blob: 60dadd722aceffa56f6a84ffce38f67540b21407 [file] [log] [blame]
Kent Overstreetcafe5632013-03-23 16:11:31 -07001#ifndef _BCACHE_BTREE_H
2#define _BCACHE_BTREE_H
3
4/*
5 * THE BTREE:
6 *
7 * At a high level, bcache's btree is relatively standard b+ tree. All keys and
8 * pointers are in the leaves; interior nodes only have pointers to the child
9 * nodes.
10 *
11 * In the interior nodes, a struct bkey always points to a child btree node, and
12 * the key is the highest key in the child node - except that the highest key in
13 * an interior node is always MAX_KEY. The size field refers to the size on disk
14 * of the child node - this would allow us to have variable sized btree nodes
15 * (handy for keeping the depth of the btree 1 by expanding just the root).
16 *
17 * Btree nodes are themselves log structured, but this is hidden fairly
18 * thoroughly. Btree nodes on disk will in practice have extents that overlap
19 * (because they were written at different times), but in memory we never have
20 * overlapping extents - when we read in a btree node from disk, the first thing
21 * we do is resort all the sets of keys with a mergesort, and in the same pass
22 * we check for overlapping extents and adjust them appropriately.
23 *
24 * struct btree_op is a central interface to the btree code. It's used for
25 * specifying read vs. write locking, and the embedded closure is used for
26 * waiting on IO or reserve memory.
27 *
28 * BTREE CACHE:
29 *
30 * Btree nodes are cached in memory; traversing the btree might require reading
31 * in btree nodes which is handled mostly transparently.
32 *
33 * bch_btree_node_get() looks up a btree node in the cache and reads it in from
34 * disk if necessary. This function is almost never called directly though - the
35 * btree() macro is used to get a btree node, call some function on it, and
36 * unlock the node after the function returns.
37 *
38 * The root is special cased - it's taken out of the cache's lru (thus pinning
39 * it in memory), so we can find the root of the btree by just dereferencing a
40 * pointer instead of looking it up in the cache. This makes locking a bit
41 * tricky, since the root pointer is protected by the lock in the btree node it
42 * points to - the btree_root() macro handles this.
43 *
44 * In various places we must be able to allocate memory for multiple btree nodes
45 * in order to make forward progress. To do this we use the btree cache itself
46 * as a reserve; if __get_free_pages() fails, we'll find a node in the btree
47 * cache we can reuse. We can't allow more than one thread to be doing this at a
48 * time, so there's a lock, implemented by a pointer to the btree_op closure -
49 * this allows the btree_root() macro to implicitly release this lock.
50 *
51 * BTREE IO:
52 *
53 * Btree nodes never have to be explicitly read in; bch_btree_node_get() handles
54 * this.
55 *
56 * For writing, we have two btree_write structs embeddded in struct btree - one
57 * write in flight, and one being set up, and we toggle between them.
58 *
59 * Writing is done with a single function - bch_btree_write() really serves two
60 * different purposes and should be broken up into two different functions. When
61 * passing now = false, it merely indicates that the node is now dirty - calling
62 * it ensures that the dirty keys will be written at some point in the future.
63 *
64 * When passing now = true, bch_btree_write() causes a write to happen
65 * "immediately" (if there was already a write in flight, it'll cause the write
66 * to happen as soon as the previous write completes). It returns immediately
67 * though - but it takes a refcount on the closure in struct btree_op you passed
68 * to it, so a closure_sync() later can be used to wait for the write to
69 * complete.
70 *
71 * This is handy because btree_split() and garbage collection can issue writes
72 * in parallel, reducing the amount of time they have to hold write locks.
73 *
74 * LOCKING:
75 *
76 * When traversing the btree, we may need write locks starting at some level -
77 * inserting a key into the btree will typically only require a write lock on
78 * the leaf node.
79 *
80 * This is specified with the lock field in struct btree_op; lock = 0 means we
81 * take write locks at level <= 0, i.e. only leaf nodes. bch_btree_node_get()
82 * checks this field and returns the node with the appropriate lock held.
83 *
84 * If, after traversing the btree, the insertion code discovers it has to split
85 * then it must restart from the root and take new locks - to do this it changes
86 * the lock field and returns -EINTR, which causes the btree_root() macro to
87 * loop.
88 *
89 * Handling cache misses require a different mechanism for upgrading to a write
90 * lock. We do cache lookups with only a read lock held, but if we get a cache
91 * miss and we wish to insert this data into the cache, we have to insert a
92 * placeholder key to detect races - otherwise, we could race with a write and
93 * overwrite the data that was just written to the cache with stale data from
94 * the backing device.
95 *
96 * For this we use a sequence number that write locks and unlocks increment - to
97 * insert the check key it unlocks the btree node and then takes a write lock,
98 * and fails if the sequence number doesn't match.
99 */
100
101#include "bset.h"
102#include "debug.h"
103
104struct btree_write {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700105 atomic_t *journal;
106
107 /* If btree_split() frees a btree node, it writes a new pointer to that
108 * btree node indicating it was freed; it takes a refcount on
109 * c->prio_blocked because we can't write the gens until the new
110 * pointer is on disk. This allows btree_write_endio() to release the
111 * refcount that btree_split() took.
