Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/Documentation/networking/cs89x0.txt b/Documentation/networking/cs89x0.txt
new file mode 100644
index 0000000..188beb7
--- /dev/null
+++ b/Documentation/networking/cs89x0.txt
@@ -0,0 +1,703 @@
+
+NOTE
+----
+
+This document was contributed by Cirrus Logic for kernel 2.2.5.  This version
+has been updated for 2.3.48 by Andrew Morton <andrewm@uow.edu.au>
+
+Cirrus make a copy of this driver available at their website, as
+described below.  In general, you should use the driver version which
+comes with your Linux distribution.
+
+
+
+CIRRUS LOGIC LAN CS8900/CS8920 ETHERNET ADAPTERS
+Linux Network Interface Driver ver. 2.00 <kernel 2.3.48>
+===============================================================================
+ 
+
+TABLE OF CONTENTS
+
+1.0 CIRRUS LOGIC LAN CS8900/CS8920 ETHERNET ADAPTERS
+    1.1 Product Overview 
+    1.2 Driver Description
+	1.2.1 Driver Name
+	1.2.2 File in the Driver Package
+    1.3 System Requirements
+    1.4 Licensing Information
+
+2.0 ADAPTER INSTALLATION and CONFIGURATION
+    2.1 CS8900-based Adapter Configuration
+    2.2 CS8920-based Adapter Configuration 
+
+3.0 LOADING THE DRIVER AS A MODULE
+
+4.0 COMPILING THE DRIVER
+    4.1 Compiling the Driver as a Loadable Module
+    4.2 Compiling the driver to support memory mode
+    4.3 Compiling the driver to support Rx DMA 
+    4.4 Compiling the Driver into the Kernel
+
+5.0 TESTING AND TROUBLESHOOTING
+    5.1 Known Defects and Limitations
+    5.2 Testing the Adapter
+        5.2.1 Diagnostic Self-Test
+        5.2.2 Diagnostic Network Test
+    5.3 Using the Adapter's LEDs
+    5.4 Resolving I/O Conflicts
+
+6.0 TECHNICAL SUPPORT
+    6.1 Contacting Cirrus Logic's Technical Support
+    6.2 Information Required Before Contacting Technical Support
+    6.3 Obtaining the Latest Driver Version
+    6.4 Current maintainer
+    6.5 Kernel boot parameters
+
+
+1.0 CIRRUS LOGIC LAN CS8900/CS8920 ETHERNET ADAPTERS
+===============================================================================
+
+
+1.1 PRODUCT OVERVIEW
+
+The CS8900-based ISA Ethernet Adapters from Cirrus Logic follow 
+IEEE 802.3 standards and support half or full-duplex operation in ISA bus 
+computers on 10 Mbps Ethernet networks.  The adapters are designed for operation 
+in 16-bit ISA or EISA bus expansion slots and are available in 
+10BaseT-only or 3-media configurations (10BaseT, 10Base2, and AUI for 10Base-5 
+or fiber networks).  
+
+CS8920-based adapters are similar to the CS8900-based adapter with additional 
+features for Plug and Play (PnP) support and Wakeup Frame recognition.  As 
+such, the configuration procedures differ somewhat between the two types of 
+adapters.  Refer to the "Adapter Configuration" section for details on 
+configuring both types of adapters.
+
+
+1.2 DRIVER DESCRIPTION
+
+The CS8900/CS8920 Ethernet Adapter driver for Linux supports the Linux
+v2.3.48 or greater kernel.  It can be compiled directly into the kernel
+or loaded at run-time as a device driver module.
+
+1.2.1 Driver Name: cs89x0
+
+1.2.2 Files in the Driver Archive:
+
+The files in the driver at Cirrus' website include:
+
+  readme.txt         - this file
+  build              - batch file to compile cs89x0.c.
