powerpc: support multiple hugepage sizes

Instead of using the variable mmu_huge_psize to keep track of the huge
page size we use an array of MMU_PAGE_* values.  For each supported huge
page size we need to know the hugepte_shift value and have a
pgtable_cache.  The hstate or an mmu_huge_psizes index is passed to
functions so that they know which huge page size they should use.

The hugepage sizes 16M and 64K are setup(if available on the hardware) so
that they don't have to be set on the boot cmd line in order to use them.
The number of 16G pages have to be specified at boot-time though (e.g.
hugepagesz=16G hugepages=5).

Signed-off-by: Jon Tollefson <kniht@linux.vnet.ibm.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff --git a/arch/powerpc/mm/init_64.c b/arch/powerpc/mm/init_64.c
index 6ef63ca..a41bc5aa 100644
--- a/arch/powerpc/mm/init_64.c
+++ b/arch/powerpc/mm/init_64.c
@@ -153,10 +153,10 @@
 };
 
 #ifdef CONFIG_HUGETLB_PAGE
-/* Hugepages need one extra cache, initialized in hugetlbpage.c.  We
- * can't put into the tables above, because HPAGE_SHIFT is not compile
- * time constant. */
-struct kmem_cache *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)+1];
+/* Hugepages need an extra cache per hugepagesize, initialized in
+ * hugetlbpage.c.  We can't put into the tables above, because HPAGE_SHIFT
+ * is not compile time constant. */
+struct kmem_cache *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)+MMU_PAGE_COUNT];
 #else
 struct kmem_cache *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)];
 #endif