blob: e25fcae89d3bf63d15c5e5c2cc9c19c816980dac [file] [log] [blame]
David Brownell8ae12a02006-01-08 13:34:19 -08001/*
2 * Copyright (C) 2005 David Brownell
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19#ifndef __LINUX_SPI_H
20#define __LINUX_SPI_H
21
22/*
David Brownellb8852442006-01-08 13:34:23 -080023 * INTERFACES between SPI master-side drivers and SPI infrastructure.
David Brownell8ae12a02006-01-08 13:34:19 -080024 * (There's no SPI slave support for Linux yet...)
David Brownell8ae12a02006-01-08 13:34:19 -080025 */
26extern struct bus_type spi_bus_type;
27
28/**
29 * struct spi_device - Master side proxy for an SPI slave device
30 * @dev: Driver model representation of the device.
31 * @master: SPI controller used with the device.
32 * @max_speed_hz: Maximum clock rate to be used with this chip
33 * (on this board); may be changed by the device's driver.
Imre Deak4cff33f2006-02-17 10:02:18 -080034 * The spi_transfer.speed_hz can override this for each transfer.
David Brownell8ae12a02006-01-08 13:34:19 -080035 * @chip-select: Chipselect, distinguishing chips handled by "master".
36 * @mode: The spi mode defines how data is clocked out and in.
37 * This may be changed by the device's driver.
David Brownellccf77cc2006-04-03 15:46:22 -070038 * The "active low" default for chipselect mode can be overridden,
39 * as can the "MSB first" default for each word in a transfer.
David Brownell8ae12a02006-01-08 13:34:19 -080040 * @bits_per_word: Data transfers involve one or more words; word sizes
David Brownell747d8442006-04-02 10:33:37 -080041 * like eight or 12 bits are common. In-memory wordsizes are
David Brownell8ae12a02006-01-08 13:34:19 -080042 * powers of two bytes (e.g. 20 bit samples use 32 bits).
David Brownellccf77cc2006-04-03 15:46:22 -070043 * This may be changed by the device's driver, or left at the
44 * default (0) indicating protocol words are eight bit bytes.
Imre Deak4cff33f2006-02-17 10:02:18 -080045 * The spi_transfer.bits_per_word can override this for each transfer.
David Brownell8ae12a02006-01-08 13:34:19 -080046 * @irq: Negative, or the number passed to request_irq() to receive
David Brownell747d8442006-04-02 10:33:37 -080047 * interrupts from this device.
David Brownell8ae12a02006-01-08 13:34:19 -080048 * @controller_state: Controller's runtime state
David Brownellb8852442006-01-08 13:34:23 -080049 * @controller_data: Board-specific definitions for controller, such as
David Brownell747d8442006-04-02 10:33:37 -080050 * FIFO initialization parameters; from board_info.controller_data
David Brownell8ae12a02006-01-08 13:34:19 -080051 *
52 * An spi_device is used to interchange data between an SPI slave
53 * (usually a discrete chip) and CPU memory.
54 *
55 * In "dev", the platform_data is used to hold information about this
56 * device that's meaningful to the device's protocol driver, but not
57 * to its controller. One example might be an identifier for a chip
58 * variant with slightly different functionality.
