blob: 35fbd4d8ed4b5878069222e0fee62b2a8b487c70 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 *
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35/*
36 * This file holds the "policy" for the interface to the SMI state
37 * machine. It does the configuration, handles timers and interrupts,
38 * and drives the real SMI state machine.
39 */
40
41#include <linux/config.h>
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
Corey Minyardea940272005-11-07 00:59:59 -080054#include <linux/notifier.h>
Corey Minyardb0defcd2006-03-26 01:37:20 -080055#include <linux/mutex.h>
Matt Domsche9a705a2005-11-07 01:00:04 -080056#include <linux/kthread.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070057#include <asm/irq.h>
58#ifdef CONFIG_HIGH_RES_TIMERS
59#include <linux/hrtime.h>
60# if defined(schedule_next_int)
61/* Old high-res timer code, do translations. */
62# define get_arch_cycles(a) quick_update_jiffies_sub(a)
63# define arch_cycles_per_jiffy cycles_per_jiffies
64# endif
65static inline void add_usec_to_timer(struct timer_list *t, long v)
66{
Corey Minyard75b07682005-09-06 15:18:38 -070067 t->arch_cycle_expires += nsec_to_arch_cycle(v * 1000);
68 while (t->arch_cycle_expires >= arch_cycles_per_jiffy)
Linus Torvalds1da177e2005-04-16 15:20:36 -070069 {
70 t->expires++;
Corey Minyard75b07682005-09-06 15:18:38 -070071 t->arch_cycle_expires -= arch_cycles_per_jiffy;
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 }
73}
74#endif
75#include <linux/interrupt.h>
76#include <linux/rcupdate.h>
77#include <linux/ipmi_smi.h>
78#include <asm/io.h>
79#include "ipmi_si_sm.h"
80#include <linux/init.h>
Andrey Paninb224cd32005-09-06 15:18:37 -070081#include <linux/dmi.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070082
83/* Measure times between events in the driver. */
84#undef DEBUG_TIMING
85
86/* Call every 10 ms. */
87#define SI_TIMEOUT_TIME_USEC 10000
88#define SI_USEC_PER_JIFFY (1000000/HZ)
89#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
90#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
91 short timeout */
92
93enum si_intf_state {
94 SI_NORMAL,
95 SI_GETTING_FLAGS,
96 SI_GETTING_EVENTS,
97 SI_CLEARING_FLAGS,
98 SI_CLEARING_FLAGS_THEN_SET_IRQ,
99 SI_GETTING_MESSAGES,
100 SI_ENABLE_INTERRUPTS1,
101 SI_ENABLE_INTERRUPTS2
102 /* FIXME - add watchdog stuff. */
103};
104
Corey Minyard9dbf68f2005-05-01 08:59:11 -0700105/* Some BT-specific defines we need here. */
106#define IPMI_BT_INTMASK_REG 2
107#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
109
Linus Torvalds1da177e2005-04-16 15:20:36 -0700110enum si_type {
111 SI_KCS, SI_SMIC, SI_BT
112};
Corey Minyardb0defcd2006-03-26 01:37:20 -0800113static char *si_to_str[] = { "KCS", "SMIC", "BT" };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114
Corey Minyard50c812b2006-03-26 01:37:21 -0800115#define DEVICE_NAME "ipmi_si"
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700116
Corey Minyard50c812b2006-03-26 01:37:21 -0800117static struct device_driver ipmi_driver =
118{
119 .name = DEVICE_NAME,
120 .bus = &platform_bus_type
121};
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700122
Linus Torvalds1da177e2005-04-16 15:20:36 -0700123struct smi_info
124{
Corey Minyarda9a2c442005-11-07 01:00:03 -0800125 int intf_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700126 ipmi_smi_t intf;
127 struct si_sm_data *si_sm;
128 struct si_sm_handlers *handlers;
129 enum si_type si_type;
130 spinlock_t si_lock;
131 spinlock_t msg_lock;
132 struct list_head xmit_msgs;
133 struct list_head hp_xmit_msgs;
134 struct ipmi_smi_msg *curr_msg;
135 enum si_intf_state si_state;
136
137 /* Used to handle the various types of I/O that can occur with
138 IPMI */
139 struct si_sm_io io;
140 int (*io_setup)(struct smi_info *info);
141 void (*io_cleanup)(struct smi_info *info);
142 int (*irq_setup)(struct smi_info *info);
143 void (*irq_cleanup)(struct smi_info *info);
144 unsigned int io_size;
Corey Minyardb0defcd2006-03-26 01:37:20 -0800145 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
146 void (*addr_source_cleanup)(struct smi_info *info);
147 void *addr_source_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700148
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700149 /* Per-OEM handler, called from handle_flags().
150 Returns 1 when handle_flags() needs to be re-run
151 or 0 indicating it set si_state itself.
152 */
153 int (*oem_data_avail_handler)(struct smi_info *smi_info);
154
Linus Torvalds1da177e2005-04-16 15:20:36 -0700155 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
156 is set to hold the flags until we are done handling everything
157 from the flags. */
158#define RECEIVE_MSG_AVAIL 0x01
159#define EVENT_MSG_BUFFER_FULL 0x02
160#define WDT_PRE_TIMEOUT_INT 0x08
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700161#define OEM0_DATA_AVAIL 0x20
162#define OEM1_DATA_AVAIL 0x40
163#define OEM2_DATA_AVAIL 0x80
164#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
165 OEM1_DATA_AVAIL | \
166 OEM2_DATA_AVAIL)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167 unsigned char msg_flags;
168
169 /* If set to true, this will request events the next time the
170 state machine is idle. */
171 atomic_t req_events;
172
173 /* If true, run the state machine to completion on every send
174 call. Generally used after a panic to make sure stuff goes
175 out. */
176 int run_to_completion;
177
178 /* The I/O port of an SI interface. */
179 int port;
180
181 /* The space between start addresses of the two ports. For
182 instance, if the first port is 0xca2 and the spacing is 4, then
183 the second port is 0xca6. */
184 unsigned int spacing;
185
186 /* zero if no irq; */
187 int irq;
188
189 /* The timer for this si. */
190 struct timer_list si_timer;
191
192 /* The time (in jiffies) the last timeout occurred at. */
193 unsigned long last_timeout_jiffies;
194
195 /* Used to gracefully stop the timer without race conditions. */
Corey Minyarda9a2c442005-11-07 01:00:03 -0800196 atomic_t stop_operation;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700197
198 /* The driver will disable interrupts when it gets into a
199 situation where it cannot handle messages due to lack of
200 memory. Once that situation clears up, it will re-enable
201 interrupts. */
202 int interrupt_disabled;
203
Corey Minyard50c812b2006-03-26 01:37:21 -0800204 /* From the get device id response... */
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700205 struct ipmi_device_id device_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700206
Corey Minyard50c812b2006-03-26 01:37:21 -0800207 /* Driver model stuff. */
208 struct device *dev;
209 struct platform_device *pdev;
210
211 /* True if we allocated the device, false if it came from
212 * someplace else (like PCI). */
213 int dev_registered;
214
Linus Torvalds1da177e2005-04-16 15:20:36 -0700215 /* Slave address, could be reported from DMI. */
216 unsigned char slave_addr;
217
218 /* Counters and things for the proc filesystem. */
219 spinlock_t count_lock;
220 unsigned long short_timeouts;
221 unsigned long long_timeouts;
222 unsigned long timeout_restarts;
223 unsigned long idles;
224 unsigned long interrupts;
225 unsigned long attentions;
226 unsigned long flag_fetches;
227 unsigned long hosed_count;
228 unsigned long complete_transactions;
229 unsigned long events;
230 unsigned long watchdog_pretimeouts;
231 unsigned long incoming_messages;
Corey Minyarda9a2c442005-11-07 01:00:03 -0800232
Matt Domsche9a705a2005-11-07 01:00:04 -0800233 struct task_struct *thread;
Corey Minyardb0defcd2006-03-26 01:37:20 -0800234
235 struct list_head link;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700236};
237
Corey Minyardb0defcd2006-03-26 01:37:20 -0800238static int try_smi_init(struct smi_info *smi);
239
Alan Sterne041c682006-03-27 01:16:30 -0800240static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
Corey Minyardea940272005-11-07 00:59:59 -0800241static int register_xaction_notifier(struct notifier_block * nb)
242{
Alan Sterne041c682006-03-27 01:16:30 -0800243 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
Corey Minyardea940272005-11-07 00:59:59 -0800244}
245
Linus Torvalds1da177e2005-04-16 15:20:36 -0700246static void si_restart_short_timer(struct smi_info *smi_info);
247
248static void deliver_recv_msg(struct smi_info *smi_info,
249 struct ipmi_smi_msg *msg)
250{
251 /* Deliver the message to the upper layer with the lock
252 released. */
253 spin_unlock(&(smi_info->si_lock));
254 ipmi_smi_msg_received(smi_info->intf, msg);
255 spin_lock(&(smi_info->si_lock));
256}
257
258static void return_hosed_msg(struct smi_info *smi_info)
259{
260 struct ipmi_smi_msg *msg = smi_info->curr_msg;
261
262 /* Make it a reponse */
263 msg->rsp[0] = msg->data[0] | 4;
264 msg->rsp[1] = msg->data[1];
265 msg->rsp[2] = 0xFF; /* Unknown error. */
266 msg->rsp_size = 3;
267
268 smi_info->curr_msg = NULL;
269 deliver_recv_msg(smi_info, msg);
270}
271
272static enum si_sm_result start_next_msg(struct smi_info *smi_info)
273{
274 int rv;
275 struct list_head *entry = NULL;
276#ifdef DEBUG_TIMING
277 struct timeval t;
278#endif
279
280 /* No need to save flags, we aleady have interrupts off and we
281 already hold the SMI lock. */
282 spin_lock(&(smi_info->msg_lock));
283
284 /* Pick the high priority queue first. */
Corey Minyardb0defcd2006-03-26 01:37:20 -0800285 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700286 entry = smi_info->hp_xmit_msgs.next;
Corey Minyardb0defcd2006-03-26 01:37:20 -0800287 } else if (!list_empty(&(smi_info->xmit_msgs))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700288 entry = smi_info->xmit_msgs.next;
289 }
290
Corey Minyardb0defcd2006-03-26 01:37:20 -0800291 if (!entry) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700292 smi_info->curr_msg = NULL;
293 rv = SI_SM_IDLE;
294 } else {
295 int err;
296
297 list_del(entry);
298 smi_info->curr_msg = list_entry(entry,
299 struct ipmi_smi_msg,
300 link);
301#ifdef DEBUG_TIMING
302 do_gettimeofday(&t);
303 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
304#endif
Alan Sterne041c682006-03-27 01:16:30 -0800305 err = atomic_notifier_call_chain(&xaction_notifier_list,
306 0, smi_info);
Corey Minyardea940272005-11-07 00:59:59 -0800307 if (err & NOTIFY_STOP_MASK) {
308 rv = SI_SM_CALL_WITHOUT_DELAY;
309 goto out;
310 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700311 err = smi_info->handlers->start_transaction(
312 smi_info->si_sm,
313 smi_info->curr_msg->data,
314 smi_info->curr_msg->data_size);
315 if (err) {
316 return_hosed_msg(smi_info);
317 }
318
319 rv = SI_SM_CALL_WITHOUT_DELAY;
320 }
Corey Minyardea940272005-11-07 00:59:59 -0800321 out:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700322 spin_unlock(&(smi_info->msg_lock));
323
324 return rv;
325}
326
327static void start_enable_irq(struct smi_info *smi_info)
328{
329 unsigned char msg[2];
330
331 /* If we are enabling interrupts, we have to tell the
332 BMC to use them. */
333 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
334 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
335
336 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
337 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
338}
339
340static void start_clear_flags(struct smi_info *smi_info)
341{
342 unsigned char msg[3];
343
344 /* Make sure the watchdog pre-timeout flag is not set at startup. */
345 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
346 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
347 msg[2] = WDT_PRE_TIMEOUT_INT;
348
349 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
350 smi_info->si_state = SI_CLEARING_FLAGS;
351}
352
353/* When we have a situtaion where we run out of memory and cannot
354 allocate messages, we just leave them in the BMC and run the system
355 polled until we can allocate some memory. Once we have some
356 memory, we will re-enable the interrupt. */
357static inline void disable_si_irq(struct smi_info *smi_info)
358{
Corey Minyardb0defcd2006-03-26 01:37:20 -0800359 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700360 disable_irq_nosync(smi_info->irq);
361 smi_info->interrupt_disabled = 1;
362 }
363}
364
