Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/Documentation/DocBook/kernel-locking.tmpl b/Documentation/DocBook/kernel-locking.tmpl
new file mode 100644
index 0000000..90dc2de
--- /dev/null
+++ b/Documentation/DocBook/kernel-locking.tmpl
@@ -0,0 +1,2088 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
+	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
+
+<book id="LKLockingGuide">
+ <bookinfo>
+  <title>Unreliable Guide To Locking</title>
+  
+  <authorgroup>
+   <author>
+    <firstname>Rusty</firstname>
+    <surname>Russell</surname>
+    <affiliation>
+     <address>
+      <email>rusty@rustcorp.com.au</email>
+     </address>
+    </affiliation>
+   </author>
+  </authorgroup>
+
+  <copyright>
+   <year>2003</year>
+   <holder>Rusty Russell</holder>
+  </copyright>
+
+  <legalnotice>
+   <para>
+     This documentation is free software; you can redistribute
+     it and/or modify it under the terms of the GNU General Public
+     License as published by the Free Software Foundation; either
+     version 2 of the License, or (at your option) any later
+     version.
+   </para>
+      
+   <para>
+     This program is distributed in the hope that it will be
+     useful, but WITHOUT ANY WARRANTY; without even the implied
+     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+     See the GNU General Public License for more details.
+   </para>
+      
+   <para>
+     You should have received a copy of the GNU General Public
+     License along with this program; if not, write to the Free
+     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+     MA 02111-1307 USA
+   </para>
+      
+   <para>
+     For more details see the file COPYING in the source
+     distribution of Linux.
+   </para>
+  </legalnotice>
+ </bookinfo>
+
+ <toc></toc>
+  <chapter id="intro">
+   <title>Introduction</title>
+   <para>
+     Welcome, to Rusty's Remarkably Unreliable Guide to Kernel
+     Locking issues.  This document describes the locking systems in
+     the Linux Kernel in 2.6.
+   </para>
+   <para>
+     With the wide availability of HyperThreading, and <firstterm
+     linkend="gloss-preemption">preemption </firstterm> in the Linux
+     Kernel, everyone hacking on the kernel needs to know the
+     fundamentals of concurrency and locking for
+     <firstterm linkend="gloss-smp"><acronym>SMP</acronym></firstterm>.
+   </para>
+  </chapter>
+
+   <chapter id="races">
+    <title>The Problem With Concurrency</title>
+    <para>
+      (Skip this if you know what a Race Condition is).
+    </para>
+    <para>
+      In a normal program, you can increment a counter like so:
+    </para>
+    <programlisting>
+      very_important_count++;
+    </programlisting>
+
+    <para>
+      This is what they would expect to happen:
+    </para>
+
+    <table>
+     <title>Expected Results</title>
+
+     <tgroup cols="2" align="left">
+
+      <thead>
+       <row>
+        <entry>Instance 1</entry>
+        <entry>Instance 2</entry>
+       </row>
+      </thead>
+
+      <tbody>
+       <row>
+        <entry>read very_important_count (5)</entry>
+        <entry></entry>
+       </row>
+       <row>
+        <entry>add 1 (6)</entry>
+        <entry></entry>
+       </row>
+       <row>
+        <entry>write very_important_count (6)</entry>
+        <entry></entry>
+       </row>
+       <row>
+        <entry></entry>
+        <entry>read very_important_count (6)</entry>
+       </row>
+       <row>
+        <entry></entry>
+        <entry>add 1 (7)</entry>
+       </row>
+       <row>
+        <entry></entry>
+        <entry>write very_important_count (7)</entry>
+       </row>
+      </tbody>
+
+     </tgroup>
+    </table>
+
+    <para>
+     This is what might happen:
+    </para>
+
+    <table>
+     <title>Possible Results</title>
+
+     <tgroup cols="2" align="left">
+      <thead>
+       <row>
+        <entry>Instance 1</entry>
+        <entry>Instance 2</entry>
+       </row>
+      </thead>
+
+      <tbody>
+       <row>
+        <entry>read very_important_count (5)</entry>
+        <entry></entry>
+       </row>
+       <row>
+        <entry></entry>
+        <entry>read very_important_count (5)</entry>
+       </row>
+       <row>
+        <entry>add 1 (6)</entry>
+        <entry></entry>
+       </row>
+       <row>
+        <entry></entry>
+        <entry>add 1 (6)</entry>
+       </row>
+       <row>
+        <entry>write very_important_count (6)</entry>
+        <entry></entry>
+       </row>
+       <row>
+        <entry></entry>
+        <entry>write very_important_count (6)</entry>
+       </row>
+      </tbody>
+     </tgroup>
+    </table>
+
+    <sect1 id="race-condition">
+    <title>Race Conditions and Critical Regions</title>
+    <para>
+      This overlap, where the result depends on the
+      relative timing of multiple tasks, is called a <firstterm>race condition</firstterm>.
+      The piece of code containing the concurrency issue is called a
+      <firstterm>critical region</firstterm>.  And especially since Linux starting running
+      on SMP machines, they became one of the major issues in kernel
+      design and implementation.
+    </para>
+    <para>
+      Preemption can have the same effect, even if there is only one
+      CPU: by preempting one task during the critical region, we have
+      exactly the same race condition.  In this case the thread which
+      preempts might run the critical region itself.
+    </para>
+    <para>
+      The solution is to recognize when these simultaneous accesses
+      occur, and use locks to make sure that only one instance can
+      enter the critical region at any time.  There are many
+      friendly primitives in the Linux kernel to help you do this.
+      And then there are the unfriendly primitives, but I'll pretend
+      they don't exist.
+    </para>
+    </sect1>
+  </chapter>
+
+  <chapter id="locks">
+   <title>Locking in the Linux Kernel</title>
+
+   <para>
+     If I could give you one piece of advice: never sleep with anyone
+     crazier than yourself.  But if I had to give you advice on
+     locking: <emphasis>keep it simple</emphasis>.
+   </para>
+
+   <para>
+     Be reluctant to introduce new locks.
+   </para>
+
+   <para>
+     Strangely enough, this last one is the exact reverse of my advice when
+     you <emphasis>have</emphasis> slept with someone crazier than yourself.
+     And you should think about getting a big dog.
+   </para>
+
+   <sect1 id="lock-intro">
+   <title>Two Main Types of Kernel Locks: Spinlocks and Semaphores</title>
+
+   <para>
+     There are two main types of kernel locks.  The fundamental type
+     is the spinlock 
+     (<filename class="headerfile">include/asm/spinlock.h</filename>),
+     which is a very simple single-holder lock: if you can't get the 
+     spinlock, you keep trying (spinning) until you can.  Spinlocks are 
+     very small and fast, and can be used anywhere.
+   </para>
+   <para>
+     The second type is a semaphore
+     (<filename class="headerfile">include/asm/semaphore.h</filename>): it
+     can have more than one holder at any time (the number decided at
+     initialization time), although it is most commonly used as a
+     single-holder lock (a mutex).  If you can't get a semaphore,
+     your task will put itself on the queue, and be woken up when the
+     semaphore is released.  This means the CPU will do something
+     else while you are waiting, but there are many cases when you
+     simply can't sleep (see <xref linkend="sleeping-things"/>), and so
+     have to use a spinlock instead.
+   </para>
+   <para>
+     Neither type of lock is recursive: see
+     <xref linkend="deadlock"/>.
+   </para>
+   </sect1>
+ 
+   <sect1 id="uniprocessor">
+    <title>Locks and Uniprocessor Kernels</title>
+
+    <para>
+      For kernels compiled without <symbol>CONFIG_SMP</symbol>, and
+      without <symbol>CONFIG_PREEMPT</symbol> spinlocks do not exist at
+      all.  This is an excellent design decision: when no-one else can
+      run at the same time, there is no reason to have a lock.
+    </para>
+
+    <para>
+      If the kernel is compiled without <symbol>CONFIG_SMP</symbol>,
+      but <symbol>CONFIG_PREEMPT</symbol> is set, then spinlocks
+      simply disable preemption, which is sufficient to prevent any
+      races.  For most purposes, we can think of preemption as
+      equivalent to SMP, and not worry about it separately.
+    </para>
+
+    <para>
+      You should always test your locking code with <symbol>CONFIG_SMP</symbol>
+      and <symbol>CONFIG_PREEMPT</symbol> enabled, even if you don't have an SMP test box, because it
+      will still catch some kinds of locking bugs.
