Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/arch/mips/au1000/common/dbdma.c b/arch/mips/au1000/common/dbdma.c
new file mode 100644
index 0000000..adfc317
--- /dev/null
+++ b/arch/mips/au1000/common/dbdma.c
@@ -0,0 +1,836 @@
+/*
+ *
+ * BRIEF MODULE DESCRIPTION
+ *      The Descriptor Based DMA channel manager that first appeared
+ *	on the Au1550.  I started with dma.c, but I think all that is
+ *	left is this initial comment :-)
+ *
+ * Copyright 2004 Embedded Edge, LLC
+ *	dan@embeddededge.com
+ *
+ *  This program is free software; you can redistribute  it and/or modify it
+ *  under  the terms of  the GNU General  Public License as published by the
+ *  Free Software Foundation;  either version 2 of the  License, or (at your
+ *  option) any later version.
+ *
+ *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
+ *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
+ *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
+ *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
+ *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
+ *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
+ *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *  You should have received a copy of the  GNU General Public License along
+ *  with this program; if not, write  to the Free Software Foundation, Inc.,
+ *  675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ */
+#include <linux/config.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/string.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <asm/mach-au1x00/au1000.h>
+#include <asm/mach-au1x00/au1xxx_dbdma.h>
+#include <asm/system.h>
+
+#if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
+
+/*
+ * The Descriptor Based DMA supports up to 16 channels.
+ *
+ * There are 32 devices defined. We keep an internal structure
+ * of devices using these channels, along with additional
+ * information.
+ *
+ * We allocate the descriptors and allow access to them through various
+ * functions.  The drivers allocate the data buffers and assign them
+ * to the descriptors.
+ */
+static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
+
+/* I couldn't find a macro that did this......
+*/
+#define ALIGN_ADDR(x, a)	((((u32)(x)) + (a-1)) & ~(a-1))
+
+static volatile dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
+static int dbdma_initialized;
+static void au1xxx_dbdma_init(void);
+
+typedef struct dbdma_device_table {
+	u32		dev_id;
+	u32		dev_flags;
+	u32		dev_tsize;
+	u32		dev_devwidth;
+	u32		dev_physaddr;		/* If FIFO */
+	u32		dev_intlevel;
+	u32		dev_intpolarity;
+} dbdev_tab_t;
+
+typedef struct dbdma_chan_config {
+	u32			chan_flags;
+	u32			chan_index;
+	dbdev_tab_t		*chan_src;
+	dbdev_tab_t		*chan_dest;
+	au1x_dma_chan_t		*chan_ptr;
+	au1x_ddma_desc_t	*chan_desc_base;
+	au1x_ddma_desc_t	*get_ptr, *put_ptr, *cur_ptr;
+	void			*chan_callparam;
+	void (*chan_callback)(int, void *, struct pt_regs *);
+} chan_tab_t;
+
+#define	DEV_FLAGS_INUSE		(1 << 0)
+#define	DEV_FLAGS_ANYUSE	(1 << 1)
+#define DEV_FLAGS_OUT		(1 << 2)
+#define DEV_FLAGS_IN		(1 << 3)
+
+static dbdev_tab_t dbdev_tab[] = {
+#ifdef CONFIG_SOC_AU1550
+	/* UARTS */
+	{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
+	{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
+	{ DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
+	{ DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
+
+	/* EXT DMA */
+	{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
+
+	/* USB DEV */
+	{ DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
+	{ DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
+	{ DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
+	{ DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
+	{ DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
+	{ DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
+
+	/* PSC 0 */
+	{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
+	{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
+
+	/* PSC 1 */
+	{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
+	{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
+
+	/* PSC 2 */
+	{ DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
+	{ DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
+
+	/* PSC 3 */
+	{ DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
+	{ DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
+
+	{ DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 },	/* PCI */
+	{ DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 },	/* NAND */
+
+	/* MAC 0 */
+	{ DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
+
+	/* MAC 1 */
+	{ DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
+
+#endif /* CONFIG_SOC_AU1550 */
+
+#ifdef CONFIG_SOC_AU1200
+	{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
+	{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
+	{ DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
+	{ DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
+
+	{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
+
+	{ DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+
+	{ DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
+
+	{ DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_AES_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
+
+	{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
+	{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
+	{ DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+
+	{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
+	{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
+	{ DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+
+	{ DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+
+	{ DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
+
+#endif // CONFIG_SOC_AU1200
+
+	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+	{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+};
+
+#define DBDEV_TAB_SIZE (sizeof(dbdev_tab) / sizeof(dbdev_tab_t))
+
+static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
+
+static dbdev_tab_t *
+find_dbdev_id (u32 id)
+{
+	int i;
+	dbdev_tab_t *p;
+	for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
+		p = &dbdev_tab[i];
+		if (p->dev_id == id)
+			return p;
+	}
+	return NULL;
+}
+
+/* Allocate a channel and return a non-zero descriptor if successful.