59 */
60struct spi_device {
61 struct device dev;
62 struct spi_master *master;
63 u32 max_speed_hz;
64 u8 chip_select;
65 u8 mode;
David Brownellb8852442006-01-08 13:34:23 -080066#define SPI_CPHA 0x01 /* clock phase */
67#define SPI_CPOL 0x02 /* clock polarity */
David Brownell0c868462006-01-08 13:34:25 -080068#define SPI_MODE_0 (0|0) /* (original MicroWire) */
69#define SPI_MODE_1 (0|SPI_CPHA)
David Brownell8ae12a02006-01-08 13:34:19 -080070#define SPI_MODE_2 (SPI_CPOL|0)
71#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
David Brownellb8852442006-01-08 13:34:23 -080072#define SPI_CS_HIGH 0x04 /* chipselect active high? */
David Brownellccf77cc2006-04-03 15:46:22 -070073#define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */
David Brownell8ae12a02006-01-08 13:34:19 -080074 u8 bits_per_word;
75 int irq;
76 void *controller_state;
David Brownellb8852442006-01-08 13:34:23 -080077 void *controller_data;
David Brownell8ae12a02006-01-08 13:34:19 -080078 const char *modalias;
79
80 // likely need more hooks for more protocol options affecting how
David Brownellb8852442006-01-08 13:34:23 -080081 // the controller talks to each chip, like:
David Brownell8ae12a02006-01-08 13:34:19 -080082 // - memory packing (12 bit samples into low bits, others zeroed)
83 // - priority
David Brownellb8852442006-01-08 13:34:23 -080084 // - drop chipselect after each word
David Brownell8ae12a02006-01-08 13:34:19 -080085 // - chipselect delays
86 // - ...
87};
88
89static inline struct spi_device *to_spi_device(struct device *dev)
90{
David Brownellb8852442006-01-08 13:34:23 -080091 return dev ? container_of(dev, struct spi_device, dev) : NULL;
David Brownell8ae12a02006-01-08 13:34:19 -080092}
93
94/* most drivers won't need to care about device refcounting */
95static inline struct spi_device *spi_dev_get(struct spi_device *spi)
96{
97 return (spi && get_device(&spi->dev)) ? spi : NULL;
98}
99
100static inline void spi_dev_put(struct spi_device *spi)
101{
102 if (spi)
103 put_device(&spi->dev);
104}
105
106/* ctldata is for the bus_master driver's runtime state */
107static inline void *spi_get_ctldata(struct spi_device *spi)
108{
109 return spi->controller_state;
110}
111
112static inline void spi_set_ctldata(struct spi_device *spi, void *state)
113{
114 spi->controller_state = state;
115}
116
Ben Dooks9b40ff42007-02-12 00:52:41 -0800117/* device driver data */
118
119static inline void spi_set_drvdata(struct spi_device *spi, void *data)
120{
121 dev_set_drvdata(&spi->dev, data);
122}
123
124static inline void *spi_get_drvdata(struct spi_device *spi)
125{
126 return dev_get_drvdata(&spi->dev);
127}
David Brownell8ae12a02006-01-08 13:34:19 -0800128
129struct spi_message;
130
131
David Brownellb8852442006-01-08 13:34:23 -0800132
133struct spi_driver {
134 int (*probe)(struct spi_device *spi);
135 int (*remove)(struct spi_device *spi);
136 void (*shutdown)(struct spi_device *spi);
137 int (*suspend)(struct spi_device *spi, pm_message_t mesg);
138 int (*resume)(struct spi_device *spi);
139 struct device_driver driver;
140};
141
142static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
143{
144 return drv ? container_of(drv, struct spi_driver, driver) : NULL;
145}
146
147extern int spi_register_driver(struct spi_driver *sdrv);
148
149static inline void spi_unregister_driver(struct spi_driver *sdrv)
150{
151 if (!sdrv)
152 return;
153 driver_unregister(&sdrv->driver);
154}
155
156
157
David Brownell8ae12a02006-01-08 13:34:19 -0800158/**
159 * struct spi_master - interface to SPI master controller
160 * @cdev: class interface to this driver
161 * @bus_num: board-specific (and often SOC-specific) identifier for a
David Brownell747d8442006-04-02 10:33:37 -0800162 * given SPI controller.
David Brownellb8852442006-01-08 13:34:23 -0800163 * @num_chipselect: chipselects are used to distinguish individual
David Brownell747d8442006-04-02 10:33:37 -0800164 * SPI slaves, and are numbered from zero to num_chipselects.
165 * each slave has a chipselect signal, but it's common that not
166 * every chipselect is connected to a slave.
David Brownell8ae12a02006-01-08 13:34:19 -0800167 * @setup: updates the device mode and clocking records used by a
David Brownell747d8442006-04-02 10:33:37 -0800168 * device's SPI controller; protocol code may call this.