365static inline void enable_si_irq(struct smi_info *smi_info)
366{
367 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
368 enable_irq(smi_info->irq);
369 smi_info->interrupt_disabled = 0;
370 }
371}
372
373static void handle_flags(struct smi_info *smi_info)
374{
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700375 retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
377 /* Watchdog pre-timeout */
378 spin_lock(&smi_info->count_lock);
379 smi_info->watchdog_pretimeouts++;
380 spin_unlock(&smi_info->count_lock);
381
382 start_clear_flags(smi_info);
383 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
384 spin_unlock(&(smi_info->si_lock));
385 ipmi_smi_watchdog_pretimeout(smi_info->intf);
386 spin_lock(&(smi_info->si_lock));
387 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
388 /* Messages available. */
389 smi_info->curr_msg = ipmi_alloc_smi_msg();
Corey Minyardb0defcd2006-03-26 01:37:20 -0800390 if (!smi_info->curr_msg) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700391 disable_si_irq(smi_info);
392 smi_info->si_state = SI_NORMAL;
393 return;
394 }
395 enable_si_irq(smi_info);
396
397 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
398 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
399 smi_info->curr_msg->data_size = 2;
400
401 smi_info->handlers->start_transaction(
402 smi_info->si_sm,
403 smi_info->curr_msg->data,
404 smi_info->curr_msg->data_size);
405 smi_info->si_state = SI_GETTING_MESSAGES;
406 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
407 /* Events available. */
408 smi_info->curr_msg = ipmi_alloc_smi_msg();
Corey Minyardb0defcd2006-03-26 01:37:20 -0800409 if (!smi_info->curr_msg) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410 disable_si_irq(smi_info);
411 smi_info->si_state = SI_NORMAL;
412 return;
413 }
414 enable_si_irq(smi_info);
415
416 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
417 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
418 smi_info->curr_msg->data_size = 2;
419
420 smi_info->handlers->start_transaction(
421 smi_info->si_sm,
422 smi_info->curr_msg->data,
423 smi_info->curr_msg->data_size);
424 smi_info->si_state = SI_GETTING_EVENTS;
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700425 } else if (smi_info->msg_flags & OEM_DATA_AVAIL) {
426 if (smi_info->oem_data_avail_handler)
427 if (smi_info->oem_data_avail_handler(smi_info))
428 goto retry;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700429 } else {
430 smi_info->si_state = SI_NORMAL;
431 }
432}
433
434static void handle_transaction_done(struct smi_info *smi_info)
435{
436 struct ipmi_smi_msg *msg;
437#ifdef DEBUG_TIMING
438 struct timeval t;
439
440 do_gettimeofday(&t);
441 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
442#endif
443 switch (smi_info->si_state) {
444 case SI_NORMAL:
Corey Minyardb0defcd2006-03-26 01:37:20 -0800445 if (!smi_info->curr_msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700446 break;
447
448 smi_info->curr_msg->rsp_size
449 = smi_info->handlers->get_result(
450 smi_info->si_sm,
451 smi_info->curr_msg->rsp,
452 IPMI_MAX_MSG_LENGTH);
453
454 /* Do this here becase deliver_recv_msg() releases the
455 lock, and a new message can be put in during the
456 time the lock is released. */
457 msg = smi_info->curr_msg;
458 smi_info->curr_msg = NULL;
459 deliver_recv_msg(smi_info, msg);
460 break;
461
462 case SI_GETTING_FLAGS:
463 {
464 unsigned char msg[4];
465 unsigned int len;
466
467 /* We got the flags from the SMI, now handle them. */
468 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
469 if (msg[2] != 0) {
470 /* Error fetching flags, just give up for
471 now. */
472 smi_info->si_state = SI_NORMAL;
473 } else if (len < 4) {
474 /* Hmm, no flags. That's technically illegal, but
475 don't use uninitialized data. */
476 smi_info->si_state = SI_NORMAL;
477 } else {
478 smi_info->msg_flags = msg[3];
479 handle_flags(smi_info);
480 }
481 break;
482 }
483
484 case SI_CLEARING_FLAGS:
485 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
486 {
487 unsigned char msg[3];
488
489 /* We cleared the flags. */
490 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
491 if (msg[2] != 0) {
492 /* Error clearing flags */
493 printk(KERN_WARNING
494 "ipmi_si: Error clearing flags: %2.2x\n",
495 msg[2]);
496 }
497 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
498 start_enable_irq(smi_info);
499 else
500 smi_info->si_state = SI_NORMAL;
501 break;
502 }
503
504 case SI_GETTING_EVENTS:
505 {
506 smi_info->curr_msg->rsp_size
507 = smi_info->handlers->get_result(
508 smi_info->si_sm,
509 smi_info->curr_msg->rsp,
510 IPMI_MAX_MSG_LENGTH);
511
512 /* Do this here becase deliver_recv_msg() releases the
513 lock, and a new message can be put in during the
514 time the lock is released. */
515 msg = smi_info->curr_msg;
516 smi_info->curr_msg = NULL;
517 if (msg->rsp[2] != 0) {
518 /* Error getting event, probably done. */
519 msg->done(msg);
520
521 /* Take off the event flag. */
522 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
523 handle_flags(smi_info);
524 } else {
525 spin_lock(&smi_info->count_lock);
526 smi_info->events++;
527 spin_unlock(&smi_info->count_lock);
528
529 /* Do this before we deliver the message
530 because delivering the message releases the
531 lock and something else can mess with the
532 state. */
533 handle_flags(smi_info);
534
535 deliver_recv_msg(smi_info, msg);
536 }
537 break;
538 }
539
540 case SI_GETTING_MESSAGES:
541 {
542 smi_info->curr_msg->rsp_size
543 = smi_info->handlers->get_result(
544 smi_info->si_sm,
545 smi_info->curr_msg->rsp,
546 IPMI_MAX_MSG_LENGTH);
547
548 /* Do this here becase deliver_recv_msg() releases the
549 lock, and a new message can be put in during the
550 time the lock is released. */
551 msg = smi_info->curr_msg;
552 smi_info->curr_msg = NULL;
553 if (msg->rsp[2] != 0) {
554 /* Error getting event, probably done. */
555 msg->done(msg);
556
557 /* Take off the msg flag. */
558 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
559 handle_flags(smi_info);
560 } else {
561 spin_lock(&smi_info->count_lock);
562 smi_info->incoming_messages++;
563 spin_unlock(&smi_info->count_lock);
564
565 /* Do this before we deliver the message
566 because delivering the message releases the
567 lock and something else can mess with the
568 state. */
569 handle_flags(smi_info);
570
571 deliver_recv_msg(smi_info, msg);
572 }
573 break;
574 }
575
576 case SI_ENABLE_INTERRUPTS1:
577 {
578 unsigned char msg[4];
579
580 /* We got the flags from the SMI, now handle them. */
581 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
582 if (msg[2] != 0) {
583 printk(KERN_WARNING
584 "ipmi_si: Could not enable interrupts"
585 ", failed get, using polled mode.\n");
586 smi_info->si_state = SI_NORMAL;
587 } else {
588 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
589 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
590 msg[2] = msg[3] | 1; /* enable msg queue int */
591 smi_info->handlers->start_transaction(
592 smi_info->si_sm, msg, 3);
593 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
594 }
595 break;
596 }
597
598 case SI_ENABLE_INTERRUPTS2:
599 {
600 unsigned char msg[4];
601
602 /* We got the flags from the SMI, now handle them. */
603 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
604 if (msg[2] != 0) {
605 printk(KERN_WARNING
606 "ipmi_si: Could not enable interrupts"
607 ", failed set, using polled mode.\n");
608 }
609 smi_info->si_state = SI_NORMAL;
610 break;
611 }
612 }
613}
614
615/* Called on timeouts and events. Timeouts should pass the elapsed
616 time, interrupts should pass in zero. */
617static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
618 int time)
619{
620 enum si_sm_result si_sm_result;
621
622 restart:
623 /* There used to be a loop here that waited a little while
624 (around 25us) before giving up. That turned out to be
625 pointless, the minimum delays I was seeing were in the 300us
626 range, which is far too long to wait in an interrupt. So
627 we just run until the state machine tells us something
628 happened or it needs a delay. */
629 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
630 time = 0;
631 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
632 {
633 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
634 }
635
636 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
637 {
638 spin_lock(&smi_info->count_lock);
639 smi_info->complete_transactions++;
640 spin_unlock(&smi_info->count_lock);
641
642 handle_transaction_done(smi_info);
643 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
644 }
645 else if (si_sm_result == SI_SM_HOSED)
646 {
647 spin_lock(&smi_info->count_lock);
648 smi_info->hosed_count++;
649 spin_unlock(&smi_info->count_lock);
650
651 /* Do the before return_hosed_msg, because that
652 releases the lock. */
653 smi_info->si_state = SI_NORMAL;
654 if (smi_info->curr_msg != NULL) {
655 /* If we were handling a user message, format
656 a response to send to the upper layer to
657 tell it about the error. */
658 return_hosed_msg(smi_info);
659 }
660 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
661 }
662
663 /* We prefer handling attn over new messages. */
664 if (si_sm_result == SI_SM_ATTN)
665 {
666 unsigned char msg[2];
667
668 spin_lock(&smi_info->count_lock);
669 smi_info->attentions++;
670 spin_unlock(&smi_info->count_lock);
671
672 /* Got a attn, send down a get message flags to see
673 what's causing it. It would be better to handle
674 this in the upper layer, but due to the way
675 interrupts work with the SMI, that's not really
676 possible. */
677 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
678 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
679
680 smi_info->handlers->start_transaction(
681 smi_info->si_sm, msg, 2);
682 smi_info->si_state = SI_GETTING_FLAGS;
683 goto restart;
684 }
685
686 /* If we are currently idle, try to start the next message. */
687 if (si_sm_result == SI_SM_IDLE) {
688 spin_lock(&smi_info->count_lock);
689 smi_info->idles++;
690 spin_unlock(&smi_info->count_lock);
691
692 si_sm_result = start_next_msg(smi_info);
693 if (si_sm_result != SI_SM_IDLE)
694 goto restart;
695 }
696
697 if ((si_sm_result == SI_SM_IDLE)
698 && (atomic_read(&smi_info->req_events)))
699 {
700 /* We are idle and the upper layer requested that I fetch
701 events, so do so. */
702 unsigned char msg[2];
703
704 spin_lock(&smi_info->count_lock);
705 smi_info->flag_fetches++;
706 spin_unlock(&smi_info->count_lock);
707
708 atomic_set(&smi_info->req_events, 0);
709 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
710 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
711
712 smi_info->handlers->start_transaction(
713 smi_info->si_sm, msg, 2);
714 smi_info->si_state = SI_GETTING_FLAGS;
715 goto restart;
716 }
717
718 return si_sm_result;
719}
720
721static void sender(void *send_info,
722 struct ipmi_smi_msg *msg,
723 int priority)
724{
725 struct smi_info *smi_info = send_info;
726 enum si_sm_result result;
727 unsigned long flags;
728#ifdef DEBUG_TIMING
729 struct timeval t;
730#endif
731
732 spin_lock_irqsave(&(smi_info->msg_lock), flags);
733#ifdef DEBUG_TIMING
734 do_gettimeofday(&t);
735 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
736#endif
737
738 if (smi_info->run_to_completion) {
739 /* If we are running to completion, then throw it in
740 the list and run transactions until everything is
741 clear. Priority doesn't matter here. */
742 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
743
744 /* We have to release the msg lock and claim the smi
745 lock in this case, because of race conditions. */
746 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
747
748 spin_lock_irqsave(&(smi_info->si_lock), flags);
749 result = smi_event_handler(smi_info, 0);
750 while (result != SI_SM_IDLE) {
751 udelay(SI_SHORT_TIMEOUT_USEC);
752 result = smi_event_handler(smi_info,
753 SI_SHORT_TIMEOUT_USEC);
754 }
755 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
756 return;
757 } else {
758 if (priority > 0) {
759 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
760 } else {
761 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
762 }