+*/
+u32
+au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
+       void (*callback)(int, void *, struct pt_regs *), void *callparam)
+{
+	unsigned long   flags;
+	u32		used, chan, rv;
+	u32		dcp;
+	int		i;
+	dbdev_tab_t	*stp, *dtp;
+	chan_tab_t	*ctp;
+	volatile au1x_dma_chan_t *cp;
+
+	/* We do the intialization on the first channel allocation.
+	 * We have to wait because of the interrupt handler initialization
+	 * which can't be done successfully during board set up.
+	 */
+	if (!dbdma_initialized)
+		au1xxx_dbdma_init();
+	dbdma_initialized = 1;
+
+	if ((srcid > DSCR_NDEV_IDS) || (destid > DSCR_NDEV_IDS))
+		return 0;
+
+	if ((stp = find_dbdev_id(srcid)) == NULL) return 0;
+	if ((dtp = find_dbdev_id(destid)) == NULL) return 0;
+
+	used = 0;
+	rv = 0;
+
+	/* Check to see if we can get both channels.
+	*/
+	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
+	if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
+	     (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
+	     	/* Got source */
+		stp->dev_flags |= DEV_FLAGS_INUSE;
+		if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
+		     (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
+			/* Got destination */
+			dtp->dev_flags |= DEV_FLAGS_INUSE;
+		}
+		else {
+			/* Can't get dest.  Release src.
+			*/
+			stp->dev_flags &= ~DEV_FLAGS_INUSE;
+			used++;
+		}
+	}
+	else {
+		used++;
+	}
+	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
+
+	if (!used) {
+		/* Let's see if we can allocate a channel for it.
+		*/
+		ctp = NULL;
+		chan = 0;
+		spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
+		for (i=0; i<NUM_DBDMA_CHANS; i++) {
+			if (chan_tab_ptr[i] == NULL) {
+				/* If kmalloc fails, it is caught below same
+				 * as a channel not available.
+				 */
+				ctp = kmalloc(sizeof(chan_tab_t), GFP_KERNEL);
+				chan_tab_ptr[i] = ctp;
+				ctp->chan_index = chan = i;
+				break;
+			}
+		}
+		spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
+
+		if (ctp != NULL) {
+			memset(ctp, 0, sizeof(chan_tab_t));
+			dcp = DDMA_CHANNEL_BASE;
+			dcp += (0x0100 * chan);
+			ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
+			cp = (volatile au1x_dma_chan_t *)dcp;
+			ctp->chan_src = stp;
+			ctp->chan_dest = dtp;
+			ctp->chan_callback = callback;
+			ctp->chan_callparam = callparam;
+
+			/* Initialize channel configuration.
+			*/
+			i = 0;
+			if (stp->dev_intlevel)
+				i |= DDMA_CFG_SED;
+			if (stp->dev_intpolarity)
+				i |= DDMA_CFG_SP;
+			if (dtp->dev_intlevel)
+				i |= DDMA_CFG_DED;
+			if (dtp->dev_intpolarity)
+				i |= DDMA_CFG_DP;
+			cp->ddma_cfg = i;
+			au_sync();
+
+			/* Return a non-zero value that can be used to
+			 * find the channel information in subsequent
+			 * operations.
