blob: 5999b15f3e875f64f73b55d5e2b61f700ca78615 [file] [log] [blame]
Huang Shijie10a2bca2011-09-08 10:47:09 +08001/*
2 * Freescale GPMI NAND Flash Driver
3 *
4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
Fabio Estevam3d100952012-09-05 10:27:33 -030021
22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
Huang Shijie10a2bca2011-09-08 10:47:09 +080024#include <linux/clk.h>
25#include <linux/slab.h>
26#include <linux/interrupt.h>
Wolfram Sangdf16c862011-11-23 15:57:06 +010027#include <linux/module.h>
Huang Shijie10a2bca2011-09-08 10:47:09 +080028#include <linux/mtd/gpmi-nand.h>
29#include <linux/mtd/partitions.h>
Shawn Guo39febc02012-05-06 22:57:41 +080030#include <linux/pinctrl/consumer.h>
Huang Shijiee10db1f2012-05-04 21:42:05 -040031#include <linux/of.h>
32#include <linux/of_device.h>
Huang Shijiec50c6942012-07-03 16:24:32 +080033#include <linux/of_mtd.h>
Huang Shijie10a2bca2011-09-08 10:47:09 +080034#include "gpmi-nand.h"
35
36/* add our owner bbt descriptor */
37static uint8_t scan_ff_pattern[] = { 0xff };
38static struct nand_bbt_descr gpmi_bbt_descr = {
39 .options = 0,
40 .offs = 0,
41 .len = 1,
42 .pattern = scan_ff_pattern
43};
44
45/* We will use all the (page + OOB). */
46static struct nand_ecclayout gpmi_hw_ecclayout = {
47 .eccbytes = 0,
48 .eccpos = { 0, },
49 .oobfree = { {.offset = 0, .length = 0} }
50};
51
52static irqreturn_t bch_irq(int irq, void *cookie)
53{
54 struct gpmi_nand_data *this = cookie;
55
56 gpmi_clear_bch(this);
57 complete(&this->bch_done);
58 return IRQ_HANDLED;
59}
60
61/*
62 * Calculate the ECC strength by hand:
63 * E : The ECC strength.
64 * G : the length of Galois Field.
65 * N : The chunk count of per page.
66 * O : the oobsize of the NAND chip.
67 * M : the metasize of per page.
68 *
69 * The formula is :
70 * E * G * N
71 * ------------ <= (O - M)
72 * 8
73 *
74 * So, we get E by:
75 * (O - M) * 8
76 * E <= -------------
77 * G * N
78 */
79static inline int get_ecc_strength(struct gpmi_nand_data *this)
80{
81 struct bch_geometry *geo = &this->bch_geometry;
82 struct mtd_info *mtd = &this->mtd;
83 int ecc_strength;
84
85 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
86 / (geo->gf_len * geo->ecc_chunk_count);
87
88 /* We need the minor even number. */
89 return round_down(ecc_strength, 2);
90}
91
92int common_nfc_set_geometry(struct gpmi_nand_data *this)
93{
94 struct bch_geometry *geo = &this->bch_geometry;
95 struct mtd_info *mtd = &this->mtd;
96 unsigned int metadata_size;
97 unsigned int status_size;
98 unsigned int block_mark_bit_offset;
99
100 /*
101 * The size of the metadata can be changed, though we set it to 10
102 * bytes now. But it can't be too large, because we have to save
103 * enough space for BCH.
104 */
105 geo->metadata_size = 10;
106
107 /* The default for the length of Galois Field. */
108 geo->gf_len = 13;
109
110 /* The default for chunk size. There is no oobsize greater then 512. */
111 geo->ecc_chunk_size = 512;
112 while (geo->ecc_chunk_size < mtd->oobsize)
113 geo->ecc_chunk_size *= 2; /* keep C >= O */
114
115 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
116
117 /* We use the same ECC strength for all chunks. */
118 geo->ecc_strength = get_ecc_strength(this);
119 if (!geo->ecc_strength) {
Fabio Estevam3d100952012-09-05 10:27:33 -0300120 pr_err("wrong ECC strength.\n");
Huang Shijie10a2bca2011-09-08 10:47:09 +0800121 return -EINVAL;
122 }
123
124 geo->page_size = mtd->writesize + mtd->oobsize;
125 geo->payload_size = mtd->writesize;
126
127 /*
128 * The auxiliary buffer contains the metadata and the ECC status. The
129 * metadata is padded to the nearest 32-bit boundary. The ECC status
130 * contains one byte for every ECC chunk, and is also padded to the
131 * nearest 32-bit boundary.
132 */
133 metadata_size = ALIGN(geo->metadata_size, 4);
134 status_size = ALIGN(geo->ecc_chunk_count, 4);
135
136 geo->auxiliary_size = metadata_size + status_size;
137 geo->auxiliary_status_offset = metadata_size;
138
139 if (!this->swap_block_mark)
140 return 0;
141
142 /*
143 * We need to compute the byte and bit offsets of
144 * the physical block mark within the ECC-based view of the page.
145 *
146 * NAND chip with 2K page shows below:
147 * (Block Mark)
148 * | |
149 * | D |
150 * |<---->|
151 * V V
152 * +---+----------+-+----------+-+----------+-+----------+-+
153 * | M | data |E| data |E| data |E| data |E|
154 * +---+----------+-+----------+-+----------+-+----------+-+
155 *
156 * The position of block mark moves forward in the ECC-based view
157 * of page, and the delta is:
158 *
159 * E * G * (N - 1)
160 * D = (---------------- + M)
161 * 8
162 *
163 * With the formula to compute the ECC strength, and the condition
164 * : C >= O (C is the ecc chunk size)
165 *
166 * It's easy to deduce to the following result:
167 *
168 * E * G (O - M) C - M C - M
169 * ----------- <= ------- <= -------- < ---------
170 * 8 N N (N - 1)
171 *
172 * So, we get:
173 *
174 * E * G * (N - 1)
175 * D = (---------------- + M) < C
176 * 8
177 *
178 * The above inequality means the position of block mark
179 * within the ECC-based view of the page is still in the data chunk,
180 * and it's NOT in the ECC bits of the chunk.
