| /* |
| * Just-In-Time compiler for BPF filters on 32bit ARM |
| * |
| * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; version 2 of the License. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/compiler.h> |
| #include <linux/errno.h> |
| #include <linux/filter.h> |
| #include <linux/netdevice.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/if_vlan.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/hwcap.h> |
| #include <asm/opcodes.h> |
| |
| #include "bpf_jit_32.h" |
| |
| /* |
| * ABI: |
| * |
| * r0 scratch register |
| * r4 BPF register A |
| * r5 BPF register X |
| * r6 pointer to the skb |
| * r7 skb->data |
| * r8 skb_headlen(skb) |
| */ |
| |
| #define r_scratch ARM_R0 |
| /* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */ |
| #define r_off ARM_R1 |
| #define r_A ARM_R4 |
| #define r_X ARM_R5 |
| #define r_skb ARM_R6 |
| #define r_skb_data ARM_R7 |
| #define r_skb_hl ARM_R8 |
| |
| #define SCRATCH_SP_OFFSET 0 |
| #define SCRATCH_OFF(k) (SCRATCH_SP_OFFSET + 4 * (k)) |
| |
| #define SEEN_MEM ((1 << BPF_MEMWORDS) - 1) |
| #define SEEN_MEM_WORD(k) (1 << (k)) |
| #define SEEN_X (1 << BPF_MEMWORDS) |
| #define SEEN_CALL (1 << (BPF_MEMWORDS + 1)) |
| #define SEEN_SKB (1 << (BPF_MEMWORDS + 2)) |
| #define SEEN_DATA (1 << (BPF_MEMWORDS + 3)) |
| |
| #define FLAG_NEED_X_RESET (1 << 0) |
| #define FLAG_IMM_OVERFLOW (1 << 1) |
| |
| struct jit_ctx { |
| const struct bpf_prog *skf; |
| unsigned idx; |
| unsigned prologue_bytes; |
| int ret0_fp_idx; |
| u32 seen; |
| u32 flags; |
| u32 *offsets; |
| u32 *target; |
| #if __LINUX_ARM_ARCH__ < 7 |
| u16 epilogue_bytes; |
| u16 imm_count; |
| u32 *imms; |
| #endif |
| }; |
| |
| int bpf_jit_enable __read_mostly; |
| |
| static inline int call_neg_helper(struct sk_buff *skb, int offset, void *ret, |
| unsigned int size) |
| { |
| void *ptr = bpf_internal_load_pointer_neg_helper(skb, offset, size); |
| |
| if (!ptr) |
| return -EFAULT; |
| memcpy(ret, ptr, size); |
| return 0; |
| } |
| |
| static u64 jit_get_skb_b(struct sk_buff *skb, int offset) |
| { |
| u8 ret; |
| int err; |
| |
| if (offset < 0) |
| err = call_neg_helper(skb, offset, &ret, 1); |
| else |
| err = skb_copy_bits(skb, offset, &ret, 1); |
| |
| return (u64)err << 32 | ret; |
| } |
| |
| static u64 jit_get_skb_h(struct sk_buff *skb, int offset) |
| { |
| u16 ret; |
| int err; |
| |
| if (offset < 0) |
| err = call_neg_helper(skb, offset, &ret, 2); |
| else |
| err = skb_copy_bits(skb, offset, &ret, 2); |
| |
| return (u64)err << 32 | ntohs(ret); |
| } |
| |
| static u64 jit_get_skb_w(struct sk_buff *skb, int offset) |
| { |
| u32 ret; |
| int err; |
| |
| if (offset < 0) |
| err = call_neg_helper(skb, offset, &ret, 4); |
| else |
| err = skb_copy_bits(skb, offset, &ret, 4); |
| |
| return (u64)err << 32 | ntohl(ret); |
| } |
| |
| /* |
| * Wrapper that handles both OABI and EABI and assures Thumb2 interworking |
| * (where the assembly routines like __aeabi_uidiv could cause problems). |
| */ |
| static u32 jit_udiv(u32 dividend, u32 divisor) |
| { |
| return dividend / divisor; |
| } |
| |
| static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx) |
| { |
| inst |= (cond << 28); |
| inst = __opcode_to_mem_arm(inst); |
| |
| if (ctx->target != NULL) |
| ctx->target[ctx->idx] = inst; |
| |
| ctx->idx++; |
| } |
| |
| /* |
| * Emit an instruction that will be executed unconditionally. |
| */ |
| static inline void emit(u32 inst, struct jit_ctx *ctx) |
| { |
| _emit(ARM_COND_AL, inst, ctx); |
| } |
| |
| static u16 saved_regs(struct jit_ctx *ctx) |
| { |
| u16 ret = 0; |
| |
| if ((ctx->skf->len > 1) || |
| (ctx->skf->insns[0].code == (BPF_RET | BPF_A))) |
| ret |= 1 << r_A; |