+			 */
+			rv = (u32)(&chan_tab_ptr[chan]);
+		}
+		else {
+			/* Release devices.
+			*/
+			stp->dev_flags &= ~DEV_FLAGS_INUSE;
+			dtp->dev_flags &= ~DEV_FLAGS_INUSE;
+		}
+	}
+	return rv;
+}
+
+/* Set the device width if source or destination is a FIFO.
+ * Should be 8, 16, or 32 bits.
+ */
+u32
+au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
+{
+	u32		rv;
+	chan_tab_t	*ctp;
+	dbdev_tab_t	*stp, *dtp;
+
+	ctp = *((chan_tab_t **)chanid);
+	stp = ctp->chan_src;
+	dtp = ctp->chan_dest;
+	rv = 0;
+
+	if (stp->dev_flags & DEV_FLAGS_IN) {	/* Source in fifo */
+		rv = stp->dev_devwidth;
+		stp->dev_devwidth = bits;
+	}
+	if (dtp->dev_flags & DEV_FLAGS_OUT) {	/* Destination out fifo */
+		rv = dtp->dev_devwidth;
+		dtp->dev_devwidth = bits;
+	}
+
+	return rv;
+}
+
+/* Allocate a descriptor ring, initializing as much as possible.
+*/
+u32
+au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
+{
+	int			i;
+	u32			desc_base, srcid, destid;
+	u32			cmd0, cmd1, src1, dest1;
+	u32			src0, dest0;
+	chan_tab_t		*ctp;
+	dbdev_tab_t		*stp, *dtp;
+	au1x_ddma_desc_t	*dp;
+
+	/* I guess we could check this to be within the
+	 * range of the table......
+	 */
+	ctp = *((chan_tab_t **)chanid);
+	stp = ctp->chan_src;
+	dtp = ctp->chan_dest;
+
+	/* The descriptors must be 32-byte aligned.  There is a
+	 * possibility the allocation will give us such an address,
+	 * and if we try that first we are likely to not waste larger
+	 * slabs of memory.
+	 */
+	desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t), GFP_KERNEL);
+	if (desc_base == 0)
+		return 0;
+
+	if (desc_base & 0x1f) {
+		/* Lost....do it again, allocate extra, and round
+		 * the address base.
+		 */
+		kfree((const void *)desc_base);
+		i = entries * sizeof(au1x_ddma_desc_t);
+		i += (sizeof(au1x_ddma_desc_t) - 1);
+		if ((desc_base = (u32)kmalloc(i, GFP_KERNEL)) == 0)
+			return 0;
+
+		desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
+	}
+	dp = (au1x_ddma_desc_t *)desc_base;
+
+	/* Keep track of the base descriptor.
+	*/
+	ctp->chan_desc_base = dp;
+
+	/* Initialize the rings with as much information as we know.
+	 */
+	srcid = stp->dev_id;
+	destid = dtp->dev_id;
+
+	cmd0 = cmd1 = src1 = dest1 = 0;
+	src0 = dest0 = 0;
+
+	cmd0 |= DSCR_CMD0_SID(srcid);
+	cmd0 |= DSCR_CMD0_DID(destid);
+	cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
+	cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_CURRENT);
+
+	switch (stp->dev_devwidth) {
+	case 8:
+		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
+		break;
+	case 16:
+		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
+		break;
+	case 32:
+	default:
+		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
+		break;
+	}
+
+	switch (dtp->dev_devwidth) {
+	case 8:
+		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
+		break;
+	case 16:
+		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
+		break;
+	case 32:
+	default:
+		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
+		break;
+	}
+
+	/* If the device is marked as an in/out FIFO, ensure it is
+	 * set non-coherent.
