blob: f5b2617111aaee1f34af3592e486923a5f311b5b [file] [log] [blame]
Auke Kok9a799d72007-09-15 14:07:45 -07001/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/pci.h>
30#include <linux/delay.h>
31#include <linux/sched.h>
32
33#include "ixgbe_common.h"
34#include "ixgbe_phy.h"
35
36static s32 ixgbe_clear_hw_cntrs(struct ixgbe_hw *hw);
37
38static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
42
43static s32 ixgbe_clear_vfta(struct ixgbe_hw *hw);
44static s32 ixgbe_init_rx_addrs(struct ixgbe_hw *hw);
45static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
46static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr);
47
48/**
49 * ixgbe_start_hw - Prepare hardware for TX/RX
50 * @hw: pointer to hardware structure
51 *
52 * Starts the hardware by filling the bus info structure and media type, clears
53 * all on chip counters, initializes receive address registers, multicast
54 * table, VLAN filter table, calls routine to set up link and flow control
55 * settings, and leaves transmit and receive units disabled and uninitialized
56 **/
57s32 ixgbe_start_hw(struct ixgbe_hw *hw)
58{
59 u32 ctrl_ext;
60
61 /* Set the media type */
62 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
63
64 /* Identify the PHY */
65 ixgbe_identify_phy(hw);
66
67 /*
68 * Store MAC address from RAR0, clear receive address registers, and
69 * clear the multicast table
70 */
71 ixgbe_init_rx_addrs(hw);
72
73 /* Clear the VLAN filter table */
74 ixgbe_clear_vfta(hw);
75
76 /* Set up link */
Auke Kok3957d632007-10-31 15:22:10 -070077 hw->mac.ops.setup_link(hw);
Auke Kok9a799d72007-09-15 14:07:45 -070078
79 /* Clear statistics registers */
80 ixgbe_clear_hw_cntrs(hw);
81
82 /* Set No Snoop Disable */
83 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
84 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
85 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
Auke Kok3957d632007-10-31 15:22:10 -070086 IXGBE_WRITE_FLUSH(hw);
Auke Kok9a799d72007-09-15 14:07:45 -070087
88 /* Clear adapter stopped flag */
89 hw->adapter_stopped = false;
90
91 return 0;
92}
93
94/**
95 * ixgbe_init_hw - Generic hardware initialization
96 * @hw: pointer to hardware structure
97 *
98 * Initialize the hardware by reseting the hardware, filling the bus info
99 * structure and media type, clears all on chip counters, initializes receive
100 * address registers, multicast table, VLAN filter table, calls routine to set
101 * up link and flow control settings, and leaves transmit and receive units
102 * disabled and uninitialized
103 **/
104s32 ixgbe_init_hw(struct ixgbe_hw *hw)
105{
106 /* Reset the hardware */
107 hw->mac.ops.reset(hw);
108
109 /* Start the HW */
110 ixgbe_start_hw(hw);
111
112 return 0;
113}
114
115/**
116 * ixgbe_clear_hw_cntrs - Generic clear hardware counters
117 * @hw: pointer to hardware structure
118 *
119 * Clears all hardware statistics counters by reading them from the hardware
120 * Statistics counters are clear on read.
121 **/
122static s32 ixgbe_clear_hw_cntrs(struct ixgbe_hw *hw)
123{
124 u16 i = 0;
125
126 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
127 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
128 IXGBE_READ_REG(hw, IXGBE_ERRBC);
129 IXGBE_READ_REG(hw, IXGBE_MSPDC);
130 for (i = 0; i < 8; i++)
131 IXGBE_READ_REG(hw, IXGBE_MPC(i));
132
133 IXGBE_READ_REG(hw, IXGBE_MLFC);
134 IXGBE_READ_REG(hw, IXGBE_MRFC);
135 IXGBE_READ_REG(hw, IXGBE_RLEC);
136 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
137 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
138 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
139 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
140
141 for (i = 0; i < 8; i++) {
142 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
143 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
144 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
145 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
146 }
147
148 IXGBE_READ_REG(hw, IXGBE_PRC64);
149 IXGBE_READ_REG(hw, IXGBE_PRC127);
150 IXGBE_READ_REG(hw, IXGBE_PRC255);
151 IXGBE_READ_REG(hw, IXGBE_PRC511);
152 IXGBE_READ_REG(hw, IXGBE_PRC1023);
153 IXGBE_READ_REG(hw, IXGBE_PRC1522);
154 IXGBE_READ_REG(hw, IXGBE_GPRC);
155 IXGBE_READ_REG(hw, IXGBE_BPRC);
156 IXGBE_READ_REG(hw, IXGBE_MPRC);
157 IXGBE_READ_REG(hw, IXGBE_GPTC);
158 IXGBE_READ_REG(hw, IXGBE_GORCL);
159 IXGBE_READ_REG(hw, IXGBE_GORCH);
160 IXGBE_READ_REG(hw, IXGBE_GOTCL);
161 IXGBE_READ_REG(hw, IXGBE_GOTCH);
162 for (i = 0; i < 8; i++)
163 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
164 IXGBE_READ_REG(hw, IXGBE_RUC);
165 IXGBE_READ_REG(hw, IXGBE_RFC);
166 IXGBE_READ_REG(hw, IXGBE_ROC);
167 IXGBE_READ_REG(hw, IXGBE_RJC);
168 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
169 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
170 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
171 IXGBE_READ_REG(hw, IXGBE_TORL);
172 IXGBE_READ_REG(hw, IXGBE_TORH);
173 IXGBE_READ_REG(hw, IXGBE_TPR);
174 IXGBE_READ_REG(hw, IXGBE_TPT);
175 IXGBE_READ_REG(hw, IXGBE_PTC64);
