Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel(R) Gigabit Ethernet Linux driver |
Akeem G. Abodunrin | 4b9ea46 | 2013-01-08 18:31:12 +0000 | [diff] [blame] | 4 | Copyright(c) 2007-2013 Intel Corporation. |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 25 | |
| 26 | ******************************************************************************/ |
| 27 | |
| 28 | /* e1000_i210 |
| 29 | * e1000_i211 |
| 30 | */ |
| 31 | |
| 32 | #include <linux/types.h> |
| 33 | #include <linux/if_ether.h> |
| 34 | |
| 35 | #include "e1000_hw.h" |
| 36 | #include "e1000_i210.h" |
| 37 | |
Carolyn Wyborny | 7916a53 | 2012-11-21 04:44:10 +0000 | [diff] [blame] | 38 | /** |
| 39 | * igb_get_hw_semaphore_i210 - Acquire hardware semaphore |
| 40 | * @hw: pointer to the HW structure |
| 41 | * |
| 42 | * Acquire the HW semaphore to access the PHY or NVM |
| 43 | */ |
| 44 | static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw) |
| 45 | { |
| 46 | u32 swsm; |
Carolyn Wyborny | 7916a53 | 2012-11-21 04:44:10 +0000 | [diff] [blame] | 47 | s32 timeout = hw->nvm.word_size + 1; |
| 48 | s32 i = 0; |
| 49 | |
Matthew Vick | d44e7a9 | 2013-03-22 07:34:20 +0000 | [diff] [blame^] | 50 | /* Get the SW semaphore */ |
| 51 | while (i < timeout) { |
| 52 | swsm = rd32(E1000_SWSM); |
| 53 | if (!(swsm & E1000_SWSM_SMBI)) |
| 54 | break; |
| 55 | |
| 56 | udelay(50); |
| 57 | i++; |
| 58 | } |
| 59 | |
| 60 | if (i == timeout) { |
| 61 | /* In rare circumstances, the SW semaphore may already be held |
| 62 | * unintentionally. Clear the semaphore once before giving up. |
| 63 | */ |
| 64 | if (hw->dev_spec._82575.clear_semaphore_once) { |
| 65 | hw->dev_spec._82575.clear_semaphore_once = false; |
| 66 | igb_put_hw_semaphore(hw); |
| 67 | for (i = 0; i < timeout; i++) { |
| 68 | swsm = rd32(E1000_SWSM); |
| 69 | if (!(swsm & E1000_SWSM_SMBI)) |
| 70 | break; |
| 71 | |
| 72 | udelay(50); |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | /* If we do not have the semaphore here, we have to give up. */ |
| 77 | if (i == timeout) { |
| 78 | hw_dbg("Driver can't access device - SMBI bit is set.\n"); |
| 79 | return -E1000_ERR_NVM; |
| 80 | } |
| 81 | } |
| 82 | |
Carolyn Wyborny | 7916a53 | 2012-11-21 04:44:10 +0000 | [diff] [blame] | 83 | /* Get the FW semaphore. */ |
| 84 | for (i = 0; i < timeout; i++) { |
| 85 | swsm = rd32(E1000_SWSM); |
| 86 | wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); |
| 87 | |
| 88 | /* Semaphore acquired if bit latched */ |
| 89 | if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) |
| 90 | break; |
| 91 | |
| 92 | udelay(50); |
| 93 | } |
| 94 | |
| 95 | if (i == timeout) { |
| 96 | /* Release semaphores */ |
| 97 | igb_put_hw_semaphore(hw); |
| 98 | hw_dbg("Driver can't access the NVM\n"); |
Matthew Vick | d44e7a9 | 2013-03-22 07:34:20 +0000 | [diff] [blame^] | 99 | return -E1000_ERR_NVM; |
Carolyn Wyborny | 7916a53 | 2012-11-21 04:44:10 +0000 | [diff] [blame] | 100 | } |
| 101 | |
Matthew Vick | d44e7a9 | 2013-03-22 07:34:20 +0000 | [diff] [blame^] | 102 | return E1000_SUCCESS; |
Carolyn Wyborny | 7916a53 | 2012-11-21 04:44:10 +0000 | [diff] [blame] | 103 | } |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 104 | |
| 105 | /** |
| 106 | * igb_acquire_nvm_i210 - Request for access to EEPROM |
| 107 | * @hw: pointer to the HW structure |
| 108 | * |
| 109 | * Acquire the necessary semaphores for exclusive access to the EEPROM. |
| 110 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| 111 | * Return successful if access grant bit set, else clear the request for |
| 112 | * EEPROM access and return -E1000_ERR_NVM (-1). |
| 113 | **/ |
| 114 | s32 igb_acquire_nvm_i210(struct e1000_hw *hw) |
| 115 | { |
| 116 | return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); |