181 *
182 * Use the following to compute the bit position of the
183 * physical block mark within the ECC-based view of the page:
184 * (page_size - D) * 8
185 *
186 * --Huang Shijie
187 */
188 block_mark_bit_offset = mtd->writesize * 8 -
189 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
190 + geo->metadata_size * 8);
191
192 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
193 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
194 return 0;
195}
196
197struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
198{
199 int chipnr = this->current_chip;
200
201 return this->dma_chans[chipnr];
202}
203
204/* Can we use the upper's buffer directly for DMA? */
205void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
206{
207 struct scatterlist *sgl = &this->data_sgl;
208 int ret;
209
210 this->direct_dma_map_ok = true;
211
212 /* first try to map the upper buffer directly */
213 sg_init_one(sgl, this->upper_buf, this->upper_len);
214 ret = dma_map_sg(this->dev, sgl, 1, dr);
215 if (ret == 0) {
216 /* We have to use our own DMA buffer. */
217 sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
218
219 if (dr == DMA_TO_DEVICE)
220 memcpy(this->data_buffer_dma, this->upper_buf,
221 this->upper_len);
222
223 ret = dma_map_sg(this->dev, sgl, 1, dr);
224 if (ret == 0)
225 pr_err("map failed.\n");
226
227 this->direct_dma_map_ok = false;
228 }
229}
230
231/* This will be called after the DMA operation is finished. */
232static void dma_irq_callback(void *param)
233{
234 struct gpmi_nand_data *this = param;
235 struct completion *dma_c = &this->dma_done;
236
237 complete(dma_c);
238
239 switch (this->dma_type) {
240 case DMA_FOR_COMMAND:
241 dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
242 break;
243
244 case DMA_FOR_READ_DATA:
245 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
246 if (this->direct_dma_map_ok == false)
247 memcpy(this->upper_buf, this->data_buffer_dma,
248 this->upper_len);
249 break;
250
251 case DMA_FOR_WRITE_DATA:
252 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
253 break;
254
255 case DMA_FOR_READ_ECC_PAGE:
256 case DMA_FOR_WRITE_ECC_PAGE:
257 /* We have to wait the BCH interrupt to finish. */
258 break;
259
260 default:
261 pr_err("in wrong DMA operation.\n");
262 }
263}
264
265int start_dma_without_bch_irq(struct gpmi_nand_data *this,
266 struct dma_async_tx_descriptor *desc)
267{
268 struct completion *dma_c = &this->dma_done;
269 int err;
270
271 init_completion(dma_c);
272
273 desc->callback = dma_irq_callback;
274 desc->callback_param = this;
275 dmaengine_submit(desc);
Shawn Guod04525e2012-04-11 13:29:31 +0800276 dma_async_issue_pending(get_dma_chan(this));
Huang Shijie10a2bca2011-09-08 10:47:09 +0800277
278 /* Wait for the interrupt from the DMA block. */
279 err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
280 if (!err) {
281 pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
282 gpmi_dump_info(this);
283 return -ETIMEDOUT;
284 }
285 return 0;
286}
287
288/*
289 * This function is used in BCH reading or BCH writing pages.
290 * It will wait for the BCH interrupt as long as ONE second.
291 * Actually, we must wait for two interrupts :
292 * [1] firstly the DMA interrupt and
293 * [2] secondly the BCH interrupt.
294 */
295int start_dma_with_bch_irq(struct gpmi_nand_data *this,
296 struct dma_async_tx_descriptor *desc)
297{
298 struct completion *bch_c = &this->bch_done;
299 int err;
300
301 /* Prepare to receive an interrupt from the BCH block. */
302 init_completion(bch_c);
303
304 /* start the DMA */
305 start_dma_without_bch_irq(this, desc);
306
307 /* Wait for the interrupt from the BCH block. */
308 err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
309 if (!err) {
310 pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
311 gpmi_dump_info(this);
312 return -ETIMEDOUT;
313 }
314 return 0;
315}
316
317static int __devinit
318acquire_register_block(struct gpmi_nand_data *this, const char *res_name)
319{
320 struct platform_device *pdev = this->pdev;
321 struct resources *res = &this->resources;
322 struct resource *r;
Huang Shijie513d57e2012-07-17 14:14:02 +0800323 void __iomem *p;
Huang Shijie10a2bca2011-09-08 10:47:09 +0800324
325 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
326 if (!r) {
327 pr_err("Can't get resource for %s\n", res_name);
328 return -ENXIO;
329 }
330
331 p = ioremap(r->start, resource_size(r));
332 if (!p) {
333 pr_err("Can't remap %s\n", res_name);
334 return -ENOMEM;
335 }
336
337 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
338 res->gpmi_regs = p;
339 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
340 res->bch_regs = p;
341 else
342 pr_err("unknown resource name : %s\n", res_name);
343
344 return 0;
345}
346
347static void release_register_block(struct gpmi_nand_data *this)
348{
349 struct resources *res = &this->resources;
350 if (res->gpmi_regs)
351 iounmap(res->gpmi_regs);
352 if (res->bch_regs)
353 iounmap(res->bch_regs);
354 res->gpmi_regs = NULL;
355 res->bch_regs = NULL;
356}
357
358static int __devinit
359acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
360{
361 struct platform_device *pdev = this->pdev;
362 struct resources *res = &this->resources;
363 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
364 struct resource *r;
365 int err;
366
367 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
368 if (!r) {
369 pr_err("Can't get resource for %s\n", res_name);
370 return -ENXIO;
371 }
372
373 err = request_irq(r->start, irq_h, 0, res_name, this);
374 if (err) {
375 pr_err("Can't own %s\n", res_name);
376 return err;
377 }
378
379 res->bch_low_interrupt = r->start;
380 res->bch_high_interrupt = r->end;
381 return 0;
382}
383
384static void release_bch_irq(struct gpmi_nand_data *this)
385{
386 struct resources *res = &this->resources;
387 int i = res->bch_low_interrupt;
388
389 for (; i <= res->bch_high_interrupt; i++)
390 free_irq(i, this);
391}
392
393static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
394{
395 struct gpmi_nand_data *this = param;
Huang Shijiee10db1f2012-05-04 21:42:05 -0400396 int dma_channel = (int)this->private;
Huang Shijie10a2bca2011-09-08 10:47:09 +0800397
398 if (!mxs_dma_is_apbh(chan))
399 return false;
400 /*
401 * only catch the GPMI dma channels :
402 * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
403 * (These four channels share the same IRQ!)
404 *
405 * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
406 * (These eight channels share the same IRQ!)
407 */
Huang Shijiee10db1f2012-05-04 21:42:05 -0400408 if (dma_channel == chan->chan_id) {
Huang Shijie10a2bca2011-09-08 10:47:09 +0800409 chan->private = &this->dma_data;
410 return true;
411 }
412 return false;
413}
414
415static void release_dma_channels(struct gpmi_nand_data *this)
416{
417 unsigned int i;
418 for (i = 0; i < DMA_CHANS; i++)
419 if (this->dma_chans[i]) {
420 dma_release_channel(this->dma_chans[i]);
421 this->dma_chans[i] = NULL;
422 }
423}
424
425static int __devinit acquire_dma_channels(struct gpmi_nand_data *this)
426{
427 struct platform_device *pdev = this->pdev;
Huang Shijiee10db1f2012-05-04 21:42:05 -0400428 struct resource *r_dma;
429 struct device_node *dn;
Huang Shijie513d57e2012-07-17 14:14:02 +0800430 u32 dma_channel;
431 int ret;
Huang Shijiee10db1f2012-05-04 21:42:05 -0400432 struct dma_chan *dma_chan;
433 dma_cap_mask_t mask;
Huang Shijie10a2bca2011-09-08 10:47:09 +0800434
Huang Shijiee10db1f2012-05-04 21:42:05 -0400435 /* dma channel, we only use the first one. */
436 dn = pdev->dev.of_node;
437 ret = of_property_read_u32(dn, "fsl,gpmi-dma-channel", &dma_channel);
438 if (ret) {
439 pr_err("unable to get DMA channel from dt.\n");
440 goto acquire_err;
441 }
442 this->private = (void *)dma_channel;
443
444 /* gpmi dma interrupt */
Huang Shijie10a2bca2011-09-08 10:47:09 +0800445 r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
446 GPMI_NAND_DMA_INTERRUPT_RES_NAME);
Huang Shijiee10db1f2012-05-04 21:42:05 -0400447 if (!r_dma) {
Huang Shijie10a2bca2011-09-08 10:47:09 +0800448 pr_err("Can't get resource for DMA\n");
Huang Shijiee10db1f2012-05-04 21:42:05 -0400449 goto acquire_err;
450 }
451 this->dma_data.chan_irq = r_dma->start;
452
453 /* request dma channel */
454 dma_cap_zero(mask);
455 dma_cap_set(DMA_SLAVE, mask);
456
457 dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
458 if (!dma_chan) {
459 pr_err("dma_request_channel failed.\n");
460 goto acquire_err;
Huang Shijie10a2bca2011-09-08 10:47:09 +0800461 }
462
Huang Shijiee10db1f2012-05-04 21:42:05 -0400463 this->dma_chans[0] = dma_chan;
Huang Shijie10a2bca2011-09-08 10:47:09 +0800464 return 0;
465
466acquire_err:
Huang Shijie10a2bca2011-09-08 10:47:09 +0800467 release_dma_channels(this);
468 return -EINVAL;
469}
470
Huang Shijieff506172012-07-02 21:39:32 -0400471static void gpmi_put_clks(struct gpmi_nand_data *this)
472{
473 struct resources *r = &this->resources;
474 struct clk *clk;
475 int i;
476
477 for (i = 0; i < GPMI_CLK_MAX; i++) {
478 clk = r->clock[i];
479 if (clk) {
480 clk_put(clk);
481 r->clock[i] = NULL;
482 }
483 }
484}
485
486static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
487 "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
488};
489
490static int __devinit gpmi_get_clks(struct gpmi_nand_data *this)
491{
492 struct resources *r = &this->resources;
493 char **extra_clks = NULL;
494 struct clk *clk;
495 int i;
496
497 /* The main clock is stored in the first. */
498 r->clock[0] = clk_get(this->dev, "gpmi_io");
499 if (IS_ERR(r->clock[0]))
500 goto err_clock;
501
502 /* Get extra clocks */
503 if (GPMI_IS_MX6Q(this))
504 extra_clks = extra_clks_for_mx6q;
505 if (!extra_clks)
506 return 0;
507
508 for (i = 1; i < GPMI_CLK_MAX; i++) {
509 if (extra_clks[i - 1] == NULL)
510 break;
511
512 clk = clk_get(this->dev, extra_clks[i - 1]);
513 if (IS_ERR(clk))
514 goto err_clock;
515
516 r->clock[i] = clk;
517 }
518
519 if (GPMI_IS_MX6Q(this)) {
520 /*
521 * Set the default values for the clocks in mx6q:
522 * The main clock(enfc) : 22MHz
523 * The others : 44.5MHz
524 *
525 * These are just the default values. If you want to use
526 * the ONFI nand which is in the Synchronous Mode, you should
527 * change the clocks's frequencies as you need.
