blob: 222c13e46130dc5dc62f22dc75dd3c788fa5394b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
Andy Whitcroftd41dee32005-06-23 00:07:54 -070061#ifndef CONFIG_NEED_MULTIPLE_NODES
Linus Torvalds1da177e2005-04-16 15:20:36 -070062/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99 pud_ERROR(*pud);
100 pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
Hugh Dickinse0da3822005-04-19 13:29:15 -0700113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114{
Hugh Dickinse0da3822005-04-19 13:29:15 -0700115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700120}
121
Hugh Dickinse0da3822005-04-19 13:29:15 -0700122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700125{
126 pmd_t *pmd;
127 unsigned long next;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700128 unsigned long start;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700129
Hugh Dickinse0da3822005-04-19 13:29:15 -0700130 start = addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700131 pmd = pmd_offset(pud, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700136 free_pte_range(tlb, pmd);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700137 } while (pmd++, addr = next, addr != end);
138
Hugh Dickinse0da3822005-04-19 13:29:15 -0700139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146 }
Hugh Dickinse0da3822005-04-19 13:29:15 -0700147 if (end - 1 > ceiling - 1)
148 return;
149
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700153}
154
Hugh Dickinse0da3822005-04-19 13:29:15 -0700155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158{
159 pud_t *pud;
160 unsigned long next;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700161 unsigned long start;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162
Hugh Dickinse0da3822005-04-19 13:29:15 -0700163 start = addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164 pud = pud_offset(pgd, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170 } while (pud++, addr = next, addr != end);
171
Hugh Dickinse0da3822005-04-19 13:29:15 -0700172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179 }
Hugh Dickinse0da3822005-04-19 13:29:15 -0700180 if (end - 1 > ceiling - 1)
181 return;
182
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186}
187
188/*
Hugh Dickinse0da3822005-04-19 13:29:15 -0700189 * This function frees user-level page tables of a process.
190 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700191 * Must be called with pagetable lock held.
192 */
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700193void free_pgd_range(struct mmu_gather **tlb,
Hugh Dickinse0da3822005-04-19 13:29:15 -0700194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700196{
197 pgd_t *pgd;
198 unsigned long next;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700199 unsigned long start;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700200
Hugh Dickinse0da3822005-04-19 13:29:15 -0700201 /*
202 * The next few lines have given us lots of grief...
203 *
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
207 *
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
215 *
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
220 *
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
225 */
226
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
232 }
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
237 }
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
242
243 start = addr;
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700244 pgd = pgd_offset((*tlb)->mm, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700250 } while (pgd++, addr = next, addr != end);
Hugh Dickinse0da3822005-04-19 13:29:15 -0700251
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700252 if (!tlb_is_full_mm(*tlb))
253 flush_tlb_pgtables((*tlb)->mm, start, end);
Hugh Dickinse0da3822005-04-19 13:29:15 -0700254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700257 unsigned long floor, unsigned long ceiling)
Hugh Dickinse0da3822005-04-19 13:29:15 -0700258{
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
262
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700263 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
Hugh Dickinse0da3822005-04-19 13:29:15 -0700265 floor, next? next->vm_start: ceiling);
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700266 } else {
267 /*
268 * Optimization: gather nearby vmas into one call down
269 */
270 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272 HPAGE_SIZE)) {
273 vma = next;
274 next = vma->vm_next;
275 }
276 free_pgd_range(tlb, addr, vma->vm_end,
277 floor, next? next->vm_start: ceiling);
278 }
Hugh Dickinse0da3822005-04-19 13:29:15 -0700279 vma = next;
280 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700281}
282
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700283pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284 unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285{
286 if (!pmd_present(*pmd)) {
287 struct page *new;
288
289 spin_unlock(&mm->page_table_lock);
290 new = pte_alloc_one(mm, address);
291 spin_lock(&mm->page_table_lock);
292 if (!new)
293 return NULL;
294 /*
295 * Because we dropped the lock, we should re-check the
296 * entry, as somebody else could have populated it..
297 */
298 if (pmd_present(*pmd)) {
299 pte_free(new);
300 goto out;
301 }
302 mm->nr_ptes++;
303 inc_page_state(nr_page_table_pages);
304 pmd_populate(mm, pmd, new);
305 }
306out:
307 return pte_offset_map(pmd, address);
308}
309
310pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311{
312 if (!pmd_present(*pmd)) {
313 pte_t *new;
314
315 spin_unlock(&mm->page_table_lock);
316 new = pte_alloc_one_kernel(mm, address);
317 spin_lock(&mm->page_table_lock);
318 if (!new)
319 return NULL;
320
321 /*
322 * Because we dropped the lock, we should re-check the
323 * entry, as somebody else could have populated it..
324 */
325 if (pmd_present(*pmd)) {
326 pte_free_kernel(new);
327 goto out;
328 }
329 pmd_populate_kernel(mm, pmd, new);
330 }
331out:
332 return pte_offset_kernel(pmd, address);
333}
334
335/*
336 * copy one vm_area from one task to the other. Assumes the page tables
337 * already present in the new task to be cleared in the whole range
338 * covered by this vma.
339 *
340 * dst->page_table_lock is held on entry and exit,
341 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
342 */
343
344static inline void
345copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
346 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
347 unsigned long addr)
348{
349 pte_t pte = *src_pte;
350 struct page *page;
351 unsigned long pfn;
352
353 /* pte contains position in swap or file, so copy. */
354 if (unlikely(!pte_present(pte))) {
355 if (!pte_file(pte)) {
356 swap_duplicate(pte_to_swp_entry(pte));
357 /* make sure dst_mm is on swapoff's mmlist. */
358 if (unlikely(list_empty(&dst_mm->mmlist))) {
359 spin_lock(&mmlist_lock);
360 list_add(&dst_mm->mmlist, &src_mm->mmlist);
361 spin_unlock(&mmlist_lock);
362 }
363 }
364 set_pte_at(dst_mm, addr, dst_pte, pte);
365 return;
366 }
367
368 pfn = pte_pfn(pte);
369 /* the pte points outside of valid memory, the
370 * mapping is assumed to be good, meaningful
371 * and not mapped via rmap - duplicate the
372 * mapping as is.
373 */
374 page = NULL;
375 if (pfn_valid(pfn))
376 page = pfn_to_page(pfn);
377
378 if (!page || PageReserved(page)) {
379 set_pte_at(dst_mm, addr, dst_pte, pte);
380 return;
381 }
382
383 /*
384 * If it's a COW mapping, write protect it both
385 * in the parent and the child
386 */
387 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
388 ptep_set_wrprotect(src_mm, addr, src_pte);
389 pte = *src_pte;
390 }
391
392 /*
393 * If it's a shared mapping, mark it clean in
394 * the child
395 */
396 if (vm_flags & VM_SHARED)
397 pte = pte_mkclean(pte);
398 pte = pte_mkold(pte);
399 get_page(page);
400 inc_mm_counter(dst_mm, rss);
401 if (PageAnon(page))
402 inc_mm_counter(dst_mm, anon_rss);
403 set_pte_at(dst_mm, addr, dst_pte, pte);
404 page_dup_rmap(page);
405}
406
407static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
408 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
409 unsigned long addr, unsigned long end)
410{
411 pte_t *src_pte, *dst_pte;
412 unsigned long vm_flags = vma->vm_flags;
Hugh Dickinse040f212005-10-29 18:15:53 -0700413 int progress = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700414
415again:
416 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
417 if (!dst_pte)
418 return -ENOMEM;
419 src_pte = pte_offset_map_nested(src_pmd, addr);
420
Linus Torvalds1da177e2005-04-16 15:20:36 -0700421 spin_lock(&src_mm->page_table_lock);
422 do {
423 /*
424 * We are holding two locks at this point - either of them
425 * could generate latencies in another task on another CPU.