176 IXGBE_READ_REG(hw, IXGBE_PTC127);
177 IXGBE_READ_REG(hw, IXGBE_PTC255);
178 IXGBE_READ_REG(hw, IXGBE_PTC511);
179 IXGBE_READ_REG(hw, IXGBE_PTC1023);
180 IXGBE_READ_REG(hw, IXGBE_PTC1522);
181 IXGBE_READ_REG(hw, IXGBE_MPTC);
182 IXGBE_READ_REG(hw, IXGBE_BPTC);
183 for (i = 0; i < 16; i++) {
184 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
185 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
186 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
187 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
188 }
189
190 return 0;
191}
192
193/**
194 * ixgbe_get_mac_addr - Generic get MAC address
195 * @hw: pointer to hardware structure
196 * @mac_addr: Adapter MAC address
197 *
198 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
199 * A reset of the adapter must be performed prior to calling this function
200 * in order for the MAC address to have been loaded from the EEPROM into RAR0
201 **/
202s32 ixgbe_get_mac_addr(struct ixgbe_hw *hw, u8 *mac_addr)
203{
204 u32 rar_high;
205 u32 rar_low;
206 u16 i;
207
208 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
209 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
210
211 for (i = 0; i < 4; i++)
212 mac_addr[i] = (u8)(rar_low >> (i*8));
213
214 for (i = 0; i < 2; i++)
215 mac_addr[i+4] = (u8)(rar_high >> (i*8));
216
217 return 0;
218}
219
220s32 ixgbe_read_part_num(struct ixgbe_hw *hw, u32 *part_num)
221{
222 s32 ret_val;
223 u16 data;
224
225 ret_val = ixgbe_read_eeprom(hw, IXGBE_PBANUM0_PTR, &data);
226 if (ret_val) {
227 hw_dbg(hw, "NVM Read Error\n");
228 return ret_val;
229 }
230 *part_num = (u32)(data << 16);
231
232 ret_val = ixgbe_read_eeprom(hw, IXGBE_PBANUM1_PTR, &data);
233 if (ret_val) {
234 hw_dbg(hw, "NVM Read Error\n");
235 return ret_val;
236 }
237 *part_num |= data;
238
239 return 0;
240}
241
242/**
243 * ixgbe_stop_adapter - Generic stop TX/RX units
244 * @hw: pointer to hardware structure
245 *
246 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
247 * disables transmit and receive units. The adapter_stopped flag is used by
248 * the shared code and drivers to determine if the adapter is in a stopped
249 * state and should not touch the hardware.
250 **/
251s32 ixgbe_stop_adapter(struct ixgbe_hw *hw)
252{
253 u32 number_of_queues;
254 u32 reg_val;
255 u16 i;
256
257 /*
258 * Set the adapter_stopped flag so other driver functions stop touching
259 * the hardware
260 */
261 hw->adapter_stopped = true;
262
263 /* Disable the receive unit */
264 reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
265 reg_val &= ~(IXGBE_RXCTRL_RXEN);
266 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
267 msleep(2);
268
269 /* Clear interrupt mask to stop from interrupts being generated */
270 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
271
272 /* Clear any pending interrupts */
273 IXGBE_READ_REG(hw, IXGBE_EICR);
274
275 /* Disable the transmit unit. Each queue must be disabled. */
276 number_of_queues = hw->mac.num_tx_queues;
277 for (i = 0; i < number_of_queues; i++) {
278 reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
279 if (reg_val & IXGBE_TXDCTL_ENABLE) {
280 reg_val &= ~IXGBE_TXDCTL_ENABLE;
281 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
282 }
283 }
284
285 return 0;
286}
287
288/**
289 * ixgbe_led_on - Turns on the software controllable LEDs.
290 * @hw: pointer to hardware structure
291 * @index: led number to turn on
292 **/
293s32 ixgbe_led_on(struct ixgbe_hw *hw, u32 index)
294{
295 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
296
297 /* To turn on the LED, set mode to ON. */
298 led_reg &= ~IXGBE_LED_MODE_MASK(index);
299 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
300 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
Auke Kok3957d632007-10-31 15:22:10 -0700301 IXGBE_WRITE_FLUSH(hw);
Auke Kok9a799d72007-09-15 14:07:45 -0700302
303 return 0;
304}
305
306/**
307 * ixgbe_led_off - Turns off the software controllable LEDs.
308 * @hw: pointer to hardware structure
309 * @index: led number to turn off
310 **/
311s32 ixgbe_led_off(struct ixgbe_hw *hw, u32 index)
312{
313 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
314
315 /* To turn off the LED, set mode to OFF. */
316 led_reg &= ~IXGBE_LED_MODE_MASK(index);
317 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
318 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
Auke Kok3957d632007-10-31 15:22:10 -0700319 IXGBE_WRITE_FLUSH(hw);
Auke Kok9a799d72007-09-15 14:07:45 -0700320
321 return 0;
322}
323
324
325/**
326 * ixgbe_init_eeprom - Initialize EEPROM params
327 * @hw: pointer to hardware structure
328 *
329 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
330 * ixgbe_hw struct in order to set up EEPROM access.
331 **/
332s32 ixgbe_init_eeprom(struct ixgbe_hw *hw)
333{
334 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
335 u32 eec;
336 u16 eeprom_size;
337
338 if (eeprom->type == ixgbe_eeprom_uninitialized) {
339 eeprom->type = ixgbe_eeprom_none;
340
341 /*
342 * Check for EEPROM present first.