| 117 | } |
| 118 | |
| 119 | /** |
| 120 | * igb_release_nvm_i210 - Release exclusive access to EEPROM |
| 121 | * @hw: pointer to the HW structure |
| 122 | * |
| 123 | * Stop any current commands to the EEPROM and clear the EEPROM request bit, |
| 124 | * then release the semaphores acquired. |
| 125 | **/ |
| 126 | void igb_release_nvm_i210(struct e1000_hw *hw) |
| 127 | { |
| 128 | igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); |
| 129 | } |
| 130 | |
| 131 | /** |
| 132 | * igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore |
| 133 | * @hw: pointer to the HW structure |
| 134 | * @mask: specifies which semaphore to acquire |
| 135 | * |
| 136 | * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
| 137 | * will also specify which port we're acquiring the lock for. |
| 138 | **/ |
| 139 | s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask) |
| 140 | { |
| 141 | u32 swfw_sync; |
| 142 | u32 swmask = mask; |
| 143 | u32 fwmask = mask << 16; |
| 144 | s32 ret_val = E1000_SUCCESS; |
| 145 | s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ |
| 146 | |
| 147 | while (i < timeout) { |
| 148 | if (igb_get_hw_semaphore_i210(hw)) { |
| 149 | ret_val = -E1000_ERR_SWFW_SYNC; |
| 150 | goto out; |
| 151 | } |
| 152 | |
| 153 | swfw_sync = rd32(E1000_SW_FW_SYNC); |
Matthew Vick | d44e7a9 | 2013-03-22 07:34:20 +0000 | [diff] [blame^] | 154 | if (!(swfw_sync & (fwmask | swmask))) |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 155 | break; |
| 156 | |
Jeff Kirsher | b980ac1 | 2013-02-23 07:29:56 +0000 | [diff] [blame] | 157 | /* Firmware currently using resource (fwmask) */ |
Matthew Vick | d44e7a9 | 2013-03-22 07:34:20 +0000 | [diff] [blame^] | 158 | igb_put_hw_semaphore(hw); |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 159 | mdelay(5); |
| 160 | i++; |
| 161 | } |
| 162 | |
| 163 | if (i == timeout) { |
| 164 | hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); |
| 165 | ret_val = -E1000_ERR_SWFW_SYNC; |
| 166 | goto out; |
| 167 | } |
| 168 | |
| 169 | swfw_sync |= swmask; |
| 170 | wr32(E1000_SW_FW_SYNC, swfw_sync); |
| 171 | |
Matthew Vick | d44e7a9 | 2013-03-22 07:34:20 +0000 | [diff] [blame^] | 172 | igb_put_hw_semaphore(hw); |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 173 | out: |
| 174 | return ret_val; |
| 175 | } |
| 176 | |
| 177 | /** |
| 178 | * igb_release_swfw_sync_i210 - Release SW/FW semaphore |
| 179 | * @hw: pointer to the HW structure |
| 180 | * @mask: specifies which semaphore to acquire |
| 181 | * |
| 182 | * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
| 183 | * will also specify which port we're releasing the lock for. |
| 184 | **/ |
| 185 | void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask) |
| 186 | { |
| 187 | u32 swfw_sync; |
| 188 | |
| 189 | while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS) |
| 190 | ; /* Empty */ |
| 191 | |
| 192 | swfw_sync = rd32(E1000_SW_FW_SYNC); |
| 193 | swfw_sync &= ~mask; |
| 194 | wr32(E1000_SW_FW_SYNC, swfw_sync); |
| 195 | |
Matthew Vick | d44e7a9 | 2013-03-22 07:34:20 +0000 | [diff] [blame^] | 196 | igb_put_hw_semaphore(hw); |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 197 | } |
| 198 | |
| 199 | /** |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 200 | * igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register |
| 201 | * @hw: pointer to the HW structure |
| 202 | * @offset: offset of word in the Shadow Ram to read |
| 203 | * @words: number of words to read |
| 204 | * @data: word read from the Shadow Ram |
| 205 | * |
| 206 | * Reads a 16 bit word from the Shadow Ram using the EERD register. |
| 207 | * Uses necessary synchronization semaphores. |
| 208 | **/ |
| 209 | s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, |
| 210 | u16 *data) |