426 */
Hugh Dickinse040f212005-10-29 18:15:53 -0700427 if (progress >= 32) {
428 progress = 0;
429 if (need_resched() ||
430 need_lockbreak(&src_mm->page_table_lock) ||
431 need_lockbreak(&dst_mm->page_table_lock))
432 break;
433 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434 if (pte_none(*src_pte)) {
435 progress++;
436 continue;
437 }
438 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
439 progress += 8;
440 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
441 spin_unlock(&src_mm->page_table_lock);
442
443 pte_unmap_nested(src_pte - 1);
444 pte_unmap(dst_pte - 1);
445 cond_resched_lock(&dst_mm->page_table_lock);
446 if (addr != end)
447 goto again;
448 return 0;
449}
450
451static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
452 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
453 unsigned long addr, unsigned long end)
454{
455 pmd_t *src_pmd, *dst_pmd;
456 unsigned long next;
457
458 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
459 if (!dst_pmd)
460 return -ENOMEM;
461 src_pmd = pmd_offset(src_pud, addr);
462 do {
463 next = pmd_addr_end(addr, end);
464 if (pmd_none_or_clear_bad(src_pmd))
465 continue;
466 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
467 vma, addr, next))
468 return -ENOMEM;
469 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
470 return 0;
471}
472
473static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
474 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
475 unsigned long addr, unsigned long end)
476{
477 pud_t *src_pud, *dst_pud;
478 unsigned long next;
479
480 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
481 if (!dst_pud)
482 return -ENOMEM;
483 src_pud = pud_offset(src_pgd, addr);
484 do {
485 next = pud_addr_end(addr, end);
486 if (pud_none_or_clear_bad(src_pud))
487 continue;
488 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
489 vma, addr, next))
490 return -ENOMEM;
491 } while (dst_pud++, src_pud++, addr = next, addr != end);
492 return 0;
493}
494
495int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
496 struct vm_area_struct *vma)
497{
498 pgd_t *src_pgd, *dst_pgd;
499 unsigned long next;
500 unsigned long addr = vma->vm_start;
501 unsigned long end = vma->vm_end;
502
Nick Piggind9928952005-08-28 16:49:11 +1000503 /*
504 * Don't copy ptes where a page fault will fill them correctly.
505 * Fork becomes much lighter when there are big shared or private
506 * readonly mappings. The tradeoff is that copy_page_range is more
507 * efficient than faulting.
508 */
509 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
510 if (!vma->anon_vma)
511 return 0;
512 }
513
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514 if (is_vm_hugetlb_page(vma))
515 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
516
517 dst_pgd = pgd_offset(dst_mm, addr);
518 src_pgd = pgd_offset(src_mm, addr);
519 do {
520 next = pgd_addr_end(addr, end);
521 if (pgd_none_or_clear_bad(src_pgd))
522 continue;
523 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
524 vma, addr, next))
525 return -ENOMEM;
526 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
527 return 0;
528}
529
530static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
531 unsigned long addr, unsigned long end,
532 struct zap_details *details)
533{
534 pte_t *pte;
535
536 pte = pte_offset_map(pmd, addr);
537 do {
538 pte_t ptent = *pte;
539 if (pte_none(ptent))
540 continue;
541 if (pte_present(ptent)) {
542 struct page *page = NULL;
543 unsigned long pfn = pte_pfn(ptent);
544 if (pfn_valid(pfn)) {
545 page = pfn_to_page(pfn);
546 if (PageReserved(page))
547 page = NULL;
548 }
549 if (unlikely(details) && page) {
550 /*
551 * unmap_shared_mapping_pages() wants to
552 * invalidate cache without truncating:
553 * unmap shared but keep private pages.
554 */
555 if (details->check_mapping &&
556 details->check_mapping != page->mapping)
557 continue;
558 /*
559 * Each page->index must be checked when
560 * invalidating or truncating nonlinear.
561 */
562 if (details->nonlinear_vma &&
563 (page->index < details->first_index ||
564 page->index > details->last_index))
565 continue;
566 }
Zachary Amsdena6003882005-09-03 15:55:04 -0700567 ptent = ptep_get_and_clear_full(tlb->mm, addr, pte,
568 tlb->fullmm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700569 tlb_remove_tlb_entry(tlb, pte, addr);
570 if (unlikely(!page))
571 continue;
572 if (unlikely(details) && details->nonlinear_vma
573 && linear_page_index(details->nonlinear_vma,
574 addr) != page->index)
575 set_pte_at(tlb->mm, addr, pte,
576 pgoff_to_pte(page->index));
577 if (pte_dirty(ptent))
578 set_page_dirty(page);
579 if (PageAnon(page))
580 dec_mm_counter(tlb->mm, anon_rss);
581 else if (pte_young(ptent))
582 mark_page_accessed(page);
583 tlb->freed++;
584 page_remove_rmap(page);
585 tlb_remove_page(tlb, page);
586 continue;
587 }
588 /*
589 * If details->check_mapping, we leave swap entries;
590 * if details->nonlinear_vma, we leave file entries.
591 */
592 if (unlikely(details))
593 continue;
594 if (!pte_file(ptent))
595 free_swap_and_cache(pte_to_swp_entry(ptent));
Zachary Amsdena6003882005-09-03 15:55:04 -0700596 pte_clear_full(tlb->mm, addr, pte, tlb->fullmm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700597 } while (pte++, addr += PAGE_SIZE, addr != end);
598 pte_unmap(pte - 1);
599}
600
601static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
602 unsigned long addr, unsigned long end,
603 struct zap_details *details)
604{
605 pmd_t *pmd;
606 unsigned long next;
607
608 pmd = pmd_offset(pud, addr);
609 do {
610 next = pmd_addr_end(addr, end);
611 if (pmd_none_or_clear_bad(pmd))
612 continue;
613 zap_pte_range(tlb, pmd, addr, next, details);
614 } while (pmd++, addr = next, addr != end);
615}
616
617static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
618 unsigned long addr, unsigned long end,
619 struct zap_details *details)
620{
621 pud_t *pud;
622 unsigned long next;
623
624 pud = pud_offset(pgd, addr);
625 do {
626 next = pud_addr_end(addr, end);
627 if (pud_none_or_clear_bad(pud))
628 continue;
629 zap_pmd_range(tlb, pud, addr, next, details);
630 } while (pud++, addr = next, addr != end);
631}
632
633static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
634 unsigned long addr, unsigned long end,
635 struct zap_details *details)
636{
637 pgd_t *pgd;
638 unsigned long next;
639
640 if (details && !details->check_mapping && !details->nonlinear_vma)
641 details = NULL;
642
643 BUG_ON(addr >= end);
644 tlb_start_vma(tlb, vma);
645 pgd = pgd_offset(vma->vm_mm, addr);
646 do {
647 next = pgd_addr_end(addr, end);
648 if (pgd_none_or_clear_bad(pgd))
649 continue;
650 zap_pud_range(tlb, pgd, addr, next, details);
651 } while (pgd++, addr = next, addr != end);
652 tlb_end_vma(tlb, vma);
653}
654
655#ifdef CONFIG_PREEMPT
656# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
657#else
658/* No preempt: go for improved straight-line efficiency */
659# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
660#endif
661
662/**
663 * unmap_vmas - unmap a range of memory covered by a list of vma's
664 * @tlbp: address of the caller's struct mmu_gather
665 * @mm: the controlling mm_struct
666 * @vma: the starting vma
667 * @start_addr: virtual address at which to start unmapping
668 * @end_addr: virtual address at which to end unmapping
669 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
670 * @details: details of nonlinear truncation or shared cache invalidation
671 *
Hugh Dickinsee39b372005-04-19 13:29:15 -0700672 * Returns the end address of the unmapping (restart addr if interrupted).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673 *
674 * Unmap all pages in the vma list. Called under page_table_lock.
675 *
676 * We aim to not hold page_table_lock for too long (for scheduling latency
677 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
678 * return the ending mmu_gather to the caller.
679 *
680 * Only addresses between `start' and `end' will be unmapped.
681 *
682 * The VMA list must be sorted in ascending virtual address order.
683 *
684 * unmap_vmas() assumes that the caller will flush the whole unmapped address
685 * range after unmap_vmas() returns. So the only responsibility here is to
686 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
687 * drops the lock and schedules.