| |
| #ifdef CONFIG_FRAME_POINTER |
| ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC); |
| #else |
| if (ctx->seen & SEEN_CALL) |
| ret |= 1 << ARM_LR; |
| #endif |
| if (ctx->seen & (SEEN_DATA | SEEN_SKB)) |
| ret |= 1 << r_skb; |
| if (ctx->seen & SEEN_DATA) |
| ret |= (1 << r_skb_data) | (1 << r_skb_hl); |
| if (ctx->seen & SEEN_X) |
| ret |= 1 << r_X; |
| |
| return ret; |
| } |
| |
| static inline int mem_words_used(struct jit_ctx *ctx) |
| { |
| /* yes, we do waste some stack space IF there are "holes" in the set" */ |
| return fls(ctx->seen & SEEN_MEM); |
| } |
| |
| static inline bool is_load_to_a(u16 inst) |
| { |
| switch (inst) { |
| case BPF_LD | BPF_W | BPF_LEN: |
| case BPF_LD | BPF_W | BPF_ABS: |
| case BPF_LD | BPF_H | BPF_ABS: |
| case BPF_LD | BPF_B | BPF_ABS: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static void jit_fill_hole(void *area, unsigned int size) |
| { |
| u32 *ptr; |
| /* We are guaranteed to have aligned memory. */ |
| for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) |
| *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF); |
| } |
| |
| static void build_prologue(struct jit_ctx *ctx) |
| { |
| u16 reg_set = saved_regs(ctx); |
| u16 first_inst = ctx->skf->insns[0].code; |
| u16 off; |
| |
| #ifdef CONFIG_FRAME_POINTER |
| emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx); |
| emit(ARM_PUSH(reg_set), ctx); |
| emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx); |
| #else |
| if (reg_set) |
| emit(ARM_PUSH(reg_set), ctx); |
| #endif |
| |
| if (ctx->seen & (SEEN_DATA | SEEN_SKB)) |
| emit(ARM_MOV_R(r_skb, ARM_R0), ctx); |
| |
| if (ctx->seen & SEEN_DATA) { |
| off = offsetof(struct sk_buff, data); |
| emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx); |
| /* headlen = len - data_len */ |
| off = offsetof(struct sk_buff, len); |
| emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx); |
| off = offsetof(struct sk_buff, data_len); |
| emit(ARM_LDR_I(r_scratch, r_skb, off), ctx); |
| emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx); |
| } |
| |
| if (ctx->flags & FLAG_NEED_X_RESET) |
| emit(ARM_MOV_I(r_X, 0), ctx); |
| |
| /* do not leak kernel data to userspace */ |
| if ((first_inst != (BPF_RET | BPF_K)) && !(is_load_to_a(first_inst))) |
| emit(ARM_MOV_I(r_A, 0), ctx); |
| |
| /* stack space for the BPF_MEM words */ |
| if (ctx->seen & SEEN_MEM) |
| emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx); |
| } |
| |
| static void build_epilogue(struct jit_ctx *ctx) |
| { |
| u16 reg_set = saved_regs(ctx); |
| |
| if (ctx->seen & SEEN_MEM) |
| emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx); |
| |
| reg_set &= ~(1 << ARM_LR); |
| |
| #ifdef CONFIG_FRAME_POINTER |
| /* the first instruction of the prologue was: mov ip, sp */ |
| reg_set &= ~(1 << ARM_IP); |
| reg_set |= (1 << ARM_SP); |
| emit(ARM_LDM(ARM_SP, reg_set), ctx); |
| #else |
| if (reg_set) { |
| if (ctx->seen & SEEN_CALL) |
| reg_set |= 1 << ARM_PC; |
| emit(ARM_POP(reg_set), ctx); |
| } |
| |
| if (!(ctx->seen & SEEN_CALL)) |
| emit(ARM_BX(ARM_LR), ctx); |
| #endif |
| } |
| |
| static int16_t imm8m(u32 x) |
| { |
| u32 rot; |
| |
| for (rot = 0; rot < 16; rot++) |
| if ((x & ~ror32(0xff, 2 * rot)) == 0) |
| return rol32(x, 2 * rot) | (rot << 8); |
| |
| return -1; |
| } |
| |
| #if __LINUX_ARM_ARCH__ < 7 |
| |
| static u16 imm_offset(u32 k, struct jit_ctx *ctx) |
| { |
| unsigned i = 0, offset; |
| u16 imm; |
| |
| /* on the "fake" run we just count them (duplicates included) */ |
| if (ctx->target == NULL) { |
| ctx->imm_count++; |
| return 0; |
| } |
| |
| while ((i < ctx->imm_count) && ctx->imms[i]) { |
| if (ctx->imms[i] == k) |