David Brownell8ae12a02006-01-08 13:34:19 -0800169 * @transfer: adds a message to the controller's transfer queue.
170 * @cleanup: frees controller-specific state
171 *
172 * Each SPI master controller can communicate with one or more spi_device
173 * children. These make a small bus, sharing MOSI, MISO and SCK signals
174 * but not chip select signals. Each device may be configured to use a
175 * different clock rate, since those shared signals are ignored unless
176 * the chip is selected.
177 *
178 * The driver for an SPI controller manages access to those devices through
179 * a queue of spi_message transactions, copyin data between CPU memory and
180 * an SPI slave device). For each such message it queues, it calls the
181 * message's completion function when the transaction completes.
182 */
183struct spi_master {
Greg Kroah-Hartman07b24632007-02-07 21:34:08 -0800184 struct class_device cdev;
David Brownell8ae12a02006-01-08 13:34:19 -0800185
David Brownella020ed72006-04-03 15:49:04 -0700186 /* other than negative (== assign one dynamically), bus_num is fully
David Brownell8ae12a02006-01-08 13:34:19 -0800187 * board-specific. usually that simplifies to being SOC-specific.
David Brownella020ed72006-04-03 15:49:04 -0700188 * example: one SOC has three SPI controllers, numbered 0..2,
David Brownell8ae12a02006-01-08 13:34:19 -0800189 * and one board's schematics might show it using SPI-2. software
190 * would normally use bus_num=2 for that controller.
191 */
David Brownella020ed72006-04-03 15:49:04 -0700192 s16 bus_num;
David Brownell8ae12a02006-01-08 13:34:19 -0800193
194 /* chipselects will be integral to many controllers; some others
195 * might use board-specific GPIOs.
196 */
197 u16 num_chipselect;
198
199 /* setup mode and clock, etc (spi driver may call many times) */
200 int (*setup)(struct spi_device *spi);
201
202 /* bidirectional bulk transfers
203 *
204 * + The transfer() method may not sleep; its main role is
205 * just to add the message to the queue.
206 * + For now there's no remove-from-queue operation, or
207 * any other request management
208 * + To a given spi_device, message queueing is pure fifo
209 *
210 * + The master's main job is to process its message queue,
211 * selecting a chip then transferring data
212 * + If there are multiple spi_device children, the i/o queue
213 * arbitration algorithm is unspecified (round robin, fifo,
214 * priority, reservations, preemption, etc)
215 *
216 * + Chipselect stays active during the entire message
217 * (unless modified by spi_transfer.cs_change != 0).
218 * + The message transfers use clock and SPI mode parameters
219 * previously established by setup() for this device
220 */
221 int (*transfer)(struct spi_device *spi,
222 struct spi_message *mesg);
223
224 /* called on release() to free memory provided by spi_master */
225 void (*cleanup)(const struct spi_device *spi);
226};
227
David Brownell0c868462006-01-08 13:34:25 -0800228static inline void *spi_master_get_devdata(struct spi_master *master)
229{
Greg Kroah-Hartman07b24632007-02-07 21:34:08 -0800230 return class_get_devdata(&master->cdev);
David Brownell0c868462006-01-08 13:34:25 -0800231}
232
233static inline void spi_master_set_devdata(struct spi_master *master, void *data)
234{
Greg Kroah-Hartman07b24632007-02-07 21:34:08 -0800235 class_set_devdata(&master->cdev, data);
David Brownell0c868462006-01-08 13:34:25 -0800236}
237
238static inline struct spi_master *spi_master_get(struct spi_master *master)
239{
Greg Kroah-Hartman07b24632007-02-07 21:34:08 -0800240 if (!master || !class_device_get(&master->cdev))
David Brownell0c868462006-01-08 13:34:25 -0800241 return NULL;
242 return master;
243}
244
245static inline void spi_master_put(struct spi_master *master)
246{
247 if (master)
Greg Kroah-Hartman07b24632007-02-07 21:34:08 -0800248 class_device_put(&master->cdev);
David Brownell0c868462006-01-08 13:34:25 -0800249}
250
251
David Brownell8ae12a02006-01-08 13:34:19 -0800252/* the spi driver core manages memory for the spi_master classdev */
253extern struct spi_master *
254spi_alloc_master(struct device *host, unsigned size);
255
256extern int spi_register_master(struct spi_master *master);
257extern void spi_unregister_master(struct spi_master *master);
258
259extern struct spi_master *spi_busnum_to_master(u16 busnum);
260
261/*---------------------------------------------------------------------------*/
262
263/*
264 * I/O INTERFACE between SPI controller and protocol drivers
265 *
266 * Protocol drivers use a queue of spi_messages, each transferring data
267 * between the controller and memory buffers.