+    </para>
+
+    <para>
+      Semaphores still exist, because they are required for
+      synchronization between <firstterm linkend="gloss-usercontext">user 
+      contexts</firstterm>, as we will see below.
+    </para>
+   </sect1>
+
+    <sect1 id="usercontextlocking">
+     <title>Locking Only In User Context</title>
+
+     <para>
+       If you have a data structure which is only ever accessed from
+       user context, then you can use a simple semaphore
+       (<filename>linux/asm/semaphore.h</filename>) to protect it.  This 
+       is the most trivial case: you initialize the semaphore to the number 
+       of resources available (usually 1), and call
+       <function>down_interruptible()</function> to grab the semaphore, and 
+       <function>up()</function> to release it.  There is also a 
+       <function>down()</function>, which should be avoided, because it 
+       will not return if a signal is received.
+     </para>
+
+     <para>
+       Example: <filename>linux/net/core/netfilter.c</filename> allows 
+       registration of new <function>setsockopt()</function> and 
+       <function>getsockopt()</function> calls, with
+       <function>nf_register_sockopt()</function>.  Registration and 
+       de-registration are only done on module load and unload (and boot 
+       time, where there is no concurrency), and the list of registrations 
+       is only consulted for an unknown <function>setsockopt()</function>
+       or <function>getsockopt()</function> system call.  The 
+       <varname>nf_sockopt_mutex</varname> is perfect to protect this,
+       especially since the setsockopt and getsockopt calls may well
+       sleep.
+     </para>
+   </sect1>
+
+   <sect1 id="lock-user-bh">
+    <title>Locking Between User Context and Softirqs</title>
+
+    <para>
+      If a <firstterm linkend="gloss-softirq">softirq</firstterm> shares
+      data with user context, you have two problems.  Firstly, the current 
+      user context can be interrupted by a softirq, and secondly, the
+      critical region could be entered from another CPU.  This is where
+      <function>spin_lock_bh()</function> 
+      (<filename class="headerfile">include/linux/spinlock.h</filename>) is
+      used.  It disables softirqs on that CPU, then grabs the lock.
+      <function>spin_unlock_bh()</function> does the reverse.  (The
+      '_bh' suffix is a historical reference to "Bottom Halves", the
+      old name for software interrupts.  It should really be
+      called spin_lock_softirq()' in a perfect world).
+    </para>
+
+    <para>
+      Note that you can also use <function>spin_lock_irq()</function>
+      or <function>spin_lock_irqsave()</function> here, which stop
+      hardware interrupts as well: see <xref linkend="hardirq-context"/>.
+    </para>
+
+    <para>
+      This works perfectly for <firstterm linkend="gloss-up"><acronym>UP
+      </acronym></firstterm> as well: the spin lock vanishes, and this macro 
+      simply becomes <function>local_bh_disable()</function>
+      (<filename class="headerfile">include/linux/interrupt.h</filename>), which
+      protects you from the softirq being run.
+    </para>
+   </sect1>
+
+   <sect1 id="lock-user-tasklet">
+    <title>Locking Between User Context and Tasklets</title>
+
+    <para>
+      This is exactly the same as above, because <firstterm
+      linkend="gloss-tasklet">tasklets</firstterm> are actually run
+      from a softirq.
+    </para>
+   </sect1>
+
+   <sect1 id="lock-user-timers">
+    <title>Locking Between User Context and Timers</title>
+
+    <para>
+      This, too, is exactly the same as above, because <firstterm
+      linkend="gloss-timers">timers</firstterm> are actually run from
+      a softirq.  From a locking point of view, tasklets and timers
+      are identical.
+    </para>
+   </sect1>
+
+   <sect1 id="lock-tasklets">
+    <title>Locking Between Tasklets/Timers</title>
+
+    <para>
+      Sometimes a tasklet or timer might want to share data with
+      another tasklet or timer.
+    </para>
+
+    <sect2 id="lock-tasklets-same">
+     <title>The Same Tasklet/Timer</title>
+     <para>
+       Since a tasklet is never run on two CPUs at once, you don't
+       need to worry about your tasklet being reentrant (running
+       twice at once), even on SMP.
+     </para>
+    </sect2>
+
+    <sect2 id="lock-tasklets-different">
+     <title>Different Tasklets/Timers</title>
+     <para>
+       If another tasklet/timer wants
+       to share data with your tasklet or timer , you will both need to use
+       <function>spin_lock()</function> and
+       <function>spin_unlock()</function> calls.  
+       <function>spin_lock_bh()</function> is
+       unnecessary here, as you are already in a tasklet, and
+       none will be run on the same CPU.
+     </para>
+    </sect2>
+   </sect1>
+
+   <sect1 id="lock-softirqs">
+    <title>Locking Between Softirqs</title>
+
+    <para>
+      Often a softirq might
+      want to share data with itself or a tasklet/timer.
+    </para>
+
+    <sect2 id="lock-softirqs-same">
+     <title>The Same Softirq</title>
+
+     <para>
+       The same softirq can run on the other CPUs: you can use a
+       per-CPU array (see <xref linkend="per-cpu"/>) for better
+       performance.  If you're going so far as to use a softirq,
+       you probably care about scalable performance enough
+       to justify the extra complexity.
+     </para>
+
+     <para>
+       You'll need to use <function>spin_lock()</function> and 
+       <function>spin_unlock()</function> for shared data.
+     </para>
+    </sect2>
+
+    <sect2 id="lock-softirqs-different">
+     <title>Different Softirqs</title>
+
+     <para>
+       You'll need to use <function>spin_lock()</function> and
+       <function>spin_unlock()</function> for shared data, whether it
+       be a timer, tasklet, different softirq or the same or another
+       softirq: any of them could be running on a different CPU.
+     </para>
+    </sect2>
+   </sect1>
+  </chapter>
+
+  <chapter id="hardirq-context">
+   <title>Hard IRQ Context</title>
+
+   <para>
+     Hardware interrupts usually communicate with a
+     tasklet or softirq.  Frequently this involves putting work in a
+     queue, which the softirq will take out.
+   </para>
+
+   <sect1 id="hardirq-softirq">
+    <title>Locking Between Hard IRQ and Softirqs/Tasklets</title>
+
+    <para>
+      If a hardware irq handler shares data with a softirq, you have
+      two concerns.  Firstly, the softirq processing can be
+      interrupted by a hardware interrupt, and secondly, the
+      critical region could be entered by a hardware interrupt on
+      another CPU.  This is where <function>spin_lock_irq()</function> is 
+      used.  It is defined to disable interrupts on that cpu, then grab 
+      the lock. <function>spin_unlock_irq()</function> does the reverse.
+    </para>
+
+    <para>
+      The irq handler does not to use
+      <function>spin_lock_irq()</function>, because the softirq cannot
+      run while the irq handler is running: it can use
+      <function>spin_lock()</function>, which is slightly faster.  The
+      only exception would be if a different hardware irq handler uses
+      the same lock: <function>spin_lock_irq()</function> will stop
+      that from interrupting us.
+    </para>
+
+    <para>
+      This works perfectly for UP as well: the spin lock vanishes,
+      and this macro simply becomes <function>local_irq_disable()</function>
+      (<filename class="headerfile">include/asm/smp.h</filename>), which
+      protects you from the softirq/tasklet/BH being run.
+    </para>
+
+    <para>
+      <function>spin_lock_irqsave()</function> 
+      (<filename>include/linux/spinlock.h</filename>) is a variant
+      which saves whether interrupts were on or off in a flags word,
+      which is passed to <function>spin_unlock_irqrestore()</function>.  This
+      means that the same code can be used inside an hard irq handler (where
+      interrupts are already off) and in softirqs (where the irq
+      disabling is required).
+    </para>
+
+    <para>
+      Note that softirqs (and hence tasklets and timers) are run on
+      return from hardware interrupts, so
+      <function>spin_lock_irq()</function> also stops these.  In that
+      sense, <function>spin_lock_irqsave()</function> is the most
+      general and powerful locking function.
+    </para>
+
+   </sect1>
+   <sect1 id="hardirq-hardirq">
+    <title>Locking Between Two Hard IRQ Handlers</title>
+    <para>
+      It is rare to have to share data between two IRQ handlers, but
+      if you do, <function>spin_lock_irqsave()</function> should be
+      used: it is architecture-specific whether all interrupts are
+      disabled inside irq handlers themselves.