528 */
529 clk_set_rate(r->clock[0], 22000000);
530 for (i = 1; i < GPMI_CLK_MAX && r->clock[i]; i++)
531 clk_set_rate(r->clock[i], 44500000);
532 }
533 return 0;
534
535err_clock:
536 dev_dbg(this->dev, "failed in finding the clocks.\n");
537 gpmi_put_clks(this);
538 return -ENOMEM;
539}
540
Huang Shijie10a2bca2011-09-08 10:47:09 +0800541static int __devinit acquire_resources(struct gpmi_nand_data *this)
542{
Shawn Guo39febc02012-05-06 22:57:41 +0800543 struct pinctrl *pinctrl;
Huang Shijie10a2bca2011-09-08 10:47:09 +0800544 int ret;
545
546 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
547 if (ret)
548 goto exit_regs;
549
550 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
551 if (ret)
552 goto exit_regs;
553
554 ret = acquire_bch_irq(this, bch_irq);
555 if (ret)
556 goto exit_regs;
557
558 ret = acquire_dma_channels(this);
559 if (ret)
560 goto exit_dma_channels;
561
Shawn Guo3e48b1b2012-05-19 21:06:13 +0800562 pinctrl = devm_pinctrl_get_select_default(&this->pdev->dev);
Shawn Guo39febc02012-05-06 22:57:41 +0800563 if (IS_ERR(pinctrl)) {
564 ret = PTR_ERR(pinctrl);
565 goto exit_pin;
566 }
567
Huang Shijieff506172012-07-02 21:39:32 -0400568 ret = gpmi_get_clks(this);
569 if (ret)
Huang Shijie10a2bca2011-09-08 10:47:09 +0800570 goto exit_clock;
Huang Shijie10a2bca2011-09-08 10:47:09 +0800571 return 0;
572
573exit_clock:
Shawn Guo39febc02012-05-06 22:57:41 +0800574exit_pin:
Huang Shijie10a2bca2011-09-08 10:47:09 +0800575 release_dma_channels(this);
576exit_dma_channels:
577 release_bch_irq(this);
578exit_regs:
579 release_register_block(this);
580 return ret;
581}
582
583static void release_resources(struct gpmi_nand_data *this)
584{
Huang Shijieff506172012-07-02 21:39:32 -0400585 gpmi_put_clks(this);
Huang Shijie10a2bca2011-09-08 10:47:09 +0800586 release_register_block(this);
587 release_bch_irq(this);
588 release_dma_channels(this);
589}
590
591static int __devinit init_hardware(struct gpmi_nand_data *this)
592{
593 int ret;
594
595 /*
596 * This structure contains the "safe" GPMI timing that should succeed
597 * with any NAND Flash device
598 * (although, with less-than-optimal performance).
599 */
600 struct nand_timing safe_timing = {
601 .data_setup_in_ns = 80,
602 .data_hold_in_ns = 60,
603 .address_setup_in_ns = 25,
604 .gpmi_sample_delay_in_ns = 6,
605 .tREA_in_ns = -1,
606 .tRLOH_in_ns = -1,
607 .tRHOH_in_ns = -1,
608 };
609
610 /* Initialize the hardwares. */
611 ret = gpmi_init(this);
612 if (ret)
613 return ret;
614
615 this->timing = safe_timing;
616 return 0;
617}
618
619static int read_page_prepare(struct gpmi_nand_data *this,
620 void *destination, unsigned length,
621 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
622 void **use_virt, dma_addr_t *use_phys)
623{
624 struct device *dev = this->dev;
625
626 if (virt_addr_valid(destination)) {
627 dma_addr_t dest_phys;
628
629 dest_phys = dma_map_single(dev, destination,
630 length, DMA_FROM_DEVICE);
631 if (dma_mapping_error(dev, dest_phys)) {
632 if (alt_size < length) {
633 pr_err("Alternate buffer is too small\n");
634 return -ENOMEM;
635 }
636 goto map_failed;
637 }
638 *use_virt = destination;
639 *use_phys = dest_phys;
640 this->direct_dma_map_ok = true;
641 return 0;
642 }
643
644map_failed:
645 *use_virt = alt_virt;
646 *use_phys = alt_phys;
647 this->direct_dma_map_ok = false;
648 return 0;
649}
650
651static inline void read_page_end(struct gpmi_nand_data *this,
652 void *destination, unsigned length,
653 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
654 void *used_virt, dma_addr_t used_phys)
655{
656 if (this->direct_dma_map_ok)
657 dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
658}
659
660static inline void read_page_swap_end(struct gpmi_nand_data *this,
661 void *destination, unsigned length,
662 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
663 void *used_virt, dma_addr_t used_phys)
664{
665 if (!this->direct_dma_map_ok)
666 memcpy(destination, alt_virt, length);
667}
668
669static int send_page_prepare(struct gpmi_nand_data *this,
670 const void *source, unsigned length,
671 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
672 const void **use_virt, dma_addr_t *use_phys)
673{
674 struct device *dev = this->dev;
675
676 if (virt_addr_valid(source)) {
677 dma_addr_t source_phys;
678
679 source_phys = dma_map_single(dev, (void *)source, length,
680 DMA_TO_DEVICE);
681 if (dma_mapping_error(dev, source_phys)) {
682 if (alt_size < length) {
683 pr_err("Alternate buffer is too small\n");
684 return -ENOMEM;
685 }
686 goto map_failed;
687 }
688 *use_virt = source;
689 *use_phys = source_phys;
690 return 0;
691 }
692map_failed:
693 /*
694 * Copy the content of the source buffer into the alternate
695 * buffer and set up the return values accordingly.