343 * If not present leave as none
344 */
345 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
346 if (eec & IXGBE_EEC_PRES) {
347 eeprom->type = ixgbe_eeprom_spi;
348
349 /*
350 * SPI EEPROM is assumed here. This code would need to
351 * change if a future EEPROM is not SPI.
352 */
353 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
354 IXGBE_EEC_SIZE_SHIFT);
355 eeprom->word_size = 1 << (eeprom_size +
356 IXGBE_EEPROM_WORD_SIZE_SHIFT);
357 }
358
359 if (eec & IXGBE_EEC_ADDR_SIZE)
360 eeprom->address_bits = 16;
361 else
362 eeprom->address_bits = 8;
363 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
364 "%d\n", eeprom->type, eeprom->word_size,
365 eeprom->address_bits);
366 }
367
368 return 0;
369}
370
371/**
372 * ixgbe_read_eeprom - Read EEPROM word using EERD
373 * @hw: pointer to hardware structure
374 * @offset: offset of word in the EEPROM to read
375 * @data: word read from the EEPROM
376 *
377 * Reads a 16 bit word from the EEPROM using the EERD register.
378 **/
379s32 ixgbe_read_eeprom(struct ixgbe_hw *hw, u16 offset, u16 *data)
380{
381 u32 eerd;
382 s32 status;
383
384 eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
385 IXGBE_EEPROM_READ_REG_START;
386
387 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
388 status = ixgbe_poll_eeprom_eerd_done(hw);
389
390 if (status == 0)
391 *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
392 IXGBE_EEPROM_READ_REG_DATA);
393 else
394 hw_dbg(hw, "Eeprom read timed out\n");
395
396 return status;
397}
398
399/**
400 * ixgbe_poll_eeprom_eerd_done - Poll EERD status
401 * @hw: pointer to hardware structure
402 *
403 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
404 **/
405static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
406{
407 u32 i;
408 u32 reg;
409 s32 status = IXGBE_ERR_EEPROM;
410
411 for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
412 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
413 if (reg & IXGBE_EEPROM_READ_REG_DONE) {
414 status = 0;
415 break;
416 }
417 udelay(5);
418 }
419 return status;
420}
421
422/**
423 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
424 * @hw: pointer to hardware structure
425 *
426 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
427 **/
428static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
429{
430 s32 status = IXGBE_ERR_EEPROM;
431 u32 timeout;
432 u32 i;
433 u32 swsm;
434
435 /* Set timeout value based on size of EEPROM */
436 timeout = hw->eeprom.word_size + 1;
437
438 /* Get SMBI software semaphore between device drivers first */
439 for (i = 0; i < timeout; i++) {
440 /*
441 * If the SMBI bit is 0 when we read it, then the bit will be
442 * set and we have the semaphore
443 */
444 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
445 if (!(swsm & IXGBE_SWSM_SMBI)) {
446 status = 0;
447 break;
448 }
449 msleep(1);
450 }
451
452 /* Now get the semaphore between SW/FW through the SWESMBI bit */
453 if (status == 0) {
454 for (i = 0; i < timeout; i++) {
455 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
456
457 /* Set the SW EEPROM semaphore bit to request access */
458 swsm |= IXGBE_SWSM_SWESMBI;
459 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
460
461 /*
462 * If we set the bit successfully then we got the
463 * semaphore.
464 */
465 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
466 if (swsm & IXGBE_SWSM_SWESMBI)
467 break;
468
469 udelay(50);
470 }
471
472 /*
473 * Release semaphores and return error if SW EEPROM semaphore
474 * was not granted because we don't have access to the EEPROM
475 */
476 if (i >= timeout) {
477 hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
478 "not granted.\n");
479 ixgbe_release_eeprom_semaphore(hw);
480 status = IXGBE_ERR_EEPROM;
481 }
482 }
483
484 return status;
485}
486
487/**
488 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
489 * @hw: pointer to hardware structure
490 *
491 * This function clears hardware semaphore bits.
492 **/
493static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
494{
495 u32 swsm;
496
497 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
498
499 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
500 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
501 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
Auke Kok3957d632007-10-31 15:22:10 -0700502 IXGBE_WRITE_FLUSH(hw);
Auke Kok9a799d72007-09-15 14:07:45 -0700503}
504
505/**
506 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
507 * @hw: pointer to hardware structure
508 **/
509static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
510{
511 u16 i;
512 u16 j;
513 u16 checksum = 0;
514 u16 length = 0;
515 u16 pointer = 0;
516 u16 word = 0;
517
518 /* Include 0x0-0x3F in the checksum */
519 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
520 if (ixgbe_read_eeprom(hw, i, &word) != 0) {
521 hw_dbg(hw, "EEPROM read failed\n");
522 break;
523 }
524 checksum += word;
525 }
526
527 /* Include all data from pointers except for the fw pointer */
528 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
529 ixgbe_read_eeprom(hw, i, &pointer);
530
531 /* Make sure the pointer seems valid */
532 if (pointer != 0xFFFF && pointer != 0) {
533 ixgbe_read_eeprom(hw, pointer, &length);
534
535 if (length != 0xFFFF && length != 0) {
536 for (j = pointer+1; j <= pointer+length; j++) {
537 ixgbe_read_eeprom(hw, j, &word);
538 checksum += word;
539 }
540 }
541 }
542 }
543
544 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
545
546 return checksum;
547}
548
549/**
550 * ixgbe_validate_eeprom_checksum - Validate EEPROM checksum
551 * @hw: pointer to hardware structure
552 * @checksum_val: calculated checksum
553 *
554 * Performs checksum calculation and validates the EEPROM checksum. If the
555 * caller does not need checksum_val, the value can be NULL.