+	 */
+	if (stp->dev_flags & DEV_FLAGS_IN)
+		cmd0 |= DSCR_CMD0_SN;		/* Source in fifo */
+	if (dtp->dev_flags & DEV_FLAGS_OUT)
+		cmd0 |= DSCR_CMD0_DN;		/* Destination out fifo */
+
+	/* Set up source1.  For now, assume no stride and increment.
+	 * A channel attribute update can change this later.
+	 */
+	switch (stp->dev_tsize) {
+	case 1:
+		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
+		break;
+	case 2:
+		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
+		break;
+	case 4:
+		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
+		break;
+	case 8:
+	default:
+		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
+		break;
+	}
+
+	/* If source input is fifo, set static address.
+	*/
+	if (stp->dev_flags & DEV_FLAGS_IN) {
+		src0 = stp->dev_physaddr;
+		src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
+	}
+
+	/* Set up dest1.  For now, assume no stride and increment.
+	 * A channel attribute update can change this later.
+	 */
+	switch (dtp->dev_tsize) {
+	case 1:
+		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
+		break;
+	case 2:
+		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
+		break;
+	case 4:
+		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
+		break;
+	case 8:
+	default:
+		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
+		break;
+	}
+
+	/* If destination output is fifo, set static address.
+	*/
+	if (dtp->dev_flags & DEV_FLAGS_OUT) {
+		dest0 = dtp->dev_physaddr;
+		dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
+	}
+
+	for (i=0; i<entries; i++) {
+		dp->dscr_cmd0 = cmd0;
+		dp->dscr_cmd1 = cmd1;
+		dp->dscr_source0 = src0;
+		dp->dscr_source1 = src1;
+		dp->dscr_dest0 = dest0;
+		dp->dscr_dest1 = dest1;
+		dp->dscr_stat = 0;
+		dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
+		dp++;
+	}
+
+	/* Make last descrptor point to the first.
+	*/
+	dp--;
+	dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
+	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
+
+	return (u32)(ctp->chan_desc_base);
+}
+
+/* Put a source buffer into the DMA ring.
+ * This updates the source pointer and byte count.  Normally used
+ * for memory to fifo transfers.
+ */
+u32
+au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes)
+{
+	chan_tab_t		*ctp;
+	au1x_ddma_desc_t	*dp;
+
+	/* I guess we could check this to be within the
+	 * range of the table......
+	 */
+	ctp = *((chan_tab_t **)chanid);
+
+	/* We should have multiple callers for a particular channel,
+	 * an interrupt doesn't affect this pointer nor the descriptor,
+	 * so no locking should be needed.
+	 */
+	dp = ctp->put_ptr;
+
+	/* If the descriptor is valid, we are way ahead of the DMA
+	 * engine, so just return an error condition.
+	 */
+	if (dp->dscr_cmd0 & DSCR_CMD0_V) {
+		return 0;
+	}
+
+	/* Load up buffer address and byte count.
+	*/
+	dp->dscr_source0 = virt_to_phys(buf);
+	dp->dscr_cmd1 = nbytes;
+	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
+	ctp->chan_ptr->ddma_dbell = 0xffffffff;	/* Make it go */
+
+	/* Get next descriptor pointer.
+	*/
+	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+
+	/* return something not zero.
+	*/
+	return nbytes;
+}
+
+/* Put a destination buffer into the DMA ring.
+ * This updates the destination pointer and byte count.  Normally used
+ * to place an empty buffer into the ring for fifo to memory transfers.
+ */
+u32
+au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes)
+{
+	chan_tab_t		*ctp;
+	au1x_ddma_desc_t	*dp;
+
+	/* I guess we could check this to be within the
+	 * range of the table......
+	 */
+	ctp = *((chan_tab_t **)chanid);
+
+	/* We should have multiple callers for a particular channel,
+	 * an interrupt doesn't affect this pointer nor the descriptor,
+	 * so no locking should be needed.