688 */
Hugh Dickinsee39b372005-04-19 13:29:15 -0700689unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700690 struct vm_area_struct *vma, unsigned long start_addr,
691 unsigned long end_addr, unsigned long *nr_accounted,
692 struct zap_details *details)
693{
694 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
695 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
696 int tlb_start_valid = 0;
Hugh Dickinsee39b372005-04-19 13:29:15 -0700697 unsigned long start = start_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700698 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
699 int fullmm = tlb_is_full_mm(*tlbp);
700
701 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700702 unsigned long end;
703
704 start = max(vma->vm_start, start_addr);
705 if (start >= vma->vm_end)
706 continue;
707 end = min(vma->vm_end, end_addr);
708 if (end <= vma->vm_start)
709 continue;
710
711 if (vma->vm_flags & VM_ACCOUNT)
712 *nr_accounted += (end - start) >> PAGE_SHIFT;
713
Linus Torvalds1da177e2005-04-16 15:20:36 -0700714 while (start != end) {
715 unsigned long block;
716
717 if (!tlb_start_valid) {
718 tlb_start = start;
719 tlb_start_valid = 1;
720 }
721
722 if (is_vm_hugetlb_page(vma)) {
723 block = end - start;
724 unmap_hugepage_range(vma, start, end);
725 } else {
726 block = min(zap_bytes, end - start);
727 unmap_page_range(*tlbp, vma, start,
728 start + block, details);
729 }
730
731 start += block;
732 zap_bytes -= block;
733 if ((long)zap_bytes > 0)
734 continue;
735
736 tlb_finish_mmu(*tlbp, tlb_start, start);
737
738 if (need_resched() ||
739 need_lockbreak(&mm->page_table_lock) ||
740 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
741 if (i_mmap_lock) {
742 /* must reset count of rss freed */
743 *tlbp = tlb_gather_mmu(mm, fullmm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700744 goto out;
745 }
746 spin_unlock(&mm->page_table_lock);
747 cond_resched();
748 spin_lock(&mm->page_table_lock);
749 }
750
751 *tlbp = tlb_gather_mmu(mm, fullmm);
752 tlb_start_valid = 0;
753 zap_bytes = ZAP_BLOCK_SIZE;
754 }
755 }
756out:
Hugh Dickinsee39b372005-04-19 13:29:15 -0700757 return start; /* which is now the end (or restart) address */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700758}
759
760/**
761 * zap_page_range - remove user pages in a given range
762 * @vma: vm_area_struct holding the applicable pages
763 * @address: starting address of pages to zap
764 * @size: number of bytes to zap
765 * @details: details of nonlinear truncation or shared cache invalidation
766 */
Hugh Dickinsee39b372005-04-19 13:29:15 -0700767unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700768 unsigned long size, struct zap_details *details)
769{
770 struct mm_struct *mm = vma->vm_mm;
771 struct mmu_gather *tlb;
772 unsigned long end = address + size;
773 unsigned long nr_accounted = 0;
774
775 if (is_vm_hugetlb_page(vma)) {
776 zap_hugepage_range(vma, address, size);
Hugh Dickinsee39b372005-04-19 13:29:15 -0700777 return end;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700778 }
779
780 lru_add_drain();
781 spin_lock(&mm->page_table_lock);
782 tlb = tlb_gather_mmu(mm, 0);
Hugh Dickinsee39b372005-04-19 13:29:15 -0700783 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700784 tlb_finish_mmu(tlb, address, end);
785 spin_unlock(&mm->page_table_lock);
Hugh Dickinsee39b372005-04-19 13:29:15 -0700786 return end;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700787}
788
789/*
790 * Do a quick page-table lookup for a single page.
791 * mm->page_table_lock must be held.
792 */
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700793static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
794 int read, int write, int accessed)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700795{
796 pgd_t *pgd;
797 pud_t *pud;
798 pmd_t *pmd;
799 pte_t *ptep, pte;
800 unsigned long pfn;
801 struct page *page;
802
803 page = follow_huge_addr(mm, address, write);
804 if (! IS_ERR(page))
805 return page;
806
807 pgd = pgd_offset(mm, address);
808 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
809 goto out;
810
811 pud = pud_offset(pgd, address);
812 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
813 goto out;
814
815 pmd = pmd_offset(pud, address);
816 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
817 goto out;
818 if (pmd_huge(*pmd))
819 return follow_huge_pmd(mm, address, pmd, write);
820
821 ptep = pte_offset_map(pmd, address);
822 if (!ptep)
823 goto out;
824
825 pte = *ptep;
826 pte_unmap(ptep);
827 if (pte_present(pte)) {
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000828 if (write && !pte_write(pte))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700829 goto out;
830 if (read && !pte_read(pte))
831 goto out;
832 pfn = pte_pfn(pte);
833 if (pfn_valid(pfn)) {
834 page = pfn_to_page(pfn);
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000835 if (accessed) {
836 if (write && !pte_dirty(pte) &&!PageDirty(page))
837 set_page_dirty(page);
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700838 mark_page_accessed(page);
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000839 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700840 return page;
841 }
842 }
843
844out:
845 return NULL;
846}
847
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700848inline struct page *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700849follow_page(struct mm_struct *mm, unsigned long address, int write)
850{
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700851 return __follow_page(mm, address, 0, write, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700852}
853
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700854/*
855 * check_user_page_readable() can be called frm niterrupt context by oprofile,
856 * so we need to avoid taking any non-irq-safe locks
857 */
858int check_user_page_readable(struct mm_struct *mm, unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859{
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700860 return __follow_page(mm, address, 1, 0, 0) != NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700861}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700862EXPORT_SYMBOL(check_user_page_readable);
863
Linus Torvalds1da177e2005-04-16 15:20:36 -0700864static inline int
865untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
866 unsigned long address)
867{
868 pgd_t *pgd;
869 pud_t *pud;
870 pmd_t *pmd;
871
872 /* Check if the vma is for an anonymous mapping. */
873 if (vma->vm_ops && vma->vm_ops->nopage)
874 return 0;
875
876 /* Check if page directory entry exists. */
877 pgd = pgd_offset(mm, address);
878 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
879 return 1;
880
881 pud = pud_offset(pgd, address);
882 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
883 return 1;
884
885 /* Check if page middle directory entry exists. */
886 pmd = pmd_offset(pud, address);
887 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
888 return 1;
889
890 /* There is a pte slot for 'address' in 'mm'. */
891 return 0;
892}
893
Linus Torvalds1da177e2005-04-16 15:20:36 -0700894int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
895 unsigned long start, int len, int write, int force,
896 struct page **pages, struct vm_area_struct **vmas)
897{
898 int i;
899 unsigned int flags;
900
901 /*
902 * Require read or write permissions.
903 * If 'force' is set, we only require the "MAY" flags.
904 */
905 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
906 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
907 i = 0;
908
909 do {
910 struct vm_area_struct * vma;
911
912 vma = find_extend_vma(mm, start);
913 if (!vma && in_gate_area(tsk, start)) {
914 unsigned long pg = start & PAGE_MASK;
915 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
916 pgd_t *pgd;
917 pud_t *pud;
918 pmd_t *pmd;
919 pte_t *pte;
920 if (write) /* user gate pages are read-only */
921 return i ? : -EFAULT;
922 if (pg > TASK_SIZE)
923 pgd = pgd_offset_k(pg);
924 else
925 pgd = pgd_offset_gate(mm, pg);
926 BUG_ON(pgd_none(*pgd));
927 pud = pud_offset(pgd, pg);
928 BUG_ON(pud_none(*pud));
929 pmd = pmd_offset(pud, pg);
Hugh Dickins690dbe12005-08-01 21:11:42 -0700930 if (pmd_none(*pmd))
931 return i ? : -EFAULT;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700932 pte = pte_offset_map(pmd, pg);
Hugh Dickins690dbe12005-08-01 21:11:42 -0700933 if (pte_none(*pte)) {
934 pte_unmap(pte);
935 return i ? : -EFAULT;
936 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700937 if (pages) {
938 pages[i] = pte_page(*pte);
939 get_page(pages[i]);
940 }
941 pte_unmap(pte);
942 if (vmas)
943 vmas[i] = gate_vma;
944 i++;
945 start += PAGE_SIZE;
946 len--;
947 continue;
948 }
949
950 if (!vma || (vma->vm_flags & VM_IO)
951 || !(flags & vma->vm_flags))
952 return i ? : -EFAULT;
953
954 if (is_vm_hugetlb_page(vma)) {
955 i = follow_hugetlb_page(mm, vma, pages, vmas,
956 &start, &len, i);
957 continue;
958 }
959 spin_lock(&mm->page_table_lock);
960 do {
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000961 int write_access = write;
Hugh Dickins08ef4722005-06-21 17:15:10 -0700962 struct page *page;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700963
964 cond_resched_lock(&mm->page_table_lock);
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000965 while (!(page = follow_page(mm, start, write_access))) {
Linus Torvaldsa68d2eb2005-08-03 10:07:09 -0700966 int ret;
967
Linus Torvalds1da177e2005-04-16 15:20:36 -0700968 /*
969 * Shortcut for anonymous pages. We don't want
970 * to force the creation of pages tables for
Hugh Dickins08ef4722005-06-21 17:15:10 -0700971 * insanely big anonymously mapped areas that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972 * nobody touched so far. This is important
973 * for doing a core dump for these mappings.
974 */
Linus Torvalds4ceb5db2005-08-01 11:14:49 -0700975 if (!write && untouched_anonymous_page(mm,vma,start)) {
Hugh Dickins08ef4722005-06-21 17:15:10 -0700976 page = ZERO_PAGE(start);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700977 break;
978 }
979 spin_unlock(&mm->page_table_lock);
Linus Torvaldsa68d2eb2005-08-03 10:07:09 -0700980 ret = __handle_mm_fault(mm, vma, start, write_access);
981
982 /*
983 * The VM_FAULT_WRITE bit tells us that do_wp_page has
984 * broken COW when necessary, even if maybe_mkwrite
985 * decided not to set pte_write. We can thus safely do
986 * subsequent page lookups as if they were reads.