556 **/
557s32 ixgbe_validate_eeprom_checksum(struct ixgbe_hw *hw, u16 *checksum_val)
558{
559 s32 status;
560 u16 checksum;
561 u16 read_checksum = 0;
562
563 /*
564 * Read the first word from the EEPROM. If this times out or fails, do
565 * not continue or we could be in for a very long wait while every
566 * EEPROM read fails
567 */
568 status = ixgbe_read_eeprom(hw, 0, &checksum);
569
570 if (status == 0) {
571 checksum = ixgbe_calc_eeprom_checksum(hw);
572
573 ixgbe_read_eeprom(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
574
575 /*
576 * Verify read checksum from EEPROM is the same as
577 * calculated checksum
578 */
579 if (read_checksum != checksum)
580 status = IXGBE_ERR_EEPROM_CHECKSUM;
581
582 /* If the user cares, return the calculated checksum */
583 if (checksum_val)
584 *checksum_val = checksum;
585 } else {
586 hw_dbg(hw, "EEPROM read failed\n");
587 }
588
589 return status;
590}
591
592/**
593 * ixgbe_validate_mac_addr - Validate MAC address
594 * @mac_addr: pointer to MAC address.
595 *
596 * Tests a MAC address to ensure it is a valid Individual Address
597 **/
598s32 ixgbe_validate_mac_addr(u8 *mac_addr)
599{
600 s32 status = 0;
601
602 /* Make sure it is not a multicast address */
603 if (IXGBE_IS_MULTICAST(mac_addr))
604 status = IXGBE_ERR_INVALID_MAC_ADDR;
605 /* Not a broadcast address */
606 else if (IXGBE_IS_BROADCAST(mac_addr))
607 status = IXGBE_ERR_INVALID_MAC_ADDR;
608 /* Reject the zero address */
609 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
610 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
611 status = IXGBE_ERR_INVALID_MAC_ADDR;
612
613 return status;
614}
615
616/**
617 * ixgbe_set_rar - Set RX address register
618 * @hw: pointer to hardware structure
619 * @addr: Address to put into receive address register
620 * @index: Receive address register to write
621 * @vind: Vind to set RAR to
622 * @enable_addr: set flag that address is active
623 *
624 * Puts an ethernet address into a receive address register.
625 **/
626s32 ixgbe_set_rar(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vind,
627 u32 enable_addr)
628{
629 u32 rar_low, rar_high;
630
631 /*
632 * HW expects these in little endian so we reverse the byte order from
633 * network order (big endian) to little endian
634 */
635 rar_low = ((u32)addr[0] |
636 ((u32)addr[1] << 8) |
637 ((u32)addr[2] << 16) |
638 ((u32)addr[3] << 24));
639
640 rar_high = ((u32)addr[4] |
641 ((u32)addr[5] << 8) |
642 ((vind << IXGBE_RAH_VIND_SHIFT) & IXGBE_RAH_VIND_MASK));
643
644 if (enable_addr != 0)
645 rar_high |= IXGBE_RAH_AV;
646
647 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
648 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
649
650 return 0;
651}
652
653/**
654 * ixgbe_init_rx_addrs - Initializes receive address filters.
655 * @hw: pointer to hardware structure
656 *
657 * Places the MAC address in receive address register 0 and clears the rest
658 * of the receive addresss registers. Clears the multicast table. Assumes
659 * the receiver is in reset when the routine is called.
660 **/
661static s32 ixgbe_init_rx_addrs(struct ixgbe_hw *hw)
662{
663 u32 i;
Christopher Leech2c5645c2008-08-26 04:27:02 -0700664 u32 rar_entries = hw->mac.num_rar_entries;
Auke Kok9a799d72007-09-15 14:07:45 -0700665
666 /*
667 * If the current mac address is valid, assume it is a software override
668 * to the permanent address.
669 * Otherwise, use the permanent address from the eeprom.
670 */
671 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
672 IXGBE_ERR_INVALID_MAC_ADDR) {
673 /* Get the MAC address from the RAR0 for later reference */
674 ixgbe_get_mac_addr(hw, hw->mac.addr);
675
676 hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
677 hw->mac.addr[0], hw->mac.addr[1],
678 hw->mac.addr[2]);
679 hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
680 hw->mac.addr[4], hw->mac.addr[5]);
681 } else {
682 /* Setup the receive address. */
683 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
684 hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
685 hw->mac.addr[0], hw->mac.addr[1],
686 hw->mac.addr[2]);
687 hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
688 hw->mac.addr[4], hw->mac.addr[5]);
689
690 ixgbe_set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
691 }
692
693 hw->addr_ctrl.rar_used_count = 1;
694
695 /* Zero out the other receive addresses. */
696 hw_dbg(hw, "Clearing RAR[1-15]\n");
697 for (i = 1; i < rar_entries; i++) {
698 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
699 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
700 }
701
702 /* Clear the MTA */
703 hw->addr_ctrl.mc_addr_in_rar_count = 0;
704 hw->addr_ctrl.mta_in_use = 0;
705 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
706
707 hw_dbg(hw, " Clearing MTA\n");
Christopher Leech2c5645c2008-08-26 04:27:02 -0700708 for (i = 0; i < hw->mac.mcft_size; i++)
Auke Kok9a799d72007-09-15 14:07:45 -0700709 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
710
711 return 0;
712}
713
714/**
Christopher Leech2c5645c2008-08-26 04:27:02 -0700715 * ixgbe_add_uc_addr - Adds a secondary unicast address.
716 * @hw: pointer to hardware structure
717 * @addr: new address
718 *
719 * Adds it to unused receive address register or goes into promiscuous mode.