268 *
269 * The spi_messages themselves consist of a series of read+write transfer
270 * segments. Those segments always read the same number of bits as they
271 * write; but one or the other is easily ignored by passing a null buffer
272 * pointer. (This is unlike most types of I/O API, because SPI hardware
273 * is full duplex.)
274 *
275 * NOTE: Allocation of spi_transfer and spi_message memory is entirely
276 * up to the protocol driver, which guarantees the integrity of both (as
277 * well as the data buffers) for as long as the message is queued.
278 */
279
280/**
281 * struct spi_transfer - a read/write buffer pair
Vitaly Wool8275c642006-01-08 13:34:28 -0800282 * @tx_buf: data to be written (dma-safe memory), or NULL
283 * @rx_buf: data to be read (dma-safe memory), or NULL
284 * @tx_dma: DMA address of tx_buf, if spi_message.is_dma_mapped
285 * @rx_dma: DMA address of rx_buf, if spi_message.is_dma_mapped
David Brownell8ae12a02006-01-08 13:34:19 -0800286 * @len: size of rx and tx buffers (in bytes)
Imre Deak4cff33f2006-02-17 10:02:18 -0800287 * @speed_hz: Select a speed other then the device default for this
288 * transfer. If 0 the default (from spi_device) is used.
289 * @bits_per_word: select a bits_per_word other then the device default
290 * for this transfer. If 0 the default (from spi_device) is used.
David Brownell8ae12a02006-01-08 13:34:19 -0800291 * @cs_change: affects chipselect after this transfer completes
292 * @delay_usecs: microseconds to delay after this transfer before
David Brownell747d8442006-04-02 10:33:37 -0800293 * (optionally) changing the chipselect status, then starting
294 * the next transfer or completing this spi_message.
Vitaly Wool8275c642006-01-08 13:34:28 -0800295 * @transfer_list: transfers are sequenced through spi_message.transfers
David Brownell8ae12a02006-01-08 13:34:19 -0800296 *
297 * SPI transfers always write the same number of bytes as they read.
298 * Protocol drivers should always provide rx_buf and/or tx_buf.
299 * In some cases, they may also want to provide DMA addresses for
300 * the data being transferred; that may reduce overhead, when the
301 * underlying driver uses dma.
302 *
David Brownell4b1badf2006-12-29 16:48:39 -0800303 * If the transmit buffer is null, zeroes will be shifted out
Vitaly Wool8275c642006-01-08 13:34:28 -0800304 * while filling rx_buf. If the receive buffer is null, the data
305 * shifted in will be discarded. Only "len" bytes shift out (or in).
306 * It's an error to try to shift out a partial word. (For example, by
307 * shifting out three bytes with word size of sixteen or twenty bits;
308 * the former uses two bytes per word, the latter uses four bytes.)
309 *
310 * All SPI transfers start with the relevant chipselect active. Normally
311 * it stays selected until after the last transfer in a message. Drivers
312 * can affect the chipselect signal using cs_change:
David Brownell8ae12a02006-01-08 13:34:19 -0800313 *
314 * (i) If the transfer isn't the last one in the message, this flag is
315 * used to make the chipselect briefly go inactive in the middle of the
316 * message. Toggling chipselect in this way may be needed to terminate
317 * a chip command, letting a single spi_message perform all of group of
318 * chip transactions together.
