[PATCH] BLOCK: Dissociate generic_writepages() from mpage stuff [try #6]

Dissociate the generic_writepages() function from the mpage stuff, moving its
declaration to linux/mm.h and actually emitting a full implementation into
mm/page-writeback.c.

The implementation is a partial duplicate of mpage_writepages() with all BIO
references removed.

It is used by NFS to do writeback.

Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 9fdcc79..ecf2783 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -31,6 +31,7 @@
 #include <linux/cpu.h>
 #include <linux/syscalls.h>
 #include <linux/buffer_head.h>
+#include <linux/pagevec.h>
 
 /*
  * The maximum number of pages to writeout in a single bdflush/kupdate
@@ -551,6 +552,139 @@
 	register_cpu_notifier(&ratelimit_nb);
 }
 
+/**
+ * generic_writepages - walk the list of dirty pages of the given
+ *                      address space and writepage() all of them.
+ *
+ * @mapping: address space structure to write
+ * @wbc: subtract the number of written pages from *@wbc->nr_to_write
+ *
+ * This is a library function, which implements the writepages()
+ * address_space_operation.
+ *
+ * If a page is already under I/O, generic_writepages() skips it, even
+ * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
+ * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
+ * and msync() need to guarantee that all the data which was dirty at the time
+ * the call was made get new I/O started against them.  If wbc->sync_mode is
+ * WB_SYNC_ALL then we were called for data integrity and we must wait for
+ * existing IO to complete.
+ *
+ * Derived from mpage_writepages() - if you fix this you should check that
+ * also!
+ */
+int generic_writepages(struct address_space *mapping,
+		       struct writeback_control *wbc)
+{
+	struct backing_dev_info *bdi = mapping->backing_dev_info;
+	int ret = 0;
+	int done = 0;
+	int (*writepage)(struct page *page, struct writeback_control *wbc);
+	struct pagevec pvec;
+	int nr_pages;
+	pgoff_t index;
+	pgoff_t end;		/* Inclusive */
+	int scanned = 0;
+	int range_whole = 0;
+
+	if (wbc->nonblocking && bdi_write_congested(bdi)) {
+		wbc->encountered_congestion = 1;
+		return 0;
+	}
+
+	writepage = mapping->a_ops->writepage;
+
+	/* deal with chardevs and other special file */
+	if (!writepage)
+		return 0;
+
+	pagevec_init(&pvec, 0);
+	if (wbc->range_cyclic) {
+		index = mapping->writeback_index; /* Start from prev offset */
+		end = -1;
+	} else {
+		index = wbc->range_start >> PAGE_CACHE_SHIFT;
+		end = wbc->range_end >> PAGE_CACHE_SHIFT;
+		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
+			range_whole = 1;
+		scanned = 1;
+	}
+retry:
+	while (!done && (index <= end) &&
+	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
+					      PAGECACHE_TAG_DIRTY,
+					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
+		unsigned i;
+
+		scanned = 1;
+		for (i = 0; i < nr_pages; i++) {
+			struct page *page = pvec.pages[i];
+
+			/*
+			 * At this point we hold neither mapping->tree_lock nor
+			 * lock on the page itself: the page may be truncated or
+			 * invalidated (changing page->mapping to NULL), or even
+			 * swizzled back from swapper_space to tmpfs file
+			 * mapping
+			 */
+			lock_page(page);
+
+			if (unlikely(page->mapping != mapping)) {
+				unlock_page(page);
+				continue;
+			}
+
+			if (!wbc->range_cyclic && page->index > end) {
+				done = 1;
+				unlock_page(page);
+				continue;
+			}
+
+			if (wbc->sync_mode != WB_SYNC_NONE)
+				wait_on_page_writeback(page);
+
+			if (PageWriteback(page) ||
+			    !clear_page_dirty_for_io(page)) {
+				unlock_page(page);
+				continue;
+			}
+
+			ret = (*writepage)(page, wbc);
+			if (ret) {
+				if (ret == -ENOSPC)
+					set_bit(AS_ENOSPC, &mapping->flags);
+				else
+					set_bit(AS_EIO, &mapping->flags);
+			}
+
+			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
+				unlock_page(page);
+			if (ret || (--(wbc->nr_to_write) <= 0))
+				done = 1;
+			if (wbc->nonblocking && bdi_write_congested(bdi)) {
+				wbc->encountered_congestion = 1;
+				done = 1;
+			}
+		}
+		pagevec_release(&pvec);
+		cond_resched();
+	}
+	if (!scanned && !done) {
+		/*
+		 * We hit the last page and there is more work to be done: wrap
+		 * back to the start of the file
+		 */
+		scanned = 1;
+		index = 0;
+		goto retry;
+	}
+	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
+		mapping->writeback_index = index;
+	return ret;
+}
+
+EXPORT_SYMBOL(generic_writepages);
+
 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
 {
 	int ret;