720 **/
721void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr)
722{
723 u32 rar_entries = hw->mac.num_rar_entries;
724 u32 rar;
725
726 hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
727 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
728
729 /*
730 * Place this address in the RAR if there is room,
731 * else put the controller into promiscuous mode
732 */
733 if (hw->addr_ctrl.rar_used_count < rar_entries) {
734 rar = hw->addr_ctrl.rar_used_count -
735 hw->addr_ctrl.mc_addr_in_rar_count;
736 ixgbe_set_rar(hw, rar, addr, 0, IXGBE_RAH_AV);
737 hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
738 hw->addr_ctrl.rar_used_count++;
739 } else {
740 hw->addr_ctrl.overflow_promisc++;
741 }
742
743 hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
744}
745
746/**
747 * ixgbe_update_uc_addr_list - Updates MAC list of secondary addresses
748 * @hw: pointer to hardware structure
749 * @addr_list: the list of new addresses
750 * @addr_count: number of addresses
751 * @next: iterator function to walk the address list
752 *
753 * The given list replaces any existing list. Clears the secondary addrs from
754 * receive address registers. Uses unused receive address registers for the
755 * first secondary addresses, and falls back to promiscuous mode as needed.
756 *
757 * Drivers using secondary unicast addresses must set user_set_promisc when
758 * manually putting the device into promiscuous mode.
759 **/
760s32 ixgbe_update_uc_addr_list(struct ixgbe_hw *hw, u8 *addr_list,
761 u32 addr_count, ixgbe_mc_addr_itr next)
762{
763 u8 *addr;
764 u32 i;
765 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
766 u32 uc_addr_in_use;
767 u32 fctrl;
768 u32 vmdq;
769
770 /*
771 * Clear accounting of old secondary address list,
772 * don't count RAR[0]
773 */
774 uc_addr_in_use = hw->addr_ctrl.rar_used_count -
775 hw->addr_ctrl.mc_addr_in_rar_count - 1;
776 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
777 hw->addr_ctrl.overflow_promisc = 0;
778
779 /* Zero out the other receive addresses */
780 hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use);
781 for (i = 1; i <= uc_addr_in_use; i++) {
782 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
783 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
784 }
785
786 /* Add the new addresses */
787 for (i = 0; i < addr_count; i++) {
788 hw_dbg(hw, " Adding the secondary addresses:\n");
789 addr = next(hw, &addr_list, &vmdq);
790 ixgbe_add_uc_addr(hw, addr);
791 }
792
793 if (hw->addr_ctrl.overflow_promisc) {
794 /* enable promisc if not already in overflow or set by user */
795 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
796 hw_dbg(hw, " Entering address overflow promisc mode\n");
797 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
798 fctrl |= IXGBE_FCTRL_UPE;
799 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
800 }
801 } else {
802 /* only disable if set by overflow, not by user */
803 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
804 hw_dbg(hw, " Leaving address overflow promisc mode\n");
805 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
806 fctrl &= ~IXGBE_FCTRL_UPE;
807 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
808 }
809 }
810
811 hw_dbg(hw, "ixgbe_update_uc_addr_list Complete\n");
812 return 0;
813}
814
815/**
Auke Kok9a799d72007-09-15 14:07:45 -0700816 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
817 * @hw: pointer to hardware structure
818 * @mc_addr: the multicast address
819 *
820 * Extracts the 12 bits, from a multicast address, to determine which
821 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
822 * incoming rx multicast addresses, to determine the bit-vector to check in
823 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
824 * by the MO field of the MCSTCTRL. The MO field is set during initalization
825 * to mc_filter_type.
826 **/
827static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
828{
829 u32 vector = 0;
830
831 switch (hw->mac.mc_filter_type) {
832 case 0: /* use bits [47:36] of the address */
833 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
834 break;
835 case 1: /* use bits [46:35] of the address */
836 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
837 break;
838 case 2: /* use bits [45:34] of the address */
839 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
840 break;
841 case 3: /* use bits [43:32] of the address */
842 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
843 break;
844 default: /* Invalid mc_filter_type */
845 hw_dbg(hw, "MC filter type param set incorrectly\n");
846 break;
847 }
848
849 /* vector can only be 12-bits or boundary will be exceeded */
850 vector &= 0xFFF;
851 return vector;
852}
853
854/**
855 * ixgbe_set_mta - Set bit-vector in multicast table
856 * @hw: pointer to hardware structure
857 * @hash_value: Multicast address hash value
858 *
859 * Sets the bit-vector in the multicast table.
860 **/
861static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
862{
863 u32 vector;
864 u32 vector_bit;
865 u32 vector_reg;
866 u32 mta_reg;
867
868 hw->addr_ctrl.mta_in_use++;
869
870 vector = ixgbe_mta_vector(hw, mc_addr);
871 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
872
873 /*
874 * The MTA is a register array of 128 32-bit registers. It is treated
875 * like an array of 4096 bits. We want to set bit
876 * BitArray[vector_value]. So we figure out what register the bit is
877 * in, read it, OR in the new bit, then write back the new value. The
878 * register is determined by the upper 7 bits of the vector value and
879 * the bit within that register are determined by the lower 5 bits of
880 * the value.
881 */
882 vector_reg = (vector >> 5) & 0x7F;
883 vector_bit = vector & 0x1F;
884 mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
885 mta_reg |= (1 << vector_bit);
886 IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
887}
888
889/**
890 * ixgbe_add_mc_addr - Adds a multicast address.
891 * @hw: pointer to hardware structure
892 * @mc_addr: new multicast address
893 *
894 * Adds it to unused receive address register or to the multicast table.