696 */
697 memcpy(alt_virt, source, length);
698
699 *use_virt = alt_virt;
700 *use_phys = alt_phys;
701 return 0;
702}
703
704static void send_page_end(struct gpmi_nand_data *this,
705 const void *source, unsigned length,
706 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
707 const void *used_virt, dma_addr_t used_phys)
708{
709 struct device *dev = this->dev;
710 if (used_virt == source)
711 dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
712}
713
714static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
715{
716 struct device *dev = this->dev;
717
718 if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
719 dma_free_coherent(dev, this->page_buffer_size,
720 this->page_buffer_virt,
721 this->page_buffer_phys);
722 kfree(this->cmd_buffer);
723 kfree(this->data_buffer_dma);
724
725 this->cmd_buffer = NULL;
726 this->data_buffer_dma = NULL;
727 this->page_buffer_virt = NULL;
728 this->page_buffer_size = 0;
729}
730
731/* Allocate the DMA buffers */
732static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
733{
734 struct bch_geometry *geo = &this->bch_geometry;
735 struct device *dev = this->dev;
736
737 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
Huang Shijie513d57e2012-07-17 14:14:02 +0800738 this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
Huang Shijie10a2bca2011-09-08 10:47:09 +0800739 if (this->cmd_buffer == NULL)
740 goto error_alloc;
741
742 /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
Huang Shijie513d57e2012-07-17 14:14:02 +0800743 this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
Huang Shijie10a2bca2011-09-08 10:47:09 +0800744 if (this->data_buffer_dma == NULL)
745 goto error_alloc;
746
747 /*
748 * [3] Allocate the page buffer.
749 *
750 * Both the payload buffer and the auxiliary buffer must appear on
751 * 32-bit boundaries. We presume the size of the payload buffer is a
752 * power of two and is much larger than four, which guarantees the
753 * auxiliary buffer will appear on a 32-bit boundary.
754 */
755 this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
756 this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
757 &this->page_buffer_phys, GFP_DMA);
758 if (!this->page_buffer_virt)
759 goto error_alloc;
760
761
762 /* Slice up the page buffer. */
763 this->payload_virt = this->page_buffer_virt;
764 this->payload_phys = this->page_buffer_phys;
765 this->auxiliary_virt = this->payload_virt + geo->payload_size;
766 this->auxiliary_phys = this->payload_phys + geo->payload_size;
767 return 0;
768
769error_alloc:
770 gpmi_free_dma_buffer(this);
771 pr_err("allocate DMA buffer ret!!\n");
772 return -ENOMEM;
773}
774
775static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
776{
777 struct nand_chip *chip = mtd->priv;
778 struct gpmi_nand_data *this = chip->priv;
779 int ret;
780
781 /*
782 * Every operation begins with a command byte and a series of zero or
783 * more address bytes. These are distinguished by either the Address
784 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
785 * asserted. When MTD is ready to execute the command, it will deassert
786 * both latch enables.
787 *
788 * Rather than run a separate DMA operation for every single byte, we
789 * queue them up and run a single DMA operation for the entire series
790 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
791 */
792 if ((ctrl & (NAND_ALE | NAND_CLE))) {
793 if (data != NAND_CMD_NONE)
794 this->cmd_buffer[this->command_length++] = data;
795 return;
796 }
797
798 if (!this->command_length)
799 return;
800
801 ret = gpmi_send_command(this);
802 if (ret)
803 pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
804
805 this->command_length = 0;
806}
807
808static int gpmi_dev_ready(struct mtd_info *mtd)
809{
810 struct nand_chip *chip = mtd->priv;
811 struct gpmi_nand_data *this = chip->priv;
812
813 return gpmi_is_ready(this, this->current_chip);
814}
815
816static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
817{
818 struct nand_chip *chip = mtd->priv;
819 struct gpmi_nand_data *this = chip->priv;
820
821 if ((this->current_chip < 0) && (chipnr >= 0))
822 gpmi_begin(this);
823 else if ((this->current_chip >= 0) && (chipnr < 0))
824 gpmi_end(this);
825
826 this->current_chip = chipnr;
827}
828
829static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
830{
831 struct nand_chip *chip = mtd->priv;
832 struct gpmi_nand_data *this = chip->priv;
833
834 pr_debug("len is %d\n", len);
835 this->upper_buf = buf;
836 this->upper_len = len;
837
838 gpmi_read_data(this);
839}
840
841static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
842{
843 struct nand_chip *chip = mtd->priv;
844 struct gpmi_nand_data *this = chip->priv;
845
846 pr_debug("len is %d\n", len);
847 this->upper_buf = (uint8_t *)buf;
848 this->upper_len = len;
849
850 gpmi_send_data(this);
851}
852
853static uint8_t gpmi_read_byte(struct mtd_info *mtd)
854{
855 struct nand_chip *chip = mtd->priv;
856 struct gpmi_nand_data *this = chip->priv;
857 uint8_t *buf = this->data_buffer_dma;
858
859 gpmi_read_buf(mtd, buf, 1);
860 return buf[0];
861}
862
863/*
864 * Handles block mark swapping.
865 * It can be called in swapping the block mark, or swapping it back,
866 * because the the operations are the same.
867 */
868static void block_mark_swapping(struct gpmi_nand_data *this,
869 void *payload, void *auxiliary)
870{
871 struct bch_geometry *nfc_geo = &this->bch_geometry;
872 unsigned char *p;
873 unsigned char *a;
874 unsigned int bit;
875 unsigned char mask;
876 unsigned char from_data;
877 unsigned char from_oob;
878
879 if (!this->swap_block_mark)
880 return;
881
882 /*
883 * If control arrives here, we're swapping. Make some convenience
884 * variables.
885 */
886 bit = nfc_geo->block_mark_bit_offset;
887 p = payload + nfc_geo->block_mark_byte_offset;
888 a = auxiliary;
889
890 /*
891 * Get the byte from the data area that overlays the block mark. Since
892 * the ECC engine applies its own view to the bits in the page, the
893 * physical block mark won't (in general) appear on a byte boundary in
894 * the data.
895 */
896 from_data = (p[0] >> bit) | (p[1] << (8 - bit));
897
898 /* Get the byte from the OOB. */
899 from_oob = a[0];
900
901 /* Swap them. */
902 a[0] = from_data;
903
904 mask = (0x1 << bit) - 1;
905 p[0] = (p[0] & mask) | (from_oob << bit);
906
907 mask = ~0 << bit;
908 p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
909}
910
911static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
Brian Norris1fbb9382012-05-02 10:14:55 -0700912 uint8_t *buf, int oob_required, int page)
Huang Shijie10a2bca2011-09-08 10:47:09 +0800913{
914 struct gpmi_nand_data *this = chip->priv;
915 struct bch_geometry *nfc_geo = &this->bch_geometry;
916 void *payload_virt;
917 dma_addr_t payload_phys;
918 void *auxiliary_virt;
919 dma_addr_t auxiliary_phys;
920 unsigned int i;
921 unsigned char *status;
922 unsigned int failed;
923 unsigned int corrected;
924 int ret;
925
926 pr_debug("page number is : %d\n", page);
927 ret = read_page_prepare(this, buf, mtd->writesize,
928 this->payload_virt, this->payload_phys,
929 nfc_geo->payload_size,
930 &payload_virt, &payload_phys);
931 if (ret) {
932 pr_err("Inadequate DMA buffer\n");
933 ret = -ENOMEM;
934 return ret;
935 }
936 auxiliary_virt = this->auxiliary_virt;
937 auxiliary_phys = this->auxiliary_phys;
938
939 /* go! */
940 ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
941 read_page_end(this, buf, mtd->writesize,
942 this->payload_virt, this->payload_phys,
943 nfc_geo->payload_size,
944 payload_virt, payload_phys);
945 if (ret) {
946 pr_err("Error in ECC-based read: %d\n", ret);
947 goto exit_nfc;
948 }
949
950 /* handle the block mark swapping */
951 block_mark_swapping(this, payload_virt, auxiliary_virt);
952
953 /* Loop over status bytes, accumulating ECC status. */
954 failed = 0;
955 corrected = 0;
956 status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
957
958 for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
959 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
960 continue;
961
962 if (*status == STATUS_UNCORRECTABLE) {
963 failed++;
964 continue;
965 }
966 corrected += *status;
967 }
968
969 /*
970 * Propagate ECC status to the owning MTD only when failed or
971 * corrected times nearly reaches our ECC correction threshold.