| 211 | { |
| 212 | s32 status = E1000_SUCCESS; |
| 213 | u16 i, count; |
| 214 | |
| 215 | /* We cannot hold synchronization semaphores for too long, |
| 216 | * because of forceful takeover procedure. However it is more efficient |
Jeff Kirsher | b980ac1 | 2013-02-23 07:29:56 +0000 | [diff] [blame] | 217 | * to read in bursts than synchronizing access for each word. |
| 218 | */ |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 219 | for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { |
| 220 | count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? |
| 221 | E1000_EERD_EEWR_MAX_COUNT : (words - i); |
| 222 | if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { |
| 223 | status = igb_read_nvm_eerd(hw, offset, count, |
| 224 | data + i); |
| 225 | hw->nvm.ops.release(hw); |
| 226 | } else { |
| 227 | status = E1000_ERR_SWFW_SYNC; |
| 228 | } |
| 229 | |
| 230 | if (status != E1000_SUCCESS) |
| 231 | break; |
| 232 | } |
| 233 | |
| 234 | return status; |
| 235 | } |
| 236 | |
| 237 | /** |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 238 | * igb_write_nvm_srwr - Write to Shadow Ram using EEWR |
| 239 | * @hw: pointer to the HW structure |
| 240 | * @offset: offset within the Shadow Ram to be written to |
| 241 | * @words: number of words to write |
| 242 | * @data: 16 bit word(s) to be written to the Shadow Ram |
| 243 | * |
| 244 | * Writes data to Shadow Ram at offset using EEWR register. |
| 245 | * |
| 246 | * If igb_update_nvm_checksum is not called after this function , the |
| 247 | * Shadow Ram will most likely contain an invalid checksum. |
| 248 | **/ |
| 249 | static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, |
| 250 | u16 *data) |
| 251 | { |
| 252 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 253 | u32 i, k, eewr = 0; |
| 254 | u32 attempts = 100000; |
| 255 | s32 ret_val = E1000_SUCCESS; |
| 256 | |
Jeff Kirsher | b980ac1 | 2013-02-23 07:29:56 +0000 | [diff] [blame] | 257 | /* A check for invalid values: offset too large, too many words, |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 258 | * too many words for the offset, and not enough words. |
| 259 | */ |
| 260 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| 261 | (words == 0)) { |
| 262 | hw_dbg("nvm parameter(s) out of bounds\n"); |
| 263 | ret_val = -E1000_ERR_NVM; |
| 264 | goto out; |
| 265 | } |
| 266 | |
| 267 | for (i = 0; i < words; i++) { |
| 268 | eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | |
| 269 | (data[i] << E1000_NVM_RW_REG_DATA) | |
| 270 | E1000_NVM_RW_REG_START; |
| 271 | |
| 272 | wr32(E1000_SRWR, eewr); |
| 273 | |
| 274 | for (k = 0; k < attempts; k++) { |
| 275 | if (E1000_NVM_RW_REG_DONE & |
| 276 | rd32(E1000_SRWR)) { |
| 277 | ret_val = E1000_SUCCESS; |
| 278 | break; |
| 279 | } |
| 280 | udelay(5); |
| 281 | } |
| 282 | |
| 283 | if (ret_val != E1000_SUCCESS) { |
| 284 | hw_dbg("Shadow RAM write EEWR timed out\n"); |
| 285 | break; |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | out: |
| 290 | return ret_val; |
| 291 | } |
| 292 | |
| 293 | /** |
Carolyn Wyborny | 7916a53 | 2012-11-21 04:44:10 +0000 | [diff] [blame] | 294 | * igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR |
| 295 | * @hw: pointer to the HW structure |
| 296 | * @offset: offset within the Shadow RAM to be written to |
| 297 | * @words: number of words to write |
| 298 | * @data: 16 bit word(s) to be written to the Shadow RAM |
| 299 | * |
| 300 | * Writes data to Shadow RAM at offset using EEWR register. |
| 301 | * |
| 302 | * If e1000_update_nvm_checksum is not called after this function , the |
| 303 | * data will not be committed to FLASH and also Shadow RAM will most likely |
| 304 | * contain an invalid checksum. |
| 305 | * |