895 **/
896static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr)
897{
Christopher Leech2c5645c2008-08-26 04:27:02 -0700898 u32 rar_entries = hw->mac.num_rar_entries;
Jesse Brandeburgce94bf42008-09-11 19:55:14 -0700899 u32 rar;
Auke Kok9a799d72007-09-15 14:07:45 -0700900
901 hw_dbg(hw, " MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n",
902 mc_addr[0], mc_addr[1], mc_addr[2],
903 mc_addr[3], mc_addr[4], mc_addr[5]);
904
905 /*
906 * Place this multicast address in the RAR if there is room,
907 * else put it in the MTA
908 */
909 if (hw->addr_ctrl.rar_used_count < rar_entries) {
Jesse Brandeburgce94bf42008-09-11 19:55:14 -0700910 rar = rar_entries - hw->addr_ctrl.mc_addr_in_rar_count - 1;
911 ixgbe_set_rar(hw, rar, mc_addr, 0, IXGBE_RAH_AV);
Auke Kok9a799d72007-09-15 14:07:45 -0700912 hw_dbg(hw, "Added a multicast address to RAR[%d]\n",
913 hw->addr_ctrl.rar_used_count);
914 hw->addr_ctrl.rar_used_count++;
915 hw->addr_ctrl.mc_addr_in_rar_count++;
916 } else {
917 ixgbe_set_mta(hw, mc_addr);
918 }
919
920 hw_dbg(hw, "ixgbe_add_mc_addr Complete\n");
921}
922
923/**
924 * ixgbe_update_mc_addr_list - Updates MAC list of multicast addresses
925 * @hw: pointer to hardware structure
926 * @mc_addr_list: the list of new multicast addresses
927 * @mc_addr_count: number of addresses
Christopher Leech2c5645c2008-08-26 04:27:02 -0700928 * @next: iterator function to walk the multicast address list
Auke Kok9a799d72007-09-15 14:07:45 -0700929 *
930 * The given list replaces any existing list. Clears the MC addrs from receive
931 * address registers and the multicast table. Uses unsed receive address
932 * registers for the first multicast addresses, and hashes the rest into the
933 * multicast table.
934 **/
935s32 ixgbe_update_mc_addr_list(struct ixgbe_hw *hw, u8 *mc_addr_list,
Christopher Leech2c5645c2008-08-26 04:27:02 -0700936 u32 mc_addr_count, ixgbe_mc_addr_itr next)
Auke Kok9a799d72007-09-15 14:07:45 -0700937{
938 u32 i;
Christopher Leech2c5645c2008-08-26 04:27:02 -0700939 u32 rar_entries = hw->mac.num_rar_entries;
940 u32 vmdq;
Auke Kok9a799d72007-09-15 14:07:45 -0700941
942 /*
943 * Set the new number of MC addresses that we are being requested to
944 * use.
945 */
946 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
947 hw->addr_ctrl.rar_used_count -= hw->addr_ctrl.mc_addr_in_rar_count;
948 hw->addr_ctrl.mc_addr_in_rar_count = 0;
949 hw->addr_ctrl.mta_in_use = 0;
950
951 /* Zero out the other receive addresses. */
952 hw_dbg(hw, "Clearing RAR[1-15]\n");
953 for (i = hw->addr_ctrl.rar_used_count; i < rar_entries; i++) {
954 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
955 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
956 }
957
958 /* Clear the MTA */
959 hw_dbg(hw, " Clearing MTA\n");
Christopher Leech2c5645c2008-08-26 04:27:02 -0700960 for (i = 0; i < hw->mac.mcft_size; i++)
Auke Kok9a799d72007-09-15 14:07:45 -0700961 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
962
963 /* Add the new addresses */
964 for (i = 0; i < mc_addr_count; i++) {
965 hw_dbg(hw, " Adding the multicast addresses:\n");
Christopher Leech2c5645c2008-08-26 04:27:02 -0700966 ixgbe_add_mc_addr(hw, next(hw, &mc_addr_list, &vmdq));
Auke Kok9a799d72007-09-15 14:07:45 -0700967 }
968
969 /* Enable mta */
970 if (hw->addr_ctrl.mta_in_use > 0)
971 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
972 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
973
974 hw_dbg(hw, "ixgbe_update_mc_addr_list Complete\n");
975 return 0;
976}
977
978/**
979 * ixgbe_clear_vfta - Clear VLAN filter table
980 * @hw: pointer to hardware structure
981 *
982 * Clears the VLAN filer table, and the VMDq index associated with the filter
983 **/
984static s32 ixgbe_clear_vfta(struct ixgbe_hw *hw)
985{
986 u32 offset;
987 u32 vlanbyte;
988
Christopher Leech2c5645c2008-08-26 04:27:02 -0700989 for (offset = 0; offset < hw->mac.vft_size; offset++)
Auke Kok9a799d72007-09-15 14:07:45 -0700990 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
991
992 for (vlanbyte = 0; vlanbyte < 4; vlanbyte++)
Christopher Leech2c5645c2008-08-26 04:27:02 -0700993 for (offset = 0; offset < hw->mac.vft_size; offset++)
Auke Kok9a799d72007-09-15 14:07:45 -0700994 IXGBE_WRITE_REG(hw, IXGBE_VFTAVIND(vlanbyte, offset),
995 0);
996
997 return 0;
998}
999
1000/**
1001 * ixgbe_set_vfta - Set VLAN filter table
1002 * @hw: pointer to hardware structure
1003 * @vlan: VLAN id to write to VLAN filter
1004 * @vind: VMDq output index that maps queue to VLAN id in VFTA
1005 * @vlan_on: boolean flag to turn on/off VLAN in VFTA
1006 *
1007 * Turn on/off specified VLAN in the VLAN filter table.