987 */
988 if (ret & VM_FAULT_WRITE)
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000989 write_access = 0;
Linus Torvaldsa68d2eb2005-08-03 10:07:09 -0700990
991 switch (ret & ~VM_FAULT_WRITE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992 case VM_FAULT_MINOR:
993 tsk->min_flt++;
994 break;
995 case VM_FAULT_MAJOR:
996 tsk->maj_flt++;
997 break;
998 case VM_FAULT_SIGBUS:
999 return i ? i : -EFAULT;
1000 case VM_FAULT_OOM:
1001 return i ? i : -ENOMEM;
1002 default:
1003 BUG();
1004 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001005 spin_lock(&mm->page_table_lock);
1006 }
1007 if (pages) {
Hugh Dickins08ef4722005-06-21 17:15:10 -07001008 pages[i] = page;
1009 flush_dcache_page(page);
1010 if (!PageReserved(page))
1011 page_cache_get(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001012 }
1013 if (vmas)
1014 vmas[i] = vma;
1015 i++;
1016 start += PAGE_SIZE;
1017 len--;
Hugh Dickins08ef4722005-06-21 17:15:10 -07001018 } while (len && start < vma->vm_end);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019 spin_unlock(&mm->page_table_lock);
Hugh Dickins08ef4722005-06-21 17:15:10 -07001020 } while (len);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001021 return i;
1022}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023EXPORT_SYMBOL(get_user_pages);
1024
1025static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1026 unsigned long addr, unsigned long end, pgprot_t prot)
1027{
1028 pte_t *pte;
1029
1030 pte = pte_alloc_map(mm, pmd, addr);
1031 if (!pte)
1032 return -ENOMEM;
1033 do {
1034 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1035 BUG_ON(!pte_none(*pte));
1036 set_pte_at(mm, addr, pte, zero_pte);
1037 } while (pte++, addr += PAGE_SIZE, addr != end);
1038 pte_unmap(pte - 1);
1039 return 0;
1040}
1041
1042static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1043 unsigned long addr, unsigned long end, pgprot_t prot)
1044{
1045 pmd_t *pmd;
1046 unsigned long next;
1047
1048 pmd = pmd_alloc(mm, pud, addr);
1049 if (!pmd)
1050 return -ENOMEM;
1051 do {
1052 next = pmd_addr_end(addr, end);
1053 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1054 return -ENOMEM;
1055 } while (pmd++, addr = next, addr != end);
1056 return 0;
1057}
1058
1059static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1060 unsigned long addr, unsigned long end, pgprot_t prot)
1061{
1062 pud_t *pud;
1063 unsigned long next;
1064
1065 pud = pud_alloc(mm, pgd, addr);
1066 if (!pud)
1067 return -ENOMEM;
1068 do {
1069 next = pud_addr_end(addr, end);
1070 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1071 return -ENOMEM;
1072 } while (pud++, addr = next, addr != end);
1073 return 0;
1074}
1075
1076int zeromap_page_range(struct vm_area_struct *vma,
1077 unsigned long addr, unsigned long size, pgprot_t prot)
1078{
1079 pgd_t *pgd;
1080 unsigned long next;
1081 unsigned long end = addr + size;
1082 struct mm_struct *mm = vma->vm_mm;
1083 int err;
1084
1085 BUG_ON(addr >= end);
1086 pgd = pgd_offset(mm, addr);
1087 flush_cache_range(vma, addr, end);
1088 spin_lock(&mm->page_table_lock);
1089 do {
1090 next = pgd_addr_end(addr, end);
1091 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1092 if (err)
1093 break;
1094 } while (pgd++, addr = next, addr != end);
1095 spin_unlock(&mm->page_table_lock);
1096 return err;
1097}
1098
1099/*
1100 * maps a range of physical memory into the requested pages. the old
1101 * mappings are removed. any references to nonexistent pages results
1102 * in null mappings (currently treated as "copy-on-access")
1103 */
1104static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1105 unsigned long addr, unsigned long end,
1106 unsigned long pfn, pgprot_t prot)
1107{
1108 pte_t *pte;
1109
1110 pte = pte_alloc_map(mm, pmd, addr);
1111 if (!pte)
1112 return -ENOMEM;
1113 do {
1114 BUG_ON(!pte_none(*pte));
1115 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1116 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1117 pfn++;
1118 } while (pte++, addr += PAGE_SIZE, addr != end);
1119 pte_unmap(pte - 1);
1120 return 0;
1121}
1122
1123static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1124 unsigned long addr, unsigned long end,
1125 unsigned long pfn, pgprot_t prot)
1126{
1127 pmd_t *pmd;
1128 unsigned long next;
1129
1130 pfn -= addr >> PAGE_SHIFT;
1131 pmd = pmd_alloc(mm, pud, addr);
1132 if (!pmd)
1133 return -ENOMEM;
1134 do {
1135 next = pmd_addr_end(addr, end);
1136 if (remap_pte_range(mm, pmd, addr, next,
1137 pfn + (addr >> PAGE_SHIFT), prot))
1138 return -ENOMEM;
1139 } while (pmd++, addr = next, addr != end);
1140 return 0;
1141}
1142
1143static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1144 unsigned long addr, unsigned long end,
1145 unsigned long pfn, pgprot_t prot)
1146{
1147 pud_t *pud;
1148 unsigned long next;
1149
1150 pfn -= addr >> PAGE_SHIFT;
1151 pud = pud_alloc(mm, pgd, addr);
1152 if (!pud)
1153 return -ENOMEM;
1154 do {
1155 next = pud_addr_end(addr, end);
1156 if (remap_pmd_range(mm, pud, addr, next,
1157 pfn + (addr >> PAGE_SHIFT), prot))
1158 return -ENOMEM;
1159 } while (pud++, addr = next, addr != end);
1160 return 0;
1161}
1162
1163/* Note: this is only safe if the mm semaphore is held when called. */
1164int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1165 unsigned long pfn, unsigned long size, pgprot_t prot)
1166{
1167 pgd_t *pgd;
1168 unsigned long next;
Hugh Dickins2d15cab2005-06-25 14:54:33 -07001169 unsigned long end = addr + PAGE_ALIGN(size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001170 struct mm_struct *mm = vma->vm_mm;
1171 int err;
1172
1173 /*
1174 * Physically remapped pages are special. Tell the
1175 * rest of the world about it:
1176 * VM_IO tells people not to look at these pages
1177 * (accesses can have side effects).
1178 * VM_RESERVED tells swapout not to try to touch
1179 * this region.
1180 */
1181 vma->vm_flags |= VM_IO | VM_RESERVED;
1182
1183 BUG_ON(addr >= end);
1184 pfn -= addr >> PAGE_SHIFT;
1185 pgd = pgd_offset(mm, addr);
1186 flush_cache_range(vma, addr, end);
1187 spin_lock(&mm->page_table_lock);
1188 do {
1189 next = pgd_addr_end(addr, end);
1190 err = remap_pud_range(mm, pgd, addr, next,
1191 pfn + (addr >> PAGE_SHIFT), prot);
1192 if (err)
1193 break;
1194 } while (pgd++, addr = next, addr != end);
1195 spin_unlock(&mm->page_table_lock);
1196 return err;
1197}
1198EXPORT_SYMBOL(remap_pfn_range);
1199
1200/*
1201 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1202 * servicing faults for write access. In the normal case, do always want
1203 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1204 * that do not have writing enabled, when used by access_process_vm.
1205 */
1206static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1207{
1208 if (likely(vma->vm_flags & VM_WRITE))
1209 pte = pte_mkwrite(pte);
1210 return pte;
1211}
1212
1213/*
1214 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1215 */
1216static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
1217 pte_t *page_table)
1218{
1219 pte_t entry;
1220
1221 entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1222 vma);
1223 ptep_establish(vma, address, page_table, entry);
1224 update_mmu_cache(vma, address, entry);
1225 lazy_mmu_prot_update(entry);
1226}
1227
1228/*
1229 * This routine handles present pages, when users try to write
1230 * to a shared page. It is done by copying the page to a new address
1231 * and decrementing the shared-page counter for the old page.
1232 *
1233 * Goto-purists beware: the only reason for goto's here is that it results
1234 * in better assembly code.. The "default" path will see no jumps at all.
1235 *
1236 * Note that this routine assumes that the protection checks have been
1237 * done by the caller (the low-level page fault routine in most cases).
1238 * Thus we can safely just mark it writable once we've done any necessary
1239 * COW.
1240 *
1241 * We also mark the page dirty at this point even though the page will
1242 * change only once the write actually happens. This avoids a few races,
1243 * and potentially makes it more efficient.
1244 *
1245 * We hold the mm semaphore and the page_table_lock on entry and exit
1246 * with the page_table_lock released.
