blob: abea2fdd868971bd1ae499a56e2aa4f58441fbed [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _ASM_M32R_BITOPS_H
2#define _ASM_M32R_BITOPS_H
3
4/*
5 * linux/include/asm-m32r/bitops.h
6 *
7 * Copyright 1992, Linus Torvalds.
8 *
9 * M32R version:
10 * Copyright (C) 2001, 2002 Hitoshi Yamamoto
11 * Copyright (C) 2004 Hirokazu Takata <takata at linux-m32r.org>
12 */
13
14#include <linux/config.h>
15#include <linux/compiler.h>
16#include <asm/assembler.h>
17#include <asm/system.h>
18#include <asm/byteorder.h>
19#include <asm/types.h>
20
21/*
22 * These have to be done with inline assembly: that way the bit-setting
23 * is guaranteed to be atomic. All bit operations return 0 if the bit
24 * was cleared before the operation and != 0 if it was not.
25 *
26 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
27 */
28
29/**
30 * set_bit - Atomically set a bit in memory
31 * @nr: the bit to set
32 * @addr: the address to start counting from
33 *
34 * This function is atomic and may not be reordered. See __set_bit()
35 * if you do not require the atomic guarantees.
36 * Note that @nr may be almost arbitrarily large; this function is not
37 * restricted to acting on a single-word quantity.
38 */
39static __inline__ void set_bit(int nr, volatile void * addr)
40{
41 __u32 mask;
42 volatile __u32 *a = addr;
43 unsigned long flags;
44 unsigned long tmp;
45
46 a += (nr >> 5);
47 mask = (1 << (nr & 0x1F));
48
49 local_irq_save(flags);
50 __asm__ __volatile__ (
51 DCACHE_CLEAR("%0", "r6", "%1")
52 M32R_LOCK" %0, @%1; \n\t"
53 "or %0, %2; \n\t"
54 M32R_UNLOCK" %0, @%1; \n\t"
55 : "=&r" (tmp)
56 : "r" (a), "r" (mask)
57 : "memory"
58#ifdef CONFIG_CHIP_M32700_TS1
59 , "r6"
60#endif /* CONFIG_CHIP_M32700_TS1 */
61 );
62 local_irq_restore(flags);
63}
64
65/**
66 * __set_bit - Set a bit in memory
67 * @nr: the bit to set
68 * @addr: the address to start counting from
69 *
70 * Unlike set_bit(), this function is non-atomic and may be reordered.
71 * If it's called on the same region of memory simultaneously, the effect
72 * may be that only one operation succeeds.
73 */
74static __inline__ void __set_bit(int nr, volatile void * addr)
75{
76 __u32 mask;
77 volatile __u32 *a = addr;
78
79 a += (nr >> 5);
80 mask = (1 << (nr & 0x1F));
81 *a |= mask;
82}
83
84/**
85 * clear_bit - Clears a bit in memory
86 * @nr: Bit to clear
87 * @addr: Address to start counting from
88 *
89 * clear_bit() is atomic and may not be reordered. However, it does
90 * not contain a memory barrier, so if it is used for locking purposes,
91 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
92 * in order to ensure changes are visible on other processors.
93 */
94static __inline__ void clear_bit(int nr, volatile void * addr)
95{
96 __u32 mask;
97 volatile __u32 *a = addr;
98 unsigned long flags;
99 unsigned long tmp;
100
101 a += (nr >> 5);
102 mask = (1 << (nr & 0x1F));
103
104 local_irq_save(flags);
105
106 __asm__ __volatile__ (
107 DCACHE_CLEAR("%0", "r6", "%1")
108 M32R_LOCK" %0, @%1; \n\t"
109 "and %0, %2; \n\t"
110 M32R_UNLOCK" %0, @%1; \n\t"
111 : "=&r" (tmp)
112 : "r" (a), "r" (~mask)
113 : "memory"
114#ifdef CONFIG_CHIP_M32700_TS1
115 , "r6"
116#endif /* CONFIG_CHIP_M32700_TS1 */
117 );
118 local_irq_restore(flags);
119}
120
121static __inline__ void __clear_bit(int nr, volatile unsigned long * addr)
122{
123 unsigned long mask;
124 volatile unsigned long *a = addr;
125
126 a += (nr >> 5);
127 mask = (1 << (nr & 0x1F));
128 *a &= ~mask;
129}
130
131#define smp_mb__before_clear_bit() barrier()
132#define smp_mb__after_clear_bit() barrier()
133
134/**
135 * __change_bit - Toggle a bit in memory
136 * @nr: the bit to set
137 * @addr: the address to start counting from
138 *
139 * Unlike change_bit(), this function is non-atomic and may be reordered.