+    </para>
+   </sect1>
+
+  </chapter>
+
+  <chapter id="cheatsheet">
+   <title>Cheat Sheet For Locking</title>
+   <para>
+     Pete Zaitcev gives the following summary:
+   </para>
+   <itemizedlist>
+      <listitem>
+	<para>
+          If you are in a process context (any syscall) and want to
+	lock other process out, use a semaphore.  You can take a semaphore
+	and sleep (<function>copy_from_user*(</function> or
+	<function>kmalloc(x,GFP_KERNEL)</function>).
+      </para>
+      </listitem>
+      <listitem>
+	<para>
+	Otherwise (== data can be touched in an interrupt), use
+	<function>spin_lock_irqsave()</function> and
+	<function>spin_unlock_irqrestore()</function>.
+	</para>
+      </listitem>
+      <listitem>
+	<para>
+	Avoid holding spinlock for more than 5 lines of code and
+	across any function call (except accessors like
+	<function>readb</function>).
+	</para>
+      </listitem>
+    </itemizedlist>
+
+   <sect1 id="minimum-lock-reqirements">
+   <title>Table of Minimum Requirements</title>
+
+   <para> The following table lists the <emphasis>minimum</emphasis>
+	locking requirements between various contexts.  In some cases,
+	the same context can only be running on one CPU at a time, so
+	no locking is required for that context (eg. a particular
+	thread can only run on one CPU at a time, but if it needs
+	shares data with another thread, locking is required).
+   </para>
+   <para>
+	Remember the advice above: you can always use
+	<function>spin_lock_irqsave()</function>, which is a superset
+	of all other spinlock primitives.
+   </para>
+   <table>
+<title>Table of Locking Requirements</title>
+<tgroup cols="11">
+<tbody>
+<row>
+<entry></entry>
+<entry>IRQ Handler A</entry>
+<entry>IRQ Handler B</entry>
+<entry>Softirq A</entry>
+<entry>Softirq B</entry>
+<entry>Tasklet A</entry>
+<entry>Tasklet B</entry>
+<entry>Timer A</entry>
+<entry>Timer B</entry>
+<entry>User Context A</entry>
+<entry>User Context B</entry>
+</row>
+
+<row>
+<entry>IRQ Handler A</entry>
+<entry>None</entry>
+</row>
+
+<row>
+<entry>IRQ Handler B</entry>
+<entry>spin_lock_irqsave</entry>
+<entry>None</entry>
+</row>
+
+<row>
+<entry>Softirq A</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock</entry>
+</row>
+
+<row>
+<entry>Softirq B</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock</entry>
+<entry>spin_lock</entry>
+</row>
+
+<row>
+<entry>Tasklet A</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock</entry>
+<entry>spin_lock</entry>
+<entry>None</entry>
+</row>
+
+<row>
+<entry>Tasklet B</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock</entry>
+<entry>spin_lock</entry>
+<entry>spin_lock</entry>
+<entry>None</entry>
+</row>
+
+<row>
+<entry>Timer A</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock</entry>
+<entry>spin_lock</entry>
+<entry>spin_lock</entry>
+<entry>spin_lock</entry>
+<entry>None</entry>
+</row>
+
+<row>
+<entry>Timer B</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock</entry>
+<entry>spin_lock</entry>
+<entry>spin_lock</entry>
+<entry>spin_lock</entry>
+<entry>spin_lock</entry>
+<entry>None</entry>
+</row>
+
+<row>
+<entry>User Context A</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock_bh</entry>
+<entry>spin_lock_bh</entry>
+<entry>spin_lock_bh</entry>
+<entry>spin_lock_bh</entry>
+<entry>spin_lock_bh</entry>
+<entry>spin_lock_bh</entry>
+<entry>None</entry>
+</row>
+
+<row>
+<entry>User Context B</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock_irq</entry>
+<entry>spin_lock_bh</entry>
+<entry>spin_lock_bh</entry>
+<entry>spin_lock_bh</entry>
+<entry>spin_lock_bh</entry>
+<entry>spin_lock_bh</entry>
+<entry>spin_lock_bh</entry>
+<entry>down_interruptible</entry>
+<entry>None</entry>
+</row>
+
+</tbody>
+</tgroup>
+</table>
+</sect1>
+</chapter>
+
+  <chapter id="Examples">
+   <title>Common Examples</title>
+    <para>
+Let's step through a simple example: a cache of number to name
+mappings.  The cache keeps a count of how often each of the objects is
+used, and when it gets full, throws out the least used one.
+
+    </para>
+
+   <sect1 id="examples-usercontext">
+    <title>All In User Context</title>
+    <para>
+For our first example, we assume that all operations are in user
+context (ie. from system calls), so we can sleep.  This means we can
+use a semaphore to protect the cache and all the objects within
+it.  Here's the code:
+    </para>
+
+    <programlisting>
+#include &lt;linux/list.h&gt;
+#include &lt;linux/slab.h&gt;
+#include &lt;linux/string.h&gt;
+#include &lt;asm/semaphore.h&gt;
+#include &lt;asm/errno.h&gt;
+
+struct object
+{
+        struct list_head list;
+        int id;
+        char name[32];
+        int popularity;
+};
+
+/* Protects the cache, cache_num, and the objects within it */
+static DECLARE_MUTEX(cache_lock);
+static LIST_HEAD(cache);
+static unsigned int cache_num = 0;
+#define MAX_CACHE_SIZE 10
+
+/* Must be holding cache_lock */
+static struct object *__cache_find(int id)
+{
+        struct object *i;
+
+        list_for_each_entry(i, &amp;cache, list)
+                if (i-&gt;id == id) {
+                        i-&gt;popularity++;
+                        return i;
+                }
+        return NULL;
+}
+
+/* Must be holding cache_lock */
+static void __cache_delete(struct object *obj)
+{
+        BUG_ON(!obj);
+        list_del(&amp;obj-&gt;list);
+        kfree(obj);
+        cache_num--;
+}
+
+/* Must be holding cache_lock */
+static void __cache_add(struct object *obj)
+{
+        list_add(&amp;obj-&gt;list, &amp;cache);
+        if (++cache_num > MAX_CACHE_SIZE) {
+                struct object *i, *outcast = NULL;
+                list_for_each_entry(i, &amp;cache, list) {
+                        if (!outcast || i-&gt;popularity &lt; outcast-&gt;popularity)
+                                outcast = i;
+                }
+                __cache_delete(outcast);
+        }
+}
+
+int cache_add(int id, const char *name)
+{
+        struct object *obj;
+
+        if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
+                return -ENOMEM;
+
+        strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
+        obj-&gt;id = id;
+        obj-&gt;popularity = 0;
+
+        down(&amp;cache_lock);
+        __cache_add(obj);
+        up(&amp;cache_lock);
+        return 0;
+}
+
+void cache_delete(int id)
+{
+        down(&amp;cache_lock);
+        __cache_delete(__cache_find(id));
+        up(&amp;cache_lock);
+}
+
+int cache_find(int id, char *name)
+{
+        struct object *obj;
+        int ret = -ENOENT;
+
+        down(&amp;cache_lock);
+        obj = __cache_find(id);
+        if (obj) {
+                ret = 0;
+                strcpy(name, obj-&gt;name);
+        }
+        up(&amp;cache_lock);
+        return ret;
+}
+</programlisting>
+
+    <para>
+Note that we always make sure we have the cache_lock when we add,
+delete, or look up the cache: both the cache infrastructure itself and
+the contents of the objects are protected by the lock.  In this case
+it's easy, since we copy the data for the user, and never let them
+access the objects directly.
+    </para>
+    <para>
+There is a slight (and common) optimization here: in
+<function>cache_add</function> we set up the fields of the object
+before grabbing the lock.  This is safe, as no-one else can access it
+until we put it in cache.
+    </para>
+    </sect1>
+
+   <sect1 id="examples-interrupt">
+    <title>Accessing From Interrupt Context</title>
+    <para>
+Now consider the case where <function>cache_find</function> can be
+called from interrupt context: either a hardware interrupt or a
+softirq.  An example would be a timer which deletes object from the
+cache.
+    </para>
+    <para>
+The change is shown below, in standard patch format: the
+<symbol>-</symbol> are lines which are taken away, and the
+<symbol>+</symbol> are lines which are added.