| break; |
| i++; |
| } |
| |
| if (ctx->imms[i] == 0) |
| ctx->imms[i] = k; |
| |
| /* constants go just after the epilogue */ |
| offset = ctx->offsets[ctx->skf->len]; |
| offset += ctx->prologue_bytes; |
| offset += ctx->epilogue_bytes; |
| offset += i * 4; |
| |
| ctx->target[offset / 4] = k; |
| |
| /* PC in ARM mode == address of the instruction + 8 */ |
| imm = offset - (8 + ctx->idx * 4); |
| |
| if (imm & ~0xfff) { |
| /* |
| * literal pool is too far, signal it into flags. we |
| * can only detect it on the second pass unfortunately. |
| */ |
| ctx->flags |= FLAG_IMM_OVERFLOW; |
| return 0; |
| } |
| |
| return imm; |
| } |
| |
| #endif /* __LINUX_ARM_ARCH__ */ |
| |
| /* |
| * Move an immediate that's not an imm8m to a core register. |
| */ |
| static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx) |
| { |
| #if __LINUX_ARM_ARCH__ < 7 |
| emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx); |
| #else |
| emit(ARM_MOVW(rd, val & 0xffff), ctx); |
| if (val > 0xffff) |
| emit(ARM_MOVT(rd, val >> 16), ctx); |
| #endif |
| } |
| |
| static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx) |
| { |
| int imm12 = imm8m(val); |
| |
| if (imm12 >= 0) |
| emit(ARM_MOV_I(rd, imm12), ctx); |
| else |
| emit_mov_i_no8m(rd, val, ctx); |
| } |
| |
| #if __LINUX_ARM_ARCH__ < 6 |
| |
| static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx) |
| { |
| _emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx); |
| _emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx); |
| _emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx); |
| _emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx); |
| _emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx); |
| _emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx); |
| _emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx); |
| _emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx); |
| } |
| |
| static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx) |
| { |
| _emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx); |
| _emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx); |
| _emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx); |
| } |
| |
| static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx) |
| { |
| /* r_dst = (r_src << 8) | (r_src >> 8) */ |
| emit(ARM_LSL_I(ARM_R1, r_src, 8), ctx); |
| emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSR, 8), ctx); |
| |
| /* |
| * we need to mask out the bits set in r_dst[23:16] due to |
| * the first shift instruction. |
| * |
| * note that 0x8ff is the encoded immediate 0x00ff0000. |
| */ |
| emit(ARM_BIC_I(r_dst, r_dst, 0x8ff), ctx); |
| } |
| |
| #else /* ARMv6+ */ |
| |
| static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx) |
| { |
| _emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx); |
| #ifdef __LITTLE_ENDIAN |
| _emit(cond, ARM_REV(r_res, r_res), ctx); |
| #endif |
| } |
| |
| static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx) |
| { |
| _emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx); |
| #ifdef __LITTLE_ENDIAN |
| _emit(cond, ARM_REV16(r_res, r_res), ctx); |
| #endif |
| } |
| |
| static inline void emit_swap16(u8 r_dst __maybe_unused, |
| u8 r_src __maybe_unused, |
| struct jit_ctx *ctx __maybe_unused) |
| { |
| #ifdef __LITTLE_ENDIAN |
| emit(ARM_REV16(r_dst, r_src), ctx); |
| #endif |
| } |
| |
| #endif /* __LINUX_ARM_ARCH__ < 6 */ |
| |
| |
| /* Compute the immediate value for a PC-relative branch. */ |
| static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx) |
| { |
| u32 imm; |
| |
| if (ctx->target == NULL) |
| return 0; |
| /* |
| * BPF allows only forward jumps and the offset of the target is |