140 * If it's called on the same region of memory simultaneously, the effect
141 * may be that only one operation succeeds.
142 */
143static __inline__ void __change_bit(int nr, volatile void * addr)
144{
145 __u32 mask;
146 volatile __u32 *a = addr;
147
148 a += (nr >> 5);
149 mask = (1 << (nr & 0x1F));
150 *a ^= mask;
151}
152
153/**
154 * change_bit - Toggle a bit in memory
155 * @nr: Bit to clear
156 * @addr: Address to start counting from
157 *
158 * change_bit() is atomic and may not be reordered.
159 * Note that @nr may be almost arbitrarily large; this function is not
160 * restricted to acting on a single-word quantity.
161 */
162static __inline__ void change_bit(int nr, volatile void * addr)
163{
164 __u32 mask;
165 volatile __u32 *a = addr;
166 unsigned long flags;
167 unsigned long tmp;
168
169 a += (nr >> 5);
170 mask = (1 << (nr & 0x1F));
171
172 local_irq_save(flags);
173 __asm__ __volatile__ (
174 DCACHE_CLEAR("%0", "r6", "%1")
175 M32R_LOCK" %0, @%1; \n\t"
176 "xor %0, %2; \n\t"
177 M32R_UNLOCK" %0, @%1; \n\t"
178 : "=&r" (tmp)
179 : "r" (a), "r" (mask)
180 : "memory"
181#ifdef CONFIG_CHIP_M32700_TS1
182 , "r6"
183#endif /* CONFIG_CHIP_M32700_TS1 */
184 );
185 local_irq_restore(flags);
186}
187
188/**
189 * test_and_set_bit - Set a bit and return its old value
190 * @nr: Bit to set
191 * @addr: Address to count from
192 *
193 * This operation is atomic and cannot be reordered.
194 * It also implies a memory barrier.
195 */
196static __inline__ int test_and_set_bit(int nr, volatile void * addr)
197{
198 __u32 mask, oldbit;
199 volatile __u32 *a = addr;
200 unsigned long flags;
201 unsigned long tmp;
202
203 a += (nr >> 5);
204 mask = (1 << (nr & 0x1F));
205
206 local_irq_save(flags);
207 __asm__ __volatile__ (
208 DCACHE_CLEAR("%0", "%1", "%2")
209 M32R_LOCK" %0, @%2; \n\t"
210 "mv %1, %0; \n\t"
211 "and %0, %3; \n\t"
212 "or %1, %3; \n\t"
213 M32R_UNLOCK" %1, @%2; \n\t"
214 : "=&r" (oldbit), "=&r" (tmp)
215 : "r" (a), "r" (mask)
216 : "memory"
217 );
218 local_irq_restore(flags);
219
220 return (oldbit != 0);
221}
222
223/**
224 * __test_and_set_bit - Set a bit and return its old value
225 * @nr: Bit to set
226 * @addr: Address to count from
227 *
228 * This operation is non-atomic and can be reordered.
229 * If two examples of this operation race, one can appear to succeed
230 * but actually fail. You must protect multiple accesses with a lock.
231 */
232static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
233{
234 __u32 mask, oldbit;
235 volatile __u32 *a = addr;
236
237 a += (nr >> 5);
238 mask = (1 << (nr & 0x1F));
239 oldbit = (*a & mask);
240 *a |= mask;
241
242 return (oldbit != 0);
243}
244
245/**
246 * test_and_clear_bit - Clear a bit and return its old value
247 * @nr: Bit to set
248 * @addr: Address to count from
249 *
250 * This operation is atomic and cannot be reordered.
251 * It also implies a memory barrier.