| 306 | * If error code is returned, data and Shadow RAM may be inconsistent - buffer |
| 307 | * partially written. |
Jeff Kirsher | b980ac1 | 2013-02-23 07:29:56 +0000 | [diff] [blame] | 308 | **/ |
Carolyn Wyborny | 7916a53 | 2012-11-21 04:44:10 +0000 | [diff] [blame] | 309 | s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, |
| 310 | u16 *data) |
| 311 | { |
| 312 | s32 status = E1000_SUCCESS; |
| 313 | u16 i, count; |
| 314 | |
| 315 | /* We cannot hold synchronization semaphores for too long, |
| 316 | * because of forceful takeover procedure. However it is more efficient |
| 317 | * to write in bursts than synchronizing access for each word. |
| 318 | */ |
| 319 | for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { |
| 320 | count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? |
| 321 | E1000_EERD_EEWR_MAX_COUNT : (words - i); |
| 322 | if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { |
| 323 | status = igb_write_nvm_srwr(hw, offset, count, |
| 324 | data + i); |
| 325 | hw->nvm.ops.release(hw); |
| 326 | } else { |
| 327 | status = E1000_ERR_SWFW_SYNC; |
| 328 | } |
| 329 | |
| 330 | if (status != E1000_SUCCESS) |
| 331 | break; |
| 332 | } |
| 333 | |
| 334 | return status; |
| 335 | } |
| 336 | |
| 337 | /** |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 338 | * igb_read_nvm_i211 - Read NVM wrapper function for I211 |
| 339 | * @hw: pointer to the HW structure |
Akeem G. Abodunrin | 5c17a20 | 2013-01-29 10:15:31 +0000 | [diff] [blame] | 340 | * @words: number of words to read |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 341 | * @data: pointer to the data read |
| 342 | * |
| 343 | * Wrapper function to return data formerly found in the NVM. |
| 344 | **/ |
| 345 | s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words, |
| 346 | u16 *data) |
| 347 | { |
| 348 | s32 ret_val = E1000_SUCCESS; |
| 349 | |
| 350 | /* Only the MAC addr is required to be present in the iNVM */ |
| 351 | switch (offset) { |
| 352 | case NVM_MAC_ADDR: |
| 353 | ret_val = igb_read_invm_i211(hw, offset, &data[0]); |
| 354 | ret_val |= igb_read_invm_i211(hw, offset+1, &data[1]); |
| 355 | ret_val |= igb_read_invm_i211(hw, offset+2, &data[2]); |
| 356 | if (ret_val != E1000_SUCCESS) |
| 357 | hw_dbg("MAC Addr not found in iNVM\n"); |
| 358 | break; |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 359 | case NVM_INIT_CTRL_2: |
Carolyn Wyborny | 1720ee3 | 2012-10-11 02:15:45 +0000 | [diff] [blame] | 360 | ret_val = igb_read_invm_i211(hw, (u8)offset, data); |
| 361 | if (ret_val != E1000_SUCCESS) { |
| 362 | *data = NVM_INIT_CTRL_2_DEFAULT_I211; |
| 363 | ret_val = E1000_SUCCESS; |
| 364 | } |
| 365 | break; |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 366 | case NVM_INIT_CTRL_4: |
Carolyn Wyborny | 1720ee3 | 2012-10-11 02:15:45 +0000 | [diff] [blame] | 367 | ret_val = igb_read_invm_i211(hw, (u8)offset, data); |
| 368 | if (ret_val != E1000_SUCCESS) { |
| 369 | *data = NVM_INIT_CTRL_4_DEFAULT_I211; |
| 370 | ret_val = E1000_SUCCESS; |
| 371 | } |
| 372 | break; |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 373 | case NVM_LED_1_CFG: |
Carolyn Wyborny | 1720ee3 | 2012-10-11 02:15:45 +0000 | [diff] [blame] | 374 | ret_val = igb_read_invm_i211(hw, (u8)offset, data); |
| 375 | if (ret_val != E1000_SUCCESS) { |
| 376 | *data = NVM_LED_1_CFG_DEFAULT_I211; |
| 377 | ret_val = E1000_SUCCESS; |
| 378 | } |
| 379 | break; |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 380 | case NVM_LED_0_2_CFG: |
| 381 | igb_read_invm_i211(hw, offset, data); |
Carolyn Wyborny | 1720ee3 | 2012-10-11 02:15:45 +0000 | [diff] [blame] | 382 | if (ret_val != E1000_SUCCESS) { |
| 383 | *data = NVM_LED_0_2_CFG_DEFAULT_I211; |
| 384 | ret_val = E1000_SUCCESS; |
| 385 | } |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 386 | break; |