+  cs89x0.c           - driver C code
+  cs89x0.h           - driver header file
+  cs89x0.o           - pre-compiled module (for v2.2.5 kernel)
+  config/Config.in   - sample file to include cs89x0 driver in the kernel.
+  config/Makefile    - sample file to include cs89x0 driver in the kernel.
+  config/Space.c     - sample file to include cs89x0 driver in the kernel.
+
+
+
+1.3 SYSTEM REQUIREMENTS
+
+The following hardware is required:
+
+   * Cirrus Logic LAN (CS8900/20-based) Ethernet ISA Adapter   
+
+   * IBM or IBM-compatible PC with:
+     * An 80386 or higher processor
+     * 16 bytes of contiguous IO space available between 210h - 370h
+     * One available IRQ (5,10,11,or 12 for the CS8900, 3-7,9-15 for CS8920).
+
+   * Appropriate cable (and connector for AUI, 10BASE-2) for your network
+     topology.
+
+The following software is required:
+
+* LINUX kernel version 2.3.48 or higher
+
+   * CS8900/20 Setup Utility (DOS-based)
+
+   * LINUX kernel sources for your kernel (if compiling into kernel)
+
+   * GNU Toolkit (gcc and make) v2.6 or above (if compiling into kernel 
+     or a module)   
+
+
+
+1.4 LICENSING INFORMATION
+
+This program is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free Software
+Foundation, version 1.
+
+This program is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
+more details.
+
+For a full copy of the GNU General Public License, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+
+
+
+2.0 ADAPTER INSTALLATION and CONFIGURATION
+===============================================================================
+
+Both the CS8900 and CS8920-based adapters can be configured using parameters 
+stored in an on-board EEPROM. You must use the DOS-based CS8900/20 Setup 
+Utility if you want to change the adapter's configuration in EEPROM.  
+
+When loading the driver as a module, you can specify many of the adapter's 
+configuration parameters on the command-line to override the EEPROM's settings 
+or for interface configuration when an EEPROM is not used. (CS8920-based 
+adapters must use an EEPROM.) See Section 3.0 LOADING THE DRIVER AS A MODULE.
+
+Since the CS8900/20 Setup Utility is a DOS-based application, you must install 
+and configure the adapter in a DOS-based system using the CS8900/20 Setup 
+Utility before installation in the target LINUX system.  (Not required if 
+installing a CS8900-based adapter and the default configuration is acceptable.)
+     
+
+2.1 CS8900-BASED ADAPTER CONFIGURATION
+
+CS8900-based adapters shipped from Cirrus Logic have been configured 
+with the following "default" settings:
+
+  Operation Mode:      Memory Mode
+  IRQ:                 10
+  Base I/O Address:    300
+  Memory Base Address: D0000
+  Optimization:	       DOS Client
+  Transmission Mode:   Half-duplex
+  BootProm:            None
+  Media Type:	       Autodetect (3-media cards) or 
+                       10BASE-T (10BASE-T only adapter)
+
+You should only change the default configuration settings if conflicts with 
+another adapter exists. To change the adapter's configuration, run the 
+CS8900/20 Setup Utility. 
+
+
+2.2 CS8920-BASED ADAPTER CONFIGURATION
+
+CS8920-based adapters are shipped from Cirrus Logic configured as Plug
+and Play (PnP) enabled.  However, since the cs89x0 driver does NOT
+support PnP, you must install the CS8920 adapter in a DOS-based PC and
+run the CS8900/20 Setup Utility to disable PnP and configure the
+adapter before installation in the target Linux system.  Failure to do
+this will leave the adapter inactive and the driver will be unable to
+communicate with the adapter.  