| * still the one computed during the first pass. |
| */ |
| imm = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8); |
| |
| return imm >> 2; |
| } |
| |
| #define OP_IMM3(op, r1, r2, imm_val, ctx) \ |
| do { \ |
| imm12 = imm8m(imm_val); \ |
| if (imm12 < 0) { \ |
| emit_mov_i_no8m(r_scratch, imm_val, ctx); \ |
| emit(op ## _R((r1), (r2), r_scratch), ctx); \ |
| } else { \ |
| emit(op ## _I((r1), (r2), imm12), ctx); \ |
| } \ |
| } while (0) |
| |
| static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx) |
| { |
| if (ctx->ret0_fp_idx >= 0) { |
| _emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx); |
| /* NOP to keep the size constant between passes */ |
| emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx); |
| } else { |
| _emit(cond, ARM_MOV_I(ARM_R0, 0), ctx); |
| _emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx); |
| } |
| } |
| |
| static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx) |
| { |
| #if __LINUX_ARM_ARCH__ < 5 |
| emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx); |
| |
| if (elf_hwcap & HWCAP_THUMB) |
| emit(ARM_BX(tgt_reg), ctx); |
| else |
| emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx); |
| #else |
| emit(ARM_BLX_R(tgt_reg), ctx); |
| #endif |
| } |
| |
| static inline void emit_udiv(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx) |
| { |
| #if __LINUX_ARM_ARCH__ == 7 |
| if (elf_hwcap & HWCAP_IDIVA) { |
| emit(ARM_UDIV(rd, rm, rn), ctx); |
| return; |
| } |
| #endif |
| |
| /* |
| * For BPF_ALU | BPF_DIV | BPF_K instructions, rm is ARM_R4 |
| * (r_A) and rn is ARM_R0 (r_scratch) so load rn first into |
| * ARM_R1 to avoid accidentally overwriting ARM_R0 with rm |
| * before using it as a source for ARM_R1. |
| * |
| * For BPF_ALU | BPF_DIV | BPF_X rm is ARM_R4 (r_A) and rn is |
| * ARM_R5 (r_X) so there is no particular register overlap |
| * issues. |
| */ |
| if (rn != ARM_R1) |
| emit(ARM_MOV_R(ARM_R1, rn), ctx); |
| if (rm != ARM_R0) |
| emit(ARM_MOV_R(ARM_R0, rm), ctx); |
| |
| ctx->seen |= SEEN_CALL; |
| emit_mov_i(ARM_R3, (u32)jit_udiv, ctx); |
| emit_blx_r(ARM_R3, ctx); |
| |
| if (rd != ARM_R0) |
| emit(ARM_MOV_R(rd, ARM_R0), ctx); |
| } |
| |
| static inline void update_on_xread(struct jit_ctx *ctx) |
| { |
| if (!(ctx->seen & SEEN_X)) |
| ctx->flags |= FLAG_NEED_X_RESET; |
| |
| ctx->seen |= SEEN_X; |
| } |
| |
| static int build_body(struct jit_ctx *ctx) |
| { |
| void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w}; |
| const struct bpf_prog *prog = ctx->skf; |
| const struct sock_filter *inst; |
| unsigned i, load_order, off, condt; |
| int imm12; |
| u32 k; |
| |
| for (i = 0; i < prog->len; i++) { |
| u16 code; |
| |
| inst = &(prog->insns[i]); |
| /* K as an immediate value operand */ |
| k = inst->k; |
| code = bpf_anc_helper(inst); |
| |
| /* compute offsets only in the fake pass */ |
| if (ctx->target == NULL) |
| ctx->offsets[i] = ctx->idx * 4; |
| |
| switch (code) { |
| case BPF_LD | BPF_IMM: |
| emit_mov_i(r_A, k, ctx); |
| break; |
| case BPF_LD | BPF_W | BPF_LEN: |
| ctx->seen |= SEEN_SKB; |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); |
| emit(ARM_LDR_I(r_A, r_skb, |
| offsetof(struct sk_buff, len)), ctx); |
| break; |
| case BPF_LD | BPF_MEM: |
| /* A = scratch[k] */ |
| ctx->seen |= SEEN_MEM_WORD(k); |
| emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx); |
| break; |
| case BPF_LD | BPF_W | BPF_ABS: |
| load_order = 2; |
| goto load; |
| case BPF_LD | BPF_H | BPF_ABS: |
| load_order = 1; |
| goto load; |
| case BPF_LD | BPF_B | BPF_ABS: |
| load_order = 0; |
| load: |
| emit_mov_i(r_off, k, ctx); |
| load_common: |
| ctx->seen |= SEEN_DATA | SEEN_CALL; |