252 */
253static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
254{
255 __u32 mask, oldbit;
256 volatile __u32 *a = addr;
257 unsigned long flags;
258 unsigned long tmp;
259
260 a += (nr >> 5);
261 mask = (1 << (nr & 0x1F));
262
263 local_irq_save(flags);
264
265 __asm__ __volatile__ (
266 DCACHE_CLEAR("%0", "%1", "%3")
267 M32R_LOCK" %0, @%3; \n\t"
268 "mv %1, %0; \n\t"
269 "and %0, %2; \n\t"
270 "not %2, %2; \n\t"
271 "and %1, %2; \n\t"
272 M32R_UNLOCK" %1, @%3; \n\t"
273 : "=&r" (oldbit), "=&r" (tmp), "+r" (mask)
274 : "r" (a)
275 : "memory"
276 );
277 local_irq_restore(flags);
278
279 return (oldbit != 0);
280}
281
282/**
283 * __test_and_clear_bit - Clear a bit and return its old value
284 * @nr: Bit to set
285 * @addr: Address to count from
286 *
287 * This operation is non-atomic and can be reordered.
288 * If two examples of this operation race, one can appear to succeed
289 * but actually fail. You must protect multiple accesses with a lock.
290 */
291static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
292{
293 __u32 mask, oldbit;
294 volatile __u32 *a = addr;
295
296 a += (nr >> 5);
297 mask = (1 << (nr & 0x1F));
298 oldbit = (*a & mask);
299 *a &= ~mask;
300
301 return (oldbit != 0);
302}
303
304/* WARNING: non atomic and it can be reordered! */
305static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
306{
307 __u32 mask, oldbit;
308 volatile __u32 *a = addr;
309
310 a += (nr >> 5);
311 mask = (1 << (nr & 0x1F));
312 oldbit = (*a & mask);
313 *a ^= mask;
314
315 return (oldbit != 0);
316}
317
318/**
319 * test_and_change_bit - Change a bit and return its old value
320 * @nr: Bit to set
321 * @addr: Address to count from
322 *
323 * This operation is atomic and cannot be reordered.
324 * It also implies a memory barrier.
325 */
326static __inline__ int test_and_change_bit(int nr, volatile void * addr)
327{
328 __u32 mask, oldbit;
329 volatile __u32 *a = addr;
330 unsigned long flags;
331 unsigned long tmp;
332
333 a += (nr >> 5);
334 mask = (1 << (nr & 0x1F));
335
336 local_irq_save(flags);
337 __asm__ __volatile__ (
338 DCACHE_CLEAR("%0", "%1", "%2")
339 M32R_LOCK" %0, @%2; \n\t"
340 "mv %1, %0; \n\t"
341 "and %0, %3; \n\t"
342 "xor %1, %3; \n\t"
343 M32R_UNLOCK" %1, @%2; \n\t"
344 : "=&r" (oldbit), "=&r" (tmp)
345 : "r" (a), "r" (mask)
346 : "memory"
347 );
348 local_irq_restore(flags);
349
350 return (oldbit != 0);
351}
352
353/**
354 * test_bit - Determine whether a bit is set
355 * @nr: bit number to test
356 * @addr: Address to start counting from
357 */
358static __inline__ int test_bit(int nr, const volatile void * addr)
359{
360 __u32 mask;
361 const volatile __u32 *a = addr;
362
363 a += (nr >> 5);
364 mask = (1 << (nr & 0x1F));
365
366 return ((*a & mask) != 0);
367}
368
369/**
370 * ffz - find first zero in word.
371 * @word: The word to search
372 *
373 * Undefined if no zero exists, so code should check against ~0UL first.
374 */
375static __inline__ unsigned long ffz(unsigned long word)
376{
377 int k;
378
379 word = ~word;
380 k = 0;
381 if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
382 if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
383 if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
384 if (!(word & 0x00000003)) { k += 2; word >>= 2; }
385 if (!(word & 0x00000001)) { k += 1; }
386
387 return k;
388}
389
390/**
391 * find_first_zero_bit - find the first zero bit in a memory region
392 * @addr: The address to start the search at
393 * @size: The maximum size to search
394 *
395 * Returns the bit-number of the first zero bit, not the number of the byte
396 * containing a bit.