+
+
+        **************************************************************** 
+        *                    CS8920-BASED ADAPTERS:                    *
+        *                                                              * 
+        * CS8920-BASED ADAPTERS ARE PLUG and PLAY ENABLED BY DEFAULT.  * 
+        * THE CS89X0 DRIVER DOES NOT SUPPORT PnP. THEREFORE, YOU MUST  *
+        * RUN THE CS8900/20 SETUP UTILITY TO DISABLE PnP SUPPORT AND   *
+        * TO ACTIVATE THE ADAPTER.                                     *
+        ****************************************************************
+
+
+
+
+3.0 LOADING THE DRIVER AS A MODULE
+===============================================================================
+
+If the driver is compiled as a loadable module, you can load the driver module
+with the 'modprobe' command.  Many of the adapter's configuration parameters can 
+be specified as command-line arguments to the load command.  This facility 
+provides a means to override the EEPROM's settings or for interface 
+configuration when an EEPROM is not used.
+
+Example:
+
+    insmod cs89x0.o io=0x200 irq=0xA media=aui
+
+This example loads the module and configures the adapter to use an IO port base
+address of 200h, interrupt 10, and use the AUI media connection.  The following
+configuration options are available on the command line:
+
+* io=###               - specify IO address (200h-360h)
+* irq=##               - specify interrupt level
+* use_dma=1            - Enable DMA
+* dma=#                - specify dma channel (Driver is compiled to support
+                         Rx DMA only)
+* dmasize=# (16 or 64) - DMA size 16K or 64K.  Default value is set to 16.
+* media=rj45           - specify media type
+   or media=bnc
+   or media=aui
+   or medai=auto
+* duplex=full          - specify forced half/full/autonegotiate duplex
+   or duplex=half
+   or duplex=auto
+* debug=#              - debug level (only available if the driver was compiled
+                         for debugging)
+
+NOTES:
+
+a) If an EEPROM is present, any specified command-line parameter
+   will override the corresponding configuration value stored in
+   EEPROM.
+
+b) The "io" parameter must be specified on the command-line.  
+
+c) The driver's hardware probe routine is designed to avoid
+   writing to I/O space until it knows that there is a cs89x0
+   card at the written addresses.  This could cause problems
+   with device probing.  To avoid this behaviour, add one
+   to the `io=' module parameter.  This doesn't actually change
+   the I/O address, but it is a flag to tell the driver
+   topartially initialise the hardware before trying to
+   identify the card.  This could be dangerous if you are
+   not sure that there is a cs89x0 card at the provided address.
+
+   For example, to scan for an adapter located at IO base 0x300,
+   specify an IO address of 0x301.  
+
+d) The "duplex=auto" parameter is only supported for the CS8920.
+
+e) The minimum command-line configuration required if an EEPROM is
+   not present is:
+
+   io 
+   irq 
+   media type (no autodetect)
+
+f) The following additional parameters are CS89XX defaults (values
+   used with no EEPROM or command-line argument).
+
+   * DMA Burst = enabled
+   * IOCHRDY Enabled = enabled
+   * UseSA = enabled
+   * CS8900 defaults to half-duplex if not specified on command-line
+   * CS8920 defaults to autoneg if not specified on command-line
+   * Use reset defaults for other config parameters
+   * dma_mode = 0
+
+g) You can use ifconfig to set the adapter's Ethernet address.
+
+h) Many Linux distributions use the 'modprobe' command to load
+   modules.  This program uses the '/etc/conf.modules' file to
+   determine configuration information which is passed to a driver
+   module when it is loaded.  All the configuration options which are
+   described above may be placed within /etc/conf.modules.
+
+   For example:
+
+   > cat /etc/conf.modules
+   ...
+   alias eth0 cs89x0
+   options cs89x0 io=0x0200 dma=5 use_dma=1
+   ...
+
+   In this example we are telling the module system that the
+   ethernet driver for this machine should use the cs89x0 driver.  We
+   are asking 'modprobe' to pass the 'io', 'dma' and 'use_dma'
+   arguments to the driver when it is loaded.
+
+i) Cirrus recommend that the cs89x0 use the ISA DMA channels 5, 6 or
+   7.  You will probably find that other DMA channels will not work.