1008 **/
1009s32 ixgbe_set_vfta(struct ixgbe_hw *hw, u32 vlan, u32 vind,
1010 bool vlan_on)
1011{
1012 u32 VftaIndex;
1013 u32 BitOffset;
1014 u32 VftaReg;
1015 u32 VftaByte;
1016
1017 /* Determine 32-bit word position in array */
1018 VftaIndex = (vlan >> 5) & 0x7F; /* upper seven bits */
1019
1020 /* Determine the location of the (VMD) queue index */
1021 VftaByte = ((vlan >> 3) & 0x03); /* bits (4:3) indicating byte array */
1022 BitOffset = (vlan & 0x7) << 2; /* lower 3 bits indicate nibble */
1023
1024 /* Set the nibble for VMD queue index */
1025 VftaReg = IXGBE_READ_REG(hw, IXGBE_VFTAVIND(VftaByte, VftaIndex));
1026 VftaReg &= (~(0x0F << BitOffset));
1027 VftaReg |= (vind << BitOffset);
1028 IXGBE_WRITE_REG(hw, IXGBE_VFTAVIND(VftaByte, VftaIndex), VftaReg);
1029
1030 /* Determine the location of the bit for this VLAN id */
1031 BitOffset = vlan & 0x1F; /* lower five bits */
1032
1033 VftaReg = IXGBE_READ_REG(hw, IXGBE_VFTA(VftaIndex));
1034 if (vlan_on)
1035 /* Turn on this VLAN id */
1036 VftaReg |= (1 << BitOffset);
1037 else
1038 /* Turn off this VLAN id */
1039 VftaReg &= ~(1 << BitOffset);
1040 IXGBE_WRITE_REG(hw, IXGBE_VFTA(VftaIndex), VftaReg);
1041
1042 return 0;
1043}
1044
1045/**
1046 * ixgbe_setup_fc - Configure flow control settings
1047 * @hw: pointer to hardware structure
1048 * @packetbuf_num: packet buffer number (0-7)
1049 *
1050 * Configures the flow control settings based on SW configuration.
1051 * This function is used for 802.3x flow control configuration only.
1052 **/
1053s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
1054{
1055 u32 frctl_reg;
1056 u32 rmcs_reg;
1057
1058 if (packetbuf_num < 0 || packetbuf_num > 7)
Joe Perches8c5863a2007-11-19 17:48:23 -08001059 hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
Auke Kok9a799d72007-09-15 14:07:45 -07001060 "is 0-7\n", packetbuf_num);
1061
1062 frctl_reg = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1063 frctl_reg &= ~(IXGBE_FCTRL_RFCE | IXGBE_FCTRL_RPFCE);
1064
1065 rmcs_reg = IXGBE_READ_REG(hw, IXGBE_RMCS);
1066 rmcs_reg &= ~(IXGBE_RMCS_TFCE_PRIORITY | IXGBE_RMCS_TFCE_802_3X);
1067
1068 /*
Jesse Brandeburg2b9ade92008-08-26 04:27:10 -07001069 * 10 gig parts do not have a word in the EEPROM to determine the
1070 * default flow control setting, so we explicitly set it to full.
1071 */
1072 if (hw->fc.type == ixgbe_fc_default)
1073 hw->fc.type = ixgbe_fc_full;
1074
1075 /*
Auke Kok9a799d72007-09-15 14:07:45 -07001076 * We want to save off the original Flow Control configuration just in
1077 * case we get disconnected and then reconnected into a different hub
1078 * or switch with different Flow Control capabilities.
1079 */
1080 hw->fc.type = hw->fc.original_type;
1081
1082 /*
1083 * The possible values of the "flow_control" parameter are:
1084 * 0: Flow control is completely disabled
1085 * 1: Rx flow control is enabled (we can receive pause frames but not
1086 * send pause frames).
1087 * 2: Tx flow control is enabled (we can send pause frames but we do not
1088 * support receiving pause frames)
1089 * 3: Both Rx and TX flow control (symmetric) are enabled.
1090 * other: Invalid.
1091 */
1092 switch (hw->fc.type) {
1093 case ixgbe_fc_none:
1094 break;
1095 case ixgbe_fc_rx_pause:
1096 /*
1097 * RX Flow control is enabled,
1098 * and TX Flow control is disabled.
1099 */
1100 frctl_reg |= IXGBE_FCTRL_RFCE;
1101 break;
1102 case ixgbe_fc_tx_pause:
1103 /*
1104 * TX Flow control is enabled, and RX Flow control is disabled,
1105 * by a software over-ride.
1106 */
1107 rmcs_reg |= IXGBE_RMCS_TFCE_802_3X;
1108 break;
1109 case ixgbe_fc_full:
1110 /*
1111 * Flow control (both RX and TX) is enabled by a software
1112 * over-ride.
1113 */
1114 frctl_reg |= IXGBE_FCTRL_RFCE;
1115 rmcs_reg |= IXGBE_RMCS_TFCE_802_3X;
1116 break;
1117 default:
1118 /* We should never get here. The value should be 0-3. */
1119 hw_dbg(hw, "Flow control param set incorrectly\n");
1120 break;
1121 }
1122
1123 /* Enable 802.3x based flow control settings. */
1124 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, frctl_reg);
1125 IXGBE_WRITE_REG(hw, IXGBE_RMCS, rmcs_reg);
1126
1127 /*
Jesse Brandeburg2b9ade92008-08-26 04:27:10 -07001128 * Check for invalid software configuration, zeros are completely
1129 * invalid for all parameters used past this point, and if we enable
1130 * flow control with zero water marks, we blast flow control packets.