1247 */
1248static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1249 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1250{
1251 struct page *old_page, *new_page;
1252 unsigned long pfn = pte_pfn(pte);
1253 pte_t entry;
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001254 int ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001255
1256 if (unlikely(!pfn_valid(pfn))) {
1257 /*
1258 * This should really halt the system so it can be debugged or
1259 * at least the kernel stops what it's doing before it corrupts
1260 * data, but for the moment just pretend this is OOM.
1261 */
1262 pte_unmap(page_table);
1263 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1264 address);
1265 spin_unlock(&mm->page_table_lock);
1266 return VM_FAULT_OOM;
1267 }
1268 old_page = pfn_to_page(pfn);
1269
Hugh Dickinsd296e9c2005-06-21 17:15:11 -07001270 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001271 int reuse = can_share_swap_page(old_page);
1272 unlock_page(old_page);
1273 if (reuse) {
1274 flush_cache_page(vma, address, pfn);
1275 entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1276 vma);
1277 ptep_set_access_flags(vma, address, page_table, entry, 1);
1278 update_mmu_cache(vma, address, entry);
1279 lazy_mmu_prot_update(entry);
1280 pte_unmap(page_table);
1281 spin_unlock(&mm->page_table_lock);
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001282 return VM_FAULT_MINOR|VM_FAULT_WRITE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001283 }
1284 }
1285 pte_unmap(page_table);
1286
1287 /*
1288 * Ok, we need to copy. Oh, well..
1289 */
1290 if (!PageReserved(old_page))
1291 page_cache_get(old_page);
1292 spin_unlock(&mm->page_table_lock);
1293
1294 if (unlikely(anon_vma_prepare(vma)))
1295 goto no_new_page;
1296 if (old_page == ZERO_PAGE(address)) {
1297 new_page = alloc_zeroed_user_highpage(vma, address);
1298 if (!new_page)
1299 goto no_new_page;
1300 } else {
1301 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1302 if (!new_page)
1303 goto no_new_page;
1304 copy_user_highpage(new_page, old_page, address);
1305 }
1306 /*
1307 * Re-check the pte - we dropped the lock
1308 */
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001309 ret = VM_FAULT_MINOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001310 spin_lock(&mm->page_table_lock);
1311 page_table = pte_offset_map(pmd, address);
1312 if (likely(pte_same(*page_table, pte))) {
1313 if (PageAnon(old_page))
1314 dec_mm_counter(mm, anon_rss);
1315 if (PageReserved(old_page))
1316 inc_mm_counter(mm, rss);
1317 else
1318 page_remove_rmap(old_page);
1319 flush_cache_page(vma, address, pfn);
1320 break_cow(vma, new_page, address, page_table);
1321 lru_cache_add_active(new_page);
1322 page_add_anon_rmap(new_page, vma, address);
1323
1324 /* Free the old page.. */
1325 new_page = old_page;
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001326 ret |= VM_FAULT_WRITE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001327 }
1328 pte_unmap(page_table);
1329 page_cache_release(new_page);
1330 page_cache_release(old_page);
1331 spin_unlock(&mm->page_table_lock);
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001332 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001333
1334no_new_page:
1335 page_cache_release(old_page);
1336 return VM_FAULT_OOM;
1337}
1338
1339/*
1340 * Helper functions for unmap_mapping_range().
1341 *
1342 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1343 *
1344 * We have to restart searching the prio_tree whenever we drop the lock,
1345 * since the iterator is only valid while the lock is held, and anyway
1346 * a later vma might be split and reinserted earlier while lock dropped.
1347 *
1348 * The list of nonlinear vmas could be handled more efficiently, using
1349 * a placeholder, but handle it in the same way until a need is shown.
1350 * It is important to search the prio_tree before nonlinear list: a vma
1351 * may become nonlinear and be shifted from prio_tree to nonlinear list
1352 * while the lock is dropped; but never shifted from list to prio_tree.
1353 *
1354 * In order to make forward progress despite restarting the search,
1355 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1356 * quickly skip it next time around. Since the prio_tree search only
1357 * shows us those vmas affected by unmapping the range in question, we
1358 * can't efficiently keep all vmas in step with mapping->truncate_count:
1359 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1360 * mapping->truncate_count and vma->vm_truncate_count are protected by
1361 * i_mmap_lock.
1362 *
1363 * In order to make forward progress despite repeatedly restarting some
Hugh Dickinsee39b372005-04-19 13:29:15 -07001364 * large vma, note the restart_addr from unmap_vmas when it breaks out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001365 * and restart from that address when we reach that vma again. It might
1366 * have been split or merged, shrunk or extended, but never shifted: so
1367 * restart_addr remains valid so long as it remains in the vma's range.
1368 * unmap_mapping_range forces truncate_count to leap over page-aligned
1369 * values so we can save vma's restart_addr in its truncate_count field.
1370 */
1371#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1372
1373static void reset_vma_truncate_counts(struct address_space *mapping)
1374{
1375 struct vm_area_struct *vma;
1376 struct prio_tree_iter iter;
1377
1378 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1379 vma->vm_truncate_count = 0;
1380 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1381 vma->vm_truncate_count = 0;
1382}
1383
1384static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1385 unsigned long start_addr, unsigned long end_addr,
1386 struct zap_details *details)
1387{
1388 unsigned long restart_addr;
1389 int need_break;
1390
1391again:
1392 restart_addr = vma->vm_truncate_count;
1393 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1394 start_addr = restart_addr;
1395 if (start_addr >= end_addr) {
1396 /* Top of vma has been split off since last time */
1397 vma->vm_truncate_count = details->truncate_count;
1398 return 0;
1399 }
1400 }
1401
Hugh Dickinsee39b372005-04-19 13:29:15 -07001402 restart_addr = zap_page_range(vma, start_addr,
1403 end_addr - start_addr, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001404
1405 /*
1406 * We cannot rely on the break test in unmap_vmas:
1407 * on the one hand, we don't want to restart our loop
1408 * just because that broke out for the page_table_lock;
1409 * on the other hand, it does no test when vma is small.
1410 */
1411 need_break = need_resched() ||
1412 need_lockbreak(details->i_mmap_lock);
1413
Hugh Dickinsee39b372005-04-19 13:29:15 -07001414 if (restart_addr >= end_addr) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001415 /* We have now completed this vma: mark it so */
1416 vma->vm_truncate_count = details->truncate_count;
1417 if (!need_break)
1418 return 0;
1419 } else {
1420 /* Note restart_addr in vma's truncate_count field */
Hugh Dickinsee39b372005-04-19 13:29:15 -07001421 vma->vm_truncate_count = restart_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001422 if (!need_break)
1423 goto again;
1424 }
1425
1426 spin_unlock(details->i_mmap_lock);
1427 cond_resched();
1428 spin_lock(details->i_mmap_lock);
1429 return -EINTR;
1430}
1431
1432static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1433 struct zap_details *details)
1434{
1435 struct vm_area_struct *vma;
1436 struct prio_tree_iter iter;
1437 pgoff_t vba, vea, zba, zea;
1438
1439restart:
1440 vma_prio_tree_foreach(vma, &iter, root,
1441 details->first_index, details->last_index) {
1442 /* Skip quickly over those we have already dealt with */
1443 if (vma->vm_truncate_count == details->truncate_count)
1444 continue;
1445
1446 vba = vma->vm_pgoff;
1447 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1448 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1449 zba = details->first_index;
1450 if (zba < vba)
1451 zba = vba;
1452 zea = details->last_index;
1453 if (zea > vea)
1454 zea = vea;
1455
1456 if (unmap_mapping_range_vma(vma,
1457 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1458 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1459 details) < 0)
1460 goto restart;
1461 }
1462}
1463
1464static inline void unmap_mapping_range_list(struct list_head *head,
1465 struct zap_details *details)
1466{
1467 struct vm_area_struct *vma;
1468
1469 /*
1470 * In nonlinear VMAs there is no correspondence between virtual address
1471 * offset and file offset. So we must perform an exhaustive search
1472 * across *all* the pages in each nonlinear VMA, not just the pages
1473 * whose virtual address lies outside the file truncation point.
1474 */
1475restart:
1476 list_for_each_entry(vma, head, shared.vm_set.list) {
1477 /* Skip quickly over those we have already dealt with */
1478 if (vma->vm_truncate_count == details->truncate_count)
1479 continue;
1480 details->nonlinear_vma = vma;
1481 if (unmap_mapping_range_vma(vma, vma->vm_start,
1482 vma->vm_end, details) < 0)
1483 goto restart;
1484 }
1485}
1486
1487/**
1488 * unmap_mapping_range - unmap the portion of all mmaps
1489 * in the specified address_space corresponding to the specified
1490 * page range in the underlying file.