+
+j) The cs89x0 supports DMA for receiving only.  DMA mode is
+   significantly more efficient.  Flooding a 400 MHz Celeron machine
+   with large ping packets consumes 82% of its CPU capacity in non-DMA
+   mode.  With DMA this is reduced to 45%.
+
+k) If your Linux kernel was compiled with inbuilt plug-and-play
+   support you will be able to find information about the cs89x0 card
+   with the command
+
+   cat /proc/isapnp
+
+l) If during DMA operation you find erratic behavior or network data
+   corruption you should use your PC's BIOS to slow the EISA bus clock.
+
+m) If the cs89x0 driver is compiled directly into the kernel
+   (non-modular) then its I/O address is automatically determined by
+   ISA bus probing.  The IRQ number, media options, etc are determined
+   from the card's EEPROM.
+
+n) If the cs89x0 driver is compiled directly into the kernel, DMA
+   mode may be selected by providing the kernel with a boot option
+   'cs89x0_dma=N' where 'N' is the desired DMA channel number (5, 6 or 7).
+
+   Kernel boot options may be provided on the LILO command line:
+
+	LILO boot: linux cs89x0_dma=5
+
+   or they may be placed in /etc/lilo.conf:
+
+	image=/boot/bzImage-2.3.48
+	  append="cs89x0_dma=5"
+	  label=linux
+	  root=/dev/hda5
+	  read-only
+
+   The DMA Rx buffer size is hardwired to 16 kbytes in this mode.
+   (64k mode is not available).
+
+
+4.0 COMPILING THE DRIVER
+===============================================================================
+
+The cs89x0 driver can be compiled directly into the kernel or compiled into
+a loadable device driver module.
+
+
+4.1 COMPILING THE DRIVER AS A LOADABLE MODULE
+
+To compile the driver into a loadable module, use the following command 
+(single command line, without quotes):
+
+"gcc -D__KERNEL__ -I/usr/src/linux/include -I/usr/src/linux/net/inet -Wall 
+-Wstrict-prototypes -O2 -fomit-frame-pointer -DMODULE -DCONFIG_MODVERSIONS 
+-c cs89x0.c"
+
+4.2 COMPILING THE DRIVER TO SUPPORT MEMORY MODE
+
+Support for memory mode was not carried over into the 2.3 series kernels.
+
+4.3 COMPILING THE DRIVER TO SUPPORT Rx DMA
+
+The compile-time optionality for DMA was removed in the 2.3 kernel
+series.  DMA support is now unconditionally part of the driver.  It is
+enabled by the 'use_dma=1' module option.
+
+4.4 COMPILING THE DRIVER INTO THE KERNEL
+
+If your Linux distribution already has support for the cs89x0 driver
+then simply copy the source file to the /usr/src/linux/drivers/net
+directory to replace the original ones and run the make utility to
+rebuild the kernel.  See Step 3 for rebuilding the kernel.
+
+If your Linux does not include the cs89x0 driver, you need to edit three 
+configuration files, copy the source file to the /usr/src/linux/drivers/net
+directory, and then run the make utility to rebuild the kernel.
+
+1. Edit the following configuration files by adding the statements as
+indicated.  (When possible, try to locate the added text to the section of the
+file containing similar statements).