+	 */
+	dp = ctp->put_ptr;
+
+	/* If the descriptor is valid, we are way ahead of the DMA
+	 * engine, so just return an error condition.
+	 */
+	if (dp->dscr_cmd0 & DSCR_CMD0_V)
+		return 0;
+
+	/* Load up buffer address and byte count.
+	*/
+	dp->dscr_dest0 = virt_to_phys(buf);
+	dp->dscr_cmd1 = nbytes;
+	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
+
+	/* Get next descriptor pointer.
+	*/
+	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+
+	/* return something not zero.
+	*/
+	return nbytes;
+}
+
+/* Get a destination buffer into the DMA ring.
+ * Normally used to get a full buffer from the ring during fifo
+ * to memory transfers.  This does not set the valid bit, you will
+ * have to put another destination buffer to keep the DMA going.
+ */
+u32
+au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
+{
+	chan_tab_t		*ctp;
+	au1x_ddma_desc_t	*dp;
+	u32			rv;
+
+	/* I guess we could check this to be within the
+	 * range of the table......
+	 */
+	ctp = *((chan_tab_t **)chanid);
+
+	/* We should have multiple callers for a particular channel,
+	 * an interrupt doesn't affect this pointer nor the descriptor,
+	 * so no locking should be needed.
+	 */
+	dp = ctp->get_ptr;
+
+	/* If the descriptor is valid, we are way ahead of the DMA
+	 * engine, so just return an error condition.
+	 */
+	if (dp->dscr_cmd0 & DSCR_CMD0_V)
+		return 0;
+
+	/* Return buffer address and byte count.
+	*/
+	*buf = (void *)(phys_to_virt(dp->dscr_dest0));
+	*nbytes = dp->dscr_cmd1;
+	rv = dp->dscr_stat;
+
+	/* Get next descriptor pointer.
+	*/
+	ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+
+	/* return something not zero.
+	*/
+	return rv;
+}
+
+void
+au1xxx_dbdma_stop(u32 chanid)
+{
+	chan_tab_t	*ctp;
+	volatile au1x_dma_chan_t *cp;
+	int halt_timeout = 0;
+
+	ctp = *((chan_tab_t **)chanid);
+
+	cp = ctp->chan_ptr;
+	cp->ddma_cfg &= ~DDMA_CFG_EN;	/* Disable channel */
+	au_sync();
+	while (!(cp->ddma_stat & DDMA_STAT_H)) {
+		udelay(1);
+		halt_timeout++;
+		if (halt_timeout > 100) {
+			printk("warning: DMA channel won't halt\n");
+			break;
+		}
+	}
+	/* clear current desc valid and doorbell */
+	cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
+	au_sync();
+}
+
+/* Start using the current descriptor pointer.  If the dbdma encounters
+ * a not valid descriptor, it will stop.  In this case, we can just
+ * continue by adding a buffer to the list and starting again.
+ */
+void
+au1xxx_dbdma_start(u32 chanid)
+{
+	chan_tab_t	*ctp;
+	volatile au1x_dma_chan_t *cp;
+
+	ctp = *((chan_tab_t **)chanid);
+
+	cp = ctp->chan_ptr;
+	cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
+	cp->ddma_cfg |= DDMA_CFG_EN;	/* Enable channel */
+	au_sync();
+	cp->ddma_dbell = 0xffffffff;	/* Make it go */
+	au_sync();
+}
+
+void
+au1xxx_dbdma_reset(u32 chanid)
+{
+	chan_tab_t		*ctp;
+	au1x_ddma_desc_t	*dp;
+
+	au1xxx_dbdma_stop(chanid);
+
+	ctp = *((chan_tab_t **)chanid);
+	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
+
+	/* Run through the descriptors and reset the valid indicator.