763 }
764 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
765
766 spin_lock_irqsave(&(smi_info->si_lock), flags);
767 if ((smi_info->si_state == SI_NORMAL)
768 && (smi_info->curr_msg == NULL))
769 {
770 start_next_msg(smi_info);
771 si_restart_short_timer(smi_info);
772 }
773 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
774}
775
776static void set_run_to_completion(void *send_info, int i_run_to_completion)
777{
778 struct smi_info *smi_info = send_info;
779 enum si_sm_result result;
780 unsigned long flags;
781
782 spin_lock_irqsave(&(smi_info->si_lock), flags);
783
784 smi_info->run_to_completion = i_run_to_completion;
785 if (i_run_to_completion) {
786 result = smi_event_handler(smi_info, 0);
787 while (result != SI_SM_IDLE) {
788 udelay(SI_SHORT_TIMEOUT_USEC);
789 result = smi_event_handler(smi_info,
790 SI_SHORT_TIMEOUT_USEC);
791 }
792 }
793
794 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
795}
796
Corey Minyarda9a2c442005-11-07 01:00:03 -0800797static int ipmi_thread(void *data)
798{
799 struct smi_info *smi_info = data;
Matt Domsche9a705a2005-11-07 01:00:04 -0800800 unsigned long flags;
Corey Minyarda9a2c442005-11-07 01:00:03 -0800801 enum si_sm_result smi_result;
802
Corey Minyarda9a2c442005-11-07 01:00:03 -0800803 set_user_nice(current, 19);
Matt Domsche9a705a2005-11-07 01:00:04 -0800804 while (!kthread_should_stop()) {
Corey Minyarda9a2c442005-11-07 01:00:03 -0800805 spin_lock_irqsave(&(smi_info->si_lock), flags);
806 smi_result=smi_event_handler(smi_info, 0);
807 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
Matt Domsche9a705a2005-11-07 01:00:04 -0800808 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
809 /* do nothing */
810 }
811 else if (smi_result == SI_SM_CALL_WITH_DELAY)
Corey Minyarda9a2c442005-11-07 01:00:03 -0800812 udelay(1);
Matt Domsche9a705a2005-11-07 01:00:04 -0800813 else
814 schedule_timeout_interruptible(1);
Corey Minyarda9a2c442005-11-07 01:00:03 -0800815 }
Corey Minyarda9a2c442005-11-07 01:00:03 -0800816 return 0;
817}
818
819
Linus Torvalds1da177e2005-04-16 15:20:36 -0700820static void poll(void *send_info)
821{
822 struct smi_info *smi_info = send_info;
823
824 smi_event_handler(smi_info, 0);
825}
826
827static void request_events(void *send_info)
828{
829 struct smi_info *smi_info = send_info;
830
831 atomic_set(&smi_info->req_events, 1);
832}
833
834static int initialized = 0;
835
836/* Must be called with interrupts off and with the si_lock held. */
837static void si_restart_short_timer(struct smi_info *smi_info)
838{
839#if defined(CONFIG_HIGH_RES_TIMERS)
840 unsigned long flags;
841 unsigned long jiffies_now;
Corey Minyard75b07682005-09-06 15:18:38 -0700842 unsigned long seq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700843
844 if (del_timer(&(smi_info->si_timer))) {
845 /* If we don't delete the timer, then it will go off
846 immediately, anyway. So we only process if we
847 actually delete the timer. */
848
Corey Minyard75b07682005-09-06 15:18:38 -0700849 do {
850 seq = read_seqbegin_irqsave(&xtime_lock, flags);
851 jiffies_now = jiffies;
852 smi_info->si_timer.expires = jiffies_now;
853 smi_info->si_timer.arch_cycle_expires
854 = get_arch_cycles(jiffies_now);
855 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700856
857 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
858
859 add_timer(&(smi_info->si_timer));
860 spin_lock_irqsave(&smi_info->count_lock, flags);
861 smi_info->timeout_restarts++;
862 spin_unlock_irqrestore(&smi_info->count_lock, flags);
863 }
864#endif
865}
866
867static void smi_timeout(unsigned long data)
868{
869 struct smi_info *smi_info = (struct smi_info *) data;
870 enum si_sm_result smi_result;
871 unsigned long flags;
872 unsigned long jiffies_now;
Corey Minyardc4edff12005-11-07 00:59:56 -0800873 long time_diff;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700874#ifdef DEBUG_TIMING
875 struct timeval t;
876#endif
877
Corey Minyarda9a2c442005-11-07 01:00:03 -0800878 if (atomic_read(&smi_info->stop_operation))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700879 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700880
881 spin_lock_irqsave(&(smi_info->si_lock), flags);
882#ifdef DEBUG_TIMING
883 do_gettimeofday(&t);
884 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
885#endif
886 jiffies_now = jiffies;
Corey Minyardc4edff12005-11-07 00:59:56 -0800887 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700888 * SI_USEC_PER_JIFFY);
889 smi_result = smi_event_handler(smi_info, time_diff);
890
891 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
892
893 smi_info->last_timeout_jiffies = jiffies_now;
894
Corey Minyardb0defcd2006-03-26 01:37:20 -0800895 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700896 /* Running with interrupts, only do long timeouts. */
897 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
898 spin_lock_irqsave(&smi_info->count_lock, flags);
899 smi_info->long_timeouts++;
900 spin_unlock_irqrestore(&smi_info->count_lock, flags);
901 goto do_add_timer;
902 }
903
904 /* If the state machine asks for a short delay, then shorten
905 the timer timeout. */
906 if (smi_result == SI_SM_CALL_WITH_DELAY) {
Corey Minyard75b07682005-09-06 15:18:38 -0700907#if defined(CONFIG_HIGH_RES_TIMERS)
908 unsigned long seq;
909#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700910 spin_lock_irqsave(&smi_info->count_lock, flags);
911 smi_info->short_timeouts++;
912 spin_unlock_irqrestore(&smi_info->count_lock, flags);
913#if defined(CONFIG_HIGH_RES_TIMERS)
Corey Minyard75b07682005-09-06 15:18:38 -0700914 do {
915 seq = read_seqbegin_irqsave(&xtime_lock, flags);
916 smi_info->si_timer.expires = jiffies;
917 smi_info->si_timer.arch_cycle_expires
918 = get_arch_cycles(smi_info->si_timer.expires);
919 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700920 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
921#else
922 smi_info->si_timer.expires = jiffies + 1;
923#endif
924 } else {
925 spin_lock_irqsave(&smi_info->count_lock, flags);
926 smi_info->long_timeouts++;
927 spin_unlock_irqrestore(&smi_info->count_lock, flags);
928 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
929#if defined(CONFIG_HIGH_RES_TIMERS)
Corey Minyard75b07682005-09-06 15:18:38 -0700930 smi_info->si_timer.arch_cycle_expires = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700931#endif
932 }
933
934 do_add_timer:
935 add_timer(&(smi_info->si_timer));
936}
937
938static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
939{
940 struct smi_info *smi_info = data;
941 unsigned long flags;
942#ifdef DEBUG_TIMING
943 struct timeval t;
944#endif
945
946 spin_lock_irqsave(&(smi_info->si_lock), flags);
947
948 spin_lock(&smi_info->count_lock);
949 smi_info->interrupts++;
950 spin_unlock(&smi_info->count_lock);
951
Corey Minyarda9a2c442005-11-07 01:00:03 -0800952 if (atomic_read(&smi_info->stop_operation))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700953 goto out;
954
955#ifdef DEBUG_TIMING
956 do_gettimeofday(&t);
957 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
958#endif
959 smi_event_handler(smi_info, 0);
960 out:
961 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
962 return IRQ_HANDLED;
963}
964
Corey Minyard9dbf68f2005-05-01 08:59:11 -0700965static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs)
966{
967 struct smi_info *smi_info = data;
968 /* We need to clear the IRQ flag for the BT interface. */
969 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
970 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
971 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
972 return si_irq_handler(irq, data, regs);
973}
974
975
Linus Torvalds1da177e2005-04-16 15:20:36 -0700976static struct ipmi_smi_handlers handlers =
977{
978 .owner = THIS_MODULE,
979 .sender = sender,
980 .request_events = request_events,
981 .set_run_to_completion = set_run_to_completion,
982 .poll = poll,
983};
984
985/* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
986 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
987
988#define SI_MAX_PARMS 4
Corey Minyardb0defcd2006-03-26 01:37:20 -0800989static LIST_HEAD(smi_infos);
990static DECLARE_MUTEX(smi_infos_lock);
991static int smi_num; /* Used to sequence the SMIs */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992
Linus Torvalds1da177e2005-04-16 15:20:36 -0700993#define DEFAULT_REGSPACING 1
994
995static int si_trydefaults = 1;
996static char *si_type[SI_MAX_PARMS];
997#define MAX_SI_TYPE_STR 30
998static char si_type_str[MAX_SI_TYPE_STR];
999static unsigned long addrs[SI_MAX_PARMS];
1000static int num_addrs;
1001static unsigned int ports[SI_MAX_PARMS];
1002static int num_ports;
1003static int irqs[SI_MAX_PARMS];
1004static int num_irqs;
1005static int regspacings[SI_MAX_PARMS];
1006static int num_regspacings = 0;
1007static int regsizes[SI_MAX_PARMS];
1008static int num_regsizes = 0;
1009static int regshifts[SI_MAX_PARMS];
1010static int num_regshifts = 0;
1011static int slave_addrs[SI_MAX_PARMS];
1012static int num_slave_addrs = 0;
1013
1014
1015module_param_named(trydefaults, si_trydefaults, bool, 0);
1016MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1017 " default scan of the KCS and SMIC interface at the standard"
1018 " address");
1019module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1020MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1021 " interface separated by commas. The types are 'kcs',"
1022 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1023 " the first interface to kcs and the second to bt");
1024module_param_array(addrs, long, &num_addrs, 0);
1025MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1026 " addresses separated by commas. Only use if an interface"
1027 " is in memory. Otherwise, set it to zero or leave"
1028 " it blank.");
1029module_param_array(ports, int, &num_ports, 0);
1030MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1031 " addresses separated by commas. Only use if an interface"
1032 " is a port. Otherwise, set it to zero or leave"
1033 " it blank.");
1034module_param_array(irqs, int, &num_irqs, 0);
1035MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1036 " addresses separated by commas. Only use if an interface"
1037 " has an interrupt. Otherwise, set it to zero or leave"
1038 " it blank.");
1039module_param_array(regspacings, int, &num_regspacings, 0);
1040MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1041 " and each successive register used by the interface. For"
1042 " instance, if the start address is 0xca2 and the spacing"
1043 " is 2, then the second address is at 0xca4. Defaults"
1044 " to 1.");
1045module_param_array(regsizes, int, &num_regsizes, 0);
1046MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1047 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1048 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1049 " the 8-bit IPMI register has to be read from a larger"
1050 " register.");
1051module_param_array(regshifts, int, &num_regshifts, 0);
1052MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1053 " IPMI register, in bits. For instance, if the data"
1054 " is read from a 32-bit word and the IPMI data is in"
1055 " bit 8-15, then the shift would be 8");
1056module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1057MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1058 " the controller. Normally this is 0x20, but can be"
1059 " overridden by this parm. This is an array indexed"
1060 " by interface number.");
1061
1062
Corey Minyardb0defcd2006-03-26 01:37:20 -08001063#define IPMI_IO_ADDR_SPACE 0
Linus Torvalds1da177e2005-04-16 15:20:36 -07001064#define IPMI_MEM_ADDR_SPACE 1
Corey Minyardb0defcd2006-03-26 01:37:20 -08001065static char *addr_space_to_str[] = { "I/O", "memory" };
Linus Torvalds1da177e2005-04-16 15:20:36 -07001066
Corey Minyardb0defcd2006-03-26 01:37:20 -08001067static void std_irq_cleanup(struct smi_info *info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001068{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001069 if (info->si_type == SI_BT)
1070 /* Disable the interrupt in the BT interface. */