| |
| if (load_order > 0) { |
| emit(ARM_SUB_I(r_scratch, r_skb_hl, |
| 1 << load_order), ctx); |
| emit(ARM_CMP_R(r_scratch, r_off), ctx); |
| condt = ARM_COND_GE; |
| } else { |
| emit(ARM_CMP_R(r_skb_hl, r_off), ctx); |
| condt = ARM_COND_HI; |
| } |
| |
| /* |
| * test for negative offset, only if we are |
| * currently scheduled to take the fast |
| * path. this will update the flags so that |
| * the slowpath instruction are ignored if the |
| * offset is negative. |
| * |
| * for loard_order == 0 the HI condition will |
| * make loads at offset 0 take the slow path too. |
| */ |
| _emit(condt, ARM_CMP_I(r_off, 0), ctx); |
| |
| _emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data), |
| ctx); |
| |
| if (load_order == 0) |
| _emit(condt, ARM_LDRB_I(r_A, r_scratch, 0), |
| ctx); |
| else if (load_order == 1) |
| emit_load_be16(condt, r_A, r_scratch, ctx); |
| else if (load_order == 2) |
| emit_load_be32(condt, r_A, r_scratch, ctx); |
| |
| _emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx); |
| |
| /* the slowpath */ |
| emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx); |
| emit(ARM_MOV_R(ARM_R0, r_skb), ctx); |
| /* the offset is already in R1 */ |
| emit_blx_r(ARM_R3, ctx); |
| /* check the result of skb_copy_bits */ |
| emit(ARM_CMP_I(ARM_R1, 0), ctx); |
| emit_err_ret(ARM_COND_NE, ctx); |
| emit(ARM_MOV_R(r_A, ARM_R0), ctx); |
| break; |
| case BPF_LD | BPF_W | BPF_IND: |
| load_order = 2; |
| goto load_ind; |
| case BPF_LD | BPF_H | BPF_IND: |
| load_order = 1; |
| goto load_ind; |
| case BPF_LD | BPF_B | BPF_IND: |
| load_order = 0; |
| load_ind: |
| OP_IMM3(ARM_ADD, r_off, r_X, k, ctx); |
| goto load_common; |
| case BPF_LDX | BPF_IMM: |
| ctx->seen |= SEEN_X; |
| emit_mov_i(r_X, k, ctx); |
| break; |
| case BPF_LDX | BPF_W | BPF_LEN: |
| ctx->seen |= SEEN_X | SEEN_SKB; |
| emit(ARM_LDR_I(r_X, r_skb, |
| offsetof(struct sk_buff, len)), ctx); |
| break; |
| case BPF_LDX | BPF_MEM: |
| ctx->seen |= SEEN_X | SEEN_MEM_WORD(k); |
| emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx); |
| break; |
| case BPF_LDX | BPF_B | BPF_MSH: |
| /* x = ((*(frame + k)) & 0xf) << 2; */ |
| ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL; |
| /* the interpreter should deal with the negative K */ |
| if ((int)k < 0) |
| return -1; |
| /* offset in r1: we might have to take the slow path */ |
| emit_mov_i(r_off, k, ctx); |
| emit(ARM_CMP_R(r_skb_hl, r_off), ctx); |
| |
| /* load in r0: common with the slowpath */ |
| _emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data, |
| ARM_R1), ctx); |
| /* |
| * emit_mov_i() might generate one or two instructions, |
| * the same holds for emit_blx_r() |
| */ |
| _emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx); |
| |
| emit(ARM_MOV_R(ARM_R0, r_skb), ctx); |
| /* r_off is r1 */ |
| emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx); |
| emit_blx_r(ARM_R3, ctx); |
| /* check the return value of skb_copy_bits */ |
| emit(ARM_CMP_I(ARM_R1, 0), ctx); |
| emit_err_ret(ARM_COND_NE, ctx); |
| |
| emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx); |
| emit(ARM_LSL_I(r_X, r_X, 2), ctx); |
| break; |
| case BPF_ST: |
| ctx->seen |= SEEN_MEM_WORD(k); |
| emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx); |
| break; |
| case BPF_STX: |
| update_on_xread(ctx); |
| ctx->seen |= SEEN_MEM_WORD(k); |
| emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx); |
| break; |
| case BPF_ALU | BPF_ADD | BPF_K: |
| /* A += K */ |
| OP_IMM3(ARM_ADD, r_A, r_A, k, ctx); |
| break; |
| case BPF_ALU | BPF_ADD | BPF_X: |
| update_on_xread(ctx); |
| emit(ARM_ADD_R(r_A, r_A, r_X), ctx); |
| break; |
| case BPF_ALU | BPF_SUB | BPF_K: |