+
+
+a.) In /usr/src/linux/drivers/net/Config.in, add:
+
+tristate 'CS89x0 support' CONFIG_CS89x0
+
+Example:
+
+     if [ "$CONFIG_EXPERIMENTAL" = "y" ]; then
+       tristate 'ICL EtherTeam 16i/32 support' CONFIG_ETH16I
+     fi
+
+     tristate 'CS89x0 support' CONFIG_CS89x0
+
+     tristate 'NE2000/NE1000 support' CONFIG_NE2000
+     if [ "$CONFIG_EXPERIMENTAL" = "y" ]; then
+       tristate 'NI5210 support' CONFIG_NI52
+
+
+b.) In /usr/src/linux/drivers/net/Makefile, add the following lines: 
+
+ifeq ($(CONFIG_CS89x0),y)
+L_OBJS += cs89x0.o
+else
+  ifeq ($(CONFIG_CS89x0),m)
+  M_OBJS += cs89x0.o
+  endif
+endif
+
+
+c.) In /linux/drivers/net/Space.c file, add the line:
+
+extern int cs89x0_probe(struct device *dev);
+
+
+Example:
+
+ extern int ultra_probe(struct device *dev);
+ extern int wd_probe(struct device *dev);
+ extern int el2_probe(struct device *dev);
+
+ extern int cs89x0_probe(struct device *dev);
+
+ extern int ne_probe(struct device *dev);
+ extern int hp_probe(struct device *dev);
+ extern int hp_plus_probe(struct device *dev);
+
+
+Also add:
+
+ #ifdef CONFIG_CS89x0
+ 	{ cs89x0_probe,0 },
+ #endif
+
+
+2.) Copy the driver source files (cs89x0.c and cs89x0.h) 
+into the /usr/src/linux/drivers/net directory.
+
+
+3.) Go to /usr/src/linux directory and run 'make config' followed by 'make' 
+(or make bzImage) to rebuild the kernel. 
+
+4.) Use the DOS 'setup' utility to disable plug and play on the NIC.
+
+
+5.0 TESTING AND TROUBLESHOOTING
+===============================================================================
+
+5.1 KNOWN DEFECTS and LIMITATIONS
+
+Refer to the RELEASE.TXT file distributed as part of this archive for a list of 
+known defects, driver limitations, and work arounds.
+
+
+5.2 TESTING THE ADAPTER
+
+Once the adapter has been installed and configured, the diagnostic option of 
+the CS8900/20 Setup Utility can be used to test the functionality of the 
+adapter and its network connection.  Use the diagnostics 'Self Test' option to
+test the functionality of the adapter with the hardware configuration you have
+assigned. You can use the diagnostics 'Network Test' to test the ability of the
+adapter to communicate across the Ethernet with another PC equipped with a 
+CS8900/20-based adapter card (it must also be running the CS8900/20 Setup 
+Utility).
+
+         NOTE: The Setup Utility's diagnostics are designed to run in a
+         DOS-only operating system environment.  DO NOT run the diagnostics 
+         from a DOS or command prompt session under Windows 95, Windows NT, 
+         OS/2, or other operating system.
+
+To run the diagnostics tests on the CS8900/20 adapter:
+
+   1.) Boot DOS on the PC and start the CS8900/20 Setup Utility.
+
+   2.) The adapter's current configuration is displayed.  Hit the ENTER key to
+       get to the main menu.
+
+   4.) Select 'Diagnostics' (ALT-G) from the main menu.  
+       * Select 'Self-Test' to test the adapter's basic functionality.
+       * Select 'Network Test' to test the network connection and cabling.
+
+
+5.2.1 DIAGNOSTIC SELF-TEST
+
+The diagnostic self-test checks the adapter's basic functionality as well as 
+its ability to communicate across the ISA bus based on the system resources 
+assigned during hardware configuration.  The following tests are performed:
+
+   * IO Register Read/Write Test
+     The IO Register Read/Write test insures that the CS8900/20 can be 
+     accessed in IO mode, and that the IO base address is correct.
+
+   * Shared Memory Test
+     The Shared Memory test insures the CS8900/20 can be accessed in memory 
+     mode and that the range of memory addresses assigned does not conflict 
+     with other devices in the system.
+
+   * Interrupt Test
+     The Interrupt test insures there are no conflicts with the assigned IRQ
+     signal.
+
+   * EEPROM Test
+     The EEPROM test insures the EEPROM can be read.
+
+   * Chip RAM Test
+     The Chip RAM test insures the 4K of memory internal to the CS8900/20 is
+     working properly.