972 */
973 if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
974 mtd->ecc_stats.failed += failed;
975 mtd->ecc_stats.corrected += corrected;
976 }
977
Brian Norris7725cc82012-05-02 10:15:02 -0700978 if (oob_required) {
979 /*
980 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
981 * for details about our policy for delivering the OOB.
982 *
983 * We fill the caller's buffer with set bits, and then copy the
984 * block mark to th caller's buffer. Note that, if block mark
985 * swapping was necessary, it has already been done, so we can
986 * rely on the first byte of the auxiliary buffer to contain
987 * the block mark.
988 */
989 memset(chip->oob_poi, ~0, mtd->oobsize);
990 chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
Brian Norris7725cc82012-05-02 10:15:02 -0700991 }
Sascha Hauer6023813a2012-06-26 17:26:16 +0200992
993 read_page_swap_end(this, buf, mtd->writesize,
994 this->payload_virt, this->payload_phys,
995 nfc_geo->payload_size,
996 payload_virt, payload_phys);
Huang Shijie10a2bca2011-09-08 10:47:09 +0800997exit_nfc:
998 return ret;
999}
1000
Josh Wufdbad98d2012-06-25 18:07:45 +08001001static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
Brian Norris1fbb9382012-05-02 10:14:55 -07001002 const uint8_t *buf, int oob_required)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001003{
1004 struct gpmi_nand_data *this = chip->priv;
1005 struct bch_geometry *nfc_geo = &this->bch_geometry;
1006 const void *payload_virt;
1007 dma_addr_t payload_phys;
1008 const void *auxiliary_virt;
1009 dma_addr_t auxiliary_phys;
1010 int ret;
1011
1012 pr_debug("ecc write page.\n");
1013 if (this->swap_block_mark) {
1014 /*
1015 * If control arrives here, we're doing block mark swapping.
1016 * Since we can't modify the caller's buffers, we must copy them
1017 * into our own.
1018 */
1019 memcpy(this->payload_virt, buf, mtd->writesize);
1020 payload_virt = this->payload_virt;
1021 payload_phys = this->payload_phys;
1022
1023 memcpy(this->auxiliary_virt, chip->oob_poi,
1024 nfc_geo->auxiliary_size);
1025 auxiliary_virt = this->auxiliary_virt;
1026 auxiliary_phys = this->auxiliary_phys;
1027
1028 /* Handle block mark swapping. */
1029 block_mark_swapping(this,
1030 (void *) payload_virt, (void *) auxiliary_virt);
1031 } else {
1032 /*
1033 * If control arrives here, we're not doing block mark swapping,
1034 * so we can to try and use the caller's buffers.
1035 */
1036 ret = send_page_prepare(this,
1037 buf, mtd->writesize,
1038 this->payload_virt, this->payload_phys,
1039 nfc_geo->payload_size,
1040 &payload_virt, &payload_phys);
1041 if (ret) {
1042 pr_err("Inadequate payload DMA buffer\n");
Josh Wufdbad98d2012-06-25 18:07:45 +08001043 return 0;
Huang Shijie10a2bca2011-09-08 10:47:09 +08001044 }
1045
1046 ret = send_page_prepare(this,
1047 chip->oob_poi, mtd->oobsize,
1048 this->auxiliary_virt, this->auxiliary_phys,
1049 nfc_geo->auxiliary_size,
1050 &auxiliary_virt, &auxiliary_phys);
1051 if (ret) {
1052 pr_err("Inadequate auxiliary DMA buffer\n");
1053 goto exit_auxiliary;
1054 }
1055 }
1056
1057 /* Ask the NFC. */
1058 ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
1059 if (ret)
1060 pr_err("Error in ECC-based write: %d\n", ret);
1061
1062 if (!this->swap_block_mark) {
1063 send_page_end(this, chip->oob_poi, mtd->oobsize,
1064 this->auxiliary_virt, this->auxiliary_phys,
1065 nfc_geo->auxiliary_size,
1066 auxiliary_virt, auxiliary_phys);
1067exit_auxiliary:
1068 send_page_end(this, buf, mtd->writesize,
1069 this->payload_virt, this->payload_phys,
1070 nfc_geo->payload_size,
1071 payload_virt, payload_phys);
1072 }
Josh Wufdbad98d2012-06-25 18:07:45 +08001073
1074 return 0;
Huang Shijie10a2bca2011-09-08 10:47:09 +08001075}
1076
1077/*
1078 * There are several places in this driver where we have to handle the OOB and
1079 * block marks. This is the function where things are the most complicated, so
1080 * this is where we try to explain it all. All the other places refer back to
1081 * here.
1082 *
1083 * These are the rules, in order of decreasing importance:
1084 *
1085 * 1) Nothing the caller does can be allowed to imperil the block mark.
1086 *
1087 * 2) In read operations, the first byte of the OOB we return must reflect the
1088 * true state of the block mark, no matter where that block mark appears in
1089 * the physical page.
1090 *
1091 * 3) ECC-based read operations return an OOB full of set bits (since we never
1092 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1093 * return).
1094 *
1095 * 4) "Raw" read operations return a direct view of the physical bytes in the
1096 * page, using the conventional definition of which bytes are data and which
1097 * are OOB. This gives the caller a way to see the actual, physical bytes
1098 * in the page, without the distortions applied by our ECC engine.
1099 *
1100 *
1101 * What we do for this specific read operation depends on two questions:
1102 *
1103 * 1) Are we doing a "raw" read, or an ECC-based read?
1104 *
1105 * 2) Are we using block mark swapping or transcription?
1106 *
1107 * There are four cases, illustrated by the following Karnaugh map:
1108 *
1109 * | Raw | ECC-based |
1110 * -------------+-------------------------+-------------------------+
1111 * | Read the conventional | |
1112 * | OOB at the end of the | |
1113 * Swapping | page and return it. It | |
1114 * | contains exactly what | |
1115 * | we want. | Read the block mark and |
1116 * -------------+-------------------------+ return it in a buffer |
1117 * | Read the conventional | full of set bits. |
1118 * | OOB at the end of the | |
1119 * | page and also the block | |
1120 * Transcribing | mark in the metadata. | |
1121 * | Copy the block mark | |
1122 * | into the first byte of | |
1123 * | the OOB. | |
1124 * -------------+-------------------------+-------------------------+
1125 *
1126 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1127 * giving an accurate view of the actual, physical bytes in the page (we're
1128 * overwriting the block mark). That's OK because it's more important to follow
1129 * rule #2.
1130 *
1131 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1132 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1133 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1134 * ECC-based or raw view of the page is implicit in which function it calls
1135 * (there is a similar pair of ECC-based/raw functions for writing).