1071 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1072 free_irq(info->irq, info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001073}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001074
1075static int std_irq_setup(struct smi_info *info)
1076{
1077 int rv;
1078
Corey Minyardb0defcd2006-03-26 01:37:20 -08001079 if (!info->irq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001080 return 0;
1081
Corey Minyard9dbf68f2005-05-01 08:59:11 -07001082 if (info->si_type == SI_BT) {
1083 rv = request_irq(info->irq,
1084 si_bt_irq_handler,
1085 SA_INTERRUPT,
1086 DEVICE_NAME,
1087 info);
Corey Minyardb0defcd2006-03-26 01:37:20 -08001088 if (!rv)
Corey Minyard9dbf68f2005-05-01 08:59:11 -07001089 /* Enable the interrupt in the BT interface. */
1090 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1091 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1092 } else
1093 rv = request_irq(info->irq,
1094 si_irq_handler,
1095 SA_INTERRUPT,
1096 DEVICE_NAME,
1097 info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001098 if (rv) {
1099 printk(KERN_WARNING
1100 "ipmi_si: %s unable to claim interrupt %d,"
1101 " running polled\n",
1102 DEVICE_NAME, info->irq);
1103 info->irq = 0;
1104 } else {
Corey Minyardb0defcd2006-03-26 01:37:20 -08001105 info->irq_cleanup = std_irq_cleanup;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001106 printk(" Using irq %d\n", info->irq);
1107 }
1108
1109 return rv;
1110}
1111
Linus Torvalds1da177e2005-04-16 15:20:36 -07001112static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1113{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001114 unsigned int addr = io->addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001115
Corey Minyardb0defcd2006-03-26 01:37:20 -08001116 return inb(addr + (offset * io->regspacing));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001117}
1118
1119static void port_outb(struct si_sm_io *io, unsigned int offset,
1120 unsigned char b)
1121{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001122 unsigned int addr = io->addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001123
Corey Minyardb0defcd2006-03-26 01:37:20 -08001124 outb(b, addr + (offset * io->regspacing));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001125}
1126
1127static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1128{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001129 unsigned int addr = io->addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001130
Corey Minyardb0defcd2006-03-26 01:37:20 -08001131 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001132}
1133
1134static void port_outw(struct si_sm_io *io, unsigned int offset,
1135 unsigned char b)
1136{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001137 unsigned int addr = io->addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001138
Corey Minyardb0defcd2006-03-26 01:37:20 -08001139 outw(b << io->regshift, addr + (offset * io->regspacing));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140}
1141
1142static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1143{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001144 unsigned int addr = io->addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001145
Corey Minyardb0defcd2006-03-26 01:37:20 -08001146 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001147}
1148
1149static void port_outl(struct si_sm_io *io, unsigned int offset,
1150 unsigned char b)
1151{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001152 unsigned int addr = io->addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001153
Corey Minyardb0defcd2006-03-26 01:37:20 -08001154 outl(b << io->regshift, addr+(offset * io->regspacing));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001155}
1156
1157static void port_cleanup(struct smi_info *info)
1158{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001159 unsigned int addr = info->io.addr_data;
1160 int mapsize;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001161
Corey Minyardb0defcd2006-03-26 01:37:20 -08001162 if (addr) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001163 mapsize = ((info->io_size * info->io.regspacing)
1164 - (info->io.regspacing - info->io.regsize));
1165
Corey Minyardb0defcd2006-03-26 01:37:20 -08001166 release_region (addr, mapsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001167 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001168}
1169
1170static int port_setup(struct smi_info *info)
1171{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001172 unsigned int addr = info->io.addr_data;
1173 int mapsize;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001174
Corey Minyardb0defcd2006-03-26 01:37:20 -08001175 if (!addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176 return -ENODEV;
1177
1178 info->io_cleanup = port_cleanup;
1179
1180 /* Figure out the actual inb/inw/inl/etc routine to use based
1181 upon the register size. */
1182 switch (info->io.regsize) {
1183 case 1:
1184 info->io.inputb = port_inb;
1185 info->io.outputb = port_outb;
1186 break;
1187 case 2:
1188 info->io.inputb = port_inw;
1189 info->io.outputb = port_outw;
1190 break;
1191 case 4:
1192 info->io.inputb = port_inl;
1193 info->io.outputb = port_outl;
1194 break;
1195 default:
1196 printk("ipmi_si: Invalid register size: %d\n",
1197 info->io.regsize);
1198 return -EINVAL;
1199 }
1200
1201 /* Calculate the total amount of memory to claim. This is an
1202 * unusual looking calculation, but it avoids claiming any
1203 * more memory than it has to. It will claim everything
1204 * between the first address to the end of the last full
1205 * register. */
1206 mapsize = ((info->io_size * info->io.regspacing)
1207 - (info->io.regspacing - info->io.regsize));
1208
Corey Minyardb0defcd2006-03-26 01:37:20 -08001209 if (request_region(addr, mapsize, DEVICE_NAME) == NULL)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001210 return -EIO;
1211 return 0;
1212}
1213
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001214static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001215{
1216 return readb((io->addr)+(offset * io->regspacing));
1217}
1218
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001219static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001220 unsigned char b)
1221{
1222 writeb(b, (io->addr)+(offset * io->regspacing));
1223}
1224
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001225static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001226{
1227 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1228 && 0xff;
1229}
1230
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001231static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001232 unsigned char b)
1233{
1234 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1235}
1236
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001237static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001238{
1239 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1240 && 0xff;
1241}
1242
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001243static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001244 unsigned char b)
1245{
1246 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1247}
1248
1249#ifdef readq
1250static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1251{
1252 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1253 && 0xff;
1254}
1255
1256static void mem_outq(struct si_sm_io *io, unsigned int offset,
1257 unsigned char b)
1258{
1259 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1260}
1261#endif
1262
1263static void mem_cleanup(struct smi_info *info)
1264{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001265 unsigned long addr = info->io.addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001266 int mapsize;
1267
1268 if (info->io.addr) {
1269 iounmap(info->io.addr);
1270
1271 mapsize = ((info->io_size * info->io.regspacing)
1272 - (info->io.regspacing - info->io.regsize));
1273
Corey Minyardb0defcd2006-03-26 01:37:20 -08001274 release_mem_region(addr, mapsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001276}
1277
1278static int mem_setup(struct smi_info *info)
1279{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001280 unsigned long addr = info->io.addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001281 int mapsize;
1282
Corey Minyardb0defcd2006-03-26 01:37:20 -08001283 if (!addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001284 return -ENODEV;
1285
1286 info->io_cleanup = mem_cleanup;
1287
1288 /* Figure out the actual readb/readw/readl/etc routine to use based
1289 upon the register size. */
1290 switch (info->io.regsize) {
1291 case 1:
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001292 info->io.inputb = intf_mem_inb;
1293 info->io.outputb = intf_mem_outb;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001294 break;
1295 case 2:
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001296 info->io.inputb = intf_mem_inw;
1297 info->io.outputb = intf_mem_outw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001298 break;
1299 case 4:
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001300 info->io.inputb = intf_mem_inl;
1301 info->io.outputb = intf_mem_outl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001302 break;
1303#ifdef readq
1304 case 8:
1305 info->io.inputb = mem_inq;
1306 info->io.outputb = mem_outq;
1307 break;
1308#endif
1309 default:
1310 printk("ipmi_si: Invalid register size: %d\n",
1311 info->io.regsize);
1312 return -EINVAL;
1313 }
1314
1315 /* Calculate the total amount of memory to claim. This is an
1316 * unusual looking calculation, but it avoids claiming any
1317 * more memory than it has to. It will claim everything
1318 * between the first address to the end of the last full
1319 * register. */
1320 mapsize = ((info->io_size * info->io.regspacing)
1321 - (info->io.regspacing - info->io.regsize));
1322
Corey Minyardb0defcd2006-03-26 01:37:20 -08001323 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001324 return -EIO;
1325
Corey Minyardb0defcd2006-03-26 01:37:20 -08001326 info->io.addr = ioremap(addr, mapsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001327 if (info->io.addr == NULL) {
Corey Minyardb0defcd2006-03-26 01:37:20 -08001328 release_mem_region(addr, mapsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001329 return -EIO;
1330 }
1331 return 0;
1332}
1333
Corey Minyardb0defcd2006-03-26 01:37:20 -08001334
1335static __devinit void hardcode_find_bmc(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001336{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001337 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001338 struct smi_info *info;
1339
Corey Minyardb0defcd2006-03-26 01:37:20 -08001340 for (i = 0; i < SI_MAX_PARMS; i++) {
1341 if (!ports[i] && !addrs[i])
1342 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001343
Corey Minyardb0defcd2006-03-26 01:37:20 -08001344 info = kzalloc(sizeof(*info), GFP_KERNEL);
1345 if (!info)
1346 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001347
Corey Minyardb0defcd2006-03-26 01:37:20 -08001348 info->addr_source = "hardcoded";
1349
1350 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1351 info->si_type = SI_KCS;
1352 } else if (strcmp(si_type[i], "smic") == 0) {
1353 info->si_type = SI_SMIC;
1354 } else if (strcmp(si_type[i], "bt") == 0) {
1355 info->si_type = SI_BT;
1356 } else {
1357 printk(KERN_WARNING
1358 "ipmi_si: Interface type specified "
1359 "for interface %d, was invalid: %s\n",
1360 i, si_type[i]);
1361 kfree(info);
1362 continue;
1363 }
1364
1365 if (ports[i]) {
1366 /* An I/O port */
1367 info->io_setup = port_setup;
1368 info->io.addr_data = ports[i];
1369 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1370 } else if (addrs[i]) {
1371 /* A memory port */
1372 info->io_setup = mem_setup;
1373 info->io.addr_data = addrs[i];
1374 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1375 } else {
1376 printk(KERN_WARNING
1377 "ipmi_si: Interface type specified "
1378 "for interface %d, "
1379 "but port and address were not set or "
1380 "set to zero.\n", i);
1381 kfree(info);
1382 continue;
1383 }
1384
1385 info->io.addr = NULL;
1386 info->io.regspacing = regspacings[i];
1387 if (!info->io.regspacing)