| /* A -= K */ |
| OP_IMM3(ARM_SUB, r_A, r_A, k, ctx); |
| break; |
| case BPF_ALU | BPF_SUB | BPF_X: |
| update_on_xread(ctx); |
| emit(ARM_SUB_R(r_A, r_A, r_X), ctx); |
| break; |
| case BPF_ALU | BPF_MUL | BPF_K: |
| /* A *= K */ |
| emit_mov_i(r_scratch, k, ctx); |
| emit(ARM_MUL(r_A, r_A, r_scratch), ctx); |
| break; |
| case BPF_ALU | BPF_MUL | BPF_X: |
| update_on_xread(ctx); |
| emit(ARM_MUL(r_A, r_A, r_X), ctx); |
| break; |
| case BPF_ALU | BPF_DIV | BPF_K: |
| if (k == 1) |
| break; |
| emit_mov_i(r_scratch, k, ctx); |
| emit_udiv(r_A, r_A, r_scratch, ctx); |
| break; |
| case BPF_ALU | BPF_DIV | BPF_X: |
| update_on_xread(ctx); |
| emit(ARM_CMP_I(r_X, 0), ctx); |
| emit_err_ret(ARM_COND_EQ, ctx); |
| emit_udiv(r_A, r_A, r_X, ctx); |
| break; |
| case BPF_ALU | BPF_OR | BPF_K: |
| /* A |= K */ |
| OP_IMM3(ARM_ORR, r_A, r_A, k, ctx); |
| break; |
| case BPF_ALU | BPF_OR | BPF_X: |
| update_on_xread(ctx); |
| emit(ARM_ORR_R(r_A, r_A, r_X), ctx); |
| break; |
| case BPF_ALU | BPF_XOR | BPF_K: |
| /* A ^= K; */ |
| OP_IMM3(ARM_EOR, r_A, r_A, k, ctx); |
| break; |
| case BPF_ANC | SKF_AD_ALU_XOR_X: |
| case BPF_ALU | BPF_XOR | BPF_X: |
| /* A ^= X */ |
| update_on_xread(ctx); |
| emit(ARM_EOR_R(r_A, r_A, r_X), ctx); |
| break; |
| case BPF_ALU | BPF_AND | BPF_K: |
| /* A &= K */ |
| OP_IMM3(ARM_AND, r_A, r_A, k, ctx); |
| break; |
| case BPF_ALU | BPF_AND | BPF_X: |
| update_on_xread(ctx); |
| emit(ARM_AND_R(r_A, r_A, r_X), ctx); |
| break; |
| case BPF_ALU | BPF_LSH | BPF_K: |
| if (unlikely(k > 31)) |
| return -1; |
| emit(ARM_LSL_I(r_A, r_A, k), ctx); |
| break; |
| case BPF_ALU | BPF_LSH | BPF_X: |
| update_on_xread(ctx); |
| emit(ARM_LSL_R(r_A, r_A, r_X), ctx); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_K: |
| if (unlikely(k > 31)) |
| return -1; |
| emit(ARM_LSR_I(r_A, r_A, k), ctx); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_X: |
| update_on_xread(ctx); |
| emit(ARM_LSR_R(r_A, r_A, r_X), ctx); |
| break; |
| case BPF_ALU | BPF_NEG: |
| /* A = -A */ |
| emit(ARM_RSB_I(r_A, r_A, 0), ctx); |
| break; |
| case BPF_JMP | BPF_JA: |
| /* pc += K */ |
| emit(ARM_B(b_imm(i + k + 1, ctx)), ctx); |
| break; |
| case BPF_JMP | BPF_JEQ | BPF_K: |
| /* pc += (A == K) ? pc->jt : pc->jf */ |
| condt = ARM_COND_EQ; |
| goto cmp_imm; |
| case BPF_JMP | BPF_JGT | BPF_K: |
| /* pc += (A > K) ? pc->jt : pc->jf */ |
| condt = ARM_COND_HI; |
| goto cmp_imm; |
| case BPF_JMP | BPF_JGE | BPF_K: |
| /* pc += (A >= K) ? pc->jt : pc->jf */ |
| condt = ARM_COND_HS; |
| cmp_imm: |
| imm12 = imm8m(k); |
| if (imm12 < 0) { |
| emit_mov_i_no8m(r_scratch, k, ctx); |
| emit(ARM_CMP_R(r_A, r_scratch), ctx); |
| } else { |
| emit(ARM_CMP_I(r_A, imm12), ctx); |
| } |
| cond_jump: |
| if (inst->jt) |
| _emit(condt, ARM_B(b_imm(i + inst->jt + 1, |
| ctx)), ctx); |
| if (inst->jf) |
| _emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1, |
| ctx)), ctx); |
| break; |
| case BPF_JMP | BPF_JEQ | BPF_X: |
| /* pc += (A == X) ? pc->jt : pc->jf */ |
| condt = ARM_COND_EQ; |
| goto cmp_x; |
| case BPF_JMP | BPF_JGT | BPF_X: |
| /* pc += (A > X) ? pc->jt : pc->jf */ |
| condt = ARM_COND_HI; |
| goto cmp_x; |
| case BPF_JMP | BPF_JGE | BPF_X: |
| /* pc += (A >= X) ? pc->jt : pc->jf */ |
| condt = ARM_COND_CS; |
| cmp_x: |
| update_on_xread(ctx); |
| emit(ARM_CMP_R(r_A, r_X), ctx); |
| goto cond_jump; |
| case BPF_JMP | BPF_JSET | BPF_K: |
| /* pc += (A & K) ? pc->jt : pc->jf */ |
| condt = ARM_COND_NE; |
| /* not set iff all zeroes iff Z==1 iff EQ */ |
| |
| imm12 = imm8m(k); |
| if (imm12 < 0) { |
| emit_mov_i_no8m(r_scratch, k, ctx); |
| emit(ARM_TST_R(r_A, r_scratch), ctx); |
| } else { |