1136 *
Brian Norris271b874b2012-05-11 13:30:35 -07001137 * FIXME: The following paragraph is incorrect, now that there exist
1138 * ecc.read_oob_raw and ecc.write_oob_raw functions.
1139 *
Huang Shijie10a2bca2011-09-08 10:47:09 +08001140 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1141 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1142 * caller wants an ECC-based or raw view of the page is not propagated down to
1143 * this driver.
1144 */
1145static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
Shmulik Ladkani5c2ffb12012-05-09 13:06:35 +03001146 int page)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001147{
1148 struct gpmi_nand_data *this = chip->priv;
1149
1150 pr_debug("page number is %d\n", page);
1151 /* clear the OOB buffer */
1152 memset(chip->oob_poi, ~0, mtd->oobsize);
1153
1154 /* Read out the conventional OOB. */
1155 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1156 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1157
1158 /*
1159 * Now, we want to make sure the block mark is correct. In the
1160 * Swapping/Raw case, we already have it. Otherwise, we need to
1161 * explicitly read it.
1162 */
1163 if (!this->swap_block_mark) {
1164 /* Read the block mark into the first byte of the OOB buffer. */
1165 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1166 chip->oob_poi[0] = chip->read_byte(mtd);
1167 }
1168
Shmulik Ladkani5c2ffb12012-05-09 13:06:35 +03001169 return 0;
Huang Shijie10a2bca2011-09-08 10:47:09 +08001170}
1171
1172static int
1173gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1174{
1175 /*
1176 * The BCH will use all the (page + oob).
1177 * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
1178 * But it can not stop some ioctls such MEMWRITEOOB which uses
Brian Norris0612b9d2011-08-30 18:45:40 -07001179 * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
Huang Shijie10a2bca2011-09-08 10:47:09 +08001180 * these ioctls too.
1181 */
1182 return -EPERM;
1183}
1184
1185static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1186{
1187 struct nand_chip *chip = mtd->priv;
1188 struct gpmi_nand_data *this = chip->priv;
1189 int block, ret = 0;
1190 uint8_t *block_mark;
1191 int column, page, status, chipnr;
1192
1193 /* Get block number */
1194 block = (int)(ofs >> chip->bbt_erase_shift);
1195 if (chip->bbt)
1196 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1197
1198 /* Do we have a flash based bad block table ? */
Wolfram Sang52899662012-01-31 13:10:43 +01001199 if (chip->bbt_options & NAND_BBT_USE_FLASH)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001200 ret = nand_update_bbt(mtd, ofs);
1201 else {
1202 chipnr = (int)(ofs >> chip->chip_shift);
1203 chip->select_chip(mtd, chipnr);
1204
1205 column = this->swap_block_mark ? mtd->writesize : 0;
1206
1207 /* Write the block mark. */
1208 block_mark = this->data_buffer_dma;
1209 block_mark[0] = 0; /* bad block marker */
1210
1211 /* Shift to get page */
1212 page = (int)(ofs >> chip->page_shift);
1213
1214 chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1215 chip->write_buf(mtd, block_mark, 1);
1216 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1217
1218 status = chip->waitfunc(mtd, chip);
1219 if (status & NAND_STATUS_FAIL)
1220 ret = -EIO;
1221
1222 chip->select_chip(mtd, -1);
1223 }
1224 if (!ret)
1225 mtd->ecc_stats.badblocks++;
1226
1227 return ret;
1228}
1229
Wolfram Sanga78da282012-03-21 19:29:17 +01001230static int nand_boot_set_geometry(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001231{
1232 struct boot_rom_geometry *geometry = &this->rom_geometry;
1233
1234 /*
1235 * Set the boot block stride size.
1236 *
1237 * In principle, we should be reading this from the OTP bits, since
1238 * that's where the ROM is going to get it. In fact, we don't have any
1239 * way to read the OTP bits, so we go with the default and hope for the
1240 * best.
1241 */
1242 geometry->stride_size_in_pages = 64;
1243
1244 /*
1245 * Set the search area stride exponent.
1246 *
1247 * In principle, we should be reading this from the OTP bits, since
1248 * that's where the ROM is going to get it. In fact, we don't have any
1249 * way to read the OTP bits, so we go with the default and hope for the
1250 * best.
1251 */
1252 geometry->search_area_stride_exponent = 2;
1253 return 0;
1254}
1255
1256static const char *fingerprint = "STMP";
Wolfram Sanga78da282012-03-21 19:29:17 +01001257static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001258{
1259 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1260 struct device *dev = this->dev;
1261 struct mtd_info *mtd = &this->mtd;
1262 struct nand_chip *chip = &this->nand;
1263 unsigned int search_area_size_in_strides;
1264 unsigned int stride;
1265 unsigned int page;
Huang Shijie10a2bca2011-09-08 10:47:09 +08001266 uint8_t *buffer = chip->buffers->databuf;
1267 int saved_chip_number;
1268 int found_an_ncb_fingerprint = false;
1269
1270 /* Compute the number of strides in a search area. */
1271 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1272
1273 saved_chip_number = this->current_chip;
1274 chip->select_chip(mtd, 0);
1275
1276 /*
1277 * Loop through the first search area, looking for the NCB fingerprint.
1278 */
1279 dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1280
1281 for (stride = 0; stride < search_area_size_in_strides; stride++) {
Huang Shijie513d57e2012-07-17 14:14:02 +08001282 /* Compute the page addresses. */
Huang Shijie10a2bca2011-09-08 10:47:09 +08001283 page = stride * rom_geo->stride_size_in_pages;
Huang Shijie10a2bca2011-09-08 10:47:09 +08001284
1285 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1286
1287 /*
1288 * Read the NCB fingerprint. The fingerprint is four bytes long
1289 * and starts in the 12th byte of the page.