1388 info->io.regspacing = DEFAULT_REGSPACING;
1389 info->io.regsize = regsizes[i];
1390 if (!info->io.regsize)
1391 info->io.regsize = DEFAULT_REGSPACING;
1392 info->io.regshift = regshifts[i];
1393 info->irq = irqs[i];
1394 if (info->irq)
1395 info->irq_setup = std_irq_setup;
1396
1397 try_smi_init(info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001398 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399}
1400
Len Brown84663612005-08-24 12:09:07 -04001401#ifdef CONFIG_ACPI
Linus Torvalds1da177e2005-04-16 15:20:36 -07001402
1403#include <linux/acpi.h>
1404
1405/* Once we get an ACPI failure, we don't try any more, because we go
1406 through the tables sequentially. Once we don't find a table, there
1407 are no more. */
1408static int acpi_failure = 0;
1409
1410/* For GPE-type interrupts. */
1411static u32 ipmi_acpi_gpe(void *context)
1412{
1413 struct smi_info *smi_info = context;
1414 unsigned long flags;
1415#ifdef DEBUG_TIMING
1416 struct timeval t;
1417#endif
1418
1419 spin_lock_irqsave(&(smi_info->si_lock), flags);
1420
1421 spin_lock(&smi_info->count_lock);
1422 smi_info->interrupts++;
1423 spin_unlock(&smi_info->count_lock);
1424
Corey Minyarda9a2c442005-11-07 01:00:03 -08001425 if (atomic_read(&smi_info->stop_operation))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426 goto out;
1427
1428#ifdef DEBUG_TIMING
1429 do_gettimeofday(&t);
1430 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1431#endif
1432 smi_event_handler(smi_info, 0);
1433 out:
1434 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1435
1436 return ACPI_INTERRUPT_HANDLED;
1437}
1438
Corey Minyardb0defcd2006-03-26 01:37:20 -08001439static void acpi_gpe_irq_cleanup(struct smi_info *info)
1440{
1441 if (!info->irq)
1442 return;
1443
1444 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1445}
1446
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447static int acpi_gpe_irq_setup(struct smi_info *info)
1448{
1449 acpi_status status;
1450
Corey Minyardb0defcd2006-03-26 01:37:20 -08001451 if (!info->irq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001452 return 0;
1453
1454 /* FIXME - is level triggered right? */
1455 status = acpi_install_gpe_handler(NULL,
1456 info->irq,
1457 ACPI_GPE_LEVEL_TRIGGERED,
1458 &ipmi_acpi_gpe,
1459 info);
1460 if (status != AE_OK) {
1461 printk(KERN_WARNING
1462 "ipmi_si: %s unable to claim ACPI GPE %d,"
1463 " running polled\n",
1464 DEVICE_NAME, info->irq);
1465 info->irq = 0;
1466 return -EINVAL;
1467 } else {
Corey Minyardb0defcd2006-03-26 01:37:20 -08001468 info->irq_cleanup = acpi_gpe_irq_cleanup;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001469 printk(" Using ACPI GPE %d\n", info->irq);
1470 return 0;
1471 }
1472}
1473
Linus Torvalds1da177e2005-04-16 15:20:36 -07001474/*
1475 * Defined at
1476 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1477 */
1478struct SPMITable {
1479 s8 Signature[4];
1480 u32 Length;
1481 u8 Revision;
1482 u8 Checksum;
1483 s8 OEMID[6];
1484 s8 OEMTableID[8];
1485 s8 OEMRevision[4];
1486 s8 CreatorID[4];
1487 s8 CreatorRevision[4];
1488 u8 InterfaceType;
1489 u8 IPMIlegacy;
1490 s16 SpecificationRevision;
1491
1492 /*
1493 * Bit 0 - SCI interrupt supported
1494 * Bit 1 - I/O APIC/SAPIC
1495 */
1496 u8 InterruptType;
1497
1498 /* If bit 0 of InterruptType is set, then this is the SCI
1499 interrupt in the GPEx_STS register. */
1500 u8 GPE;
1501
1502 s16 Reserved;
1503
1504 /* If bit 1 of InterruptType is set, then this is the I/O
1505 APIC/SAPIC interrupt. */
1506 u32 GlobalSystemInterrupt;
1507
1508 /* The actual register address. */
1509 struct acpi_generic_address addr;
1510
1511 u8 UID[4];
1512
1513 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1514};
1515
Corey Minyardb0defcd2006-03-26 01:37:20 -08001516static __devinit int try_init_acpi(struct SPMITable *spmi)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001517{
1518 struct smi_info *info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001519 char *io_type;
1520 u8 addr_space;
1521
Linus Torvalds1da177e2005-04-16 15:20:36 -07001522 if (spmi->IPMIlegacy != 1) {
1523 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1524 return -ENODEV;
1525 }
1526
1527 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1528 addr_space = IPMI_MEM_ADDR_SPACE;
1529 else
1530 addr_space = IPMI_IO_ADDR_SPACE;
Corey Minyardb0defcd2006-03-26 01:37:20 -08001531
1532 info = kzalloc(sizeof(*info), GFP_KERNEL);
1533 if (!info) {
1534 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1535 return -ENOMEM;
1536 }
1537
1538 info->addr_source = "ACPI";
Linus Torvalds1da177e2005-04-16 15:20:36 -07001539
Linus Torvalds1da177e2005-04-16 15:20:36 -07001540 /* Figure out the interface type. */
1541 switch (spmi->InterfaceType)
1542 {
1543 case 1: /* KCS */
Corey Minyardb0defcd2006-03-26 01:37:20 -08001544 info->si_type = SI_KCS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001545 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001546 case 2: /* SMIC */
Corey Minyardb0defcd2006-03-26 01:37:20 -08001547 info->si_type = SI_SMIC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001548 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001549 case 3: /* BT */
Corey Minyardb0defcd2006-03-26 01:37:20 -08001550 info->si_type = SI_BT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001551 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001552 default:
1553 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1554 spmi->InterfaceType);
Corey Minyardb0defcd2006-03-26 01:37:20 -08001555 kfree(info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001556 return -EIO;
1557 }
1558
Linus Torvalds1da177e2005-04-16 15:20:36 -07001559 if (spmi->InterruptType & 1) {
1560 /* We've got a GPE interrupt. */
1561 info->irq = spmi->GPE;
1562 info->irq_setup = acpi_gpe_irq_setup;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001563 } else if (spmi->InterruptType & 2) {
1564 /* We've got an APIC/SAPIC interrupt. */
1565 info->irq = spmi->GlobalSystemInterrupt;
1566 info->irq_setup = std_irq_setup;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001567 } else {
1568 /* Use the default interrupt setting. */
1569 info->irq = 0;
1570 info->irq_setup = NULL;
1571 }
1572
Corey Minyard35bc37a2005-05-01 08:59:10 -07001573 if (spmi->addr.register_bit_width) {
1574 /* A (hopefully) properly formed register bit width. */
Corey Minyard35bc37a2005-05-01 08:59:10 -07001575 info->io.regspacing = spmi->addr.register_bit_width / 8;
1576 } else {
Corey Minyard35bc37a2005-05-01 08:59:10 -07001577 info->io.regspacing = DEFAULT_REGSPACING;
1578 }
Corey Minyardb0defcd2006-03-26 01:37:20 -08001579 info->io.regsize = info->io.regspacing;
1580 info->io.regshift = spmi->addr.register_bit_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001581
1582 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1583 io_type = "memory";
1584 info->io_setup = mem_setup;
Corey Minyardb0defcd2006-03-26 01:37:20 -08001585 info->io.addr_type = IPMI_IO_ADDR_SPACE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001586 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1587 io_type = "I/O";
1588 info->io_setup = port_setup;
Corey Minyardb0defcd2006-03-26 01:37:20 -08001589 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001590 } else {
1591 kfree(info);
1592 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1593 return -EIO;
1594 }
Corey Minyardb0defcd2006-03-26 01:37:20 -08001595 info->io.addr_data = spmi->addr.address;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001596
Corey Minyardb0defcd2006-03-26 01:37:20 -08001597 try_smi_init(info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001598
Linus Torvalds1da177e2005-04-16 15:20:36 -07001599 return 0;
1600}
Corey Minyardb0defcd2006-03-26 01:37:20 -08001601
1602static __devinit void acpi_find_bmc(void)
1603{
1604 acpi_status status;
1605 struct SPMITable *spmi;
1606 int i;
1607
1608 if (acpi_disabled)
1609 return;
1610
1611 if (acpi_failure)
1612 return;
1613
1614 for (i = 0; ; i++) {
1615 status = acpi_get_firmware_table("SPMI", i+1,
1616 ACPI_LOGICAL_ADDRESSING,
1617 (struct acpi_table_header **)
1618 &spmi);
1619 if (status != AE_OK)
1620 return;
1621
1622 try_init_acpi(spmi);
1623 }
1624}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001625#endif
1626
Matt Domscha9fad4c2006-01-11 12:17:44 -08001627#ifdef CONFIG_DMI
Corey Minyardb0defcd2006-03-26 01:37:20 -08001628struct dmi_ipmi_data
Linus Torvalds1da177e2005-04-16 15:20:36 -07001629{
1630 u8 type;
1631 u8 addr_space;
1632 unsigned long base_addr;
1633 u8 irq;
1634 u8 offset;
1635 u8 slave_addr;
Corey Minyardb0defcd2006-03-26 01:37:20 -08001636};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001637
Corey Minyardb0defcd2006-03-26 01:37:20 -08001638static int __devinit decode_dmi(struct dmi_header *dm,
1639 struct dmi_ipmi_data *dmi)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001640{
Corey Minyarde8b33612005-09-06 15:18:45 -07001641 u8 *data = (u8 *)dm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001642 unsigned long base_addr;
1643 u8 reg_spacing;
Andrey Paninb224cd32005-09-06 15:18:37 -07001644 u8 len = dm->length;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001645
Corey Minyardb0defcd2006-03-26 01:37:20 -08001646 dmi->type = data[4];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001647
1648 memcpy(&base_addr, data+8, sizeof(unsigned long));
1649 if (len >= 0x11) {
1650 if (base_addr & 1) {
1651 /* I/O */
1652 base_addr &= 0xFFFE;
Corey Minyardb0defcd2006-03-26 01:37:20 -08001653 dmi->addr_space = IPMI_IO_ADDR_SPACE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001654 }
1655 else {
1656 /* Memory */
Corey Minyardb0defcd2006-03-26 01:37:20 -08001657 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001658 }
1659 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1660 is odd. */
Corey Minyardb0defcd2006-03-26 01:37:20 -08001661 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001662
Corey Minyardb0defcd2006-03-26 01:37:20 -08001663 dmi->irq = data[0x11];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001664
1665 /* The top two bits of byte 0x10 hold the register spacing. */
Andrey Paninb224cd32005-09-06 15:18:37 -07001666 reg_spacing = (data[0x10] & 0xC0) >> 6;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001667 switch(reg_spacing){
1668 case 0x00: /* Byte boundaries */
Corey Minyardb0defcd2006-03-26 01:37:20 -08001669 dmi->offset = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001670 break;
1671 case 0x01: /* 32-bit boundaries */
Corey Minyardb0defcd2006-03-26 01:37:20 -08001672 dmi->offset = 4;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001673 break;
1674 case 0x02: /* 16-byte boundaries */
Corey Minyardb0defcd2006-03-26 01:37:20 -08001675 dmi->offset = 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001676 break;
1677 default:
1678 /* Some other interface, just ignore it. */
1679 return -EIO;
1680 }
1681 } else {
1682 /* Old DMI spec. */
Corey Minyard92068802005-05-01 08:59:10 -07001683 /* Note that technically, the lower bit of the base
1684 * address should be 1 if the address is I/O and 0 if
1685 * the address is in memory. So many systems get that
1686 * wrong (and all that I have seen are I/O) so we just
1687 * ignore that bit and assume I/O. Systems that use
1688 * memory should use the newer spec, anyway. */
Corey Minyardb0defcd2006-03-26 01:37:20 -08001689 dmi->base_addr = base_addr & 0xfffe;
1690 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1691 dmi->offset = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001692 }
1693
Corey Minyardb0defcd2006-03-26 01:37:20 -08001694 dmi->slave_addr = data[6];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001695
Corey Minyardb0defcd2006-03-26 01:37:20 -08001696 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001697}
1698
Corey Minyardb0defcd2006-03-26 01:37:20 -08001699static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001700{
Corey Minyarde8b33612005-09-06 15:18:45 -07001701 struct smi_info *info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001702
Corey Minyardb0defcd2006-03-26 01:37:20 -08001703 info = kzalloc(sizeof(*info), GFP_KERNEL);
1704 if (!info) {