| emit(ARM_TST_I(r_A, imm12), ctx); |
| } |
| goto cond_jump; |
| case BPF_JMP | BPF_JSET | BPF_X: |
| /* pc += (A & X) ? pc->jt : pc->jf */ |
| update_on_xread(ctx); |
| condt = ARM_COND_NE; |
| emit(ARM_TST_R(r_A, r_X), ctx); |
| goto cond_jump; |
| case BPF_RET | BPF_A: |
| emit(ARM_MOV_R(ARM_R0, r_A), ctx); |
| goto b_epilogue; |
| case BPF_RET | BPF_K: |
| if ((k == 0) && (ctx->ret0_fp_idx < 0)) |
| ctx->ret0_fp_idx = i; |
| emit_mov_i(ARM_R0, k, ctx); |
| b_epilogue: |
| if (i != ctx->skf->len - 1) |
| emit(ARM_B(b_imm(prog->len, ctx)), ctx); |
| break; |
| case BPF_MISC | BPF_TAX: |
| /* X = A */ |
| ctx->seen |= SEEN_X; |
| emit(ARM_MOV_R(r_X, r_A), ctx); |
| break; |
| case BPF_MISC | BPF_TXA: |
| /* A = X */ |
| update_on_xread(ctx); |
| emit(ARM_MOV_R(r_A, r_X), ctx); |
| break; |
| case BPF_ANC | SKF_AD_PROTOCOL: |
| /* A = ntohs(skb->protocol) */ |
| ctx->seen |= SEEN_SKB; |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, |
| protocol) != 2); |
| off = offsetof(struct sk_buff, protocol); |
| emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx); |
| emit_swap16(r_A, r_scratch, ctx); |
| break; |
| case BPF_ANC | SKF_AD_CPU: |
| /* r_scratch = current_thread_info() */ |
| OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx); |
| /* A = current_thread_info()->cpu */ |
| BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4); |
| off = offsetof(struct thread_info, cpu); |
| emit(ARM_LDR_I(r_A, r_scratch, off), ctx); |
| break; |
| case BPF_ANC | SKF_AD_IFINDEX: |
| case BPF_ANC | SKF_AD_HATYPE: |
| /* A = skb->dev->ifindex */ |
| /* A = skb->dev->type */ |
| ctx->seen |= SEEN_SKB; |
| off = offsetof(struct sk_buff, dev); |
| emit(ARM_LDR_I(r_scratch, r_skb, off), ctx); |
| |
| emit(ARM_CMP_I(r_scratch, 0), ctx); |
| emit_err_ret(ARM_COND_EQ, ctx); |
| |
| BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, |
| ifindex) != 4); |
| BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, |
| type) != 2); |
| |
| if (code == (BPF_ANC | SKF_AD_IFINDEX)) { |
| off = offsetof(struct net_device, ifindex); |
| emit(ARM_LDR_I(r_A, r_scratch, off), ctx); |
| } else { |
| /* |
| * offset of field "type" in "struct |
| * net_device" is above what can be |
| * used in the ldrh rd, [rn, #imm] |
| * instruction, so load the offset in |
| * a register and use ldrh rd, [rn, rm] |
| */ |
| off = offsetof(struct net_device, type); |
| emit_mov_i(ARM_R3, off, ctx); |
| emit(ARM_LDRH_R(r_A, r_scratch, ARM_R3), ctx); |
| } |
| break; |
| case BPF_ANC | SKF_AD_MARK: |
| ctx->seen |= SEEN_SKB; |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); |
| off = offsetof(struct sk_buff, mark); |
| emit(ARM_LDR_I(r_A, r_skb, off), ctx); |
| break; |
| case BPF_ANC | SKF_AD_RXHASH: |
| ctx->seen |= SEEN_SKB; |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4); |
| off = offsetof(struct sk_buff, hash); |
| emit(ARM_LDR_I(r_A, r_skb, off), ctx); |
| break; |
| case BPF_ANC | SKF_AD_VLAN_TAG: |
| case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT: |
| ctx->seen |= SEEN_SKB; |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2); |
| off = offsetof(struct sk_buff, vlan_tci); |
| emit(ARM_LDRH_I(r_A, r_skb, off), ctx); |
| if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) |
| OP_IMM3(ARM_AND, r_A, r_A, ~VLAN_TAG_PRESENT, ctx); |
| else { |
| OP_IMM3(ARM_LSR, r_A, r_A, 12, ctx); |
| OP_IMM3(ARM_AND, r_A, r_A, 0x1, ctx); |
| } |
| break; |
| case BPF_ANC | SKF_AD_PKTTYPE: |
| ctx->seen |= SEEN_SKB; |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, |
| __pkt_type_offset[0]) != 1); |
| off = PKT_TYPE_OFFSET(); |
| emit(ARM_LDRB_I(r_A, r_skb, off), ctx); |
| emit(ARM_AND_I(r_A, r_A, PKT_TYPE_MAX), ctx); |