+    </para>
+<programlisting>
+--- cache.c.usercontext	2003-12-09 13:58:54.000000000 +1100
++++ cache.c.interrupt	2003-12-09 14:07:49.000000000 +1100
+@@ -12,7 +12,7 @@
+         int popularity;
+ };
+
+-static DECLARE_MUTEX(cache_lock);
++static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED;
+ static LIST_HEAD(cache);
+ static unsigned int cache_num = 0;
+ #define MAX_CACHE_SIZE 10
+@@ -55,6 +55,7 @@
+ int cache_add(int id, const char *name)
+ {
+         struct object *obj;
++        unsigned long flags;
+
+         if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
+                 return -ENOMEM;
+@@ -63,30 +64,33 @@
+         obj-&gt;id = id;
+         obj-&gt;popularity = 0;
+
+-        down(&amp;cache_lock);
++        spin_lock_irqsave(&amp;cache_lock, flags);
+         __cache_add(obj);
+-        up(&amp;cache_lock);
++        spin_unlock_irqrestore(&amp;cache_lock, flags);
+         return 0;
+ }
+
+ void cache_delete(int id)
+ {
+-        down(&amp;cache_lock);
++        unsigned long flags;
++
++        spin_lock_irqsave(&amp;cache_lock, flags);
+         __cache_delete(__cache_find(id));
+-        up(&amp;cache_lock);
++        spin_unlock_irqrestore(&amp;cache_lock, flags);
+ }
+
+ int cache_find(int id, char *name)
+ {
+         struct object *obj;
+         int ret = -ENOENT;
++        unsigned long flags;
+
+-        down(&amp;cache_lock);
++        spin_lock_irqsave(&amp;cache_lock, flags);
+         obj = __cache_find(id);
+         if (obj) {
+                 ret = 0;
+                 strcpy(name, obj-&gt;name);
+         }
+-        up(&amp;cache_lock);
++        spin_unlock_irqrestore(&amp;cache_lock, flags);
+         return ret;
+ }
+</programlisting>
+
+    <para>
+Note that the <function>spin_lock_irqsave</function> will turn off
+interrupts if they are on, otherwise does nothing (if we are already
+in an interrupt handler), hence these functions are safe to call from
+any context.
+    </para>
+    <para>
+Unfortunately, <function>cache_add</function> calls
+<function>kmalloc</function> with the <symbol>GFP_KERNEL</symbol>
+flag, which is only legal in user context.  I have assumed that
+<function>cache_add</function> is still only called in user context,
+otherwise this should become a parameter to
+<function>cache_add</function>.
+    </para>
+  </sect1>
+   <sect1 id="examples-refcnt">
+    <title>Exposing Objects Outside This File</title>
+    <para>
+If our objects contained more information, it might not be sufficient
+to copy the information in and out: other parts of the code might want
+to keep pointers to these objects, for example, rather than looking up
+the id every time.  This produces two problems.
+    </para>
+    <para>
+The first problem is that we use the <symbol>cache_lock</symbol> to
+protect objects: we'd need to make this non-static so the rest of the
+code can use it.  This makes locking trickier, as it is no longer all
+in one place.
+    </para>
+    <para>
+The second problem is the lifetime problem: if another structure keeps
+a pointer to an object, it presumably expects that pointer to remain
+valid.  Unfortunately, this is only guaranteed while you hold the
+lock, otherwise someone might call <function>cache_delete</function>
+and even worse, add another object, re-using the same address.
+    </para>
+    <para>
+As there is only one lock, you can't hold it forever: no-one else would
+get any work done.
+    </para>
+    <para>
+The solution to this problem is to use a reference count: everyone who
+has a pointer to the object increases it when they first get the
+object, and drops the reference count when they're finished with it.
+Whoever drops it to zero knows it is unused, and can actually delete it.
+    </para>
+    <para>
+Here is the code:
+    </para>
+
+<programlisting>
+--- cache.c.interrupt	2003-12-09 14:25:43.000000000 +1100
++++ cache.c.refcnt	2003-12-09 14:33:05.000000000 +1100
+@@ -7,6 +7,7 @@
+ struct object
+ {
+         struct list_head list;
++        unsigned int refcnt;
+         int id;
+         char name[32];
+         int popularity;
+@@ -17,6 +18,35 @@
+ static unsigned int cache_num = 0;
+ #define MAX_CACHE_SIZE 10
+
++static void __object_put(struct object *obj)
++{
++        if (--obj-&gt;refcnt == 0)
++                kfree(obj);
++}
++
++static void __object_get(struct object *obj)
++{
++        obj-&gt;refcnt++;
++}
++
++void object_put(struct object *obj)
++{
++        unsigned long flags;
++
++        spin_lock_irqsave(&amp;cache_lock, flags);
++        __object_put(obj);
++        spin_unlock_irqrestore(&amp;cache_lock, flags);
++}
++
++void object_get(struct object *obj)
++{
++        unsigned long flags;
++
++        spin_lock_irqsave(&amp;cache_lock, flags);
++        __object_get(obj);
++        spin_unlock_irqrestore(&amp;cache_lock, flags);
++}
++
+ /* Must be holding cache_lock */
+ static struct object *__cache_find(int id)
+ {
+@@ -35,6 +65,7 @@
+ {
+         BUG_ON(!obj);
+         list_del(&amp;obj-&gt;list);
++        __object_put(obj);
+         cache_num--;
+ }
+
+@@ -63,6 +94,7 @@
+         strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
+         obj-&gt;id = id;
+         obj-&gt;popularity = 0;
++        obj-&gt;refcnt = 1; /* The cache holds a reference */
+
+         spin_lock_irqsave(&amp;cache_lock, flags);
+         __cache_add(obj);
+@@ -79,18 +111,15 @@
+         spin_unlock_irqrestore(&amp;cache_lock, flags);
+ }
+
+-int cache_find(int id, char *name)
++struct object *cache_find(int id)
+ {
+         struct object *obj;
+-        int ret = -ENOENT;
+         unsigned long flags;
+
+         spin_lock_irqsave(&amp;cache_lock, flags);
+         obj = __cache_find(id);
+-        if (obj) {
+-                ret = 0;
+-                strcpy(name, obj-&gt;name);
+-        }
++        if (obj)
++                __object_get(obj);
+         spin_unlock_irqrestore(&amp;cache_lock, flags);
+-        return ret;
++        return obj;
+ }
+</programlisting>
+
+<para>
+We encapsulate the reference counting in the standard 'get' and 'put'
+functions.  Now we can return the object itself from
+<function>cache_find</function> which has the advantage that the user
+can now sleep holding the object (eg. to
+<function>copy_to_user</function> to name to userspace).
+</para>
+<para>
+The other point to note is that I said a reference should be held for
+every pointer to the object: thus the reference count is 1 when first
+inserted into the cache.  In some versions the framework does not hold
+a reference count, but they are more complicated.
+</para>
+
+   <sect2 id="examples-refcnt-atomic">
+    <title>Using Atomic Operations For The Reference Count</title>
+<para>
+In practice, <type>atomic_t</type> would usually be used for
+<structfield>refcnt</structfield>.  There are a number of atomic
+operations defined in
+
+<filename class="headerfile">include/asm/atomic.h</filename>: these are
+guaranteed to be seen atomically from all CPUs in the system, so no
+lock is required.  In this case, it is simpler than using spinlocks,
+although for anything non-trivial using spinlocks is clearer.  The
+<function>atomic_inc</function> and
+<function>atomic_dec_and_test</function> are used instead of the
+standard increment and decrement operators, and the lock is no longer
+used to protect the reference count itself.