Carolyn Wyborny | 1720ee3 | 2012-10-11 02:15:45 +0000 | [diff] [blame] | 387 | case NVM_ID_LED_SETTINGS: |
| 388 | ret_val = igb_read_invm_i211(hw, (u8)offset, data); |
| 389 | if (ret_val != E1000_SUCCESS) { |
| 390 | *data = ID_LED_RESERVED_FFFF; |
| 391 | ret_val = E1000_SUCCESS; |
| 392 | } |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 393 | case NVM_SUB_DEV_ID: |
| 394 | *data = hw->subsystem_device_id; |
| 395 | break; |
| 396 | case NVM_SUB_VEN_ID: |
| 397 | *data = hw->subsystem_vendor_id; |
| 398 | break; |
| 399 | case NVM_DEV_ID: |
| 400 | *data = hw->device_id; |
| 401 | break; |
| 402 | case NVM_VEN_ID: |
| 403 | *data = hw->vendor_id; |
| 404 | break; |
| 405 | default: |
| 406 | hw_dbg("NVM word 0x%02x is not mapped.\n", offset); |
| 407 | *data = NVM_RESERVED_WORD; |
| 408 | break; |
| 409 | } |
| 410 | return ret_val; |
| 411 | } |
| 412 | |
| 413 | /** |
| 414 | * igb_read_invm_i211 - Reads OTP |
| 415 | * @hw: pointer to the HW structure |
| 416 | * @address: the word address (aka eeprom offset) to read |
| 417 | * @data: pointer to the data read |
| 418 | * |
| 419 | * Reads 16-bit words from the OTP. Return error when the word is not |
| 420 | * stored in OTP. |
| 421 | **/ |
| 422 | s32 igb_read_invm_i211(struct e1000_hw *hw, u16 address, u16 *data) |
| 423 | { |
| 424 | s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; |
| 425 | u32 invm_dword; |
| 426 | u16 i; |
| 427 | u8 record_type, word_address; |
| 428 | |
| 429 | for (i = 0; i < E1000_INVM_SIZE; i++) { |
| 430 | invm_dword = rd32(E1000_INVM_DATA_REG(i)); |
| 431 | /* Get record type */ |
| 432 | record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); |
| 433 | if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE) |
| 434 | break; |
| 435 | if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE) |
| 436 | i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; |
| 437 | if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE) |
| 438 | i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; |
| 439 | if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) { |
| 440 | word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); |
| 441 | if (word_address == (u8)address) { |
| 442 | *data = INVM_DWORD_TO_WORD_DATA(invm_dword); |
| 443 | hw_dbg("Read INVM Word 0x%02x = %x", |
| 444 | address, *data); |
| 445 | status = E1000_SUCCESS; |
| 446 | break; |
| 447 | } |
| 448 | } |
| 449 | } |
| 450 | if (status != E1000_SUCCESS) |
| 451 | hw_dbg("Requested word 0x%02x not found in OTP\n", address); |
| 452 | return status; |
| 453 | } |
| 454 | |
| 455 | /** |
Carolyn Wyborny | 09e7728 | 2012-10-23 13:04:37 +0000 | [diff] [blame] | 456 | * igb_read_invm_version - Reads iNVM version and image type |
| 457 | * @hw: pointer to the HW structure |
| 458 | * @invm_ver: version structure for the version read |
| 459 | * |
| 460 | * Reads iNVM version and image type. |
| 461 | **/ |
| 462 | s32 igb_read_invm_version(struct e1000_hw *hw, |
| 463 | struct e1000_fw_version *invm_ver) { |
| 464 | u32 *record = NULL; |
| 465 | u32 *next_record = NULL; |
| 466 | u32 i = 0; |
| 467 | u32 invm_dword = 0; |
| 468 | u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE / |
| 469 | E1000_INVM_RECORD_SIZE_IN_BYTES); |
| 470 | u32 buffer[E1000_INVM_SIZE]; |
| 471 | s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; |
| 472 | u16 version = 0; |
| 473 | |
| 474 | /* Read iNVM memory */ |
| 475 | for (i = 0; i < E1000_INVM_SIZE; i++) { |
| 476 | invm_dword = rd32(E1000_INVM_DATA_REG(i)); |
| 477 | buffer[i] = invm_dword; |
| 478 | } |
| 479 | |
| 480 | /* Read version number */ |
| 481 | for (i = 1; i < invm_blocks; i++) { |
| 482 | record = &buffer[invm_blocks - i]; |
| 483 | next_record = &buffer[invm_blocks - i + 1]; |