319 *
320 * (ii) When the transfer is the last one in the message, the chip may
321 * stay selected until the next transfer. This is purely a performance
322 * hint; the controller driver may need to select a different device
323 * for the next message.
David Brownell0c868462006-01-08 13:34:25 -0800324 *
325 * The code that submits an spi_message (and its spi_transfers)
326 * to the lower layers is responsible for managing its memory.
327 * Zero-initialize every field you don't set up explicitly, to
Vitaly Wool8275c642006-01-08 13:34:28 -0800328 * insulate against future API updates. After you submit a message
329 * and its transfers, ignore them until its completion callback.
David Brownell8ae12a02006-01-08 13:34:19 -0800330 */
331struct spi_transfer {
332 /* it's ok if tx_buf == rx_buf (right?)
333 * for MicroWire, one buffer must be null
David Brownell0c868462006-01-08 13:34:25 -0800334 * buffers must work with dma_*map_single() calls, unless
335 * spi_message.is_dma_mapped reports a pre-existing mapping
David Brownell8ae12a02006-01-08 13:34:19 -0800336 */
337 const void *tx_buf;
338 void *rx_buf;
339 unsigned len;
340
341 dma_addr_t tx_dma;
342 dma_addr_t rx_dma;
343
344 unsigned cs_change:1;
Imre Deak4cff33f2006-02-17 10:02:18 -0800345 u8 bits_per_word;
David Brownell8ae12a02006-01-08 13:34:19 -0800346 u16 delay_usecs;
Imre Deak4cff33f2006-02-17 10:02:18 -0800347 u32 speed_hz;
Vitaly Wool8275c642006-01-08 13:34:28 -0800348
349 struct list_head transfer_list;
David Brownell8ae12a02006-01-08 13:34:19 -0800350};
351
352/**
353 * struct spi_message - one multi-segment SPI transaction
Vitaly Wool8275c642006-01-08 13:34:28 -0800354 * @transfers: list of transfer segments in this transaction
David Brownell8ae12a02006-01-08 13:34:19 -0800355 * @spi: SPI device to which the transaction is queued
356 * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
357 * addresses for each transfer buffer
358 * @complete: called to report transaction completions
359 * @context: the argument to complete() when it's called
David Brownellb8852442006-01-08 13:34:23 -0800360 * @actual_length: the total number of bytes that were transferred in all
361 * successful segments
David Brownell8ae12a02006-01-08 13:34:19 -0800362 * @status: zero for success, else negative errno
363 * @queue: for use by whichever driver currently owns the message
364 * @state: for use by whichever driver currently owns the message
David Brownell0c868462006-01-08 13:34:25 -0800365 *
Vitaly Wool8275c642006-01-08 13:34:28 -0800366 * An spi_message is used to execute an atomic sequence of data transfers,
367 * each represented by a struct spi_transfer. The sequence is "atomic"
368 * in the sense that no other spi_message may use that SPI bus until that
369 * sequence completes. On some systems, many such sequences can execute as
370 * as single programmed DMA transfer. On all systems, these messages are
371 * queued, and might complete after transactions to other devices. Messages
372 * sent to a given spi_device are alway executed in FIFO order.
373 *
David Brownell0c868462006-01-08 13:34:25 -0800374 * The code that submits an spi_message (and its spi_transfers)
375 * to the lower layers is responsible for managing its memory.
376 * Zero-initialize every field you don't set up explicitly, to
Vitaly Wool8275c642006-01-08 13:34:28 -0800377 * insulate against future API updates. After you submit a message
378 * and its transfers, ignore them until its completion callback.
David Brownell8ae12a02006-01-08 13:34:19 -0800379 */
380struct spi_message {
David Brownell747d8442006-04-02 10:33:37 -0800381 struct list_head transfers;
David Brownell8ae12a02006-01-08 13:34:19 -0800382
383 struct spi_device *spi;
384
385 unsigned is_dma_mapped:1;
386
387 /* REVISIT: we might want a flag affecting the behavior of the
388 * last transfer ... allowing things like "read 16 bit length L"
389 * immediately followed by "read L bytes". Basically imposing
390 * a specific message scheduling algorithm.