112 */
113 int prio_blocked;
114};
115
116struct btree {
117 /* Hottest entries first */
118 struct hlist_node hash;
119
120 /* Key/pointer for this btree node */
121 BKEY_PADDED(key);
122
123 /* Single bit - set when accessed, cleared by shrinker */
124 unsigned long accessed;
125 unsigned long seq;
126 struct rw_semaphore lock;
127 struct cache_set *c;
Kent Overstreetd6fd3b12013-07-24 17:20:19 -0700128 struct btree *parent;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700129
130 unsigned long flags;
131 uint16_t written; /* would be nice to kill */
132 uint8_t level;
133 uint8_t nsets;
134 uint8_t page_order;
135
136 /*
137 * Set of sorted keys - the real btree node - plus a binary search tree
138 *
139 * sets[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
140 * to the memory we have allocated for this btree node. Additionally,
141 * set[0]->data points to the entire btree node as it exists on disk.
142 */
143 struct bset_tree sets[MAX_BSETS];
144
Kent Overstreet57943512013-04-25 13:58:35 -0700145 /* For outstanding btree writes, used as a lock - protects write_idx */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700146 struct closure_with_waitlist io;
147
Kent Overstreetcafe5632013-03-23 16:11:31 -0700148 struct list_head list;
149 struct delayed_work work;
150
Kent Overstreetcafe5632013-03-23 16:11:31 -0700151 struct btree_write writes[2];
152 struct bio *bio;
153};
154
155#define BTREE_FLAG(flag) \
156static inline bool btree_node_ ## flag(struct btree *b) \
157{ return test_bit(BTREE_NODE_ ## flag, &b->flags); } \
158 \
159static inline void set_btree_node_ ## flag(struct btree *b) \
160{ set_bit(BTREE_NODE_ ## flag, &b->flags); } \
161
162enum btree_flags {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700163 BTREE_NODE_io_error,
164 BTREE_NODE_dirty,
165 BTREE_NODE_write_idx,
166};
167
Kent Overstreetcafe5632013-03-23 16:11:31 -0700168BTREE_FLAG(io_error);
169BTREE_FLAG(dirty);
170BTREE_FLAG(write_idx);
171
172static inline struct btree_write *btree_current_write(struct btree *b)
173{
174 return b->writes + btree_node_write_idx(b);
175}
176
177static inline struct btree_write *btree_prev_write(struct btree *b)
178{
179 return b->writes + (btree_node_write_idx(b) ^ 1);
180}
181
182static inline unsigned bset_offset(struct btree *b, struct bset *i)
183{
184 return (((size_t) i) - ((size_t) b->sets->data)) >> 9;
185}
186
187static inline struct bset *write_block(struct btree *b)
188{
189 return ((void *) b->sets[0].data) + b->written * block_bytes(b->c);
190}
191
192static inline bool bset_written(struct btree *b, struct bset_tree *t)
193{
194 return t->data < write_block(b);
195}
196
197static inline bool bkey_written(struct btree *b, struct bkey *k)
198{
199 return k < write_block(b)->start;
200}
201
202static inline void set_gc_sectors(struct cache_set *c)
203{
204 atomic_set(&c->sectors_to_gc, c->sb.bucket_size * c->nbuckets / 8);
205}
206
207static inline bool bch_ptr_invalid(struct btree *b, const struct bkey *k)
208{
209 return __bch_ptr_invalid(b->c, b->level, k);
210}
211
212static inline struct bkey *bch_btree_iter_init(struct btree *b,
213 struct btree_iter *iter,
214 struct bkey *search)
215{
216 return __bch_btree_iter_init(b, iter, search, b->sets);
217}
218
Kent Overstreete7c590e2013-09-10 18:39:16 -0700219void __bkey_put(struct cache_set *c, struct bkey *k);
220
Kent Overstreetcafe5632013-03-23 16:11:31 -0700221/* Looping macros */
222
223#define for_each_cached_btree(b, c, iter) \
224 for (iter = 0; \
225 iter < ARRAY_SIZE((c)->bucket_hash); \
226 iter++) \
227 hlist_for_each_entry_rcu((b), (c)->bucket_hash + iter, hash)
228
229#define for_each_key_filter(b, k, iter, filter) \
230 for (bch_btree_iter_init((b), (iter), NULL); \
231 ((k) = bch_btree_iter_next_filter((iter), b, filter));)
232
233#define for_each_key(b, k, iter) \
234 for (bch_btree_iter_init((b), (iter), NULL); \
235 ((k) = bch_btree_iter_next(iter));)
236
237/* Recursing down the btree */
238
239struct btree_op {
240 struct closure cl;
241 struct cache_set *c;
242
243 /* Journal entry we have a refcount on */
244 atomic_t *journal;
245
246 /* Bio to be inserted into the cache */
247 struct bio *cache_bio;
248
249 unsigned inode;
250
251 uint16_t write_prio;
252
253 /* Btree level at which we start taking write locks */
254 short lock;
255
256 /* Btree insertion type */
257 enum {
258 BTREE_INSERT,
259 BTREE_REPLACE
260 } type:8;
261
262 unsigned csum:1;