+</para>
+
+<programlisting>
+--- cache.c.refcnt	2003-12-09 15:00:35.000000000 +1100
++++ cache.c.refcnt-atomic	2003-12-11 15:49:42.000000000 +1100
+@@ -7,7 +7,7 @@
+ struct object
+ {
+         struct list_head list;
+-        unsigned int refcnt;
++        atomic_t refcnt;
+         int id;
+         char name[32];
+         int popularity;
+@@ -18,33 +18,15 @@
+ static unsigned int cache_num = 0;
+ #define MAX_CACHE_SIZE 10
+
+-static void __object_put(struct object *obj)
+-{
+-        if (--obj-&gt;refcnt == 0)
+-                kfree(obj);
+-}
+-
+-static void __object_get(struct object *obj)
+-{
+-        obj-&gt;refcnt++;
+-}
+-
+ void object_put(struct object *obj)
+ {
+-        unsigned long flags;
+-
+-        spin_lock_irqsave(&amp;cache_lock, flags);
+-        __object_put(obj);
+-        spin_unlock_irqrestore(&amp;cache_lock, flags);
++        if (atomic_dec_and_test(&amp;obj-&gt;refcnt))
++                kfree(obj);
+ }
+
+ void object_get(struct object *obj)
+ {
+-        unsigned long flags;
+-
+-        spin_lock_irqsave(&amp;cache_lock, flags);
+-        __object_get(obj);
+-        spin_unlock_irqrestore(&amp;cache_lock, flags);
++        atomic_inc(&amp;obj-&gt;refcnt);
+ }
+
+ /* Must be holding cache_lock */
+@@ -65,7 +47,7 @@
+ {
+         BUG_ON(!obj);
+         list_del(&amp;obj-&gt;list);
+-        __object_put(obj);
++        object_put(obj);
+         cache_num--;
+ }
+
+@@ -94,7 +76,7 @@
+         strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
+         obj-&gt;id = id;
+         obj-&gt;popularity = 0;
+-        obj-&gt;refcnt = 1; /* The cache holds a reference */
++        atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
+
+         spin_lock_irqsave(&amp;cache_lock, flags);
+         __cache_add(obj);
+@@ -119,7 +101,7 @@
+         spin_lock_irqsave(&amp;cache_lock, flags);
+         obj = __cache_find(id);
+         if (obj)
+-                __object_get(obj);
++                object_get(obj);
+         spin_unlock_irqrestore(&amp;cache_lock, flags);
+         return obj;
+ }
+</programlisting>
+</sect2>
+</sect1>
+
+   <sect1 id="examples-lock-per-obj">
+    <title>Protecting The Objects Themselves</title>
+    <para>
+In these examples, we assumed that the objects (except the reference
+counts) never changed once they are created.  If we wanted to allow
+the name to change, there are three possibilities:
+    </para>
+    <itemizedlist>
+      <listitem>
+	<para>
+You can make <symbol>cache_lock</symbol> non-static, and tell people
+to grab that lock before changing the name in any object.
+        </para>
+      </listitem>
+      <listitem>
+        <para>
+You can provide a <function>cache_obj_rename</function> which grabs
+this lock and changes the name for the caller, and tell everyone to
+use that function.
+        </para>
+      </listitem>
+      <listitem>
+        <para>
+You can make the <symbol>cache_lock</symbol> protect only the cache
+itself, and use another lock to protect the name.
+        </para>
+      </listitem>
+    </itemizedlist>
+
+      <para>
+Theoretically, you can make the locks as fine-grained as one lock for
+every field, for every object.  In practice, the most common variants
+are:
+</para>
+    <itemizedlist>
+      <listitem>
+	<para>
+One lock which protects the infrastructure (the <symbol>cache</symbol>
+list in this example) and all the objects.  This is what we have done
+so far.
+	</para>
+      </listitem>
+      <listitem>
+        <para>
+One lock which protects the infrastructure (including the list
+pointers inside the objects), and one lock inside the object which
+protects the rest of that object.
+        </para>
+      </listitem>
+      <listitem>
+        <para>
+Multiple locks to protect the infrastructure (eg. one lock per hash
+chain), possibly with a separate per-object lock.
+        </para>
+      </listitem>
+    </itemizedlist>
+
+<para>
+Here is the "lock-per-object" implementation:
+</para>
+<programlisting>
+--- cache.c.refcnt-atomic	2003-12-11 15:50:54.000000000 +1100
++++ cache.c.perobjectlock	2003-12-11 17:15:03.000000000 +1100
+@@ -6,11 +6,17 @@
+
+ struct object
+ {
++        /* These two protected by cache_lock. */
+         struct list_head list;
++        int popularity;
++
+         atomic_t refcnt;
++
++        /* Doesn't change once created. */
+         int id;
++
++        spinlock_t lock; /* Protects the name */
+         char name[32];
+-        int popularity;
+ };
+
+ static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED;
+@@ -77,6 +84,7 @@
+         obj-&gt;id = id;
+         obj-&gt;popularity = 0;
+         atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
++        spin_lock_init(&amp;obj-&gt;lock);
+
+         spin_lock_irqsave(&amp;cache_lock, flags);
+         __cache_add(obj);
+</programlisting>
+
+<para>
+Note that I decide that the <structfield>popularity</structfield>
+count should be protected by the <symbol>cache_lock</symbol> rather
+than the per-object lock: this is because it (like the
+<structname>struct list_head</structname> inside the object) is
+logically part of the infrastructure.  This way, I don't need to grab
+the lock of every object in <function>__cache_add</function> when
+seeking the least popular.
+</para>
+
+<para>
+I also decided that the <structfield>id</structfield> member is
+unchangeable, so I don't need to grab each object lock in
+<function>__cache_find()</function> to examine the
+<structfield>id</structfield>: the object lock is only used by a
+caller who wants to read or write the <structfield>name</structfield>
+field.
+</para>
+
+<para>
+Note also that I added a comment describing what data was protected by
+which locks.  This is extremely important, as it describes the runtime
+behavior of the code, and can be hard to gain from just reading.  And
+as Alan Cox says, <quote>Lock data, not code</quote>.
+</para>
+</sect1>
+</chapter>
+
+   <chapter id="common-problems">
+    <title>Common Problems</title>
+    <sect1 id="deadlock">
+    <title>Deadlock: Simple and Advanced</title>
+
+    <para>
+      There is a coding bug where a piece of code tries to grab a
+      spinlock twice: it will spin forever, waiting for the lock to
+      be released (spinlocks, rwlocks and semaphores are not
+      recursive in Linux).  This is trivial to diagnose: not a
+      stay-up-five-nights-talk-to-fluffy-code-bunnies kind of
+      problem.
+    </para>
+
+    <para>
+      For a slightly more complex case, imagine you have a region
+      shared by a softirq and user context.  If you use a
+      <function>spin_lock()</function> call to protect it, it is 
+      possible that the user context will be interrupted by the softirq
+      while it holds the lock, and the softirq will then spin
+      forever trying to get the same lock.
+    </para>
+
+    <para>
+      Both of these are called deadlock, and as shown above, it can
+      occur even with a single CPU (although not on UP compiles,
+      since spinlocks vanish on kernel compiles with 
+      <symbol>CONFIG_SMP</symbol>=n. You'll still get data corruption 
+      in the second example).
+    </para>
+
+    <para>
+      This complete lockup is easy to diagnose: on SMP boxes the
+      watchdog timer or compiling with <symbol>DEBUG_SPINLOCKS</symbol> set
+      (<filename>include/linux/spinlock.h</filename>) will show this up 
+      immediately when it happens.
+    </para>
+
+    <para>
+      A more complex problem is the so-called 'deadly embrace',
+      involving two or more locks.  Say you have a hash table: each
+      entry in the table is a spinlock, and a chain of hashed
+      objects.  Inside a softirq handler, you sometimes want to
+      alter an object from one place in the hash to another: you
+      grab the spinlock of the old hash chain and the spinlock of
+      the new hash chain, and delete the object from the old one,
+      and insert it in the new one.
+    </para>
+
+    <para>
+      There are two problems here.  First, if your code ever
+      tries to move the object to the same chain, it will deadlock
+      with itself as it tries to lock it twice.  Secondly, if the
+      same softirq on another CPU is trying to move another object
+      in the reverse direction, the following could happen:
+    </para>
+
+    <table>
+     <title>Consequences</title>
+
+     <tgroup cols="2" align="left">
+
+      <thead>
+       <row>
+        <entry>CPU 1</entry>
+        <entry>CPU 2</entry>
+       </row>
+      </thead>
+
+      <tbody>
+       <row>
+        <entry>Grab lock A -&gt; OK</entry>
+        <entry>Grab lock B -&gt; OK</entry>
+       </row>
+       <row>
+        <entry>Grab lock B -&gt; spin</entry>
+        <entry>Grab lock A -&gt; spin</entry>
+       </row>
+      </tbody>
+     </tgroup>
+    </table>
+
+    <para>
+      The two CPUs will spin forever, waiting for the other to give up
+      their lock.  It will look, smell, and feel like a crash.
+    </para>
+    </sect1>
+
+    <sect1 id="techs-deadlock-prevent">
+     <title>Preventing Deadlock</title>
+
+     <para>
+       Textbooks will tell you that if you always lock in the same
+       order, you will never get this kind of deadlock.  Practice
+       will tell you that this approach doesn't scale: when I
+       create a new lock, I don't understand enough of the kernel
+       to figure out where in the 5000 lock hierarchy it will fit.