391 *
392 * Some controller drivers (message-at-a-time queue processing)
393 * could provide that as their default scheduling algorithm. But
David Brownellb8852442006-01-08 13:34:23 -0800394 * others (with multi-message pipelines) could need a flag to
David Brownell8ae12a02006-01-08 13:34:19 -0800395 * tell them about such special cases.
396 */
397
398 /* completion is reported through a callback */
David Brownell747d8442006-04-02 10:33:37 -0800399 void (*complete)(void *context);
David Brownell8ae12a02006-01-08 13:34:19 -0800400 void *context;
401 unsigned actual_length;
402 int status;
403
404 /* for optional use by whatever driver currently owns the
405 * spi_message ... between calls to spi_async and then later
406 * complete(), that's the spi_master controller driver.
407 */
408 struct list_head queue;
409 void *state;
410};
411
Vitaly Wool8275c642006-01-08 13:34:28 -0800412static inline void spi_message_init(struct spi_message *m)
413{
414 memset(m, 0, sizeof *m);
415 INIT_LIST_HEAD(&m->transfers);
416}
417
418static inline void
419spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
420{
421 list_add_tail(&t->transfer_list, &m->transfers);
422}
423
424static inline void
425spi_transfer_del(struct spi_transfer *t)
426{
427 list_del(&t->transfer_list);
428}
429
David Brownell0c868462006-01-08 13:34:25 -0800430/* It's fine to embed message and transaction structures in other data
431 * structures so long as you don't free them while they're in use.
432 */
433
434static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
435{
436 struct spi_message *m;
437
438 m = kzalloc(sizeof(struct spi_message)
439 + ntrans * sizeof(struct spi_transfer),
440 flags);
441 if (m) {
Vitaly Wool8275c642006-01-08 13:34:28 -0800442 int i;
443 struct spi_transfer *t = (struct spi_transfer *)(m + 1);
444
445 INIT_LIST_HEAD(&m->transfers);
446 for (i = 0; i < ntrans; i++, t++)
447 spi_message_add_tail(t, m);
David Brownell0c868462006-01-08 13:34:25 -0800448 }
449 return m;
450}
451
452static inline void spi_message_free(struct spi_message *m)
453{
454 kfree(m);
455}
456
David Brownell8ae12a02006-01-08 13:34:19 -0800457/**
458 * spi_setup -- setup SPI mode and clock rate
459 * @spi: the device whose settings are being modified
460 *
461 * SPI protocol drivers may need to update the transfer mode if the
462 * device doesn't work with the mode 0 default. They may likewise need
463 * to update clock rates or word sizes from initial values. This function
464 * changes those settings, and must be called from a context that can sleep.
Vitaly Wool8275c642006-01-08 13:34:28 -0800465 * The changes take effect the next time the device is selected and data
466 * is transferred to or from it.
David Brownell8ae12a02006-01-08 13:34:19 -0800467 */
468static inline int
469spi_setup(struct spi_device *spi)
470{
471 return spi->master->setup(spi);
472}
473
474
475/**
476 * spi_async -- asynchronous SPI transfer
477 * @spi: device with which data will be exchanged
478 * @message: describes the data transfers, including completion callback
479 *
480 * This call may be used in_irq and other contexts which can't sleep,
481 * as well as from task contexts which can sleep.
482 *
483 * The completion callback is invoked in a context which can't sleep.
484 * Before that invocation, the value of message->status is undefined.
485 * When the callback is issued, message->status holds either zero (to
David Brownell0c868462006-01-08 13:34:25 -0800486 * indicate complete success) or a negative error code. After that
487 * callback returns, the driver which issued the transfer request may
488 * deallocate the associated memory; it's no longer in use by any SPI
489 * core or controller driver code.