Kent Overstreet84f0db02013-07-24 17:24:52 -0700263 unsigned bypass:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700264 unsigned flush_journal:1;
265
266 unsigned insert_data_done:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700267 unsigned insert_collision:1;
268
Kent Overstreetcafe5632013-03-23 16:11:31 -0700269 BKEY_PADDED(replace);
270};
271
272void bch_btree_op_init_stack(struct btree_op *);
273
274static inline void rw_lock(bool w, struct btree *b, int level)
275{
276 w ? down_write_nested(&b->lock, level + 1)
277 : down_read_nested(&b->lock, level + 1);
278 if (w)
279 b->seq++;
280}
281
282static inline void rw_unlock(bool w, struct btree *b)
283{
284#ifdef CONFIG_BCACHE_EDEBUG
285 unsigned i;
286
Kent Overstreet57943512013-04-25 13:58:35 -0700287 if (w && b->key.ptr[0])
Kent Overstreetcafe5632013-03-23 16:11:31 -0700288 for (i = 0; i <= b->nsets; i++)
289 bch_check_key_order(b, b->sets[i].data);
290#endif
291
292 if (w)
293 b->seq++;
294 (w ? up_write : up_read)(&b->lock);
295}
296
Kent Overstreet57943512013-04-25 13:58:35 -0700297void bch_btree_node_read(struct btree *);
Kent Overstreet57943512013-04-25 13:58:35 -0700298void bch_btree_node_write(struct btree *, struct closure *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700299
Kent Overstreetcafe5632013-03-23 16:11:31 -0700300void bch_btree_set_root(struct btree *);
Kent Overstreet35fcd842013-07-24 17:29:09 -0700301struct btree *bch_btree_node_alloc(struct cache_set *, int);
Kent Overstreete8e1d462013-07-24 17:27:07 -0700302struct btree *bch_btree_node_get(struct cache_set *, struct bkey *, int, bool);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700303
Kent Overstreete7c590e2013-09-10 18:39:16 -0700304int bch_btree_insert_check_key(struct btree *, struct btree_op *,
305 struct bkey *);
Kent Overstreet4f3d4012013-09-10 18:46:36 -0700306int bch_btree_insert(struct btree_op *, struct cache_set *, struct keylist *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700307
Kent Overstreet72a44512013-10-24 17:19:26 -0700308int bch_gc_thread_start(struct cache_set *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700309size_t bch_btree_gc_finish(struct cache_set *);
Kent Overstreet72a44512013-10-24 17:19:26 -0700310void bch_moving_gc(struct cache_set *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700311int bch_btree_check(struct cache_set *, struct btree_op *);
312uint8_t __bch_btree_mark_key(struct cache_set *, int, struct bkey *);
313
Kent Overstreet72a44512013-10-24 17:19:26 -0700314static inline void wake_up_gc(struct cache_set *c)
315{
316 if (c->gc_thread)
317 wake_up_process(c->gc_thread);
318}
319
Kent Overstreet48dad8b2013-09-10 18:48:51 -0700320#define MAP_DONE 0
321#define MAP_CONTINUE 1
322
323#define MAP_ALL_NODES 0
324#define MAP_LEAF_NODES 1
325
326#define MAP_END_KEY 1
327
328typedef int (btree_map_nodes_fn)(struct btree_op *, struct btree *);
329int __bch_btree_map_nodes(struct btree_op *, struct cache_set *,
330 struct bkey *, btree_map_nodes_fn *, int);
331
332static inline int bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
333 struct bkey *from, btree_map_nodes_fn *fn)
334{
335 return __bch_btree_map_nodes(op, c, from, fn, MAP_ALL_NODES);
336}
337
338static inline int bch_btree_map_leaf_nodes(struct btree_op *op,
339 struct cache_set *c,
340 struct bkey *from,
341 btree_map_nodes_fn *fn)
342{
343 return __bch_btree_map_nodes(op, c, from, fn, MAP_LEAF_NODES);
344}
345
346typedef int (btree_map_keys_fn)(struct btree_op *, struct btree *,
347 struct bkey *);
348int bch_btree_map_keys(struct btree_op *, struct cache_set *,
349 struct bkey *, btree_map_keys_fn *, int);
350
351typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *);
352
Kent Overstreet72c27062013-06-05 06:24:39 -0700353void bch_keybuf_init(struct keybuf *);
Kent Overstreet48dad8b2013-09-10 18:48:51 -0700354void bch_refill_keybuf(struct cache_set *, struct keybuf *,
355 struct bkey *, keybuf_pred_fn *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700356bool bch_keybuf_check_overlapping(struct keybuf *, struct bkey *,
357 struct bkey *);
358void bch_keybuf_del(struct keybuf *, struct keybuf_key *);
359struct keybuf_key *bch_keybuf_next(struct keybuf *);
Kent Overstreet72c27062013-06-05 06:24:39 -0700360struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *, struct keybuf *,
361 struct bkey *, keybuf_pred_fn *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700362
363#endif