Martin Waitz3d410882005-06-23 22:05:21 -07001491 * @mapping: the address space containing mmaps to be unmapped.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001492 * @holebegin: byte in first page to unmap, relative to the start of
1493 * the underlying file. This will be rounded down to a PAGE_SIZE
1494 * boundary. Note that this is different from vmtruncate(), which
1495 * must keep the partial page. In contrast, we must get rid of
1496 * partial pages.
1497 * @holelen: size of prospective hole in bytes. This will be rounded
1498 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1499 * end of the file.
1500 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1501 * but 0 when invalidating pagecache, don't throw away private data.
1502 */
1503void unmap_mapping_range(struct address_space *mapping,
1504 loff_t const holebegin, loff_t const holelen, int even_cows)
1505{
1506 struct zap_details details;
1507 pgoff_t hba = holebegin >> PAGE_SHIFT;
1508 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1509
1510 /* Check for overflow. */
1511 if (sizeof(holelen) > sizeof(hlen)) {
1512 long long holeend =
1513 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1514 if (holeend & ~(long long)ULONG_MAX)
1515 hlen = ULONG_MAX - hba + 1;
1516 }
1517
1518 details.check_mapping = even_cows? NULL: mapping;
1519 details.nonlinear_vma = NULL;
1520 details.first_index = hba;
1521 details.last_index = hba + hlen - 1;
1522 if (details.last_index < details.first_index)
1523 details.last_index = ULONG_MAX;
1524 details.i_mmap_lock = &mapping->i_mmap_lock;
1525
1526 spin_lock(&mapping->i_mmap_lock);
1527
1528 /* serialize i_size write against truncate_count write */
1529 smp_wmb();
1530 /* Protect against page faults, and endless unmapping loops */
1531 mapping->truncate_count++;
1532 /*
1533 * For archs where spin_lock has inclusive semantics like ia64
1534 * this smp_mb() will prevent to read pagetable contents
1535 * before the truncate_count increment is visible to
1536 * other cpus.
1537 */
1538 smp_mb();
1539 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1540 if (mapping->truncate_count == 0)
1541 reset_vma_truncate_counts(mapping);
1542 mapping->truncate_count++;
1543 }
1544 details.truncate_count = mapping->truncate_count;
1545
1546 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1547 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1548 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1549 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1550 spin_unlock(&mapping->i_mmap_lock);
1551}
1552EXPORT_SYMBOL(unmap_mapping_range);
1553
1554/*
1555 * Handle all mappings that got truncated by a "truncate()"
1556 * system call.
1557 *
1558 * NOTE! We have to be ready to update the memory sharing
1559 * between the file and the memory map for a potential last
1560 * incomplete page. Ugly, but necessary.
1561 */
1562int vmtruncate(struct inode * inode, loff_t offset)
1563{
1564 struct address_space *mapping = inode->i_mapping;
1565 unsigned long limit;
1566
1567 if (inode->i_size < offset)
1568 goto do_expand;
1569 /*
1570 * truncation of in-use swapfiles is disallowed - it would cause
1571 * subsequent swapout to scribble on the now-freed blocks.
1572 */
1573 if (IS_SWAPFILE(inode))
1574 goto out_busy;
1575 i_size_write(inode, offset);
1576 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1577 truncate_inode_pages(mapping, offset);
1578 goto out_truncate;
1579
1580do_expand:
1581 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1582 if (limit != RLIM_INFINITY && offset > limit)
1583 goto out_sig;
1584 if (offset > inode->i_sb->s_maxbytes)
1585 goto out_big;
1586 i_size_write(inode, offset);
1587
1588out_truncate:
1589 if (inode->i_op && inode->i_op->truncate)
1590 inode->i_op->truncate(inode);
1591 return 0;
1592out_sig:
1593 send_sig(SIGXFSZ, current, 0);
1594out_big:
1595 return -EFBIG;
1596out_busy:
1597 return -ETXTBSY;
1598}
1599
1600EXPORT_SYMBOL(vmtruncate);
1601
1602/*
1603 * Primitive swap readahead code. We simply read an aligned block of
1604 * (1 << page_cluster) entries in the swap area. This method is chosen
1605 * because it doesn't cost us any seek time. We also make sure to queue
1606 * the 'original' request together with the readahead ones...
1607 *
1608 * This has been extended to use the NUMA policies from the mm triggering
1609 * the readahead.
1610 *
1611 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1612 */
1613void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1614{
1615#ifdef CONFIG_NUMA
1616 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1617#endif
1618 int i, num;
1619 struct page *new_page;
1620 unsigned long offset;
1621
1622 /*
1623 * Get the number of handles we should do readahead io to.
1624 */
1625 num = valid_swaphandles(entry, &offset);
1626 for (i = 0; i < num; offset++, i++) {
1627 /* Ok, do the async read-ahead now */
1628 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1629 offset), vma, addr);
1630 if (!new_page)
1631 break;
1632 page_cache_release(new_page);
1633#ifdef CONFIG_NUMA
1634 /*
1635 * Find the next applicable VMA for the NUMA policy.
1636 */
1637 addr += PAGE_SIZE;
1638 if (addr == 0)
1639 vma = NULL;
1640 if (vma) {
1641 if (addr >= vma->vm_end) {
1642 vma = next_vma;
1643 next_vma = vma ? vma->vm_next : NULL;
1644 }
1645 if (vma && addr < vma->vm_start)
1646 vma = NULL;
1647 } else {
1648 if (next_vma && addr >= next_vma->vm_start) {
1649 vma = next_vma;
1650 next_vma = vma->vm_next;
1651 }
1652 }
1653#endif
1654 }
1655 lru_add_drain(); /* Push any new pages onto the LRU now */
1656}
1657
1658/*
1659 * We hold the mm semaphore and the page_table_lock on entry and
1660 * should release the pagetable lock on exit..
1661 */
1662static int do_swap_page(struct mm_struct * mm,
1663 struct vm_area_struct * vma, unsigned long address,
1664 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1665{
1666 struct page *page;
1667 swp_entry_t entry = pte_to_swp_entry(orig_pte);
1668 pte_t pte;
1669 int ret = VM_FAULT_MINOR;
1670
1671 pte_unmap(page_table);
1672 spin_unlock(&mm->page_table_lock);
1673 page = lookup_swap_cache(entry);
1674 if (!page) {
1675 swapin_readahead(entry, address, vma);
1676 page = read_swap_cache_async(entry, vma, address);
1677 if (!page) {
1678 /*
1679 * Back out if somebody else faulted in this pte while
1680 * we released the page table lock.
1681 */
1682 spin_lock(&mm->page_table_lock);
1683 page_table = pte_offset_map(pmd, address);
1684 if (likely(pte_same(*page_table, orig_pte)))
1685 ret = VM_FAULT_OOM;
1686 else
1687 ret = VM_FAULT_MINOR;
1688 pte_unmap(page_table);
1689 spin_unlock(&mm->page_table_lock);
1690 goto out;
1691 }
1692
1693 /* Had to read the page from swap area: Major fault */
1694 ret = VM_FAULT_MAJOR;
1695 inc_page_state(pgmajfault);
1696 grab_swap_token();
1697 }
1698
1699 mark_page_accessed(page);
1700 lock_page(page);
1701
1702 /*
1703 * Back out if somebody else faulted in this pte while we
1704 * released the page table lock.
1705 */
1706 spin_lock(&mm->page_table_lock);
1707 page_table = pte_offset_map(pmd, address);
1708 if (unlikely(!pte_same(*page_table, orig_pte))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001709 ret = VM_FAULT_MINOR;
Kirill Korotaevb8107482005-05-16 21:53:50 -07001710 goto out_nomap;
1711 }
1712
1713 if (unlikely(!PageUptodate(page))) {
1714 ret = VM_FAULT_SIGBUS;
1715 goto out_nomap;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001716 }
1717
1718 /* The page isn't present yet, go ahead with the fault. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001719
1720 inc_mm_counter(mm, rss);
1721 pte = mk_pte(page, vma->vm_page_prot);
1722 if (write_access && can_share_swap_page(page)) {
1723 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1724 write_access = 0;
1725 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001726
1727 flush_icache_page(vma, page);
1728 set_pte_at(mm, address, page_table, pte);
1729 page_add_anon_rmap(page, vma, address);
1730
Hugh Dickinsc475a8a2005-06-21 17:15:12 -07001731 swap_free(entry);
1732 if (vm_swap_full())
1733 remove_exclusive_swap_page(page);
1734 unlock_page(page);
1735
Linus Torvalds1da177e2005-04-16 15:20:36 -07001736 if (write_access) {
1737 if (do_wp_page(mm, vma, address,
1738 page_table, pmd, pte) == VM_FAULT_OOM)
1739 ret = VM_FAULT_OOM;
1740 goto out;
1741 }
1742
1743 /* No need to invalidate - it was non-present before */
1744 update_mmu_cache(vma, address, pte);
1745 lazy_mmu_prot_update(pte);
1746 pte_unmap(page_table);
1747 spin_unlock(&mm->page_table_lock);
1748out:
1749 return ret;
Kirill Korotaevb8107482005-05-16 21:53:50 -07001750out_nomap:
1751 pte_unmap(page_table);
1752 spin_unlock(&mm->page_table_lock);
1753 unlock_page(page);
1754 page_cache_release(page);
1755 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001756}
1757
1758/*
1759 * We are called with the MM semaphore and page_table_lock
1760 * spinlock held to protect against concurrent faults in
1761 * multithreaded programs.