David Brownell8ae12a02006-01-08 13:34:19 -0800490 *
491 * Note that although all messages to a spi_device are handled in
492 * FIFO order, messages may go to different devices in other orders.
493 * Some device might be higher priority, or have various "hard" access
494 * time requirements, for example.
David Brownellb8852442006-01-08 13:34:23 -0800495 *
496 * On detection of any fault during the transfer, processing of
497 * the entire message is aborted, and the device is deselected.
498 * Until returning from the associated message completion callback,
499 * no other spi_message queued to that device will be processed.
500 * (This rule applies equally to all the synchronous transfer calls,
501 * which are wrappers around this core asynchronous primitive.)
David Brownell8ae12a02006-01-08 13:34:19 -0800502 */
503static inline int
504spi_async(struct spi_device *spi, struct spi_message *message)
505{
506 message->spi = spi;
507 return spi->master->transfer(spi, message);
508}
509
510/*---------------------------------------------------------------------------*/
511
512/* All these synchronous SPI transfer routines are utilities layered
513 * over the core async transfer primitive. Here, "synchronous" means
514 * they will sleep uninterruptibly until the async transfer completes.
515 */
516
517extern int spi_sync(struct spi_device *spi, struct spi_message *message);
518
519/**
520 * spi_write - SPI synchronous write
521 * @spi: device to which data will be written
522 * @buf: data buffer
523 * @len: data buffer size
524 *
525 * This writes the buffer and returns zero or a negative error code.
526 * Callable only from contexts that can sleep.
527 */
528static inline int
529spi_write(struct spi_device *spi, const u8 *buf, size_t len)
530{
531 struct spi_transfer t = {
532 .tx_buf = buf,
David Brownell8ae12a02006-01-08 13:34:19 -0800533 .len = len,
David Brownell8ae12a02006-01-08 13:34:19 -0800534 };
Vitaly Wool8275c642006-01-08 13:34:28 -0800535 struct spi_message m;
David Brownell8ae12a02006-01-08 13:34:19 -0800536
Vitaly Wool8275c642006-01-08 13:34:28 -0800537 spi_message_init(&m);
538 spi_message_add_tail(&t, &m);
David Brownell8ae12a02006-01-08 13:34:19 -0800539 return spi_sync(spi, &m);
540}
541
542/**
543 * spi_read - SPI synchronous read
544 * @spi: device from which data will be read
545 * @buf: data buffer
546 * @len: data buffer size
547 *
548 * This writes the buffer and returns zero or a negative error code.
549 * Callable only from contexts that can sleep.
550 */
551static inline int
552spi_read(struct spi_device *spi, u8 *buf, size_t len)
553{
554 struct spi_transfer t = {
David Brownell8ae12a02006-01-08 13:34:19 -0800555 .rx_buf = buf,
556 .len = len,
David Brownell8ae12a02006-01-08 13:34:19 -0800557 };
Vitaly Wool8275c642006-01-08 13:34:28 -0800558 struct spi_message m;
David Brownell8ae12a02006-01-08 13:34:19 -0800559
Vitaly Wool8275c642006-01-08 13:34:28 -0800560 spi_message_init(&m);
561 spi_message_add_tail(&t, &m);
David Brownell8ae12a02006-01-08 13:34:19 -0800562 return spi_sync(spi, &m);
563}
564
David Brownell0c868462006-01-08 13:34:25 -0800565/* this copies txbuf and rxbuf data; for small transfers only! */
David Brownell8ae12a02006-01-08 13:34:19 -0800566extern int spi_write_then_read(struct spi_device *spi,
567 const u8 *txbuf, unsigned n_tx,
568 u8 *rxbuf, unsigned n_rx);
569
570/**
571 * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
572 * @spi: device with which data will be exchanged
573 * @cmd: command to be written before data is read back
574 *
575 * This returns the (unsigned) eight bit number returned by the
576 * device, or else a negative error code. Callable only from
577 * contexts that can sleep.