| 484 | |
| 485 | /* Check if we have first version location used */ |
| 486 | if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) { |
| 487 | version = 0; |
| 488 | status = E1000_SUCCESS; |
| 489 | break; |
| 490 | } |
| 491 | /* Check if we have second version location used */ |
| 492 | else if ((i == 1) && |
| 493 | ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) { |
| 494 | version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; |
| 495 | status = E1000_SUCCESS; |
| 496 | break; |
| 497 | } |
| 498 | /* Check if we have odd version location |
| 499 | * used and it is the last one used |
| 500 | */ |
| 501 | else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) && |
| 502 | ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) && |
| 503 | (i != 1))) { |
| 504 | version = (*next_record & E1000_INVM_VER_FIELD_TWO) |
| 505 | >> 13; |
| 506 | status = E1000_SUCCESS; |
| 507 | break; |
| 508 | } |
| 509 | /* Check if we have even version location |
| 510 | * used and it is the last one used |
| 511 | */ |
| 512 | else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) && |
| 513 | ((*record & 0x3) == 0)) { |
| 514 | version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; |
| 515 | status = E1000_SUCCESS; |
| 516 | break; |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | if (status == E1000_SUCCESS) { |
| 521 | invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK) |
| 522 | >> E1000_INVM_MAJOR_SHIFT; |
| 523 | invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK; |
| 524 | } |
| 525 | /* Read Image Type */ |
| 526 | for (i = 1; i < invm_blocks; i++) { |
| 527 | record = &buffer[invm_blocks - i]; |
| 528 | next_record = &buffer[invm_blocks - i + 1]; |
| 529 | |
| 530 | /* Check if we have image type in first location used */ |
| 531 | if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) { |
| 532 | invm_ver->invm_img_type = 0; |
| 533 | status = E1000_SUCCESS; |
| 534 | break; |
| 535 | } |
| 536 | /* Check if we have image type in first location used */ |
| 537 | else if ((((*record & 0x3) == 0) && |
| 538 | ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) || |
| 539 | ((((*record & 0x3) != 0) && (i != 1)))) { |
| 540 | invm_ver->invm_img_type = |
| 541 | (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23; |
| 542 | status = E1000_SUCCESS; |
| 543 | break; |
| 544 | } |
| 545 | } |
| 546 | return status; |
| 547 | } |
| 548 | |
| 549 | /** |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 550 | * igb_validate_nvm_checksum_i210 - Validate EEPROM checksum |
| 551 | * @hw: pointer to the HW structure |
| 552 | * |
| 553 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| 554 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| 555 | **/ |
| 556 | s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw) |
| 557 | { |
| 558 | s32 status = E1000_SUCCESS; |
| 559 | s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *); |
| 560 | |
| 561 | if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { |
| 562 | |
Jeff Kirsher | b980ac1 | 2013-02-23 07:29:56 +0000 | [diff] [blame] | 563 | /* Replace the read function with semaphore grabbing with |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 564 | * the one that skips this for a while. |
| 565 | * We have semaphore taken already here. |
| 566 | */ |
| 567 | read_op_ptr = hw->nvm.ops.read; |
| 568 | hw->nvm.ops.read = igb_read_nvm_eerd; |
| 569 | |
| 570 | status = igb_validate_nvm_checksum(hw); |
| 571 | |
| 572 | /* Revert original read operation. */ |
| 573 | hw->nvm.ops.read = read_op_ptr; |
| 574 | |
| 575 | hw->nvm.ops.release(hw); |
| 576 | } else { |
| 577 | status = E1000_ERR_SWFW_SYNC; |
| 578 | } |
| 579 | |
| 580 | return status; |
| 581 | } |