1290 */
1291 chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1292 chip->read_buf(mtd, buffer, strlen(fingerprint));
1293
1294 /* Look for the fingerprint. */
1295 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1296 found_an_ncb_fingerprint = true;
1297 break;
1298 }
1299
1300 }
1301
1302 chip->select_chip(mtd, saved_chip_number);
1303
1304 if (found_an_ncb_fingerprint)
1305 dev_dbg(dev, "\tFound a fingerprint\n");
1306 else
1307 dev_dbg(dev, "\tNo fingerprint found\n");
1308 return found_an_ncb_fingerprint;
1309}
1310
1311/* Writes a transcription stamp. */
Wolfram Sanga78da282012-03-21 19:29:17 +01001312static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001313{
1314 struct device *dev = this->dev;
1315 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1316 struct mtd_info *mtd = &this->mtd;
1317 struct nand_chip *chip = &this->nand;
1318 unsigned int block_size_in_pages;
1319 unsigned int search_area_size_in_strides;
1320 unsigned int search_area_size_in_pages;
1321 unsigned int search_area_size_in_blocks;
1322 unsigned int block;
1323 unsigned int stride;
1324 unsigned int page;
Huang Shijie10a2bca2011-09-08 10:47:09 +08001325 uint8_t *buffer = chip->buffers->databuf;
1326 int saved_chip_number;
1327 int status;
1328
1329 /* Compute the search area geometry. */
1330 block_size_in_pages = mtd->erasesize / mtd->writesize;
1331 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1332 search_area_size_in_pages = search_area_size_in_strides *
1333 rom_geo->stride_size_in_pages;
1334 search_area_size_in_blocks =
1335 (search_area_size_in_pages + (block_size_in_pages - 1)) /
1336 block_size_in_pages;
1337
1338 dev_dbg(dev, "Search Area Geometry :\n");
1339 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1340 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1341 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
1342
1343 /* Select chip 0. */
1344 saved_chip_number = this->current_chip;
1345 chip->select_chip(mtd, 0);
1346
1347 /* Loop over blocks in the first search area, erasing them. */
1348 dev_dbg(dev, "Erasing the search area...\n");
1349
1350 for (block = 0; block < search_area_size_in_blocks; block++) {
1351 /* Compute the page address. */
1352 page = block * block_size_in_pages;
1353
1354 /* Erase this block. */
1355 dev_dbg(dev, "\tErasing block 0x%x\n", block);
1356 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1357 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1358
1359 /* Wait for the erase to finish. */
1360 status = chip->waitfunc(mtd, chip);
1361 if (status & NAND_STATUS_FAIL)
1362 dev_err(dev, "[%s] Erase failed.\n", __func__);
1363 }
1364
1365 /* Write the NCB fingerprint into the page buffer. */
1366 memset(buffer, ~0, mtd->writesize);
1367 memset(chip->oob_poi, ~0, mtd->oobsize);
1368 memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1369
1370 /* Loop through the first search area, writing NCB fingerprints. */
1371 dev_dbg(dev, "Writing NCB fingerprints...\n");
1372 for (stride = 0; stride < search_area_size_in_strides; stride++) {
Huang Shijie513d57e2012-07-17 14:14:02 +08001373 /* Compute the page addresses. */
Huang Shijie10a2bca2011-09-08 10:47:09 +08001374 page = stride * rom_geo->stride_size_in_pages;
Huang Shijie10a2bca2011-09-08 10:47:09 +08001375
1376 /* Write the first page of the current stride. */
1377 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1378 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
Brian Norris1fbb9382012-05-02 10:14:55 -07001379 chip->ecc.write_page_raw(mtd, chip, buffer, 0);
Huang Shijie10a2bca2011-09-08 10:47:09 +08001380 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1381
1382 /* Wait for the write to finish. */
1383 status = chip->waitfunc(mtd, chip);
1384 if (status & NAND_STATUS_FAIL)
1385 dev_err(dev, "[%s] Write failed.\n", __func__);
1386 }
1387
1388 /* Deselect chip 0. */
1389 chip->select_chip(mtd, saved_chip_number);
1390 return 0;
1391}
1392
Wolfram Sanga78da282012-03-21 19:29:17 +01001393static int mx23_boot_init(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001394{
1395 struct device *dev = this->dev;
1396 struct nand_chip *chip = &this->nand;
1397 struct mtd_info *mtd = &this->mtd;
1398 unsigned int block_count;
1399 unsigned int block;
1400 int chipnr;
1401 int page;
1402 loff_t byte;
1403 uint8_t block_mark;
1404 int ret = 0;
1405
1406 /*
1407 * If control arrives here, we can't use block mark swapping, which
1408 * means we're forced to use transcription. First, scan for the
1409 * transcription stamp. If we find it, then we don't have to do
1410 * anything -- the block marks are already transcribed.
1411 */
1412 if (mx23_check_transcription_stamp(this))
1413 return 0;
1414
1415 /*
1416 * If control arrives here, we couldn't find a transcription stamp, so
1417 * so we presume the block marks are in the conventional location.
1418 */
1419 dev_dbg(dev, "Transcribing bad block marks...\n");
1420
1421 /* Compute the number of blocks in the entire medium. */
1422 block_count = chip->chipsize >> chip->phys_erase_shift;
1423
1424 /*
1425 * Loop over all the blocks in the medium, transcribing block marks as
1426 * we go.
1427 */
1428 for (block = 0; block < block_count; block++) {
1429 /*
1430 * Compute the chip, page and byte addresses for this block's
1431 * conventional mark.
1432 */
1433 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1434 page = block << (chip->phys_erase_shift - chip->page_shift);
1435 byte = block << chip->phys_erase_shift;
1436
1437 /* Send the command to read the conventional block mark. */
1438 chip->select_chip(mtd, chipnr);
1439 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1440 block_mark = chip->read_byte(mtd);
1441 chip->select_chip(mtd, -1);
1442
1443 /*
1444 * Check if the block is marked bad. If so, we need to mark it
1445 * again, but this time the result will be a mark in the
1446 * location where we transcribe block marks.
1447 */
1448 if (block_mark != 0xff) {
1449 dev_dbg(dev, "Transcribing mark in block %u\n", block);
1450 ret = chip->block_markbad(mtd, byte);
1451 if (ret)
1452 dev_err(dev, "Failed to mark block bad with "
1453 "ret %d\n", ret);
1454 }
1455 }
1456
1457 /* Write the stamp that indicates we've transcribed the block marks. */
1458 mx23_write_transcription_stamp(this);
1459 return 0;
1460}
1461
Wolfram Sanga78da282012-03-21 19:29:17 +01001462static int nand_boot_init(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001463{
1464 nand_boot_set_geometry(this);
1465
1466 /* This is ROM arch-specific initilization before the BBT scanning. */
1467 if (GPMI_IS_MX23(this))
1468 return mx23_boot_init(this);
1469 return 0;
1470}
1471
Wolfram Sanga78da282012-03-21 19:29:17 +01001472static int gpmi_set_geometry(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001473{
1474 int ret;
1475
1476 /* Free the temporary DMA memory for reading ID. */
1477 gpmi_free_dma_buffer(this);
1478
1479 /* Set up the NFC geometry which is used by BCH. */
1480 ret = bch_set_geometry(this);
1481 if (ret) {
1482 pr_err("set geometry ret : %d\n", ret);
1483 return ret;
1484 }
1485
1486 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1487 return gpmi_alloc_dma_buffer(this);
1488}
1489
1490static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this)
1491{
1492 int ret;
1493
1494 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1495 if (GPMI_IS_MX23(this))
1496 this->swap_block_mark = false;
1497 else