+
+   * Internal Loop-back Test
+     The Internal Loop Back test insures the adapter's transmitter and 
+     receiver are operating properly.  If this test fails, make sure the 
+     adapter's cable is connected to the network (check for LED activity for 
+     example).
+
+   * Boot PROM Test
+     The Boot PROM  test insures the Boot PROM is present, and can be read.
+     Failure indicates the Boot PROM  was not successfully read due to a
+     hardware problem or due to a conflicts on the Boot PROM address
+     assignment. (Test only applies if the adapter is configured to use the
+     Boot PROM option.)
+
+Failure of a test item indicates a possible system resource conflict with 
+another device on the ISA bus.  In this case, you should use the Manual Setup 
+option to reconfigure the adapter by selecting a different value for the system
+resource that failed.
+
+
+5.2.2 DIAGNOSTIC NETWORK TEST
+
+The Diagnostic Network Test verifies a working network connection by 
+transferring data between two CS8900/20 adapters installed in different PCs 
+on the same network. (Note: the diagnostic network test should not be run 
+between two nodes across a router.) 
+
+This test requires that each of the two PCs have a CS8900/20-based adapter
+installed and have the CS8900/20 Setup Utility running.  The first PC is 
+configured as a Responder and the other PC is configured as an Initiator.  
+Once the Initiator is started, it sends data frames to the Responder which 
+returns the frames to the Initiator.
+
+The total number of frames received and transmitted are displayed on the 
+Initiator's display, along with a count of the number of frames received and 
+transmitted OK or in error.  The test can be terminated anytime by the user at 
+either PC.
+
+To setup the Diagnostic Network Test:
+
+    1.) Select a PC with a CS8900/20-based adapter and a known working network
+        connection to act as the Responder.  Run the CS8900/20 Setup Utility 
+        and select 'Diagnostics -> Network Test -> Responder' from the main 
+        menu.  Hit ENTER to start the Responder.
+
+    2.) Return to the PC with the CS8900/20-based adapter you want to test and
+        start the CS8900/20 Setup Utility. 
+
+    3.) From the main menu, Select 'Diagnostic -> Network Test -> Initiator'.
+        Hit ENTER to start the test.
+ 
+You may stop the test on the Initiator at any time while allowing the Responder
+to continue running.  In this manner, you can move to additional PCs and test 
+them by starting the Initiator on another PC without having to stop/start the 
+Responder.
+ 
+
+
+5.3 USING THE ADAPTER'S LEDs
+
+The 2 and 3-media adapters have two LEDs visible on the back end of the board 
+located near the 10Base-T connector.  
+
+Link Integrity LED: A "steady" ON of the green LED indicates a valid 10Base-T 
+connection.  (Only applies to 10Base-T.  The green LED has no significance for
+a 10Base-2 or AUI connection.)
+
+TX/RX LED: The yellow LED lights briefly each time the adapter transmits or 
+receives data. (The yellow LED will appear to "flicker" on a typical network.)
+
+
+5.4 RESOLVING I/O CONFLICTS
+
+An IO conflict occurs when two or more adapter use the same ISA resource (IO 
+address, memory address or IRQ).  You can usually detect an IO conflict in one 
+of four ways after installing and or configuring the CS8900/20-based adapter:
+
+    1.) The system does not boot properly (or at all).
+
+    2.) The driver can not communicate with the adapter, reporting an "Adapter
+        not found" error message.
+
+    3.) You cannot connect to the network or the driver will not load.
+
+    4.) If you have configured the adapter to run in memory mode but the driver
+        reports it is using IO mode when loading, this is an indication of a
+        memory address conflict.
+
+If an IO conflict occurs, run the CS8900/20 Setup Utility and perform a 
+diagnostic self-test.  Normally, the ISA resource in conflict will fail the 
+self-test.  If so, reconfigure the adapter selecting another choice for the 
+resource in conflict.  Run the diagnostics again to check for further IO 
+conflicts.