| 582 | |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 583 | /** |
| 584 | * igb_update_nvm_checksum_i210 - Update EEPROM checksum |
| 585 | * @hw: pointer to the HW structure |
| 586 | * |
| 587 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| 588 | * up to the checksum. Then calculates the EEPROM checksum and writes the |
| 589 | * value to the EEPROM. Next commit EEPROM data onto the Flash. |
| 590 | **/ |
| 591 | s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw) |
| 592 | { |
| 593 | s32 ret_val = E1000_SUCCESS; |
| 594 | u16 checksum = 0; |
| 595 | u16 i, nvm_data; |
| 596 | |
Jeff Kirsher | b980ac1 | 2013-02-23 07:29:56 +0000 | [diff] [blame] | 597 | /* Read the first word from the EEPROM. If this times out or fails, do |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 598 | * not continue or we could be in for a very long wait while every |
| 599 | * EEPROM read fails |
| 600 | */ |
| 601 | ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data); |
| 602 | if (ret_val != E1000_SUCCESS) { |
| 603 | hw_dbg("EEPROM read failed\n"); |
| 604 | goto out; |
| 605 | } |
| 606 | |
| 607 | if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { |
Jeff Kirsher | b980ac1 | 2013-02-23 07:29:56 +0000 | [diff] [blame] | 608 | /* Do not use hw->nvm.ops.write, hw->nvm.ops.read |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 609 | * because we do not want to take the synchronization |
| 610 | * semaphores twice here. |
| 611 | */ |
| 612 | |
| 613 | for (i = 0; i < NVM_CHECKSUM_REG; i++) { |
| 614 | ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data); |
| 615 | if (ret_val) { |
| 616 | hw->nvm.ops.release(hw); |
| 617 | hw_dbg("NVM Read Error while updating checksum.\n"); |
| 618 | goto out; |
| 619 | } |
| 620 | checksum += nvm_data; |
| 621 | } |
| 622 | checksum = (u16) NVM_SUM - checksum; |
| 623 | ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, |
| 624 | &checksum); |
| 625 | if (ret_val != E1000_SUCCESS) { |
| 626 | hw->nvm.ops.release(hw); |
| 627 | hw_dbg("NVM Write Error while updating checksum.\n"); |
| 628 | goto out; |
| 629 | } |
| 630 | |
| 631 | hw->nvm.ops.release(hw); |
| 632 | |
| 633 | ret_val = igb_update_flash_i210(hw); |
| 634 | } else { |
| 635 | ret_val = -E1000_ERR_SWFW_SYNC; |
| 636 | } |
| 637 | out: |
| 638 | return ret_val; |
| 639 | } |
| 640 | |
| 641 | /** |
Carolyn Wyborny | 7916a53 | 2012-11-21 04:44:10 +0000 | [diff] [blame] | 642 | * igb_pool_flash_update_done_i210 - Pool FLUDONE status. |
| 643 | * @hw: pointer to the HW structure |
| 644 | * |
Jeff Kirsher | b980ac1 | 2013-02-23 07:29:56 +0000 | [diff] [blame] | 645 | **/ |
Carolyn Wyborny | 7916a53 | 2012-11-21 04:44:10 +0000 | [diff] [blame] | 646 | static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw) |
| 647 | { |
| 648 | s32 ret_val = -E1000_ERR_NVM; |
| 649 | u32 i, reg; |
| 650 | |
| 651 | for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) { |
| 652 | reg = rd32(E1000_EECD); |
| 653 | if (reg & E1000_EECD_FLUDONE_I210) { |
| 654 | ret_val = E1000_SUCCESS; |
| 655 | break; |
| 656 | } |
| 657 | udelay(5); |
| 658 | } |
| 659 | |
| 660 | return ret_val; |
| 661 | } |
| 662 | |
| 663 | /** |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 664 | * igb_update_flash_i210 - Commit EEPROM to the flash |
| 665 | * @hw: pointer to the HW structure |
| 666 | * |
| 667 | **/ |
| 668 | s32 igb_update_flash_i210(struct e1000_hw *hw) |
| 669 | { |
| 670 | s32 ret_val = E1000_SUCCESS; |
| 671 | u32 flup; |
| 672 | |
| 673 | ret_val = igb_pool_flash_update_done_i210(hw); |
| 674 | if (ret_val == -E1000_ERR_NVM) { |
| 675 | hw_dbg("Flash update time out\n"); |
| 676 | goto out; |
| 677 | } |
| 678 | |
| 679 | flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210; |
| 680 | wr32(E1000_EECD, flup); |
| 681 | |