1762 */
1763static int
1764do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1765 pte_t *page_table, pmd_t *pmd, int write_access,
1766 unsigned long addr)
1767{
1768 pte_t entry;
1769 struct page * page = ZERO_PAGE(addr);
1770
1771 /* Read-only mapping of ZERO_PAGE. */
1772 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1773
1774 /* ..except if it's a write access */
1775 if (write_access) {
1776 /* Allocate our own private page. */
1777 pte_unmap(page_table);
1778 spin_unlock(&mm->page_table_lock);
1779
1780 if (unlikely(anon_vma_prepare(vma)))
1781 goto no_mem;
1782 page = alloc_zeroed_user_highpage(vma, addr);
1783 if (!page)
1784 goto no_mem;
1785
1786 spin_lock(&mm->page_table_lock);
1787 page_table = pte_offset_map(pmd, addr);
1788
1789 if (!pte_none(*page_table)) {
1790 pte_unmap(page_table);
1791 page_cache_release(page);
1792 spin_unlock(&mm->page_table_lock);
1793 goto out;
1794 }
1795 inc_mm_counter(mm, rss);
1796 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1797 vma->vm_page_prot)),
1798 vma);
1799 lru_cache_add_active(page);
1800 SetPageReferenced(page);
1801 page_add_anon_rmap(page, vma, addr);
1802 }
1803
1804 set_pte_at(mm, addr, page_table, entry);
1805 pte_unmap(page_table);
1806
1807 /* No need to invalidate - it was non-present before */
1808 update_mmu_cache(vma, addr, entry);
1809 lazy_mmu_prot_update(entry);
1810 spin_unlock(&mm->page_table_lock);
1811out:
1812 return VM_FAULT_MINOR;
1813no_mem:
1814 return VM_FAULT_OOM;
1815}
1816
1817/*
1818 * do_no_page() tries to create a new page mapping. It aggressively
1819 * tries to share with existing pages, but makes a separate copy if
1820 * the "write_access" parameter is true in order to avoid the next
1821 * page fault.
1822 *
1823 * As this is called only for pages that do not currently exist, we
1824 * do not need to flush old virtual caches or the TLB.
1825 *
1826 * This is called with the MM semaphore held and the page table
1827 * spinlock held. Exit with the spinlock released.
1828 */
1829static int
1830do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1831 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1832{
1833 struct page * new_page;
1834 struct address_space *mapping = NULL;
1835 pte_t entry;
1836 unsigned int sequence = 0;
1837 int ret = VM_FAULT_MINOR;
1838 int anon = 0;
1839
1840 if (!vma->vm_ops || !vma->vm_ops->nopage)
1841 return do_anonymous_page(mm, vma, page_table,
1842 pmd, write_access, address);
1843 pte_unmap(page_table);
1844 spin_unlock(&mm->page_table_lock);
1845
1846 if (vma->vm_file) {
1847 mapping = vma->vm_file->f_mapping;
1848 sequence = mapping->truncate_count;
1849 smp_rmb(); /* serializes i_size against truncate_count */
1850 }
1851retry:
1852 cond_resched();
1853 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1854 /*
1855 * No smp_rmb is needed here as long as there's a full
1856 * spin_lock/unlock sequence inside the ->nopage callback
1857 * (for the pagecache lookup) that acts as an implicit
1858 * smp_mb() and prevents the i_size read to happen
1859 * after the next truncate_count read.
1860 */
1861
1862 /* no page was available -- either SIGBUS or OOM */
1863 if (new_page == NOPAGE_SIGBUS)
1864 return VM_FAULT_SIGBUS;
1865 if (new_page == NOPAGE_OOM)
1866 return VM_FAULT_OOM;
1867
1868 /*
1869 * Should we do an early C-O-W break?
1870 */
1871 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1872 struct page *page;
1873
1874 if (unlikely(anon_vma_prepare(vma)))
1875 goto oom;
1876 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1877 if (!page)
1878 goto oom;
1879 copy_user_highpage(page, new_page, address);
1880 page_cache_release(new_page);
1881 new_page = page;
1882 anon = 1;
1883 }
1884
1885 spin_lock(&mm->page_table_lock);
1886 /*
1887 * For a file-backed vma, someone could have truncated or otherwise
1888 * invalidated this page. If unmap_mapping_range got called,
1889 * retry getting the page.
1890 */
1891 if (mapping && unlikely(sequence != mapping->truncate_count)) {
1892 sequence = mapping->truncate_count;
1893 spin_unlock(&mm->page_table_lock);
1894 page_cache_release(new_page);
1895 goto retry;
1896 }
1897 page_table = pte_offset_map(pmd, address);
1898
1899 /*
1900 * This silly early PAGE_DIRTY setting removes a race
1901 * due to the bad i386 page protection. But it's valid
1902 * for other architectures too.
1903 *
1904 * Note that if write_access is true, we either now have
1905 * an exclusive copy of the page, or this is a shared mapping,
1906 * so we can make it writable and dirty to avoid having to
1907 * handle that later.
1908 */
1909 /* Only go through if we didn't race with anybody else... */
1910 if (pte_none(*page_table)) {
1911 if (!PageReserved(new_page))
1912 inc_mm_counter(mm, rss);
1913
1914 flush_icache_page(vma, new_page);
1915 entry = mk_pte(new_page, vma->vm_page_prot);
1916 if (write_access)
1917 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1918 set_pte_at(mm, address, page_table, entry);
1919 if (anon) {
1920 lru_cache_add_active(new_page);
1921 page_add_anon_rmap(new_page, vma, address);
1922 } else
1923 page_add_file_rmap(new_page);
1924 pte_unmap(page_table);
1925 } else {
1926 /* One of our sibling threads was faster, back out. */
1927 pte_unmap(page_table);
1928 page_cache_release(new_page);
1929 spin_unlock(&mm->page_table_lock);
1930 goto out;
1931 }
1932
1933 /* no need to invalidate: a not-present page shouldn't be cached */
1934 update_mmu_cache(vma, address, entry);
1935 lazy_mmu_prot_update(entry);
1936 spin_unlock(&mm->page_table_lock);
1937out:
1938 return ret;
1939oom:
1940 page_cache_release(new_page);
1941 ret = VM_FAULT_OOM;
1942 goto out;
1943}
1944
1945/*
1946 * Fault of a previously existing named mapping. Repopulate the pte
1947 * from the encoded file_pte if possible. This enables swappable
1948 * nonlinear vmas.
1949 */
1950static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1951 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1952{
1953 unsigned long pgoff;
1954 int err;
1955
1956 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1957 /*
1958 * Fall back to the linear mapping if the fs does not support
1959 * ->populate:
1960 */
Paolo 'Blaisorblade' Giarrusso4944e762005-09-03 15:54:56 -07001961 if (!vma->vm_ops->populate ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07001962 (write_access && !(vma->vm_flags & VM_SHARED))) {
1963 pte_clear(mm, address, pte);
1964 return do_no_page(mm, vma, address, write_access, pte, pmd);
1965 }
1966
1967 pgoff = pte_to_pgoff(*pte);
1968
1969 pte_unmap(pte);
1970 spin_unlock(&mm->page_table_lock);
1971
1972 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1973 if (err == -ENOMEM)
1974 return VM_FAULT_OOM;
1975 if (err)
1976 return VM_FAULT_SIGBUS;
1977 return VM_FAULT_MAJOR;
1978}
1979
1980/*
1981 * These routines also need to handle stuff like marking pages dirty
1982 * and/or accessed for architectures that don't do it in hardware (most
1983 * RISC architectures). The early dirtying is also good on the i386.
1984 *
1985 * There is also a hook called "update_mmu_cache()" that architectures
1986 * with external mmu caches can use to update those (ie the Sparc or
1987 * PowerPC hashed page tables that act as extended TLBs).
1988 *
1989 * Note the "page_table_lock". It is to protect against kswapd removing
1990 * pages from under us. Note that kswapd only ever _removes_ pages, never
1991 * adds them. As such, once we have noticed that the page is not present,
1992 * we can drop the lock early.