| #ifdef __BIG_ENDIAN_BITFIELD |
| emit(ARM_LSR_I(r_A, r_A, 5), ctx); |
| #endif |
| break; |
| case BPF_ANC | SKF_AD_QUEUE: |
| ctx->seen |= SEEN_SKB; |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, |
| queue_mapping) != 2); |
| BUILD_BUG_ON(offsetof(struct sk_buff, |
| queue_mapping) > 0xff); |
| off = offsetof(struct sk_buff, queue_mapping); |
| emit(ARM_LDRH_I(r_A, r_skb, off), ctx); |
| break; |
| case BPF_ANC | SKF_AD_PAY_OFFSET: |
| ctx->seen |= SEEN_SKB | SEEN_CALL; |
| |
| emit(ARM_MOV_R(ARM_R0, r_skb), ctx); |
| emit_mov_i(ARM_R3, (unsigned int)skb_get_poff, ctx); |
| emit_blx_r(ARM_R3, ctx); |
| emit(ARM_MOV_R(r_A, ARM_R0), ctx); |
| break; |
| case BPF_LDX | BPF_W | BPF_ABS: |
| /* |
| * load a 32bit word from struct seccomp_data. |
| * seccomp_check_filter() will already have checked |
| * that k is 32bit aligned and lies within the |
| * struct seccomp_data. |
| */ |
| ctx->seen |= SEEN_SKB; |
| emit(ARM_LDR_I(r_A, r_skb, k), ctx); |
| break; |
| default: |
| return -1; |
| } |
| |
| if (ctx->flags & FLAG_IMM_OVERFLOW) |
| /* |
| * this instruction generated an overflow when |
| * trying to access the literal pool, so |
| * delegate this filter to the kernel interpreter. |
| */ |
| return -1; |
| } |
| |
| /* compute offsets only during the first pass */ |
| if (ctx->target == NULL) |
| ctx->offsets[i] = ctx->idx * 4; |
| |
| return 0; |
| } |
| |
| |
| void bpf_jit_compile(struct bpf_prog *fp) |
| { |
| struct bpf_binary_header *header; |
| struct jit_ctx ctx; |
| unsigned tmp_idx; |
| unsigned alloc_size; |
| u8 *target_ptr; |
| |
| if (!bpf_jit_enable) |
| return; |
| |
| memset(&ctx, 0, sizeof(ctx)); |
| ctx.skf = fp; |
| ctx.ret0_fp_idx = -1; |
| |
| ctx.offsets = kzalloc(4 * (ctx.skf->len + 1), GFP_KERNEL); |
| if (ctx.offsets == NULL) |
| return; |
| |
| /* fake pass to fill in the ctx->seen */ |
| if (unlikely(build_body(&ctx))) |
| goto out; |
| |
| tmp_idx = ctx.idx; |
| build_prologue(&ctx); |
| ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4; |
| |
| #if __LINUX_ARM_ARCH__ < 7 |
| tmp_idx = ctx.idx; |
| build_epilogue(&ctx); |
| ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4; |
| |
| ctx.idx += ctx.imm_count; |
| if (ctx.imm_count) { |
| ctx.imms = kzalloc(4 * ctx.imm_count, GFP_KERNEL); |
| if (ctx.imms == NULL) |
| goto out; |
| } |
| #else |
| /* there's nothing after the epilogue on ARMv7 */ |
| build_epilogue(&ctx); |
| #endif |
| alloc_size = 4 * ctx.idx; |
| header = bpf_jit_binary_alloc(alloc_size, &target_ptr, |
| 4, jit_fill_hole); |
| if (header == NULL) |
| goto out; |
| |
| ctx.target = (u32 *) target_ptr; |
| ctx.idx = 0; |
| |
| build_prologue(&ctx); |
| if (build_body(&ctx) < 0) { |
| #if __LINUX_ARM_ARCH__ < 7 |
| if (ctx.imm_count) |
| kfree(ctx.imms); |
| #endif |
| bpf_jit_binary_free(header); |
| goto out; |
| } |
| build_epilogue(&ctx); |
| |
| flush_icache_range((u32)ctx.target, (u32)(ctx.target + ctx.idx)); |
| |
| #if __LINUX_ARM_ARCH__ < 7 |
| if (ctx.imm_count) |
| kfree(ctx.imms); |
| #endif |
| |
| if (bpf_jit_enable > 1) |
| /* there are 2 passes here */ |
| bpf_jit_dump(fp->len, alloc_size, 2, ctx.target); |
| |
| set_memory_ro((unsigned long)header, header->pages); |
| fp->bpf_func = (void *)ctx.target; |
| fp->jited = 1; |
| out: |
| kfree(ctx.offsets); |
| return; |
| } |
| |
| void bpf_jit_free(struct bpf_prog *fp) |
| { |
| unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK; |
| struct bpf_binary_header *header = (void *)addr; |
| |
| if (!fp->jited) |
| goto free_filter; |
| |
| set_memory_rw(addr, header->pages); |
| bpf_jit_binary_free(header); |
| |
| free_filter: |
| bpf_prog_unlock_free(fp); |
| } |