+     </para>
+
+     <para>
+       The best locks are encapsulated: they never get exposed in
+       headers, and are never held around calls to non-trivial
+       functions outside the same file.  You can read through this
+       code and see that it will never deadlock, because it never
+       tries to grab another lock while it has that one.  People
+       using your code don't even need to know you are using a
+       lock.
+     </para>
+
+     <para>
+       A classic problem here is when you provide callbacks or
+       hooks: if you call these with the lock held, you risk simple
+       deadlock, or a deadly embrace (who knows what the callback
+       will do?).  Remember, the other programmers are out to get
+       you, so don't do this.
+     </para>
+
+    <sect2 id="techs-deadlock-overprevent">
+     <title>Overzealous Prevention Of Deadlocks</title>
+
+     <para>
+       Deadlocks are problematic, but not as bad as data
+       corruption.  Code which grabs a read lock, searches a list,
+       fails to find what it wants, drops the read lock, grabs a
+       write lock and inserts the object has a race condition.
+     </para>
+
+     <para>
+       If you don't see why, please stay the fuck away from my code.
+     </para>
+    </sect2>
+    </sect1>
+
+   <sect1 id="racing-timers">
+    <title>Racing Timers: A Kernel Pastime</title>
+
+    <para>
+      Timers can produce their own special problems with races.
+      Consider a collection of objects (list, hash, etc) where each
+      object has a timer which is due to destroy it.
+    </para>
+
+    <para>
+      If you want to destroy the entire collection (say on module
+      removal), you might do the following:
+    </para>
+
+    <programlisting>
+        /* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE
+           HUNGARIAN NOTATION */
+        spin_lock_bh(&amp;list_lock);
+
+        while (list) {
+                struct foo *next = list-&gt;next;
+                del_timer(&amp;list-&gt;timer);
+                kfree(list);
+                list = next;
+        }
+
+        spin_unlock_bh(&amp;list_lock);
+    </programlisting>
+
+    <para>
+      Sooner or later, this will crash on SMP, because a timer can
+      have just gone off before the <function>spin_lock_bh()</function>,
+      and it will only get the lock after we
+      <function>spin_unlock_bh()</function>, and then try to free
+      the element (which has already been freed!).
+    </para>
+
+    <para>
+      This can be avoided by checking the result of
+      <function>del_timer()</function>: if it returns
+      <returnvalue>1</returnvalue>, the timer has been deleted.
+      If <returnvalue>0</returnvalue>, it means (in this
+      case) that it is currently running, so we can do:
+    </para>
+
+    <programlisting>
+        retry:
+                spin_lock_bh(&amp;list_lock);
+
+                while (list) {
+                        struct foo *next = list-&gt;next;
+                        if (!del_timer(&amp;list-&gt;timer)) {
+                                /* Give timer a chance to delete this */
+                                spin_unlock_bh(&amp;list_lock);
+                                goto retry;
+                        }
+                        kfree(list);
+                        list = next;
+                }
+
+                spin_unlock_bh(&amp;list_lock);
+    </programlisting>
+
+    <para>
+      Another common problem is deleting timers which restart
+      themselves (by calling <function>add_timer()</function> at the end
+      of their timer function).  Because this is a fairly common case
+      which is prone to races, you should use <function>del_timer_sync()</function>
+      (<filename class="headerfile">include/linux/timer.h</filename>)
+      to handle this case.  It returns the number of times the timer
+      had to be deleted before we finally stopped it from adding itself back
+      in.
+    </para>
+   </sect1>
+
+  </chapter>
+
+ <chapter id="Efficiency">
+    <title>Locking Speed</title>
+
+    <para>
+There are three main things to worry about when considering speed of
+some code which does locking.  First is concurrency: how many things
+are going to be waiting while someone else is holding a lock.  Second
+is the time taken to actually acquire and release an uncontended lock.
+Third is using fewer, or smarter locks.  I'm assuming that the lock is
+used fairly often: otherwise, you wouldn't be concerned about
+efficiency.
+</para>
+    <para>
+Concurrency depends on how long the lock is usually held: you should
+hold the lock for as long as needed, but no longer.  In the cache
+example, we always create the object without the lock held, and then
+grab the lock only when we are ready to insert it in the list.
+</para>
+    <para>
+Acquisition times depend on how much damage the lock operations do to
+the pipeline (pipeline stalls) and how likely it is that this CPU was
+the last one to grab the lock (ie. is the lock cache-hot for this
+CPU): on a machine with more CPUs, this likelihood drops fast.
+Consider a 700MHz Intel Pentium III: an instruction takes about 0.7ns,
+an atomic increment takes about 58ns, a lock which is cache-hot on
+this CPU takes 160ns, and a cacheline transfer from another CPU takes
+an additional 170 to 360ns.  (These figures from Paul McKenney's
+<ulink url="http://www.linuxjournal.com/article.php?sid=6993"> Linux
+Journal RCU article</ulink>).
+</para>
+    <para>
+These two aims conflict: holding a lock for a short time might be done
+by splitting locks into parts (such as in our final per-object-lock
+example), but this increases the number of lock acquisitions, and the
+results are often slower than having a single lock.  This is another
+reason to advocate locking simplicity.
+</para>
+    <para>
+The third concern is addressed below: there are some methods to reduce
+the amount of locking which needs to be done.
+</para>
+
+  <sect1 id="efficiency-rwlocks">
+   <title>Read/Write Lock Variants</title>
+
+   <para>
+      Both spinlocks and semaphores have read/write variants:
+      <type>rwlock_t</type> and <structname>struct rw_semaphore</structname>.
+      These divide users into two classes: the readers and the writers.  If
+      you are only reading the data, you can get a read lock, but to write to
+      the data you need the write lock.  Many people can hold a read lock,
+      but a writer must be sole holder.
+    </para>
+
+   <para>
+      If your code divides neatly along reader/writer lines (as our
+      cache code does), and the lock is held by readers for
+      significant lengths of time, using these locks can help.  They
+      are slightly slower than the normal locks though, so in practice
+      <type>rwlock_t</type> is not usually worthwhile.
+    </para>
+   </sect1>
+
+   <sect1 id="efficiency-read-copy-update">
+    <title>Avoiding Locks: Read Copy Update</title>
+
+    <para>
+      There is a special method of read/write locking called Read Copy
+      Update.  Using RCU, the readers can avoid taking a lock
+      altogether: as we expect our cache to be read more often than
+      updated (otherwise the cache is a waste of time), it is a
+      candidate for this optimization.
+    </para>
+
+    <para>
+      How do we get rid of read locks?  Getting rid of read locks
+      means that writers may be changing the list underneath the
+      readers.  That is actually quite simple: we can read a linked
+      list while an element is being added if the writer adds the
+      element very carefully.  For example, adding
+      <symbol>new</symbol> to a single linked list called
+      <symbol>list</symbol>:
+    </para>
+
+    <programlisting>
+        new-&gt;next = list-&gt;next;
+        wmb();
+        list-&gt;next = new;
+    </programlisting>
+
+    <para>
+      The <function>wmb()</function> is a write memory barrier.  It
+      ensures that the first operation (setting the new element's
+      <symbol>next</symbol> pointer) is complete and will be seen by
+      all CPUs, before the second operation is (putting the new
+      element into the list).  This is important, since modern
+      compilers and modern CPUs can both reorder instructions unless
+      told otherwise: we want a reader to either not see the new
+      element at all, or see the new element with the
+      <symbol>next</symbol> pointer correctly pointing at the rest of
+      the list.
+    </para>
+    <para>
+      Fortunately, there is a function to do this for standard
+      <structname>struct list_head</structname> lists:
+      <function>list_add_rcu()</function>
+      (<filename>include/linux/list.h</filename>).
+    </para>
+    <para>
+      Removing an element from the list is even simpler: we replace
+      the pointer to the old element with a pointer to its successor,
+      and readers will either see it, or skip over it.
+    </para>
+    <programlisting>
+        list-&gt;next = old-&gt;next;
+    </programlisting>
+    <para>
+      There is <function>list_del_rcu()</function>
+      (<filename>include/linux/list.h</filename>) which does this (the
+      normal version poisons the old object, which we don't want).