1705 printk(KERN_ERR
1706 "ipmi_si: Could not allocate SI data\n");
1707 return;
1708 }
1709
1710 info->addr_source = "SMBIOS";
Linus Torvalds1da177e2005-04-16 15:20:36 -07001711
Corey Minyarde8b33612005-09-06 15:18:45 -07001712 switch (ipmi_data->type) {
Corey Minyardb0defcd2006-03-26 01:37:20 -08001713 case 0x01: /* KCS */
1714 info->si_type = SI_KCS;
1715 break;
1716 case 0x02: /* SMIC */
1717 info->si_type = SI_SMIC;
1718 break;
1719 case 0x03: /* BT */
1720 info->si_type = SI_BT;
1721 break;
1722 default:
1723 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001724 }
1725
Corey Minyardb0defcd2006-03-26 01:37:20 -08001726 switch (ipmi_data->addr_space) {
1727 case IPMI_MEM_ADDR_SPACE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001728 info->io_setup = mem_setup;
Corey Minyardb0defcd2006-03-26 01:37:20 -08001729 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1730 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001731
Corey Minyardb0defcd2006-03-26 01:37:20 -08001732 case IPMI_IO_ADDR_SPACE:
1733 info->io_setup = port_setup;
1734 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1735 break;
1736
1737 default:
1738 kfree(info);
1739 printk(KERN_WARNING
1740 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
1741 ipmi_data->addr_space);
1742 return;
1743 }
1744 info->io.addr_data = ipmi_data->base_addr;
1745
1746 info->io.regspacing = ipmi_data->offset;
1747 if (!info->io.regspacing)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001748 info->io.regspacing = DEFAULT_REGSPACING;
1749 info->io.regsize = DEFAULT_REGSPACING;
Corey Minyardb0defcd2006-03-26 01:37:20 -08001750 info->io.regshift = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001751
1752 info->slave_addr = ipmi_data->slave_addr;
1753
Corey Minyardb0defcd2006-03-26 01:37:20 -08001754 info->irq = ipmi_data->irq;
1755 if (info->irq)
1756 info->irq_setup = std_irq_setup;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757
Corey Minyardb0defcd2006-03-26 01:37:20 -08001758 try_smi_init(info);
1759}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001760
Corey Minyardb0defcd2006-03-26 01:37:20 -08001761static void __devinit dmi_find_bmc(void)
1762{
1763 struct dmi_device *dev = NULL;
1764 struct dmi_ipmi_data data;
1765 int rv;
1766
1767 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
1768 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
1769 if (!rv)
1770 try_init_dmi(&data);
1771 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001772}
Matt Domscha9fad4c2006-01-11 12:17:44 -08001773#endif /* CONFIG_DMI */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774
1775#ifdef CONFIG_PCI
1776
Corey Minyardb0defcd2006-03-26 01:37:20 -08001777#define PCI_ERMC_CLASSCODE 0x0C0700
1778#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
1779#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
1780#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
1781#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
1782#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
1783
Linus Torvalds1da177e2005-04-16 15:20:36 -07001784#define PCI_HP_VENDOR_ID 0x103C
1785#define PCI_MMC_DEVICE_ID 0x121A
1786#define PCI_MMC_ADDR_CW 0x10
1787
Corey Minyardb0defcd2006-03-26 01:37:20 -08001788static void ipmi_pci_cleanup(struct smi_info *info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001789{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001790 struct pci_dev *pdev = info->addr_source_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001791
Corey Minyardb0defcd2006-03-26 01:37:20 -08001792 pci_disable_device(pdev);
1793}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001794
Corey Minyardb0defcd2006-03-26 01:37:20 -08001795static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
1796 const struct pci_device_id *ent)
1797{
1798 int rv;
1799 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
1800 struct smi_info *info;
1801 int first_reg_offset = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001802
Corey Minyardb0defcd2006-03-26 01:37:20 -08001803 info = kzalloc(sizeof(*info), GFP_KERNEL);
1804 if (!info)
1805 return ENOMEM;
1806
1807 info->addr_source = "PCI";
1808
1809 switch (class_type) {
1810 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
1811 info->si_type = SI_SMIC;
1812 break;
1813
1814 case PCI_ERMC_CLASSCODE_TYPE_KCS:
1815 info->si_type = SI_KCS;
1816 break;
1817
1818 case PCI_ERMC_CLASSCODE_TYPE_BT:
1819 info->si_type = SI_BT;
1820 break;
1821
1822 default:
1823 kfree(info);
1824 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
1825 pci_name(pdev), class_type);
1826 return ENOMEM;
Corey Minyarde8b33612005-09-06 15:18:45 -07001827 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001828
Corey Minyardb0defcd2006-03-26 01:37:20 -08001829 rv = pci_enable_device(pdev);
1830 if (rv) {
1831 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
1832 pci_name(pdev));
1833 kfree(info);
1834 return rv;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001835 }
1836
Corey Minyardb0defcd2006-03-26 01:37:20 -08001837 info->addr_source_cleanup = ipmi_pci_cleanup;
1838 info->addr_source_data = pdev;
1839
1840 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
1841 first_reg_offset = 1;
1842
1843 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
1844 info->io_setup = port_setup;
1845 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1846 } else {
1847 info->io_setup = mem_setup;
1848 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001849 }
Corey Minyardb0defcd2006-03-26 01:37:20 -08001850 info->io.addr_data = pci_resource_start(pdev, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851
Corey Minyardb0defcd2006-03-26 01:37:20 -08001852 info->io.regspacing = DEFAULT_REGSPACING;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001853 info->io.regsize = DEFAULT_REGSPACING;
Corey Minyardb0defcd2006-03-26 01:37:20 -08001854 info->io.regshift = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001855
Corey Minyardb0defcd2006-03-26 01:37:20 -08001856 info->irq = pdev->irq;
1857 if (info->irq)
1858 info->irq_setup = std_irq_setup;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001859
Corey Minyard50c812b2006-03-26 01:37:21 -08001860 info->dev = &pdev->dev;
1861
Corey Minyardb0defcd2006-03-26 01:37:20 -08001862 return try_smi_init(info);
1863}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001864
Corey Minyardb0defcd2006-03-26 01:37:20 -08001865static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
1866{
1867}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001868
Corey Minyardb0defcd2006-03-26 01:37:20 -08001869#ifdef CONFIG_PM
1870static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
1871{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001872 return 0;
1873}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001874
Corey Minyardb0defcd2006-03-26 01:37:20 -08001875static int ipmi_pci_resume(struct pci_dev *pdev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001876{
Corey Minyardb0defcd2006-03-26 01:37:20 -08001877 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001878}
Corey Minyardb0defcd2006-03-26 01:37:20 -08001879#endif
1880
1881static struct pci_device_id ipmi_pci_devices[] = {
1882 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
1883 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE) }
1884};
1885MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
1886
1887static struct pci_driver ipmi_pci_driver = {
1888 .name = DEVICE_NAME,
1889 .id_table = ipmi_pci_devices,
1890 .probe = ipmi_pci_probe,
1891 .remove = __devexit_p(ipmi_pci_remove),
1892#ifdef CONFIG_PM
1893 .suspend = ipmi_pci_suspend,
1894 .resume = ipmi_pci_resume,
1895#endif
1896};
1897#endif /* CONFIG_PCI */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001898
1899
1900static int try_get_dev_id(struct smi_info *smi_info)
1901{
Corey Minyard50c812b2006-03-26 01:37:21 -08001902 unsigned char msg[2];
1903 unsigned char *resp;
1904 unsigned long resp_len;
1905 enum si_sm_result smi_result;
1906 int rv = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907
1908 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
Corey Minyardb0defcd2006-03-26 01:37:20 -08001909 if (!resp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001910 return -ENOMEM;
1911
1912 /* Do a Get Device ID command, since it comes back with some
1913 useful info. */
1914 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1915 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1916 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1917
1918 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1919 for (;;)
1920 {
Corey Minyardc3e7e792005-11-07 01:00:02 -08001921 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1922 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
Nishanth Aravamudanda4cd8d2005-09-10 00:27:30 -07001923 schedule_timeout_uninterruptible(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001924 smi_result = smi_info->handlers->event(
1925 smi_info->si_sm, 100);
1926 }
1927 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1928 {
1929 smi_result = smi_info->handlers->event(
1930 smi_info->si_sm, 0);
1931 }
1932 else
1933 break;
1934 }
1935 if (smi_result == SI_SM_HOSED) {
1936 /* We couldn't get the state machine to run, so whatever's at
1937 the port is probably not an IPMI SMI interface. */
1938 rv = -ENODEV;
1939 goto out;
1940 }
1941
1942 /* Otherwise, we got some data. */
1943 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1944 resp, IPMI_MAX_MSG_LENGTH);
Corey Minyard50c812b2006-03-26 01:37:21 -08001945 if (resp_len < 14) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001946 /* That's odd, it should be longer. */
1947 rv = -EINVAL;
1948 goto out;
1949 }
1950
1951 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1952 /* That's odd, it shouldn't be able to fail. */
1953 rv = -EINVAL;
1954 goto out;
1955 }
1956
1957 /* Record info from the get device id, in case we need it. */
Corey Minyard50c812b2006-03-26 01:37:21 -08001958 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001959
1960 out:
1961 kfree(resp);
1962 return rv;
1963}
1964
1965static int type_file_read_proc(char *page, char **start, off_t off,
1966 int count, int *eof, void *data)
1967{
1968 char *out = (char *) page;
1969 struct smi_info *smi = data;
1970
1971 switch (smi->si_type) {
1972 case SI_KCS:
1973 return sprintf(out, "kcs\n");
1974 case SI_SMIC:
1975 return sprintf(out, "smic\n");
1976 case SI_BT:
1977 return sprintf(out, "bt\n");
1978 default:
1979 return 0;
1980 }
1981}
1982
1983static int stat_file_read_proc(char *page, char **start, off_t off,
1984 int count, int *eof, void *data)
1985{
1986 char *out = (char *) page;
1987 struct smi_info *smi = data;
1988
1989 out += sprintf(out, "interrupts_enabled: %d\n",
Corey Minyardb0defcd2006-03-26 01:37:20 -08001990 smi->irq && !smi->interrupt_disabled);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001991 out += sprintf(out, "short_timeouts: %ld\n",
1992 smi->short_timeouts);
1993 out += sprintf(out, "long_timeouts: %ld\n",
1994 smi->long_timeouts);
1995 out += sprintf(out, "timeout_restarts: %ld\n",
1996 smi->timeout_restarts);
1997 out += sprintf(out, "idles: %ld\n",
1998 smi->idles);
1999 out += sprintf(out, "interrupts: %ld\n",
2000 smi->interrupts);
2001 out += sprintf(out, "attentions: %ld\n",
2002 smi->attentions);
2003 out += sprintf(out, "flag_fetches: %ld\n",
2004 smi->flag_fetches);
2005 out += sprintf(out, "hosed_count: %ld\n",
2006 smi->hosed_count);
2007 out += sprintf(out, "complete_transactions: %ld\n",
2008 smi->complete_transactions);
2009 out += sprintf(out, "events: %ld\n",
2010 smi->events);
2011 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2012 smi->watchdog_pretimeouts);
2013 out += sprintf(out, "incoming_messages: %ld\n",
2014 smi->incoming_messages);
2015
2016 return (out - ((char *) page));
2017}
2018
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002019/*
2020 * oem_data_avail_to_receive_msg_avail
2021 * @info - smi_info structure with msg_flags set
2022 *
2023 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2024 * Returns 1 indicating need to re-run handle_flags().