397 */
398
399#define find_first_zero_bit(addr, size) \
400 find_next_zero_bit((addr), (size), 0)
401
402/**
403 * find_next_zero_bit - find the first zero bit in a memory region
404 * @addr: The address to base the search on
405 * @offset: The bitnumber to start searching at
406 * @size: The maximum size to search
407 */
408static __inline__ int find_next_zero_bit(const unsigned long *addr,
409 int size, int offset)
410{
411 const unsigned long *p = addr + (offset >> 5);
412 unsigned long result = offset & ~31UL;
413 unsigned long tmp;
414
415 if (offset >= size)
416 return size;
417 size -= result;
418 offset &= 31UL;
419 if (offset) {
420 tmp = *(p++);
421 tmp |= ~0UL >> (32-offset);
422 if (size < 32)
423 goto found_first;
424 if (~tmp)
425 goto found_middle;
426 size -= 32;
427 result += 32;
428 }
429 while (size & ~31UL) {
430 if (~(tmp = *(p++)))
431 goto found_middle;
432 result += 32;
433 size -= 32;
434 }
435 if (!size)
436 return result;
437 tmp = *p;
438
439found_first:
440 tmp |= ~0UL << size;
441found_middle:
442 return result + ffz(tmp);
443}
444
445/**
446 * __ffs - find first bit in word.
447 * @word: The word to search
448 *
449 * Undefined if no bit exists, so code should check against 0 first.
450 */
451static __inline__ unsigned long __ffs(unsigned long word)
452{
453 int k = 0;
454
455 if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
456 if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
457 if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
458 if (!(word & 0x00000003)) { k += 2; word >>= 2; }
459 if (!(word & 0x00000001)) { k += 1;}
460
461 return k;
462}
463
464/*
465 * fls: find last bit set.
466 */
467#define fls(x) generic_fls(x)
Stephen Hemminger3821af22005-12-21 19:30:53 -0800468#define fls64(x) generic_fls64(x)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700469
470#ifdef __KERNEL__
471
472/*
473 * Every architecture must define this function. It's the fastest
474 * way of searching a 140-bit bitmap where the first 100 bits are
475 * unlikely to be set. It's guaranteed that at least one of the 140
476 * bits is cleared.
477 */
478static inline int sched_find_first_bit(unsigned long *b)
479{
480 if (unlikely(b[0]))
481 return __ffs(b[0]);
482 if (unlikely(b[1]))
483 return __ffs(b[1]) + 32;
484 if (unlikely(b[2]))
485 return __ffs(b[2]) + 64;
486 if (b[3])
487 return __ffs(b[3]) + 96;
488 return __ffs(b[4]) + 128;
489}
490
491/**
492 * find_next_bit - find the first set bit in a memory region
493 * @addr: The address to base the search on
494 * @offset: The bitnumber to start searching at
495 * @size: The maximum size to search
496 */
497static inline unsigned long find_next_bit(const unsigned long *addr,
498 unsigned long size, unsigned long offset)
499{
500 unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
501 unsigned int result = offset & ~31UL;
502 unsigned int tmp;
503
504 if (offset >= size)
505 return size;
506 size -= result;
507 offset &= 31UL;
508 if (offset) {
509 tmp = *p++;
510 tmp &= ~0UL << offset;
511 if (size < 32)
512 goto found_first;
513 if (tmp)
514 goto found_middle;
515 size -= 32;
516 result += 32;
517 }
518 while (size >= 32) {
519 if ((tmp = *p++) != 0)
520 goto found_middle;
521 result += 32;
522 size -= 32;
523 }
524 if (!size)
525 return result;
526 tmp = *p;
527
528found_first:
529 tmp &= ~0UL >> (32 - size);
530 if (tmp == 0UL) /* Are any bits set? */
531 return result + size; /* Nope. */
532found_middle:
533 return result + __ffs(tmp);
534}
535
536/**
537 * find_first_bit - find the first set bit in a memory region
538 * @addr: The address to start the search at
539 * @size: The maximum size to search
540 *
541 * Returns the bit-number of the first set bit, not the number of the byte
542 * containing a bit.
543 */
544#define find_first_bit(addr, size) \
545 find_next_bit((addr), (size), 0)
546
547/**
548 * ffs - find first bit set
549 * @x: the word to search
550 *
551 * This is defined the same way as
552 * the libc and compiler builtin ffs routines, therefore
553 * differs in spirit from the above ffz (man ffs).
554 */
555#define ffs(x) generic_ffs(x)
556
557/**
558 * hweightN - returns the hamming weight of a N-bit word
559 * @x: the word to weigh
560 *
561 * The Hamming Weight of a number is the total number of bits set in it.