+    </para>
+    <para>
+      The reader must also be careful: some CPUs can look through the
+      <symbol>next</symbol> pointer to start reading the contents of
+      the next element early, but don't realize that the pre-fetched
+      contents is wrong when the <symbol>next</symbol> pointer changes
+      underneath them.  Once again, there is a
+      <function>list_for_each_entry_rcu()</function>
+      (<filename>include/linux/list.h</filename>) to help you.  Of
+      course, writers can just use
+      <function>list_for_each_entry()</function>, since there cannot
+      be two simultaneous writers.
+    </para>
+    <para>
+      Our final dilemma is this: when can we actually destroy the
+      removed element?  Remember, a reader might be stepping through
+      this element in the list right now: it we free this element and
+      the <symbol>next</symbol> pointer changes, the reader will jump
+      off into garbage and crash.  We need to wait until we know that
+      all the readers who were traversing the list when we deleted the
+      element are finished.  We use <function>call_rcu()</function> to
+      register a callback which will actually destroy the object once
+      the readers are finished.
+    </para>
+    <para>
+      But how does Read Copy Update know when the readers are
+      finished?  The method is this: firstly, the readers always
+      traverse the list inside
+      <function>rcu_read_lock()</function>/<function>rcu_read_unlock()</function>
+      pairs: these simply disable preemption so the reader won't go to
+      sleep while reading the list.
+    </para>
+    <para>
+      RCU then waits until every other CPU has slept at least once:
+      since readers cannot sleep, we know that any readers which were
+      traversing the list during the deletion are finished, and the
+      callback is triggered.  The real Read Copy Update code is a
+      little more optimized than this, but this is the fundamental
+      idea.
+    </para>
+
+<programlisting>
+--- cache.c.perobjectlock	2003-12-11 17:15:03.000000000 +1100
++++ cache.c.rcupdate	2003-12-11 17:55:14.000000000 +1100
+@@ -1,15 +1,18 @@
+ #include &lt;linux/list.h&gt;
+ #include &lt;linux/slab.h&gt;
+ #include &lt;linux/string.h&gt;
++#include &lt;linux/rcupdate.h&gt;
+ #include &lt;asm/semaphore.h&gt;
+ #include &lt;asm/errno.h&gt;
+
+ struct object
+ {
+-        /* These two protected by cache_lock. */
++        /* This is protected by RCU */
+         struct list_head list;
+         int popularity;
+
++        struct rcu_head rcu;
++
+         atomic_t refcnt;
+
+         /* Doesn't change once created. */
+@@ -40,7 +43,7 @@
+ {
+         struct object *i;
+
+-        list_for_each_entry(i, &amp;cache, list) {
++        list_for_each_entry_rcu(i, &amp;cache, list) {
+                 if (i-&gt;id == id) {
+                         i-&gt;popularity++;
+                         return i;
+@@ -49,19 +52,25 @@
+         return NULL;
+ }
+
++/* Final discard done once we know no readers are looking. */
++static void cache_delete_rcu(void *arg)
++{
++        object_put(arg);
++}
++
+ /* Must be holding cache_lock */
+ static void __cache_delete(struct object *obj)
+ {
+         BUG_ON(!obj);
+-        list_del(&amp;obj-&gt;list);
+-        object_put(obj);
++        list_del_rcu(&amp;obj-&gt;list);
+         cache_num--;
++        call_rcu(&amp;obj-&gt;rcu, cache_delete_rcu, obj);
+ }
+
+ /* Must be holding cache_lock */
+ static void __cache_add(struct object *obj)
+ {
+-        list_add(&amp;obj-&gt;list, &amp;cache);
++        list_add_rcu(&amp;obj-&gt;list, &amp;cache);
+         if (++cache_num > MAX_CACHE_SIZE) {
+                 struct object *i, *outcast = NULL;
+                 list_for_each_entry(i, &amp;cache, list) {
+@@ -85,6 +94,7 @@
+         obj-&gt;popularity = 0;
+         atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
+         spin_lock_init(&amp;obj-&gt;lock);
++        INIT_RCU_HEAD(&amp;obj-&gt;rcu);
+
+         spin_lock_irqsave(&amp;cache_lock, flags);
+         __cache_add(obj);
+@@ -104,12 +114,11 @@
+ struct object *cache_find(int id)
+ {
+         struct object *obj;
+-        unsigned long flags;
+
+-        spin_lock_irqsave(&amp;cache_lock, flags);
++        rcu_read_lock();
+         obj = __cache_find(id);
+         if (obj)
+                 object_get(obj);
+-        spin_unlock_irqrestore(&amp;cache_lock, flags);
++        rcu_read_unlock();
+         return obj;
+ }
+</programlisting>
+
+<para>
+Note that the reader will alter the
+<structfield>popularity</structfield> member in
+<function>__cache_find()</function>, and now it doesn't hold a lock.
+One solution would be to make it an <type>atomic_t</type>, but for
+this usage, we don't really care about races: an approximate result is
+good enough, so I didn't change it.
+</para>
+
+<para>
+The result is that <function>cache_find()</function> requires no
+synchronization with any other functions, so is almost as fast on SMP
+as it would be on UP.
+</para>
+
+<para>
+There is a furthur optimization possible here: remember our original
+cache code, where there were no reference counts and the caller simply
+held the lock whenever using the object?  This is still possible: if
+you hold the lock, noone can delete the object, so you don't need to
+get and put the reference count.
+</para>
+
+<para>
+Now, because the 'read lock' in RCU is simply disabling preemption, a
+caller which always has preemption disabled between calling
+<function>cache_find()</function> and
+<function>object_put()</function> does not need to actually get and
+put the reference count: we could expose
+<function>__cache_find()</function> by making it non-static, and
+such callers could simply call that.
+</para>
+<para>
+The benefit here is that the reference count is not written to: the
+object is not altered in any way, which is much faster on SMP
+machines due to caching.
+</para>
+  </sect1>
+
+   <sect1 id="per-cpu">
+    <title>Per-CPU Data</title>
+
+    <para>
+      Another technique for avoiding locking which is used fairly
+      widely is to duplicate information for each CPU.  For example,
+      if you wanted to keep a count of a common condition, you could
+      use a spin lock and a single counter.  Nice and simple.
+    </para>
+
+    <para>
+      If that was too slow (it's usually not, but if you've got a
+      really big machine to test on and can show that it is), you
+      could instead use a counter for each CPU, then none of them need
+      an exclusive lock.  See <function>DEFINE_PER_CPU()</function>,
+      <function>get_cpu_var()</function> and
+      <function>put_cpu_var()</function>
+      (<filename class="headerfile">include/linux/percpu.h</filename>).
+    </para>
+
+    <para>
+      Of particular use for simple per-cpu counters is the
+      <type>local_t</type> type, and the
+      <function>cpu_local_inc()</function> and related functions,
+      which are more efficient than simple code on some architectures
+      (<filename class="headerfile">include/asm/local.h</filename>).
+    </para>
+
+    <para>
+      Note that there is no simple, reliable way of getting an exact
+      value of such a counter, without introducing more locks.  This
+      is not a problem for some uses.
+    </para>
+   </sect1>
+
+   <sect1 id="mostly-hardirq">
+    <title>Data Which Mostly Used By An IRQ Handler</title>
+
+    <para>
+      If data is always accessed from within the same IRQ handler, you
+      don't need a lock at all: the kernel already guarantees that the
+      irq handler will not run simultaneously on multiple CPUs.
+    </para>
+    <para>
+      Manfred Spraul points out that you can still do this, even if
+      the data is very occasionally accessed in user context or
+      softirqs/tasklets.  The irq handler doesn't use a lock, and
+      all other accesses are done as so:
+    </para>
+
+<programlisting>
+	spin_lock(&amp;lock);
+	disable_irq(irq);
+	...
+	enable_irq(irq);
+	spin_unlock(&amp;lock);
+</programlisting>
+    <para>
+      The <function>disable_irq()</function> prevents the irq handler
+      from running (and waits for it to finish if it's currently
+      running on other CPUs).  The spinlock prevents any other
+      accesses happening at the same time.  Naturally, this is slower
+      than just a <function>spin_lock_irq()</function> call, so it
+      only makes sense if this type of access happens extremely
+      rarely.
+    </para>
+   </sect1>
+  </chapter>
+
+ <chapter id="sleeping-things">
+    <title>What Functions Are Safe To Call From Interrupts?</title>
+
+    <para>
+      Many functions in the kernel sleep (ie. call schedule())
+      directly or indirectly: you can never call them while holding a
+      spinlock, or with preemption disabled.  This also means you need
+      to be in user context: calling them from an interrupt is illegal.