| 682 | ret_val = igb_pool_flash_update_done_i210(hw); |
| 683 | if (ret_val == E1000_SUCCESS) |
| 684 | hw_dbg("Flash update complete\n"); |
| 685 | else |
| 686 | hw_dbg("Flash update time out\n"); |
| 687 | |
| 688 | out: |
| 689 | return ret_val; |
| 690 | } |
| 691 | |
| 692 | /** |
Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 693 | * igb_valid_led_default_i210 - Verify a valid default LED config |
| 694 | * @hw: pointer to the HW structure |
| 695 | * @data: pointer to the NVM (EEPROM) |
| 696 | * |
| 697 | * Read the EEPROM for the current default LED configuration. If the |
| 698 | * LED configuration is not valid, set to a valid LED configuration. |
| 699 | **/ |
| 700 | s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data) |
| 701 | { |
| 702 | s32 ret_val; |
| 703 | |
| 704 | ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); |
| 705 | if (ret_val) { |
| 706 | hw_dbg("NVM Read Error\n"); |
| 707 | goto out; |
| 708 | } |
| 709 | |
| 710 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { |
| 711 | switch (hw->phy.media_type) { |
| 712 | case e1000_media_type_internal_serdes: |
| 713 | *data = ID_LED_DEFAULT_I210_SERDES; |
| 714 | break; |
| 715 | case e1000_media_type_copper: |
| 716 | default: |
| 717 | *data = ID_LED_DEFAULT_I210; |
| 718 | break; |
| 719 | } |
| 720 | } |
| 721 | out: |
| 722 | return ret_val; |
| 723 | } |
Matthew Vick | 87371b9 | 2013-02-21 03:32:52 +0000 | [diff] [blame] | 724 | |
| 725 | /** |
| 726 | * __igb_access_xmdio_reg - Read/write XMDIO register |
| 727 | * @hw: pointer to the HW structure |
| 728 | * @address: XMDIO address to program |
| 729 | * @dev_addr: device address to program |
| 730 | * @data: pointer to value to read/write from/to the XMDIO address |
| 731 | * @read: boolean flag to indicate read or write |
| 732 | **/ |
| 733 | static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address, |
| 734 | u8 dev_addr, u16 *data, bool read) |
| 735 | { |
| 736 | s32 ret_val = E1000_SUCCESS; |
| 737 | |
| 738 | ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr); |
| 739 | if (ret_val) |
| 740 | return ret_val; |
| 741 | |
| 742 | ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address); |
| 743 | if (ret_val) |
| 744 | return ret_val; |
| 745 | |
| 746 | ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA | |
| 747 | dev_addr); |
| 748 | if (ret_val) |
| 749 | return ret_val; |
| 750 | |
| 751 | if (read) |
| 752 | ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data); |
| 753 | else |
| 754 | ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data); |
| 755 | if (ret_val) |
| 756 | return ret_val; |
| 757 | |
| 758 | /* Recalibrate the device back to 0 */ |
| 759 | ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0); |
| 760 | if (ret_val) |
| 761 | return ret_val; |
| 762 | |
| 763 | return ret_val; |
| 764 | } |
| 765 | |
| 766 | /** |
| 767 | * igb_read_xmdio_reg - Read XMDIO register |
| 768 | * @hw: pointer to the HW structure |
| 769 | * @addr: XMDIO address to program |
| 770 | * @dev_addr: device address to program |
| 771 | * @data: value to be read from the EMI address |
| 772 | **/ |
| 773 | s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data) |
| 774 | { |
| 775 | return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true); |
| 776 | } |
| 777 | |
| 778 | /** |
| 779 | * igb_write_xmdio_reg - Write XMDIO register |
| 780 | * @hw: pointer to the HW structure |
| 781 | * @addr: XMDIO address to program |
| 782 | * @dev_addr: device address to program |
| 783 | * @data: value to be written to the XMDIO address |
| 784 | **/ |
| 785 | s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data) |
| 786 | { |
| 787 | return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false); |
| 788 | } |