2025 */
2026static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2027{
Corey Minyarde8b33612005-09-06 15:18:45 -07002028 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2029 RECEIVE_MSG_AVAIL);
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002030 return 1;
2031}
2032
2033/*
2034 * setup_dell_poweredge_oem_data_handler
2035 * @info - smi_info.device_id must be populated
2036 *
2037 * Systems that match, but have firmware version < 1.40 may assert
2038 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2039 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2040 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2041 * as RECEIVE_MSG_AVAIL instead.
2042 *
2043 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2044 * assert the OEM[012] bits, and if it did, the driver would have to
2045 * change to handle that properly, we don't actually check for the
2046 * firmware version.
2047 * Device ID = 0x20 BMC on PowerEdge 8G servers
2048 * Device Revision = 0x80
2049 * Firmware Revision1 = 0x01 BMC version 1.40
2050 * Firmware Revision2 = 0x40 BCD encoded
2051 * IPMI Version = 0x51 IPMI 1.5
2052 * Manufacturer ID = A2 02 00 Dell IANA
2053 *
Corey Minyardd5a2b892005-11-07 00:59:58 -08002054 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2055 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2056 *
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002057 */
2058#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2059#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2060#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
Corey Minyard50c812b2006-03-26 01:37:21 -08002061#define DELL_IANA_MFR_ID 0x0002a2
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002062static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2063{
2064 struct ipmi_device_id *id = &smi_info->device_id;
Corey Minyard50c812b2006-03-26 01:37:21 -08002065 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
Corey Minyardd5a2b892005-11-07 00:59:58 -08002066 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2067 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
Corey Minyard50c812b2006-03-26 01:37:21 -08002068 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
Corey Minyardd5a2b892005-11-07 00:59:58 -08002069 smi_info->oem_data_avail_handler =
2070 oem_data_avail_to_receive_msg_avail;
2071 }
2072 else if (ipmi_version_major(id) < 1 ||
2073 (ipmi_version_major(id) == 1 &&
2074 ipmi_version_minor(id) < 5)) {
2075 smi_info->oem_data_avail_handler =
2076 oem_data_avail_to_receive_msg_avail;
2077 }
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002078 }
2079}
2080
Corey Minyardea940272005-11-07 00:59:59 -08002081#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2082static void return_hosed_msg_badsize(struct smi_info *smi_info)
2083{
2084 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2085
2086 /* Make it a reponse */
2087 msg->rsp[0] = msg->data[0] | 4;
2088 msg->rsp[1] = msg->data[1];
2089 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2090 msg->rsp_size = 3;
2091 smi_info->curr_msg = NULL;
2092 deliver_recv_msg(smi_info, msg);
2093}
2094
2095/*
2096 * dell_poweredge_bt_xaction_handler
2097 * @info - smi_info.device_id must be populated
2098 *
2099 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2100 * not respond to a Get SDR command if the length of the data
2101 * requested is exactly 0x3A, which leads to command timeouts and no
2102 * data returned. This intercepts such commands, and causes userspace
2103 * callers to try again with a different-sized buffer, which succeeds.
2104 */
2105
2106#define STORAGE_NETFN 0x0A
2107#define STORAGE_CMD_GET_SDR 0x23
2108static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2109 unsigned long unused,
2110 void *in)
2111{
2112 struct smi_info *smi_info = in;
2113 unsigned char *data = smi_info->curr_msg->data;
2114 unsigned int size = smi_info->curr_msg->data_size;
2115 if (size >= 8 &&
2116 (data[0]>>2) == STORAGE_NETFN &&
2117 data[1] == STORAGE_CMD_GET_SDR &&
2118 data[7] == 0x3A) {
2119 return_hosed_msg_badsize(smi_info);
2120 return NOTIFY_STOP;
2121 }
2122 return NOTIFY_DONE;
2123}
2124
2125static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2126 .notifier_call = dell_poweredge_bt_xaction_handler,
2127};
2128
2129/*
2130 * setup_dell_poweredge_bt_xaction_handler
2131 * @info - smi_info.device_id must be filled in already
2132 *
2133 * Fills in smi_info.device_id.start_transaction_pre_hook
2134 * when we know what function to use there.
2135 */
2136static void
2137setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2138{
2139 struct ipmi_device_id *id = &smi_info->device_id;
Corey Minyard50c812b2006-03-26 01:37:21 -08002140 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
Corey Minyardea940272005-11-07 00:59:59 -08002141 smi_info->si_type == SI_BT)
2142 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2143}
2144
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002145/*
2146 * setup_oem_data_handler
2147 * @info - smi_info.device_id must be filled in already
2148 *
2149 * Fills in smi_info.device_id.oem_data_available_handler
2150 * when we know what function to use there.
2151 */
2152
2153static void setup_oem_data_handler(struct smi_info *smi_info)
2154{
2155 setup_dell_poweredge_oem_data_handler(smi_info);
2156}
2157
Corey Minyardea940272005-11-07 00:59:59 -08002158static void setup_xaction_handlers(struct smi_info *smi_info)
2159{
2160 setup_dell_poweredge_bt_xaction_handler(smi_info);
2161}
2162
Corey Minyarda9a2c442005-11-07 01:00:03 -08002163static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2164{
Matt Domsch44f080c2005-11-18 01:10:54 -08002165 if (smi_info->thread != NULL && smi_info->thread != ERR_PTR(-ENOMEM))
Matt Domsche9a705a2005-11-07 01:00:04 -08002166 kthread_stop(smi_info->thread);
Corey Minyarda9a2c442005-11-07 01:00:03 -08002167 del_timer_sync(&smi_info->si_timer);
2168}
2169
Corey Minyardb0defcd2006-03-26 01:37:20 -08002170static struct ipmi_default_vals
Linus Torvalds1da177e2005-04-16 15:20:36 -07002171{
Corey Minyardb0defcd2006-03-26 01:37:20 -08002172 int type;
2173 int port;
2174} __devinit ipmi_defaults[] =
2175{
2176 { .type = SI_KCS, .port = 0xca2 },
2177 { .type = SI_SMIC, .port = 0xca9 },
2178 { .type = SI_BT, .port = 0xe4 },
2179 { .port = 0 }
2180};
Linus Torvalds1da177e2005-04-16 15:20:36 -07002181
Corey Minyardb0defcd2006-03-26 01:37:20 -08002182static __devinit void default_find_bmc(void)
2183{
2184 struct smi_info *info;
2185 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002186
Corey Minyardb0defcd2006-03-26 01:37:20 -08002187 for (i = 0; ; i++) {
2188 if (!ipmi_defaults[i].port)
2189 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002190
Corey Minyardb0defcd2006-03-26 01:37:20 -08002191 info = kzalloc(sizeof(*info), GFP_KERNEL);
2192 if (!info)
2193 return;
2194
2195 info->addr_source = NULL;
2196
2197 info->si_type = ipmi_defaults[i].type;
2198 info->io_setup = port_setup;
2199 info->io.addr_data = ipmi_defaults[i].port;
2200 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2201
2202 info->io.addr = NULL;
2203 info->io.regspacing = DEFAULT_REGSPACING;
2204 info->io.regsize = DEFAULT_REGSPACING;
2205 info->io.regshift = 0;
2206
2207 if (try_smi_init(info) == 0) {
2208 /* Found one... */
2209 printk(KERN_INFO "ipmi_si: Found default %s state"
2210 " machine at %s address 0x%lx\n",
2211 si_to_str[info->si_type],
2212 addr_space_to_str[info->io.addr_type],
2213 info->io.addr_data);
2214 return;
2215 }
2216 }
2217}
2218
2219static int is_new_interface(struct smi_info *info)
2220{
2221 struct smi_info *e;
2222
2223 list_for_each_entry(e, &smi_infos, link) {
2224 if (e->io.addr_type != info->io.addr_type)
2225 continue;
2226 if (e->io.addr_data == info->io.addr_data)
2227 return 0;
2228 }
2229
2230 return 1;
2231}
2232
2233static int try_smi_init(struct smi_info *new_smi)
2234{
2235 int rv;
2236
2237 if (new_smi->addr_source) {
2238 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2239 " machine at %s address 0x%lx, slave address 0x%x,"
2240 " irq %d\n",
2241 new_smi->addr_source,
2242 si_to_str[new_smi->si_type],
2243 addr_space_to_str[new_smi->io.addr_type],
2244 new_smi->io.addr_data,
2245 new_smi->slave_addr, new_smi->irq);
2246 }
2247
2248 down(&smi_infos_lock);
2249 if (!is_new_interface(new_smi)) {
2250 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2251 rv = -EBUSY;
2252 goto out_err;
2253 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002254
2255 /* So we know not to free it unless we have allocated one. */
2256 new_smi->intf = NULL;
2257 new_smi->si_sm = NULL;
2258 new_smi->handlers = NULL;
2259
Corey Minyardb0defcd2006-03-26 01:37:20 -08002260 switch (new_smi->si_type) {
2261 case SI_KCS:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002262 new_smi->handlers = &kcs_smi_handlers;
Corey Minyardb0defcd2006-03-26 01:37:20 -08002263 break;
2264
2265 case SI_SMIC:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002266 new_smi->handlers = &smic_smi_handlers;
Corey Minyardb0defcd2006-03-26 01:37:20 -08002267 break;
2268
2269 case SI_BT:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002270 new_smi->handlers = &bt_smi_handlers;
Corey Minyardb0defcd2006-03-26 01:37:20 -08002271 break;
2272
2273 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002274 /* No support for anything else yet. */
2275 rv = -EIO;
2276 goto out_err;
2277 }
2278
2279 /* Allocate the state machine's data and initialize it. */
2280 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
Corey Minyardb0defcd2006-03-26 01:37:20 -08002281 if (!new_smi->si_sm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002282 printk(" Could not allocate state machine memory\n");
2283 rv = -ENOMEM;
2284 goto out_err;
2285 }
2286 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2287 &new_smi->io);
2288
2289 /* Now that we know the I/O size, we can set up the I/O. */
2290 rv = new_smi->io_setup(new_smi);
2291 if (rv) {
2292 printk(" Could not set up I/O space\n");
2293 goto out_err;
2294 }
2295
2296 spin_lock_init(&(new_smi->si_lock));
2297 spin_lock_init(&(new_smi->msg_lock));
2298 spin_lock_init(&(new_smi->count_lock));
2299
2300 /* Do low-level detection first. */
2301 if (new_smi->handlers->detect(new_smi->si_sm)) {
Corey Minyardb0defcd2006-03-26 01:37:20 -08002302 if (new_smi->addr_source)
2303 printk(KERN_INFO "ipmi_si: Interface detection"
2304 " failed\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002305 rv = -ENODEV;
2306 goto out_err;
2307 }
2308
2309 /* Attempt a get device id command. If it fails, we probably
Corey Minyardb0defcd2006-03-26 01:37:20 -08002310 don't have a BMC here. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002311 rv = try_get_dev_id(new_smi);
Corey Minyardb0defcd2006-03-26 01:37:20 -08002312 if (rv) {
2313 if (new_smi->addr_source)
2314 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2315 " at this location\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002316 goto out_err;
Corey Minyardb0defcd2006-03-26 01:37:20 -08002317 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002318
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002319 setup_oem_data_handler(new_smi);
Corey Minyardea940272005-11-07 00:59:59 -08002320 setup_xaction_handlers(new_smi);
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002321
Linus Torvalds1da177e2005-04-16 15:20:36 -07002322 /* Try to claim any interrupts. */
Corey Minyardb0defcd2006-03-26 01:37:20 -08002323 if (new_smi->irq_setup)