1993 *
1994 * The adding of pages is protected by the MM semaphore (which we hold),
1995 * so we don't need to worry about a page being suddenly been added into
1996 * our VM.
1997 *
1998 * We enter with the pagetable spinlock held, we are supposed to
1999 * release it when done.
2000 */
2001static inline int handle_pte_fault(struct mm_struct *mm,
2002 struct vm_area_struct * vma, unsigned long address,
2003 int write_access, pte_t *pte, pmd_t *pmd)
2004{
2005 pte_t entry;
2006
2007 entry = *pte;
2008 if (!pte_present(entry)) {
2009 /*
2010 * If it truly wasn't present, we know that kswapd
2011 * and the PTE updates will not touch it later. So
2012 * drop the lock.
2013 */
2014 if (pte_none(entry))
2015 return do_no_page(mm, vma, address, write_access, pte, pmd);
2016 if (pte_file(entry))
2017 return do_file_page(mm, vma, address, write_access, pte, pmd);
2018 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
2019 }
2020
2021 if (write_access) {
2022 if (!pte_write(entry))
2023 return do_wp_page(mm, vma, address, pte, pmd, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002024 entry = pte_mkdirty(entry);
2025 }
2026 entry = pte_mkyoung(entry);
2027 ptep_set_access_flags(vma, address, pte, entry, write_access);
2028 update_mmu_cache(vma, address, entry);
2029 lazy_mmu_prot_update(entry);
2030 pte_unmap(pte);
2031 spin_unlock(&mm->page_table_lock);
2032 return VM_FAULT_MINOR;
2033}
2034
2035/*
2036 * By the time we get here, we already hold the mm semaphore
2037 */
Nick Pigginf33ea7f2005-08-03 20:24:01 +10002038int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002039 unsigned long address, int write_access)
2040{
2041 pgd_t *pgd;
2042 pud_t *pud;
2043 pmd_t *pmd;
2044 pte_t *pte;
2045
2046 __set_current_state(TASK_RUNNING);
2047
2048 inc_page_state(pgfault);
2049
Hugh Dickinsac9b9c62005-10-20 16:24:28 +01002050 if (unlikely(is_vm_hugetlb_page(vma)))
2051 return hugetlb_fault(mm, vma, address, write_access);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052
2053 /*
2054 * We need the page table lock to synchronize with kswapd
2055 * and the SMP-safe atomic PTE updates.
2056 */
2057 pgd = pgd_offset(mm, address);
2058 spin_lock(&mm->page_table_lock);
2059
2060 pud = pud_alloc(mm, pgd, address);
2061 if (!pud)
2062 goto oom;
2063
2064 pmd = pmd_alloc(mm, pud, address);
2065 if (!pmd)
2066 goto oom;
2067
2068 pte = pte_alloc_map(mm, pmd, address);
2069 if (!pte)
2070 goto oom;
2071
2072 return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
2073
2074 oom:
2075 spin_unlock(&mm->page_table_lock);
2076 return VM_FAULT_OOM;
2077}
2078
2079#ifndef __PAGETABLE_PUD_FOLDED
2080/*
2081 * Allocate page upper directory.
2082 *
2083 * We've already handled the fast-path in-line, and we own the
2084 * page table lock.
2085 */
2086pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2087{
2088 pud_t *new;
2089
2090 spin_unlock(&mm->page_table_lock);
2091 new = pud_alloc_one(mm, address);
2092 spin_lock(&mm->page_table_lock);
2093 if (!new)
2094 return NULL;
2095
2096 /*
2097 * Because we dropped the lock, we should re-check the
2098 * entry, as somebody else could have populated it..
2099 */
2100 if (pgd_present(*pgd)) {
2101 pud_free(new);
2102 goto out;
2103 }
2104 pgd_populate(mm, pgd, new);
2105 out:
2106 return pud_offset(pgd, address);
2107}
2108#endif /* __PAGETABLE_PUD_FOLDED */
2109
2110#ifndef __PAGETABLE_PMD_FOLDED
2111/*
2112 * Allocate page middle directory.
2113 *
2114 * We've already handled the fast-path in-line, and we own the
2115 * page table lock.
2116 */
2117pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2118{
2119 pmd_t *new;
2120
2121 spin_unlock(&mm->page_table_lock);
2122 new = pmd_alloc_one(mm, address);
2123 spin_lock(&mm->page_table_lock);
2124 if (!new)
2125 return NULL;
2126
2127 /*
2128 * Because we dropped the lock, we should re-check the
2129 * entry, as somebody else could have populated it..
2130 */
2131#ifndef __ARCH_HAS_4LEVEL_HACK
2132 if (pud_present(*pud)) {
2133 pmd_free(new);
2134 goto out;
2135 }
2136 pud_populate(mm, pud, new);
2137#else
2138 if (pgd_present(*pud)) {
2139 pmd_free(new);
2140 goto out;
2141 }
2142 pgd_populate(mm, pud, new);
2143#endif /* __ARCH_HAS_4LEVEL_HACK */
2144
2145 out:
2146 return pmd_offset(pud, address);
2147}
2148#endif /* __PAGETABLE_PMD_FOLDED */
2149
2150int make_pages_present(unsigned long addr, unsigned long end)
2151{
2152 int ret, len, write;
2153 struct vm_area_struct * vma;
2154
2155 vma = find_vma(current->mm, addr);
2156 if (!vma)
2157 return -1;
2158 write = (vma->vm_flags & VM_WRITE) != 0;
2159 if (addr >= end)
2160 BUG();
2161 if (end > vma->vm_end)
2162 BUG();
2163 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2164 ret = get_user_pages(current, current->mm, addr,
2165 len, write, 0, NULL, NULL);
2166 if (ret < 0)
2167 return ret;
2168 return ret == len ? 0 : -1;
2169}
2170
2171/*
2172 * Map a vmalloc()-space virtual address to the physical page.
2173 */
2174struct page * vmalloc_to_page(void * vmalloc_addr)
2175{
2176 unsigned long addr = (unsigned long) vmalloc_addr;
2177 struct page *page = NULL;
2178 pgd_t *pgd = pgd_offset_k(addr);
2179 pud_t *pud;
2180 pmd_t *pmd;
2181 pte_t *ptep, pte;
2182
2183 if (!pgd_none(*pgd)) {
2184 pud = pud_offset(pgd, addr);
2185 if (!pud_none(*pud)) {
2186 pmd = pmd_offset(pud, addr);
2187 if (!pmd_none(*pmd)) {
2188 ptep = pte_offset_map(pmd, addr);
2189 pte = *ptep;
2190 if (pte_present(pte))
2191 page = pte_page(pte);
2192 pte_unmap(ptep);
2193 }
2194 }
2195 }
2196 return page;
2197}
2198
2199EXPORT_SYMBOL(vmalloc_to_page);
2200
2201/*
2202 * Map a vmalloc()-space virtual address to the physical page frame number.
2203 */
2204unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2205{
2206 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2207}
2208
2209EXPORT_SYMBOL(vmalloc_to_pfn);
2210
2211/*
2212 * update_mem_hiwater
2213 * - update per process rss and vm high water data
2214 */
2215void update_mem_hiwater(struct task_struct *tsk)
2216{
2217 if (tsk->mm) {
2218 unsigned long rss = get_mm_counter(tsk->mm, rss);
2219
2220 if (tsk->mm->hiwater_rss < rss)
2221 tsk->mm->hiwater_rss = rss;
2222 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2223 tsk->mm->hiwater_vm = tsk->mm->total_vm;
2224 }
2225}
2226
2227#if !defined(__HAVE_ARCH_GATE_AREA)
2228
2229#if defined(AT_SYSINFO_EHDR)
Adrian Bunk5ce78522005-09-10 00:26:28 -07002230static struct vm_area_struct gate_vma;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002231
2232static int __init gate_vma_init(void)
2233{
2234 gate_vma.vm_mm = NULL;
2235 gate_vma.vm_start = FIXADDR_USER_START;
2236 gate_vma.vm_end = FIXADDR_USER_END;
2237 gate_vma.vm_page_prot = PAGE_READONLY;
2238 gate_vma.vm_flags = 0;
2239 return 0;
2240}
2241__initcall(gate_vma_init);
2242#endif
2243
2244struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2245{
2246#ifdef AT_SYSINFO_EHDR
2247 return &gate_vma;
2248#else
2249 return NULL;
2250#endif
2251}
2252
2253int in_gate_area_no_task(unsigned long addr)
2254{
2255#ifdef AT_SYSINFO_EHDR
2256 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2257 return 1;
2258#endif
2259 return 0;
2260}
2261
2262#endif /* __HAVE_ARCH_GATE_AREA */