 }
2023
2024 rc = efx_init_port(efx);
2025 if (rc) {
2026 EFX_ERR(efx, "failed to initialise port\n");
2027 goto fail5;
2028 }
2029
2030 rc = efx_init_channels(efx);
2031 if (rc)
2032 goto fail6;
2033
2034 rc = falcon_init_interrupt(efx);
2035 if (rc)
2036 goto fail7;
2037
2038 return 0;
2039
2040 fail7:
2041 efx_fini_channels(efx);
2042 fail6:
2043 efx_fini_port(efx);
2044 fail5:
2045 fail4:
2046 fail3:
2047 efx_fini_napi(efx);
2048 fail2:
2049 efx_remove_all(efx);
2050 fail1:
2051 return rc;
2052}
2053
2054/* NIC initialisation
2055 *
2056 * This is called at module load (or hotplug insertion,
2057 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2058 * sets up and registers the network devices with the kernel and hooks
2059 * the interrupt service routine. It does not prepare the device for
2060 * transmission; this is left to the first time one of the network
2061 * interfaces is brought up (i.e. efx_net_open).
2062 */
2063static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2064 const struct pci_device_id *entry)
2065{
2066 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2067 struct net_device *net_dev;
2068 struct efx_nic *efx;
2069 int i, rc;
2070
2071 /* Allocate and initialise a struct net_device and struct efx_nic */
2072 net_dev = alloc_etherdev(sizeof(*efx));
2073 if (!net_dev)
2074 return -ENOMEM;
Ben Hutchingsb9b39b62008-05-07 12:51:12 +01002075 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2076 NETIF_F_HIGHDMA | NETIF_F_TSO);
Ben Hutchings8ceee662008-04-27 12:55:59 +01002077 if (lro)
2078 net_dev->features |= NETIF_F_LRO;
2079 efx = net_dev->priv;
2080 pci_set_drvdata(pci_dev, efx);
2081 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2082 if (rc)
2083 goto fail1;
2084
2085 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2086
2087 /* Set up basic I/O (BAR mappings etc) */
2088 rc = efx_init_io(efx);
2089 if (rc)
2090 goto fail2;
2091
2092 /* No serialisation is required with the reset path because
2093 * we're in STATE_INIT. */
2094 for (i = 0; i < 5; i++) {
2095 rc = efx_pci_probe_main(efx);
2096 if (rc == 0)
2097 break;
2098
2099 /* Serialise against efx_reset(). No more resets will be
2100 * scheduled since efx_stop_all() has been called, and we
2101 * have not and never have been registered with either
2102 * the rtnetlink or driverlink layers. */
2103 cancel_work_sync(&efx->reset_work);
2104
2105 /* Retry if a recoverably reset event has been scheduled */
2106 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2107 (efx->reset_pending != RESET_TYPE_ALL))
2108 goto fail3;
2109
2110 efx->reset_pending = RESET_TYPE_NONE;
2111 }
2112
2113 if (rc) {
2114 EFX_ERR(efx, "Could not reset NIC\n");
2115 goto fail4;
2116 }
2117
2118 /* Switch to the running state before we expose the device to
2119 * the OS. This is to ensure that the initial gathering of
2120 * MAC stats succeeds. */
2121 rtnl_lock();
2122 efx->state = STATE_RUNNING;
2123 rtnl_unlock();
2124
2125 rc = efx_register_netdev(efx);
2126 if (rc)
2127 goto fail5;
2128
2129 EFX_LOG(efx, "initialisation successful\n");
2130
2131 return 0;
2132
2133 fail5:
2134 efx_pci_remove_main(efx);
2135 fail4:
2136 fail3:
2137 efx_fini_io(efx);
2138 fail2:
2139 efx_fini_struct(efx);
2140 fail1:
2141 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2142 free_netdev(net_dev);
2143 return rc;
2144}
2145
2146static struct pci_driver efx_pci_driver = {
2147 .name = EFX_DRIVER_NAME,
2148 .id_table = efx_pci_table,
2149 .probe = efx_pci_probe,
2150 .remove = efx_pci_remove,
2151};
2152
2153/**************************************************************************
2154 *
2155 * Kernel module interface
2156 *
2157 *************************************************************************/
2158
2159module_param(interrupt_mode, uint, 0444);
2160MODULE_PARM_DESC(interrupt_mode,
2161 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2162
2163static int __init efx_init_module(void)
2164{
2165 int rc;
2166
2167 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2168
2169 rc = register_netdevice_notifier(&efx_netdev_notifier);
2170 if (rc)
2171 goto err_notifier;
2172
2173 refill_workqueue = create_workqueue("sfc_refill");
2174 if (!refill_workqueue) {
2175 rc = -ENOMEM;
2176 goto err_refill;
2177 }
2178
2179 rc = pci_register_driver(&efx_pci_driver);
2180 if (rc < 0)
2181 goto err_pci;
2182
2183 return 0;
2184
2185 err_pci:
2186 destroy_workqueue(refill_workqueue);
2187 err_refill:
2188 unregister_netdevice_notifier(&efx_netdev_notifier);
2189 err_notifier:
2190 return rc;
2191}
2192
2193static void __exit efx_exit_module(void)
2194{
2195 printk(KERN_INFO "Solarflare NET driver unloading\n");
2196
2197 pci_unregister_driver(&efx_pci_driver);
2198 destroy_workqueue(refill_workqueue);
2199 unregister_netdevice_notifier(&efx_netdev_notifier);
2200
2201}
2202
2203module_init(efx_init_module);
2204module_exit(efx_exit_module);
2205
2206MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2207 "Solarflare Communications");
2208MODULE_DESCRIPTION("Solarflare Communications network driver");
2209MODULE_LICENSE("GPL");
2210MODULE_DEVICE_TABLE(pci, efx_pci_table);