+    </para>
+
+   <sect1 id="sleeping">
+    <title>Some Functions Which Sleep</title>
+
+    <para>
+      The most common ones are listed below, but you usually have to
+      read the code to find out if other calls are safe.  If everyone
+      else who calls it can sleep, you probably need to be able to
+      sleep, too.  In particular, registration and deregistration
+      functions usually expect to be called from user context, and can
+      sleep.
+    </para>
+
+    <itemizedlist>
+     <listitem>
+      <para>
+        Accesses to 
+        <firstterm linkend="gloss-userspace">userspace</firstterm>:
+      </para>
+      <itemizedlist>
+       <listitem>
+        <para>
+          <function>copy_from_user()</function>
+        </para>
+       </listitem>
+       <listitem>
+        <para>
+          <function>copy_to_user()</function>
+        </para>
+       </listitem>
+       <listitem>
+        <para>
+          <function>get_user()</function>
+        </para>
+       </listitem>
+       <listitem>
+        <para>
+          <function> put_user()</function>
+        </para>
+       </listitem>
+      </itemizedlist>
+     </listitem>
+
+     <listitem>
+      <para>
+        <function>kmalloc(GFP_KERNEL)</function>
+      </para>
+     </listitem>
+
+     <listitem>
+      <para>
+      <function>down_interruptible()</function> and
+      <function>down()</function>
+      </para>
+      <para>
+       There is a <function>down_trylock()</function> which can be
+       used inside interrupt context, as it will not sleep.
+       <function>up()</function> will also never sleep.
+      </para>
+     </listitem>
+    </itemizedlist>
+   </sect1>
+
+   <sect1 id="dont-sleep">
+    <title>Some Functions Which Don't Sleep</title>
+
+    <para>
+     Some functions are safe to call from any context, or holding
+     almost any lock.
+    </para>
+
+    <itemizedlist>
+     <listitem>
+      <para>
+	<function>printk()</function>
+      </para>
+     </listitem>
+     <listitem>
+      <para>
+        <function>kfree()</function>
+      </para>
+     </listitem>
+     <listitem>
+      <para>
+	<function>add_timer()</function> and <function>del_timer()</function>
+      </para>
+     </listitem>
+    </itemizedlist>
+   </sect1>
+  </chapter>
+
+  <chapter id="references">
+   <title>Further reading</title>
+
+   <itemizedlist>
+    <listitem>
+     <para>
+       <filename>Documentation/spinlocks.txt</filename>: 
+       Linus Torvalds' spinlocking tutorial in the kernel sources.
+     </para>
+    </listitem>
+
+    <listitem>
+     <para>
+       Unix Systems for Modern Architectures: Symmetric
+       Multiprocessing and Caching for Kernel Programmers:
+     </para>
+
+     <para>
+       Curt Schimmel's very good introduction to kernel level
+       locking (not written for Linux, but nearly everything
+       applies).  The book is expensive, but really worth every
+       penny to understand SMP locking. [ISBN: 0201633388]
+     </para>
+    </listitem>
+   </itemizedlist>
+  </chapter>
+
+  <chapter id="thanks">
+    <title>Thanks</title>
+
+    <para>
+      Thanks to Telsa Gwynne for DocBooking, neatening and adding
+      style.
+    </para>
+
+    <para>
+      Thanks to Martin Pool, Philipp Rumpf, Stephen Rothwell, Paul
+      Mackerras, Ruedi Aschwanden, Alan Cox, Manfred Spraul, Tim
+      Waugh, Pete Zaitcev, James Morris, Robert Love, Paul McKenney,
+      John Ashby for proofreading, correcting, flaming, commenting.
+    </para>
+
+    <para>
+      Thanks to the cabal for having no influence on this document.
+    </para>
+  </chapter>
+
+  <glossary id="glossary">
+   <title>Glossary</title>
+
+   <glossentry id="gloss-preemption">
+    <glossterm>preemption</glossterm>
+     <glossdef>
+      <para>
+        Prior to 2.5, or when <symbol>CONFIG_PREEMPT</symbol> is
+        unset, processes in user context inside the kernel would not
+        preempt each other (ie. you had that CPU until you have it up,
+        except for interrupts).  With the addition of
+        <symbol>CONFIG_PREEMPT</symbol> in 2.5.4, this changed: when
+        in user context, higher priority tasks can "cut in": spinlocks
+        were changed to disable preemption, even on UP.
+     </para>
+    </glossdef>
+   </glossentry>
+
+   <glossentry id="gloss-bh">
+    <glossterm>bh</glossterm>
+     <glossdef>
+      <para>
+        Bottom Half: for historical reasons, functions with
+        '_bh' in them often now refer to any software interrupt, e.g.
+        <function>spin_lock_bh()</function> blocks any software interrupt 
+        on the current CPU.  Bottom halves are deprecated, and will 
+        eventually be replaced by tasklets.  Only one bottom half will be 
+        running at any time.
+     </para>
+    </glossdef>
+   </glossentry>
+
+   <glossentry id="gloss-hwinterrupt">
+    <glossterm>Hardware Interrupt / Hardware IRQ</glossterm>
+    <glossdef>
+     <para>
+       Hardware interrupt request.  <function>in_irq()</function> returns 
+       <returnvalue>true</returnvalue> in a hardware interrupt handler.
+     </para>
+    </glossdef>
+   </glossentry>
+
+   <glossentry id="gloss-interruptcontext">
+    <glossterm>Interrupt Context</glossterm>
+    <glossdef>
+     <para>
+       Not user context: processing a hardware irq or software irq.
+       Indicated by the <function>in_interrupt()</function> macro 
+       returning <returnvalue>true</returnvalue>.
+     </para>
+    </glossdef>
+   </glossentry>
+
+   <glossentry id="gloss-smp">
+    <glossterm><acronym>SMP</acronym></glossterm>
+    <glossdef>
+     <para>
+       Symmetric Multi-Processor: kernels compiled for multiple-CPU
+       machines.  (CONFIG_SMP=y).
+     </para>
+    </glossdef>
+   </glossentry>
+
+   <glossentry id="gloss-softirq">
+    <glossterm>Software Interrupt / softirq</glossterm>
+    <glossdef>
+     <para>
+       Software interrupt handler.  <function>in_irq()</function> returns
+       <returnvalue>false</returnvalue>; <function>in_softirq()</function>
+       returns <returnvalue>true</returnvalue>.  Tasklets and softirqs
+	both fall into the category of 'software interrupts'.
+     </para>
+     <para>
+       Strictly speaking a softirq is one of up to 32 enumerated software
+       interrupts which can run on multiple CPUs at once.
+       Sometimes used to refer to tasklets as
+       well (ie. all software interrupts).
+     </para>
+    </glossdef>
+   </glossentry>
+
+   <glossentry id="gloss-tasklet">
+    <glossterm>tasklet</glossterm>
+    <glossdef>
+     <para>
+       A dynamically-registrable software interrupt,
+       which is guaranteed to only run on one CPU at a time.
+     </para>
+    </glossdef>
+   </glossentry>
+
+   <glossentry id="gloss-timers">
+    <glossterm>timer</glossterm>
+    <glossdef>
+     <para>
+       A dynamically-registrable software interrupt, which is run at
+       (or close to) a given time.  When running, it is just like a
+       tasklet (in fact, they are called from the TIMER_SOFTIRQ).
+     </para>
+    </glossdef>
+   </glossentry>
+
+   <glossentry id="gloss-up">
+    <glossterm><acronym>UP</acronym></glossterm>
+    <glossdef>
+     <para>
+       Uni-Processor: Non-SMP.  (CONFIG_SMP=n).
+     </para>
+    </glossdef>
+   </glossentry>
+
+   <glossentry id="gloss-usercontext">
+    <glossterm>User Context</glossterm>
+    <glossdef>
+     <para>
+       The kernel executing on behalf of a particular process (ie. a
+       system call or trap) or kernel thread.  You can tell which
+       process with the <symbol>current</symbol> macro.)  Not to
+       be confused with userspace.  Can be interrupted by software or
+       hardware interrupts.
+     </para>
+    </glossdef>
+   </glossentry>
+
+   <glossentry id="gloss-userspace">
+    <glossterm>Userspace</glossterm>
+    <glossdef>
+     <para>
+       A process executing its own code outside the kernel.
+     </para>
+    </glossdef>
+   </glossentry>      
+
+  </glossary>
+</book>
+