+
+In some cases, such as when the PC will not boot, it may be necessary to remove
+the adapter and reconfigure it by installing it in another PC to run the 
+CS8900/20 Setup Utility.  Once reinstalled in the target system, run the 
+diagnostics self-test to ensure the new configuration is free of conflicts 
+before loading the driver again.
+
+When manually configuring the adapter, keep in mind the typical ISA system 
+resource usage as indicated in the tables below.
+
+I/O Address    	Device                        IRQ      Device
+-----------    	--------                      ---      --------
+ 200-20F       	Game I/O adapter               3       COM2, Bus Mouse
+ 230-23F       	Bus Mouse                      4       COM1
+ 270-27F       	LPT3: third parallel port      5       LPT2
+ 2F0-2FF       	COM2: second serial port       6       Floppy Disk controller
+ 320-32F       	Fixed disk controller          7       LPT1
+                                      	       8       Real-time Clock
+                                                 9       EGA/VGA display adapter    
+                                                12       Mouse (PS/2)                              
+Memory Address  Device                          13       Math Coprocessor
+--------------  ---------------------           14       Hard Disk controller
+A000-BFFF	EGA Graphics Adpater
+A000-C7FF	VGA Graphics Adpater
+B000-BFFF	Mono Graphics Adapter
+B800-BFFF	Color Graphics Adapter
+E000-FFFF	AT BIOS
+
+
+
+
+6.0 TECHNICAL SUPPORT
+===============================================================================
+
+6.1 CONTACTING CIRRUS LOGIC'S TECHNICAL SUPPORT
+
+Cirrus Logic's CS89XX Technical Application Support can be reached at:
+
+Telephone  :(800) 888-5016 (from inside U.S. and Canada)
+           :(512) 442-7555 (from outside the U.S. and Canada)
+Fax        :(512) 912-3871
+Email      :ethernet@crystal.cirrus.com
+WWW        :http://www.cirrus.com
+
+
+6.2 INFORMATION REQUIRED BEFORE CONTACTING TECHNICAL SUPPORT
+
+Before contacting Cirrus Logic for technical support, be prepared to provide as 
+Much of the following information as possible. 
+
+1.) Adapter type (CRD8900, CDB8900, CDB8920, etc.)
+
+2.) Adapter configuration
+
+    * IO Base, Memory Base, IO or memory mode enabled, IRQ, DMA channel
+    * Plug and Play enabled/disabled (CS8920-based adapters only)
+    * Configured for media auto-detect or specific media type (which type).    
+
+3.) PC System's Configuration
+
+    * Plug and Play system (yes/no)
+    * BIOS (make and version)
+    * System make and model
+    * CPU (type and speed)
+    * System RAM
+    * SCSI Adapter
+
+4.) Software
+
+    * CS89XX driver and version
+    * Your network operating system and version
+    * Your system's OS version 
+    * Version of all protocol support files
+
+5.) Any Error Message displayed.
+
+
+
+6.3 OBTAINING THE LATEST DRIVER VERSION
+
+You can obtain the latest CS89XX drivers and support software from Cirrus Logic's 
+Web site.  You can also contact Cirrus Logic's Technical Support (email:
+ethernet@crystal.cirrus.com) and request that you be registered for automatic 
+software-update notification.
+
+Cirrus Logic maintains a web page at http://www.cirrus.com with the
+the latest drivers and technical publications.
+
+
+6.4 Current maintainer
+
+In February 2000 the maintenance of this driver was assumed by Andrew
+Morton <akpm@zip.com.au>
+
+6.5 Kernel module parameters
+
+For use in embedded environments with no cs89x0 EEPROM, the kernel boot
+parameter `cs89x0_media=' has been implemented.  Usage is:
+
+	cs89x0_media=rj45    or
+	cs89x0_media=aui     or
+	cs89x0_media=bnc
+