578 */
579static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
580{
581 ssize_t status;
582 u8 result;
583
584 status = spi_write_then_read(spi, &cmd, 1, &result, 1);
585
586 /* return negative errno or unsigned value */
587 return (status < 0) ? status : result;
588}
589
590/**
591 * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
592 * @spi: device with which data will be exchanged
593 * @cmd: command to be written before data is read back
594 *
595 * This returns the (unsigned) sixteen bit number returned by the
596 * device, or else a negative error code. Callable only from
597 * contexts that can sleep.
598 *
599 * The number is returned in wire-order, which is at least sometimes
600 * big-endian.
601 */
602static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
603{
604 ssize_t status;
605 u16 result;
606
607 status = spi_write_then_read(spi, &cmd, 1, (u8 *) &result, 2);
608
609 /* return negative errno or unsigned value */
610 return (status < 0) ? status : result;
611}
612
613/*---------------------------------------------------------------------------*/
614
615/*
616 * INTERFACE between board init code and SPI infrastructure.
617 *
618 * No SPI driver ever sees these SPI device table segments, but
619 * it's how the SPI core (or adapters that get hotplugged) grows
620 * the driver model tree.
621 *
622 * As a rule, SPI devices can't be probed. Instead, board init code
623 * provides a table listing the devices which are present, with enough
624 * information to bind and set up the device's driver. There's basic
625 * support for nonstatic configurations too; enough to handle adding
626 * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
627 */
628
629/* board-specific information about each SPI device */
630struct spi_board_info {
631 /* the device name and module name are coupled, like platform_bus;
632 * "modalias" is normally the driver name.
633 *
634 * platform_data goes to spi_device.dev.platform_data,
David Brownellb8852442006-01-08 13:34:23 -0800635 * controller_data goes to spi_device.controller_data,
David Brownell8ae12a02006-01-08 13:34:19 -0800636 * irq is copied too
637 */
638 char modalias[KOBJ_NAME_LEN];
639 const void *platform_data;
David Brownellb8852442006-01-08 13:34:23 -0800640 void *controller_data;
David Brownell8ae12a02006-01-08 13:34:19 -0800641 int irq;
642
643 /* slower signaling on noisy or low voltage boards */
644 u32 max_speed_hz;
645
646
647 /* bus_num is board specific and matches the bus_num of some
648 * spi_master that will probably be registered later.
649 *
650 * chip_select reflects how this chip is wired to that master;
651 * it's less than num_chipselect.
652 */
653 u16 bus_num;
654 u16 chip_select;
655
David Brownell980a01c2006-06-28 07:47:15 -0700656 /* mode becomes spi_device.mode, and is essential for chips
657 * where the default of SPI_CS_HIGH = 0 is wrong.
658 */
659 u8 mode;
660
David Brownell8ae12a02006-01-08 13:34:19 -0800661 /* ... may need additional spi_device chip config data here.
662 * avoid stuff protocol drivers can set; but include stuff
663 * needed to behave without being bound to a driver:
David Brownell8ae12a02006-01-08 13:34:19 -0800664 * - quirks like clock rate mattering when not selected
665 */
666};
667
668#ifdef CONFIG_SPI
669extern int
670spi_register_board_info(struct spi_board_info const *info, unsigned n);
671#else
672/* board init code may ignore whether SPI is configured or not */
673static inline int
674spi_register_board_info(struct spi_board_info const *info, unsigned n)
675 { return 0; }
676#endif
677
678
679/* If you're hotplugging an adapter with devices (parport, usb, etc)
David Brownell0c868462006-01-08 13:34:25 -0800680 * use spi_new_device() to describe each device. You can also call
681 * spi_unregister_device() to start making that device vanish, but
682 * normally that would be handled by spi_unregister_master().
David Brownell8ae12a02006-01-08 13:34:19 -0800683 */
684extern struct spi_device *
685spi_new_device(struct spi_master *, struct spi_board_info *);
686
687static inline void
688spi_unregister_device(struct spi_device *spi)
689{
690 if (spi)
691 device_unregister(&spi->dev);
692}
693
694#endif /* __LINUX_SPI_H */