562 */
563
564#define hweight32(x) generic_hweight32(x)
565#define hweight16(x) generic_hweight16(x)
566#define hweight8(x) generic_hweight8(x)
567
568#endif /* __KERNEL__ */
569
570#ifdef __KERNEL__
571
572/*
573 * ext2_XXXX function
574 * orig: include/asm-sh/bitops.h
575 */
576
577#ifdef __LITTLE_ENDIAN__
578#define ext2_set_bit test_and_set_bit
579#define ext2_clear_bit __test_and_clear_bit
580#define ext2_test_bit test_bit
581#define ext2_find_first_zero_bit find_first_zero_bit
582#define ext2_find_next_zero_bit find_next_zero_bit
583#else
584static inline int ext2_set_bit(int nr, volatile void * addr)
585{
586 __u8 mask, oldbit;
587 volatile __u8 *a = addr;
588
589 a += (nr >> 3);
590 mask = (1 << (nr & 0x07));
591 oldbit = (*a & mask);
592 *a |= mask;
593
594 return (oldbit != 0);
595}
596
597static inline int ext2_clear_bit(int nr, volatile void * addr)
598{
599 __u8 mask, oldbit;
600 volatile __u8 *a = addr;
601
602 a += (nr >> 3);
603 mask = (1 << (nr & 0x07));
604 oldbit = (*a & mask);
605 *a &= ~mask;
606
607 return (oldbit != 0);
608}
609
610static inline int ext2_test_bit(int nr, const volatile void * addr)
611{
612 __u32 mask;
613 const volatile __u8 *a = addr;
614
615 a += (nr >> 3);
616 mask = (1 << (nr & 0x07));
617
618 return ((mask & *a) != 0);
619}
620
621#define ext2_find_first_zero_bit(addr, size) \
622 ext2_find_next_zero_bit((addr), (size), 0)
623
624static inline unsigned long ext2_find_next_zero_bit(void *addr,
625 unsigned long size, unsigned long offset)
626{
627 unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
628 unsigned long result = offset & ~31UL;
629 unsigned long tmp;
630
631 if (offset >= size)
632 return size;
633 size -= result;
634 offset &= 31UL;
635 if(offset) {
636 /* We hold the little endian value in tmp, but then the
637 * shift is illegal. So we could keep a big endian value
638 * in tmp, like this:
639 *
640 * tmp = __swab32(*(p++));
641 * tmp |= ~0UL >> (32-offset);
642 *
643 * but this would decrease preformance, so we change the
644 * shift:
645 */
646 tmp = *(p++);
647 tmp |= __swab32(~0UL >> (32-offset));
648 if(size < 32)
649 goto found_first;
650 if(~tmp)
651 goto found_middle;
652 size -= 32;
653 result += 32;
654 }
655 while(size & ~31UL) {
656 if(~(tmp = *(p++)))
657 goto found_middle;
658 result += 32;
659 size -= 32;
660 }
661 if(!size)
662 return result;
663 tmp = *p;
664
665found_first:
666 /* tmp is little endian, so we would have to swab the shift,
667 * see above. But then we have to swab tmp below for ffz, so
668 * we might as well do this here.
669 */
670 return result + ffz(__swab32(tmp) | (~0UL << size));
671found_middle:
672 return result + ffz(__swab32(tmp));
673}
674#endif
675
676#define ext2_set_bit_atomic(lock, nr, addr) \
677 ({ \
678 int ret; \
679 spin_lock(lock); \
680 ret = ext2_set_bit((nr), (addr)); \
681 spin_unlock(lock); \
682 ret; \
683 })
684
685#define ext2_clear_bit_atomic(lock, nr, addr) \
686 ({ \
687 int ret; \
688 spin_lock(lock); \
689 ret = ext2_clear_bit((nr), (addr)); \
690 spin_unlock(lock); \
691 ret; \
692 })
693
694/* Bitmap functions for the minix filesystem. */
695#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
696#define minix_set_bit(nr,addr) __set_bit(nr,addr)
697#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
698#define minix_test_bit(nr,addr) test_bit(nr,addr)
699#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
700
701#endif /* __KERNEL__ */
702
703#endif /* _ASM_M32R_BITOPS_H */