+	*/
+	dp = ctp->chan_desc_base;
+
+	do {
+		dp->dscr_cmd0 &= ~DSCR_CMD0_V;
+		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+	} while (dp != ctp->chan_desc_base);
+}
+
+u32
+au1xxx_get_dma_residue(u32 chanid)
+{
+	chan_tab_t	*ctp;
+	volatile au1x_dma_chan_t *cp;
+	u32		rv;
+
+	ctp = *((chan_tab_t **)chanid);
+	cp = ctp->chan_ptr;
+
+	/* This is only valid if the channel is stopped.
+	*/
+	rv = cp->ddma_bytecnt;
+	au_sync();
+
+	return rv;
+}
+
+void
+au1xxx_dbdma_chan_free(u32 chanid)
+{
+	chan_tab_t	*ctp;
+	dbdev_tab_t	*stp, *dtp;
+
+	ctp = *((chan_tab_t **)chanid);
+	stp = ctp->chan_src;
+	dtp = ctp->chan_dest;
+
+	au1xxx_dbdma_stop(chanid);
+
+	if (ctp->chan_desc_base != NULL)
+		kfree(ctp->chan_desc_base);
+
+	stp->dev_flags &= ~DEV_FLAGS_INUSE;
+	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
+	chan_tab_ptr[ctp->chan_index] = NULL;
+
+	kfree(ctp);
+}
+
+static irqreturn_t
+dbdma_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+	u32	intstat;
+	u32	chan_index;
+	chan_tab_t		*ctp;
+	au1x_ddma_desc_t	*dp;
+	volatile au1x_dma_chan_t *cp;
+
+	intstat = dbdma_gptr->ddma_intstat;
+	au_sync();
+	chan_index = au_ffs(intstat) - 1;
+
+	ctp = chan_tab_ptr[chan_index];
+	cp = ctp->chan_ptr;
+	dp = ctp->cur_ptr;
+
+	/* Reset interrupt.
+	*/
+	cp->ddma_irq = 0;
+	au_sync();
+
+	if (ctp->chan_callback)
+		(ctp->chan_callback)(irq, ctp->chan_callparam, regs);
+
+	ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+
+	return IRQ_HANDLED;
+}
+
+static void
+au1xxx_dbdma_init(void)
+{
+	dbdma_gptr->ddma_config = 0;
+	dbdma_gptr->ddma_throttle = 0;
+	dbdma_gptr->ddma_inten = 0xffff;
+	au_sync();
+
+	if (request_irq(AU1550_DDMA_INT, dbdma_interrupt, SA_INTERRUPT,
+			"Au1xxx dbdma", (void *)dbdma_gptr))
+		printk("Can't get 1550 dbdma irq");
+}
+
+void
+au1xxx_dbdma_dump(u32 chanid)
+{
+	chan_tab_t		*ctp;
+	au1x_ddma_desc_t	*dp;
+	dbdev_tab_t		*stp, *dtp;
+	volatile au1x_dma_chan_t *cp;
+
+	ctp = *((chan_tab_t **)chanid);
+	stp = ctp->chan_src;
+	dtp = ctp->chan_dest;
+	cp = ctp->chan_ptr;
+
+	printk("Chan %x, stp %x (dev %d)  dtp %x (dev %d) \n",
+		(u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, dtp - dbdev_tab);
+	printk("desc base %x, get %x, put %x, cur %x\n",
+		(u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
+		(u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
+
+	printk("dbdma chan %x\n", (u32)cp);
+	printk("cfg %08x, desptr %08x, statptr %08x\n",
+		cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
+	printk("dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
+		cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, cp->ddma_bytecnt);
+
+
+	/* Run through the descriptors
+	*/
+	dp = ctp->chan_desc_base;
+
+	do {
+		printk("dp %08x, cmd0 %08x, cmd1 %08x\n",
+			(u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
+		printk("src0 %08x, src1 %08x, dest0 %08x\n",
+			dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0);
+		printk("dest1 %08x, stat %08x, nxtptr %08x\n",
+			dp->dscr_dest1, dp->dscr_stat, dp->dscr_nxtptr);
+		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+	} while (dp != ctp->chan_desc_base);
+}
+
+#endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */
+