1131 */
1132 if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
1133 hw_dbg(hw, "Flow control structure initialized incorrectly\n");
1134 return IXGBE_ERR_INVALID_LINK_SETTINGS;
1135 }
1136
1137 /*
Auke Kok9a799d72007-09-15 14:07:45 -07001138 * We need to set up the Receive Threshold high and low water
1139 * marks as well as (optionally) enabling the transmission of
1140 * XON frames.
1141 */
1142 if (hw->fc.type & ixgbe_fc_tx_pause) {
1143 if (hw->fc.send_xon) {
1144 IXGBE_WRITE_REG(hw, IXGBE_FCRTL(packetbuf_num),
1145 (hw->fc.low_water | IXGBE_FCRTL_XONE));
1146 } else {
1147 IXGBE_WRITE_REG(hw, IXGBE_FCRTL(packetbuf_num),
1148 hw->fc.low_water);
1149 }
1150 IXGBE_WRITE_REG(hw, IXGBE_FCRTH(packetbuf_num),
1151 (hw->fc.high_water)|IXGBE_FCRTH_FCEN);
1152 }
1153
1154 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(0), hw->fc.pause_time);
1155 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1156
1157 return 0;
1158}
1159
1160/**
1161 * ixgbe_disable_pcie_master - Disable PCI-express master access
1162 * @hw: pointer to hardware structure
1163 *
1164 * Disables PCI-Express master access and verifies there are no pending
1165 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1166 * bit hasn't caused the master requests to be disabled, else 0
1167 * is returned signifying master requests disabled.
1168 **/
1169s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
1170{
1171 u32 ctrl;
1172 s32 i;
1173 s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
1174
1175 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
1176 ctrl |= IXGBE_CTRL_GIO_DIS;
1177 IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl);
1178
1179 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
1180 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
1181 status = 0;
1182 break;
1183 }
1184 udelay(100);
1185 }
1186
1187 return status;
1188}
1189
1190
1191/**
1192 * ixgbe_acquire_swfw_sync - Aquire SWFW semaphore
1193 * @hw: pointer to hardware structure
1194 * @mask: Mask to specify wich semaphore to acquire
1195 *
1196 * Aquires the SWFW semaphore throught the GSSR register for the specified
1197 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1198 **/
1199s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1200{
1201 u32 gssr;
1202 u32 swmask = mask;
1203 u32 fwmask = mask << 5;
1204 s32 timeout = 200;
1205
1206 while (timeout) {
1207 if (ixgbe_get_eeprom_semaphore(hw))
1208 return -IXGBE_ERR_SWFW_SYNC;
1209
1210 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1211 if (!(gssr & (fwmask | swmask)))
1212 break;
1213
1214 /*
1215 * Firmware currently using resource (fwmask) or other software
1216 * thread currently using resource (swmask)
1217 */
1218 ixgbe_release_eeprom_semaphore(hw);
1219 msleep(5);
1220 timeout--;
1221 }
1222
1223 if (!timeout) {
1224 hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
1225 return -IXGBE_ERR_SWFW_SYNC;
1226 }
1227
1228 gssr |= swmask;
1229 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1230
1231 ixgbe_release_eeprom_semaphore(hw);
1232 return 0;
1233}
1234
1235/**
1236 * ixgbe_release_swfw_sync - Release SWFW semaphore
1237 * @hw: pointer to hardware structure
1238 * @mask: Mask to specify wich semaphore to release
1239 *
1240 * Releases the SWFW semaphore throught the GSSR register for the specified
1241 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1242 **/
1243void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1244{
1245 u32 gssr;
1246 u32 swmask = mask;
1247
1248 ixgbe_get_eeprom_semaphore(hw);
1249
1250 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1251 gssr &= ~swmask;
1252 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1253
1254 ixgbe_release_eeprom_semaphore(hw);
1255}
1256
1257/**
Auke Kok3957d632007-10-31 15:22:10 -07001258 * ixgbe_read_analog_reg8 - Reads 8 bit Atlas analog register
Auke Kok9a799d72007-09-15 14:07:45 -07001259 * @hw: pointer to hardware structure
1260 * @reg: analog register to read
1261 * @val: read value
1262 *
1263 * Performs write operation to analog register specified.
1264 **/
1265s32 ixgbe_read_analog_reg8(struct ixgbe_hw *hw, u32 reg, u8 *val)
1266{
1267 u32 atlas_ctl;
1268
1269 IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL,
1270 IXGBE_ATLASCTL_WRITE_CMD | (reg << 8));
1271 IXGBE_WRITE_FLUSH(hw);
1272 udelay(10);
1273 atlas_ctl = IXGBE_READ_REG(hw, IXGBE_ATLASCTL);
1274 *val = (u8)atlas_ctl;
1275
1276 return 0;
1277}
1278
1279/**
Auke Kok3957d632007-10-31 15:22:10 -07001280 * ixgbe_write_analog_reg8 - Writes 8 bit Atlas analog register
Auke Kok9a799d72007-09-15 14:07:45 -07001281 * @hw: pointer to hardware structure
1282 * @reg: atlas register to write
1283 * @val: value to write
1284 *
1285 * Performs write operation to Atlas analog register specified.
1286 **/
1287s32 ixgbe_write_analog_reg8(struct ixgbe_hw *hw, u32 reg, u8 val)
1288{
1289 u32 atlas_ctl;
1290
1291 atlas_ctl = (reg << 8) | val;
1292 IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL, atlas_ctl);
1293 IXGBE_WRITE_FLUSH(hw);
1294 udelay(10);
1295
1296 return 0;
1297}
1298