2324 new_smi->irq_setup(new_smi);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002325
2326 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2327 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2328 new_smi->curr_msg = NULL;
2329 atomic_set(&new_smi->req_events, 0);
2330 new_smi->run_to_completion = 0;
2331
2332 new_smi->interrupt_disabled = 0;
Corey Minyarda9a2c442005-11-07 01:00:03 -08002333 atomic_set(&new_smi->stop_operation, 0);
Corey Minyardb0defcd2006-03-26 01:37:20 -08002334 new_smi->intf_num = smi_num;
2335 smi_num++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002336
2337 /* Start clearing the flags before we enable interrupts or the
2338 timer to avoid racing with the timer. */
2339 start_clear_flags(new_smi);
2340 /* IRQ is defined to be set when non-zero. */
2341 if (new_smi->irq)
2342 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2343
2344 /* The ipmi_register_smi() code does some operations to
2345 determine the channel information, so we must be ready to
2346 handle operations before it is called. This means we have
2347 to stop the timer if we get an error after this point. */
2348 init_timer(&(new_smi->si_timer));
2349 new_smi->si_timer.data = (long) new_smi;
2350 new_smi->si_timer.function = smi_timeout;
2351 new_smi->last_timeout_jiffies = jiffies;
2352 new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
Corey Minyarda9a2c442005-11-07 01:00:03 -08002353
Linus Torvalds1da177e2005-04-16 15:20:36 -07002354 add_timer(&(new_smi->si_timer));
Matt Domsche9a705a2005-11-07 01:00:04 -08002355 if (new_smi->si_type != SI_BT)
2356 new_smi->thread = kthread_run(ipmi_thread, new_smi,
2357 "kipmi%d", new_smi->intf_num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002358
Corey Minyard50c812b2006-03-26 01:37:21 -08002359 if (!new_smi->dev) {
2360 /* If we don't already have a device from something
2361 * else (like PCI), then register a new one. */
2362 new_smi->pdev = platform_device_alloc("ipmi_si",
2363 new_smi->intf_num);
2364 if (rv) {
2365 printk(KERN_ERR
2366 "ipmi_si_intf:"
2367 " Unable to allocate platform device\n");
2368 goto out_err_stop_timer;
2369 }
2370 new_smi->dev = &new_smi->pdev->dev;
2371 new_smi->dev->driver = &ipmi_driver;
2372
2373 rv = platform_device_register(new_smi->pdev);
2374 if (rv) {
2375 printk(KERN_ERR
2376 "ipmi_si_intf:"
2377 " Unable to register system interface device:"
2378 " %d\n",
2379 rv);
2380 goto out_err_stop_timer;
2381 }
2382 new_smi->dev_registered = 1;
2383 }
2384
Linus Torvalds1da177e2005-04-16 15:20:36 -07002385 rv = ipmi_register_smi(&handlers,
2386 new_smi,
Corey Minyard50c812b2006-03-26 01:37:21 -08002387 &new_smi->device_id,
2388 new_smi->dev,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002389 new_smi->slave_addr,
2390 &(new_smi->intf));
2391 if (rv) {
2392 printk(KERN_ERR
2393 "ipmi_si: Unable to register device: error %d\n",
2394 rv);
2395 goto out_err_stop_timer;
2396 }
2397
2398 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2399 type_file_read_proc, NULL,
2400 new_smi, THIS_MODULE);
2401 if (rv) {
2402 printk(KERN_ERR
2403 "ipmi_si: Unable to create proc entry: %d\n",
2404 rv);
2405 goto out_err_stop_timer;
2406 }
2407
2408 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2409 stat_file_read_proc, NULL,
2410 new_smi, THIS_MODULE);
2411 if (rv) {
2412 printk(KERN_ERR
2413 "ipmi_si: Unable to create proc entry: %d\n",
2414 rv);
2415 goto out_err_stop_timer;
2416 }
2417
Corey Minyardb0defcd2006-03-26 01:37:20 -08002418 list_add_tail(&new_smi->link, &smi_infos);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002419
Corey Minyardb0defcd2006-03-26 01:37:20 -08002420 up(&smi_infos_lock);
2421
2422 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002423
2424 return 0;
2425
2426 out_err_stop_timer:
Corey Minyarda9a2c442005-11-07 01:00:03 -08002427 atomic_inc(&new_smi->stop_operation);
2428 wait_for_timer_and_thread(new_smi);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002429
2430 out_err:
2431 if (new_smi->intf)
2432 ipmi_unregister_smi(new_smi->intf);
2433
Corey Minyardb0defcd2006-03-26 01:37:20 -08002434 if (new_smi->irq_cleanup)
2435 new_smi->irq_cleanup(new_smi);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002436
2437 /* Wait until we know that we are out of any interrupt
2438 handlers might have been running before we freed the
2439 interrupt. */
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002440 synchronize_sched();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002441
2442 if (new_smi->si_sm) {
2443 if (new_smi->handlers)
2444 new_smi->handlers->cleanup(new_smi->si_sm);
2445 kfree(new_smi->si_sm);
2446 }
Corey Minyardb0defcd2006-03-26 01:37:20 -08002447 if (new_smi->addr_source_cleanup)
2448 new_smi->addr_source_cleanup(new_smi);
Paolo Galtieri7767e122005-12-15 12:34:28 -08002449 if (new_smi->io_cleanup)
2450 new_smi->io_cleanup(new_smi);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002451
Corey Minyard50c812b2006-03-26 01:37:21 -08002452 if (new_smi->dev_registered)
2453 platform_device_unregister(new_smi->pdev);
2454
2455 kfree(new_smi);
2456
Corey Minyardb0defcd2006-03-26 01:37:20 -08002457 up(&smi_infos_lock);
2458
Linus Torvalds1da177e2005-04-16 15:20:36 -07002459 return rv;
2460}
2461
Corey Minyardb0defcd2006-03-26 01:37:20 -08002462static __devinit int init_ipmi_si(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002463{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002464 int i;
2465 char *str;
Corey Minyard50c812b2006-03-26 01:37:21 -08002466 int rv;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002467
2468 if (initialized)
2469 return 0;
2470 initialized = 1;
2471
Corey Minyard50c812b2006-03-26 01:37:21 -08002472 /* Register the device drivers. */
2473 rv = driver_register(&ipmi_driver);
2474 if (rv) {
2475 printk(KERN_ERR
2476 "init_ipmi_si: Unable to register driver: %d\n",
2477 rv);
2478 return rv;
2479 }
2480
2481
Linus Torvalds1da177e2005-04-16 15:20:36 -07002482 /* Parse out the si_type string into its components. */
2483 str = si_type_str;
2484 if (*str != '\0') {
Corey Minyarde8b33612005-09-06 15:18:45 -07002485 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002486 si_type[i] = str;
2487 str = strchr(str, ',');
2488 if (str) {
2489 *str = '\0';
2490 str++;
2491 } else {
2492 break;
2493 }
2494 }
2495 }
2496
Corey Minyard1fdd75b2005-09-06 15:18:42 -07002497 printk(KERN_INFO "IPMI System Interface driver.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002498
Corey Minyardb0defcd2006-03-26 01:37:20 -08002499 hardcode_find_bmc();
2500
Matt Domscha9fad4c2006-01-11 12:17:44 -08002501#ifdef CONFIG_DMI
Andrey Paninb224cd32005-09-06 15:18:37 -07002502 dmi_find_bmc();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002503#endif
2504
Corey Minyardb0defcd2006-03-26 01:37:20 -08002505#ifdef CONFIG_ACPI
2506 if (si_trydefaults)
2507 acpi_find_bmc();
2508#endif
2509
2510#ifdef CONFIG_PCI
2511 pci_module_init(&ipmi_pci_driver);
2512#endif
2513
2514 if (si_trydefaults) {
2515 down(&smi_infos_lock);
2516 if (list_empty(&smi_infos)) {
2517 /* No BMC was found, try defaults. */
2518 up(&smi_infos_lock);
2519 default_find_bmc();
2520 } else {
2521 up(&smi_infos_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002522 }
2523 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002524
Corey Minyardb0defcd2006-03-26 01:37:20 -08002525 down(&smi_infos_lock);
2526 if (list_empty(&smi_infos)) {
2527 up(&smi_infos_lock);
2528#ifdef CONFIG_PCI
2529 pci_unregister_driver(&ipmi_pci_driver);
2530#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002531 printk("ipmi_si: Unable to find any System Interface(s)\n");
2532 return -ENODEV;
Corey Minyardb0defcd2006-03-26 01:37:20 -08002533 } else {
2534 up(&smi_infos_lock);
2535 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002536 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002537}
2538module_init(init_ipmi_si);
2539
Corey Minyardb0defcd2006-03-26 01:37:20 -08002540static void __devexit cleanup_one_si(struct smi_info *to_clean)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002541{
2542 int rv;
2543 unsigned long flags;
2544
Corey Minyardb0defcd2006-03-26 01:37:20 -08002545 if (!to_clean)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002546 return;
2547
Corey Minyardb0defcd2006-03-26 01:37:20 -08002548 list_del(&to_clean->link);
2549
Linus Torvalds1da177e2005-04-16 15:20:36 -07002550 /* Tell the timer and interrupt handlers that we are shutting
2551 down. */
2552 spin_lock_irqsave(&(to_clean->si_lock), flags);
2553 spin_lock(&(to_clean->msg_lock));
2554
Corey Minyarda9a2c442005-11-07 01:00:03 -08002555 atomic_inc(&to_clean->stop_operation);
Corey Minyardb0defcd2006-03-26 01:37:20 -08002556
2557 if (to_clean->irq_cleanup)
2558 to_clean->irq_cleanup(to_clean);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002559
2560 spin_unlock(&(to_clean->msg_lock));
2561 spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2562
2563 /* Wait until we know that we are out of any interrupt
2564 handlers might have been running before we freed the
2565 interrupt. */
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002566 synchronize_sched();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002567
Corey Minyarda9a2c442005-11-07 01:00:03 -08002568 wait_for_timer_and_thread(to_clean);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002569
2570 /* Interrupts and timeouts are stopped, now make sure the
2571 interface is in a clean state. */
Corey Minyarde8b33612005-09-06 15:18:45 -07002572 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002573 poll(to_clean);
Nishanth Aravamudanda4cd8d2005-09-10 00:27:30 -07002574 schedule_timeout_uninterruptible(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002575 }
2576
2577 rv = ipmi_unregister_smi(to_clean->intf);
2578 if (rv) {
2579 printk(KERN_ERR
2580 "ipmi_si: Unable to unregister device: errno=%d\n",
2581 rv);
2582 }
2583
2584 to_clean->handlers->cleanup(to_clean->si_sm);
2585
2586 kfree(to_clean->si_sm);
2587
Corey Minyardb0defcd2006-03-26 01:37:20 -08002588 if (to_clean->addr_source_cleanup)
2589 to_clean->addr_source_cleanup(to_clean);
Paolo Galtieri7767e122005-12-15 12:34:28 -08002590 if (to_clean->io_cleanup)
2591 to_clean->io_cleanup(to_clean);
Corey Minyard50c812b2006-03-26 01:37:21 -08002592
2593 if (to_clean->dev_registered)
2594 platform_device_unregister(to_clean->pdev);
2595
2596 kfree(to_clean);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002597}
2598
2599static __exit void cleanup_ipmi_si(void)
2600{
Corey Minyardb0defcd2006-03-26 01:37:20 -08002601 struct smi_info *e, *tmp_e;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002602
Corey Minyardb0defcd2006-03-26 01:37:20 -08002603 if (!initialized)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002604 return;
2605
Corey Minyardb0defcd2006-03-26 01:37:20 -08002606#ifdef CONFIG_PCI
2607 pci_unregister_driver(&ipmi_pci_driver);
2608#endif
2609
2610 down(&smi_infos_lock);
2611 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2612 cleanup_one_si(e);
2613 up(&smi_infos_lock);
Corey Minyard50c812b2006-03-26 01:37:21 -08002614
2615 driver_unregister(&ipmi_driver);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002616}
2617module_exit(cleanup_ipmi_si);
2618
2619MODULE_LICENSE("GPL");
Corey Minyard1fdd75b2005-09-06 15:18:42 -07002620MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2621MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");