1498 this->swap_block_mark = true;
1499
1500 /* Set up the medium geometry */
1501 ret = gpmi_set_geometry(this);
1502 if (ret)
1503 return ret;
1504
Marek Vasut5636ce02012-05-21 22:59:27 +02001505 /* Adjust the ECC strength according to the chip. */
1506 this->nand.ecc.strength = this->bch_geometry.ecc_strength;
1507 this->mtd.ecc_strength = this->bch_geometry.ecc_strength;
Huang Shijiee0dd89c2012-07-03 16:24:33 +08001508 this->mtd.bitflip_threshold = this->bch_geometry.ecc_strength;
Marek Vasut5636ce02012-05-21 22:59:27 +02001509
Huang Shijie10a2bca2011-09-08 10:47:09 +08001510 /* NAND boot init, depends on the gpmi_set_geometry(). */
1511 return nand_boot_init(this);
1512}
1513
1514static int gpmi_scan_bbt(struct mtd_info *mtd)
1515{
1516 struct nand_chip *chip = mtd->priv;
1517 struct gpmi_nand_data *this = chip->priv;
1518 int ret;
1519
1520 /* Prepare for the BBT scan. */
1521 ret = gpmi_pre_bbt_scan(this);
1522 if (ret)
1523 return ret;
1524
1525 /* use the default BBT implementation */
1526 return nand_default_bbt(mtd);
1527}
1528
Huang Shijie513d57e2012-07-17 14:14:02 +08001529static void gpmi_nfc_exit(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001530{
1531 nand_release(&this->mtd);
1532 gpmi_free_dma_buffer(this);
1533}
1534
1535static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this)
1536{
Huang Shijie10a2bca2011-09-08 10:47:09 +08001537 struct mtd_info *mtd = &this->mtd;
1538 struct nand_chip *chip = &this->nand;
Huang Shijiee10db1f2012-05-04 21:42:05 -04001539 struct mtd_part_parser_data ppdata = {};
Huang Shijie10a2bca2011-09-08 10:47:09 +08001540 int ret;
1541
1542 /* init current chip */
1543 this->current_chip = -1;
1544
1545 /* init the MTD data structures */
1546 mtd->priv = chip;
1547 mtd->name = "gpmi-nand";
1548 mtd->owner = THIS_MODULE;
1549
1550 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1551 chip->priv = this;
1552 chip->select_chip = gpmi_select_chip;
1553 chip->cmd_ctrl = gpmi_cmd_ctrl;
1554 chip->dev_ready = gpmi_dev_ready;
1555 chip->read_byte = gpmi_read_byte;
1556 chip->read_buf = gpmi_read_buf;
1557 chip->write_buf = gpmi_write_buf;
1558 chip->ecc.read_page = gpmi_ecc_read_page;
1559 chip->ecc.write_page = gpmi_ecc_write_page;
1560 chip->ecc.read_oob = gpmi_ecc_read_oob;
1561 chip->ecc.write_oob = gpmi_ecc_write_oob;
1562 chip->scan_bbt = gpmi_scan_bbt;
1563 chip->badblock_pattern = &gpmi_bbt_descr;
1564 chip->block_markbad = gpmi_block_markbad;
1565 chip->options |= NAND_NO_SUBPAGE_WRITE;
1566 chip->ecc.mode = NAND_ECC_HW;
1567 chip->ecc.size = 1;
Marek Vasut5636ce02012-05-21 22:59:27 +02001568 chip->ecc.strength = 8;
Huang Shijie10a2bca2011-09-08 10:47:09 +08001569 chip->ecc.layout = &gpmi_hw_ecclayout;
Huang Shijiec50c6942012-07-03 16:24:32 +08001570 if (of_get_nand_on_flash_bbt(this->dev->of_node))
1571 chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
Huang Shijie10a2bca2011-09-08 10:47:09 +08001572
1573 /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
1574 this->bch_geometry.payload_size = 1024;
1575 this->bch_geometry.auxiliary_size = 128;
1576 ret = gpmi_alloc_dma_buffer(this);
1577 if (ret)
1578 goto err_out;
1579
Huang Shijiee10db1f2012-05-04 21:42:05 -04001580 ret = nand_scan(mtd, 1);
Huang Shijie10a2bca2011-09-08 10:47:09 +08001581 if (ret) {
1582 pr_err("Chip scan failed\n");
1583 goto err_out;
1584 }
1585
Huang Shijiee10db1f2012-05-04 21:42:05 -04001586 ppdata.of_node = this->pdev->dev.of_node;
1587 ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
Huang Shijie10a2bca2011-09-08 10:47:09 +08001588 if (ret)
1589 goto err_out;
1590 return 0;
1591
1592err_out:
1593 gpmi_nfc_exit(this);
1594 return ret;
1595}
1596
Huang Shijiee10db1f2012-05-04 21:42:05 -04001597static const struct platform_device_id gpmi_ids[] = {
1598 { .name = "imx23-gpmi-nand", .driver_data = IS_MX23, },
1599 { .name = "imx28-gpmi-nand", .driver_data = IS_MX28, },
Huang Shijie9013bb42012-05-04 21:42:06 -04001600 { .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, },
Huang Shijiee10db1f2012-05-04 21:42:05 -04001601 {},
1602};
1603
1604static const struct of_device_id gpmi_nand_id_table[] = {
1605 {
1606 .compatible = "fsl,imx23-gpmi-nand",
1607 .data = (void *)&gpmi_ids[IS_MX23]
1608 }, {
1609 .compatible = "fsl,imx28-gpmi-nand",
1610 .data = (void *)&gpmi_ids[IS_MX28]
Huang Shijie9013bb42012-05-04 21:42:06 -04001611 }, {
1612 .compatible = "fsl,imx6q-gpmi-nand",
1613 .data = (void *)&gpmi_ids[IS_MX6Q]
Huang Shijiee10db1f2012-05-04 21:42:05 -04001614 }, {}
1615};
1616MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
1617
Huang Shijie10a2bca2011-09-08 10:47:09 +08001618static int __devinit gpmi_nand_probe(struct platform_device *pdev)
1619{
Huang Shijie10a2bca2011-09-08 10:47:09 +08001620 struct gpmi_nand_data *this;
Huang Shijiee10db1f2012-05-04 21:42:05 -04001621 const struct of_device_id *of_id;
Huang Shijie10a2bca2011-09-08 10:47:09 +08001622 int ret;
1623
Huang Shijiee10db1f2012-05-04 21:42:05 -04001624 of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
1625 if (of_id) {
1626 pdev->id_entry = of_id->data;
1627 } else {
1628 pr_err("Failed to find the right device id.\n");
1629 return -ENOMEM;
1630 }
1631
Huang Shijie10a2bca2011-09-08 10:47:09 +08001632 this = kzalloc(sizeof(*this), GFP_KERNEL);
1633 if (!this) {
1634 pr_err("Failed to allocate per-device memory\n");
1635 return -ENOMEM;
1636 }
1637
1638 platform_set_drvdata(pdev, this);
1639 this->pdev = pdev;
1640 this->dev = &pdev->dev;
Huang Shijie10a2bca2011-09-08 10:47:09 +08001641
1642 ret = acquire_resources(this);
1643 if (ret)
1644 goto exit_acquire_resources;
1645
1646 ret = init_hardware(this);
1647 if (ret)
1648 goto exit_nfc_init;
1649
1650 ret = gpmi_nfc_init(this);
1651 if (ret)
1652 goto exit_nfc_init;
1653
Fabio Estevam490e2802012-09-05 11:35:24 -03001654 dev_info(this->dev, "driver registered.\n");
1655
Huang Shijie10a2bca2011-09-08 10:47:09 +08001656 return 0;
1657
1658exit_nfc_init:
1659 release_resources(this);
Huang Shijie10a2bca2011-09-08 10:47:09 +08001660exit_acquire_resources:
1661 platform_set_drvdata(pdev, NULL);
1662 kfree(this);
Fabio Estevam490e2802012-09-05 11:35:24 -03001663 dev_err(this->dev, "driver registration failed: %d\n", ret);
1664
Huang Shijie10a2bca2011-09-08 10:47:09 +08001665 return ret;
1666}
1667
Fabio Estevam490e2802012-09-05 11:35:24 -03001668static int __devexit gpmi_nand_remove(struct platform_device *pdev)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001669{
1670 struct gpmi_nand_data *this = platform_get_drvdata(pdev);
1671
1672 gpmi_nfc_exit(this);
1673 release_resources(this);
1674 platform_set_drvdata(pdev, NULL);
1675 kfree(this);
1676 return 0;
1677}
1678
Huang Shijie10a2bca2011-09-08 10:47:09 +08001679static struct platform_driver gpmi_nand_driver = {
1680 .driver = {
1681 .name = "gpmi-nand",
Huang Shijiee10db1f2012-05-04 21:42:05 -04001682 .of_match_table = gpmi_nand_id_table,
Huang Shijie10a2bca2011-09-08 10:47:09 +08001683 },
1684 .probe = gpmi_nand_probe,
Fabio Estevam490e2802012-09-05 11:35:24 -03001685 .remove = __devexit_p(gpmi_nand_remove),
Huang Shijie10a2bca2011-09-08 10:47:09 +08001686 .id_table = gpmi_ids,
1687};
Fabio Estevam490e2802012-09-05 11:35:24 -03001688module_platform_driver(gpmi_nand_driver);
Huang Shijie10a2bca2011-09-08 10:47:09 +08001689
1690MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1691MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1692MODULE_LICENSE("GPL");